1
|
Lawrence AB, Brown SM, Bradford BM, Mabbott NA, Bombail V, Rutherford KMD. Non-neuronal brain biology and its relevance to animal welfare. Neurosci Biobehav Rev 2025; 173:106136. [PMID: 40185375 DOI: 10.1016/j.neubiorev.2025.106136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Non-neuronal cells constitute a significant portion of brain tissue and are seen as having key roles in brain homeostasis and responses to challenges. This review illustrates how non-neuronal biology can bring new perspectives to animal welfare through understanding mechanisms that determine welfare outcomes and highlighting interventions to improve welfare. Most obvious in this respect is the largely unrecognised relevance of neuroinflammation to animal welfare which is increasingly found to have roles in determining how animals respond to challenges. We start by introducing non-neuronal cells and review their involvement in affective states and cognition often seen as core psychological elements of animal welfare. We find that the evidence for a causal involvement of glia in cognition is currently more advanced than the corresponding evidence for affective states. We propose that translational research on affective disorders could usefully apply welfare science derived approaches for assessing affective states. Using evidence from translational research, we illustrate the involvement of non-neuronal cells and neuroinflammatory processes as mechanisms modulating resilience to welfare challenges including disease, pain, and social stress. We review research on impoverished environments and environmental enrichment which suggests that environmental conditions which improve animal welfare also improve resilience to challenges through balancing pro- and anti-inflammatory non-neuronal processes. We speculate that non-neuronal biology has relevance to animal welfare beyond neuro-inflammation including facilitating positive affective states. We acknowledge the relevance of neuronal biology to animal welfare whilst proposing that non-neuronal biology provides additional and relevant insights to improve animals' lives.
Collapse
Affiliation(s)
- Alistair B Lawrence
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK; Scotland's Rural College (SRUC), Edinburgh EH9 3JG, UK.
| | - Sarah M Brown
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Barry M Bradford
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Neil A Mabbott
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | | | | |
Collapse
|
2
|
Kronemer SI, Bandettini PA, Gonzalez-Castillo J. Sleuthing subjectivity: a review of covert measures of consciousness. Nat Rev Neurosci 2025:10.1038/s41583-025-00934-1. [PMID: 40410390 DOI: 10.1038/s41583-025-00934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2025] [Indexed: 05/25/2025]
Abstract
Consciousness is private. Although conscious beings directly access their own conscious experiences, the consciousness of others must be inferred through overt report: observable behaviours - such as overt facial expressions, vocalizations and body gestures - that suggest the level, state and content of consciousness. However, overt report is limited because it can be erroneous (for example, resulting from wilful deception or being subject to recall error), absent (for example, during sleep and paralysis) or conflict with research goals (for example, in no-report paradigms and resting-state studies). These limitations encourage the search for covert measures of consciousness: physiological signals that disclose consciousness without relying on overt behaviour. This Review highlights emerging covert measures of consciousness in humans, including eye, skin, respiratory and heart signals. We also address the challenge of distinguishing physiological signals linked to conscious versus unconscious neural processing. Finally, we consider the ethical implications of infringing on the innate privacy of consciousness.
Collapse
Affiliation(s)
- Sharif I Kronemer
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Peter A Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Functional Magnetic Resonance Imaging Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Javier Gonzalez-Castillo
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Drerup C, Garcia-Pelegrin E, Wilkins C, Herbert-Read JE, Clayton NS. Tactical deception in cephalopods: a new framework for understanding cognition. Trends Ecol Evol 2025:S0169-5347(25)00128-4. [PMID: 40410027 DOI: 10.1016/j.tree.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/25/2025]
Abstract
Many animals rely on deception, including signalling misinformation, to gain advantages over others. While many deceptive strategies rely on deterministic patterns or conditioning, some taxa can flexibly adapt their deceptive behaviour to the identity, perspective, or inferred goals of the observer. These context-dependent deceptive strategies could be considered 'tactical deception' if they rely on higher-level cognitive processes to execute. Here, we outline why cephalopods, such as octopus and cuttlefish, are ideal candidates to explore the link between deception and cognition. As tactical deception relies on understanding differences in one's own and another observer's perspective, we suggest tactical deception as a framework to study aspects of cognition in other animals.
Collapse
Affiliation(s)
- Christian Drerup
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK; Department of Biosciences, Durham University, South Rd, Durham DH1 3LE, UK.
| | - Elias Garcia-Pelegrin
- Department of Psychology, National University of Singapore, 9 Arts Link, Singapore 117572, Singapore.
| | - Clive Wilkins
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| | - James E Herbert-Read
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Nicola S Clayton
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK
| |
Collapse
|
4
|
Veit W, Browning H, Garcia-Pelegrin E, Davies JR, DuBois JG, Clayton NS. Dimensions of corvid consciousness. Anim Cogn 2025; 28:35. [PMID: 40316871 PMCID: PMC12048460 DOI: 10.1007/s10071-025-01949-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 05/04/2025]
Abstract
Corvids have long been a target of public fascination and of scientific attention, particularly in the study of animal minds. Using Birch et al.'s (2020) 5-dimensional framework for animal consciousness we ask what it is like to be a corvid and propose a speculative but empirically informed answer. We go on to suggest future directions for research on corvid consciousness and how it can inform ethical treatment and animal welfare legislation.
Collapse
Affiliation(s)
| | | | | | - James R Davies
- University of Cambridge, Cambridge, UK
- University of Bristol, Bristol, UK
| | | | | |
Collapse
|
5
|
Carranza-Pinedo V, Krohs U, Richter SH. Towards a scientific definition of animal emotions: Integrating innate, appraisal, and network mechanisms. Neurosci Biobehav Rev 2025; 172:106127. [PMID: 40164242 DOI: 10.1016/j.neubiorev.2025.106127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
This paper introduces a mechanistic framework for understanding animal emotions, which is designed for biologists studying animal behavior and welfare. Researchers often examine emotions-short-term valenced experiences-through behavioral, somatic, and cognitive indicators. However, proposed indicators are often ambivalent (emerge in contexts with opposing emotional valence) or undetermined (arise in both affective and non-affective processes). To ground hypothesis formulation regarding animal emotions on a better foundation, the paper advocates for building on what we know regarding the mechanisms of human emotions-the behavioral rules that transform sensory input into motor output during emotional episodes. In particular, it integrates key assumptions from three dominant psychological theories of emotion-innate, appraisal, and network theories-into a single framework and argues that this can serve as a common ground to transfer insights from human to animal emotion research. Additionally, the paper tackles the question of how emotions relate to closely linked processes such as decision-making, distinguishing between parallel architecture models-where emotions and decision-making processes interact but remain distinct-and unified models-where affective states are conceived as integral to goal-oriented processes. Finally, we discuss how our mechanistic proposal can help us address four key questions in animal emotion research: Do animals experience emotions? If so, which animals experience emotions? Which emotions do they experience? And how do these emotions compare to human emotions? The paper concludes by emphasizing the need for further empirical research on the mechanisms of animal emotions and their distinction from other processes.
Collapse
Affiliation(s)
- Víctor Carranza-Pinedo
- Department of Philosophy, University of Münster, Münster, Germany; Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld, Bielefeld, Germany.
| | - Ulrich Krohs
- Department of Philosophy, University of Münster, Münster, Germany; Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld, Bielefeld, Germany.
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Münster, Germany; Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld, Bielefeld, Germany.
| |
Collapse
|
6
|
Howard SR. The value of ecologically irrelevant animal cognition research. Trends Cogn Sci 2025:S1364-6613(25)00078-6. [PMID: 40393898 DOI: 10.1016/j.tics.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/28/2025] [Accepted: 03/30/2025] [Indexed: 05/22/2025]
Abstract
Animal cognition research is often firmly grounded in the ecology and life history of the species. However, there are many studies exploring cognitive tasks that appear ecologically irrelevant. Ecologically irrelevant experiments are cognitive tests lacking clear ecological context in their inspiration, design, and applications. Here, I explore the case for and against ecologically irrelevant cognitive research. I discuss the challenges associated with defining and conducting ecologically irrelevant cognitive research and provide potential solutions for tackling these issues. I pose the question of whether any animal cognition research can be considered completely ecologically irrelevant. My goal is to argue that there is a place for both ecological relevance and irrelevance in the study of animal cognition.
Collapse
Affiliation(s)
- Scarlett R Howard
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
7
|
Laurenzi M, Raffone A, Gallagher S, Chiarella SG. A multidimensional approach to the self in non-human animals through the Pattern Theory of Self. Front Psychol 2025; 16:1561420. [PMID: 40271366 PMCID: PMC12014599 DOI: 10.3389/fpsyg.2025.1561420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/26/2025] [Indexed: 04/25/2025] Open
Abstract
In the last decades, research on animal consciousness has advanced significantly, fueled by interdisciplinary contributions. However, a critical dimension of animal experience remains underexplored: the self. While traditionally linked to human studies, research focused on the self in animals has often been framed dichotomously, distinguishing low-level, bodily, and affective aspects from high-level, cognitive, and conceptual dimensions. Emerging evidence suggests a broader spectrum of self-related features across species, yet current theoretical approaches often reduce the self to a derivative aspect of consciousness or prioritize narrow high-level dimensions, such as self-recognition or metacognition. To address this gap, we propose an integrated framework grounded in the Pattern Theory of Self (PTS). PTS conceptualizes the self as a dynamic, multidimensional construct arising from a matrix of dimensions, ranging from bodily and affective to intersubjective and normative aspects. We propose adopting this multidimensional perspective for the study of the self in animals, by emphasizing the graded nature of the self within each dimension and the non-hierarchical organization across dimensions. In this sense, PTS may accommodate both inter- and intra-species variability, enabling researchers to investigate the self across diverse organisms without relying on anthropocentric biases. We propose that, by integrating this framework with insights from comparative psychology, neuroscience, and ethology, the application of PTS to animals can show how the self emerges in varying degrees and forms, shaped by ecological niches and adaptive demands.
Collapse
Affiliation(s)
- Matteo Laurenzi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Antonino Raffone
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Shaun Gallagher
- Department of Philosophy, University of Memphis, Memphis, TN, United States
- School of Liberal Arts (SOLA), University of Wollongong, Wollongong, NSW, Australia
| | - Salvatore G. Chiarella
- School of Liberal Arts (SOLA), University of Wollongong, Wollongong, NSW, Australia
- International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
8
|
de Weerd CR, Dung L. How to Live in the Moment: The Methodology and Limitations of Evolutionary Research on Consciousness. Cogn Sci 2025; 49:e70053. [PMID: 40105062 PMCID: PMC11921076 DOI: 10.1111/cogs.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
There is much interest in investigating the evolution question: How did consciousness evolve? In this paper, we evaluate the role that evolutionary considerations can play in justifying (i.e., confirming or falsifying) hypotheses about the origin, nature, and function of consciousness. Specifically, we argue against what we call evolution-first approaches to consciousness, according to which evolutionary considerations provide the primary and foundational lens through which we should assess hypotheses about the nature, function, or distribution of consciousness. Based on the example of Walter Veit's account and additional reasoning, we contend that evolution-first approaches struggle to provide compelling empirical evidence for their key claims about consciousness. In contrast with these approaches, we argue that consciousness science needs to foundationally rely on experimental and observational evidence from humans and other present-day animals. If our arguments succeed, then researchers, when investigating consciousness, are better advised to take as their primary source of evidence consciousness' present, not its past. Having said this, we acknowledge that evolutionary thinking plays an important role in consciousness science. We delineate this role by stressing several ways in which evolutionary considerations can substantially help advance consciousness research, although in a manner that avoids the evolution-first approach. Since our argument only concerns the assessment of hypotheses (the "context of justification"), it leaves it open which role evolutionary considerations play in generating hypotheses (the "context of discovery"). That is, evolutionary considerations may nevertheless play a foundational role in hypothesis generation in consciousness science.
Collapse
Affiliation(s)
| | - Leonard Dung
- Centre for Philosophy and AI Research (PAIR)University of Erlangen‐Nürnberg (FAU)
- Institute of Philosophy IIRuhr‐University Bochum
| |
Collapse
|
9
|
Evers K, Farisco M, Chatila R, Earp BD, Freire IT, Hamker F, Nemeth E, Verschure PFMJ, Khamassi M. Preliminaries to artificial consciousness: A multidimensional heuristic approach. Phys Life Rev 2025; 52:180-193. [PMID: 39787683 DOI: 10.1016/j.plrev.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
The pursuit of artificial consciousness requires conceptual clarity to navigate its theoretical and empirical challenges. This paper introduces a composite, multilevel, and multidimensional model of consciousness as a heuristic framework to guide research in this field. Consciousness is treated as a complex phenomenon, with distinct constituents and dimensions that can be operationalized for study and for evaluating their replication. We argue that this model provides a balanced approach to artificial consciousness research by avoiding binary thinking (e.g., conscious vs. non-conscious) and offering a structured basis for testable hypotheses. To illustrate its utility, we focus on "awareness" as a case study, demonstrating how specific dimensions of consciousness can be pragmatically analyzed and targeted for potential artificial instantiation. By breaking down the conceptual intricacies of consciousness and aligning them with practical research goals, this paper lays the groundwork for a robust strategy to advance the scientific and technical understanding of artificial consciousness.
Collapse
Affiliation(s)
- K Evers
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
| | - M Farisco
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden; Biogem Molecular Biology and Genetics Research Institute, Ariano Irpino, AV, Italy.
| | - R Chatila
- Institute of Intelligent Systems and Robotics, CNRS, Sorbonne University, Paris, France
| | - B D Earp
- Uehiro Centre for Practical Ethics, University of Oxford, Oxford, UK; Centre for Biomedical Ethics, National University of Singapore, Singapore
| | - I T Freire
- Institute of Intelligent Systems and Robotics, CNRS, Sorbonne University, Paris, France
| | - F Hamker
- Artificial Intelligence, Computer Science, Chemnitz University of Technology, Germany
| | - E Nemeth
- Institute of Intelligent Systems and Robotics, CNRS, Sorbonne University, Paris, France
| | - P F M J Verschure
- Alicante Institute of Neuroscience & Department of Health Psychology, Universidad Miguel Hernandez, Spain
| | - M Khamassi
- Institute of Intelligent Systems and Robotics, CNRS, Sorbonne University, Paris, France
| |
Collapse
|
10
|
Andrews K, Birch J, Sebo J. Evaluating animal consciousness. Science 2025; 387:822-824. [PMID: 39977511 DOI: 10.1126/science.adp4990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
An emerging field shows how animal feelings can be studied scientifically.
Collapse
Affiliation(s)
- Kristin Andrews
- Department of Philosophy, York University, Toronto, ON, Canada
| | - Jonathan Birch
- London School of Economics and Political Science, London, UK
| | - Jeff Sebo
- Department of Environmental Studies, New York University, New York, NY, USA
| |
Collapse
|
11
|
Nesin SM, Chandrankunnel M. The need for a new perspective on decision-making in bacteria. Commun Integr Biol 2025; 18:2463926. [PMID: 39967857 PMCID: PMC11834444 DOI: 10.1080/19420889.2025.2463926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
The individualistic and collectivistic intelligent behaviors observed in mammals, birds, and fishes have been appreciated by many scientists in recent years and supported by the Cambridge Declaration on Consciousness in 2012. Behavioral studies in lower organisms like arthropods and cephalopods showed the presence of multisensory integration, decision-making, and goal-directed behavior in these non-vertebrate animals. The presence of intelligent and history-dependent behaviors has been studied in microorganisms, and recent studies propose the possibility of cognition in single cellular organisms. The Cellular Basis of Consciousness (CBC), proposed by Arthur Reber in 2016 and elaborated by Baluška and Reber in 2019, suggests the possibility of consciousness in single cellular organisms. However, the critics of the Cellular Basis of Consciousness theory state that the individual bacterial cell does not make choices, and the decision-making is the result of stochastic differences in protein levels. Here, we want to address the criticism of decision-making in bacteria. An attempt is made to give a new perspective to the existing model to explain the flexibility in bacterial behavior in an ever-changing environment. The authors would like to consider an alternative perspective on flexibility in decision-making as the result of multiple pathways that have convergence and divergence as observed in the brain. Flexibility provides the possibility to have individualistic behavior, and the existence of such pathways can be considered as the molecular mechanism underlying individualistic decision-making in bacteria as well as in humans.
Collapse
Affiliation(s)
- Sibin Mathew Nesin
- Department of Psychology, School of Psychological Sciences, CHRIST University, Bangalore, India
| | | |
Collapse
|
12
|
Kappel S, Collins S, Mendl M, Fureix C. Looking out for danger: Theoretical and empirical issues in translating human attention bias tasks to assess animal affective states. Neurosci Biobehav Rev 2025; 169:105980. [PMID: 39667693 DOI: 10.1016/j.neubiorev.2024.105980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/23/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Understanding animal emotional (affective) state is highly relevant to various disciplines (e.g., animal welfare, neuroscience, comparative psychology), and has been significantly advanced by translating affect-induced cognitive bias paradigms rooted in human psychology to non-human animal studies. Attention bias (i.e., preferential attention allocation, AB) tests are increasingly used as more practical substitutes to commonly used judgement bias tests. Yet, evidence that AB reflects affective valence in animals is still limited. We review in-depth the concept of attention and AB described in humans and discuss utilising human-derived AB paradigms for measuring animal affective states. We describe key concepts and functions of attention in humans, before concentrating on the relationship between AB to threat detection and human anxiety. We critically review animal AB studies, discuss methodological discrepancies in such studies, and highlight the need for further experimental refinements. This includes identifying appropriate species-specific test designs and stimuli, modes of presentation (e.g., real-life vs. artificial stimuli), and consideration of subject-related factors (e.g., personality, age). We conclude that experimental limitations currently hamper the validity of AB as a proxy of animal affect and hope that the knowledge gaps highlighted in our review will encourage further research.
Collapse
Affiliation(s)
- Sarah Kappel
- University of Plymouth, School of Biological and Marine Sciences, Portland Square, Drake Circus, Plymouth PL4 8AA, UK.
| | - Sarah Collins
- University of Plymouth, School of Biological and Marine Sciences, Portland Square, Drake Circus, Plymouth PL4 8AA, UK
| | - Michael Mendl
- University of Bristol, Bristol Veterinary School, Langford House, Langford BS40 5DU, UK
| | - Carole Fureix
- University of Plymouth, School of Biological and Marine Sciences, Portland Square, Drake Circus, Plymouth PL4 8AA, UK; University of Bristol, Bristol Veterinary School, Langford House, Langford BS40 5DU, UK
| |
Collapse
|
13
|
Yakhlef V, Magalhães-Sant’Ana M, Pereira AL, Azevedo A. A Global Survey on the Perception of Conservationists Regarding Animal Consciousness. Animals (Basel) 2025; 15:341. [PMID: 39943112 PMCID: PMC11816229 DOI: 10.3390/ani15030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/04/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Human perceptions of animal consciousness have evolved over time, influencing how they are treated. This study aimed to assess perceptions of animal consciousness in people working in conservation. An online survey of 87 participants evaluated their perceptions of animals' capabilities across 10 dimensions of consciousness, including self-consciousness, learning, and reasoning. The sum of the answers to the questions was validated as a "perception index" using a principal component analysis. Next, its variation according to taxonomic, demographic, professional factors, and the duration, type, and frequency of interaction with animals was assessed with generalized linear models and stepwise model selection. Participants' perceptions varied with taxonomic class and the level of education, with mammals obtaining higher indexes than birds (-0.14; 95% confidence interval [CI] -0.24, -0.03, p < 0.01) or reptiles (-0.41; 95% CI -0.55, -0.27, p < 0.01), and respondents holding a PhD exhibiting higher perception indexes than those with BScs (-0.19; 95% CI -0.32, -0.06, p < 0.01) or lower education (-0.18; 95% CI -0.32, -0.03, p = 0.01). The attribution of consciousness followed a phylogenetic pattern, but several exceptions (e.g., the octopus and raven) were noted on a finer scale supporting a multifactorial influence on the perception of animal consciousness that emerges upon a baseline phylogenetic pattern. Finally, the results suggest that conservationists are influenced by culture and scientific knowledge, as much as their personal experiences, when evaluating animals' perceptions, highlighting the need for further research on the convergence between perception, belief, and evidence.
Collapse
Affiliation(s)
- Valentine Yakhlef
- CIVG—Vasco da Gama Research Center/EUVG—Vasco da Gama University School, Avenida José R. Sousa Fernandes 197, 3020-210 Coimbra, Portugal; (A.L.P.); (A.A.)
| | - Manuel Magalhães-Sant’Ana
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal;
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Ana Luísa Pereira
- CIVG—Vasco da Gama Research Center/EUVG—Vasco da Gama University School, Avenida José R. Sousa Fernandes 197, 3020-210 Coimbra, Portugal; (A.L.P.); (A.A.)
- CISAS—Center for Research and Development in Agrifood Systems and Sustainability, Escola Superior Agrária, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal
| | - Alexandre Azevedo
- CIVG—Vasco da Gama Research Center/EUVG—Vasco da Gama University School, Avenida José R. Sousa Fernandes 197, 3020-210 Coimbra, Portugal; (A.L.P.); (A.A.)
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal;
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
14
|
Henríquez-Hernández LA, García-Serrano I, Quintana-Hernández DJ, Rojas-Hernández J, Hernández-Álvarez E, Zumbado M, Fernández-Borkel T, Borkel LF. Single-dose 1cp-LSD administration for canine anxiety: a pilot study. Vet Res Commun 2024; 48:4007-4014. [PMID: 39287896 PMCID: PMC11538183 DOI: 10.1007/s11259-024-10542-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Anxiety affects 14-20% of dogs. Pharmacological treatments often fail. Psychedelics have shown to be useful for anxiety and depression in humans, but their veterinary use remains unexplored. We aimed to determine the effects of low-dose 1-cyclopropionyl-d-lysergic acid diethylamide (1cp-LSD) administered in a single dose to a dog, to observe the effect and establish the safety of the substance. The patient was a 13-year-old female dog, weighing 13 kg, mixed breed, and spayed. A total of 5 µg was administered orally, equivalent to 0.38 µg/kg. The animal has had a history of separation related behavioral problems throughout her life. To objectively assess the degree of anxiety in the dog, a validated scale was utilized. The trial was scheduled at the house where the animal lives. The owner was present throughout the experience. Informed consent was obtained prior to the assay. The trial began at 12:15 p.m. on January 10, 2024, lasting for 5 and a half hours. The response to anxiety-inducing stimuli was equally anxious during the first two hours. From that point onwards, a significant change in the animal's behavior was observed, with no signs/mild signs of anxiety. The trial concluded without any adverse effects on the animal. The patient did not show signs of having a psychedelic experience. This is the first time that a study of this nature has been conducted and reported in the canine species. 1cp-LSD proved to be safe and exerted the desired effect on the animal's behavior, significantly reducing the patient's anxiety.
Collapse
Affiliation(s)
- Luis Alberto Henríquez-Hernández
- Unit of Toxicology, Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe, s/n., Las Palmas de Gran Canaria, Canary Islands, CP 35016, Spain.
- Asociación Científica Psicodélica, Las Palmas de Gran Canaria, Canary Islands, Spain.
| | | | - Domingo J Quintana-Hernández
- Asociación Científica Psicodélica, Las Palmas de Gran Canaria, Canary Islands, Spain
- Faculty of Psychology, Universidad del Atlántico Medio, Las Palmas de Gran Canaria, Canary Islands, Spain
- Insituto-AS, Cabildo de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Jaime Rojas-Hernández
- Asociación Científica Psicodélica, Las Palmas de Gran Canaria, Canary Islands, Spain
- Asociación Canaria para el Desarrollo de la Salud a través de la Atención, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Elisa Hernández-Álvarez
- Faculty of Veterinary, Universidad de las Palmas de Gran Canaria, Autopista de Bañaderos a Las Palmas, 80, Arucas, Canary Islands, CP 35416, Spain.
| | - Manuel Zumbado
- Unit of Toxicology, Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe, s/n., Las Palmas de Gran Canaria, Canary Islands, CP 35016, Spain
| | - Tobías Fernández-Borkel
- Asociación Científica Psicodélica, Las Palmas de Gran Canaria, Canary Islands, Spain
- Institute of Psychiatry, Psychology & Neuroscience, Department of Basic and Clinical Neuroscience, Kings College, London, UK
| | - Lucas F Borkel
- Asociación Científica Psicodélica, Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
15
|
Wang Z, Sun G, Fan X, Xiao P, Zhu L. Biomimetic Octopus Suction Cup with Attachment Force Self-Sensing Capability for Cardiac Adhesion. Soft Robot 2024; 11:1043-1054. [PMID: 38979629 DOI: 10.1089/soro.2023.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
This study develops a biomimetic soft octopus suction device with integrated self-sensing capabilities designed to enhance the precision and safety of cardiac surgeries. The device draws inspiration from the octopus's exceptional ability to adhere to various surfaces and its sophisticated proprioceptive system, allowing for real-time adjustment of adhesive force. The research integrates thin-film pressure sensors into the soft suction cup design, emulating the tactile capabilities of an octopus's sucker to convey information about the contact environment in real time. Signals from sensors within soft materials exhibiting complex strain characteristics are processed and interpreted using the grey wolf optimizer-back propagation (GWO-BP) algorithm. The tissue stabilizer is endowed with the self-sensing capabilities of biomimetic octopus suckers, and real-time feedback on the adhesion state is provided. The embedding location of the thin-film pressure sensors is determined through foundational experiments with flexible substrates, standard spherical tests, and biological tissue trials. The newly fabricated suction cups undergo compression pull-off tests to collect data. The GWO-BP algorithm model accurately identifies and predicts the suction cup's adhesion force in real time, with an error rate below 0.97% and a mean prediction time of 0.0027 s. Integrating this technology offers a novel approach to intelligent monitoring and attachment assurance during cardiac surgeries. Hence, the probability of potential cardiac tissue damage is reduced, with future applications for integrating intelligent biomimetic adhesive soft robotics.
Collapse
Affiliation(s)
- Ziwei Wang
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, Beijing, China
- Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science & Technology University, Beijing, China
| | - Guangkai Sun
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, Beijing, China
- Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science & Technology University, Beijing, China
| | - Xinwei Fan
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, Beijing, China
- Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science & Technology University, Beijing, China
| | - Peng Xiao
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, Beijing, China
- Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science & Technology University, Beijing, China
| | - Lianqing Zhu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, Beijing, China
- Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science & Technology University, Beijing, China
| |
Collapse
|
16
|
Lacalli T. The function(s) of consciousness: an evolutionary perspective. Front Psychol 2024; 15:1493423. [PMID: 39660268 PMCID: PMC11628302 DOI: 10.3389/fpsyg.2024.1493423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
The functions of consciousness, viewed from an evolutionary standpoint, can be categorized as being either general or particular. There are two general functions, meaning those that do not depend on the particulars of how consciousness influences behavior or how and why it first evolved: of (1) expanding the behavioral repertoire of the individual through the gradual accumulation of neurocircuitry innovations incorporating consciousness that would not exist without it, and (2) reducing the time scale over which preprogrammed behaviors can be altered, from evolutionary time, across generations, to real-time. But neither answers Velmans' question, of why consciousness is adaptive in a proximate sense, and hence why it would have evolved, which depends on identifying the particular function it first performed. Memory arguably plays a role here, as a strong case can be made that consciousness first evolved to make motivational control more responsive, though memory, to the past life experiences of the individual. A control mechanism of this kind could, for example, have evolved to consciously inhibit appetitive behaviors, whether consciously instigated or not, that would otherwise expose the individual to harm. There is then the question of whether, for amniote vertebrates, a role in memory formation and access would have led directly to a wider role for consciousness in the way the brain operates, or if some other explanation is required. Velmans' question might then have two answers, the second having more to do with the advantages of global oversight for the control of behavior, as in a global workspace, or for conferring meaning on sensory experience in a way that non-conscious neural processes cannot. Meaning in this context refers specifically to the way valence is embodied in the genomic instructions for assembling the neurocircuitry responsible for phenomenal contents, so it constitutes an embodied form of species memory, and a way of thinking about the adaptive utility of consciousness that is less concerned with real-time mechanistic events than with information storage on an evolutionary time scale.
Collapse
Affiliation(s)
- Thurston Lacalli
- Biology Department, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
17
|
Irwin LN. Symbolic representation by a two-dimensional matrix for profiling comparative animal behavior. Front Psychol 2024; 15:1450754. [PMID: 39649780 PMCID: PMC11621754 DOI: 10.3389/fpsyg.2024.1450754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/12/2024] [Indexed: 12/11/2024] Open
Abstract
The growing view that consciousness is widespread, multimodal, and evolutionarily non-linear in complexity across the animal kingdom has given rise recently to a variety of strategies for representing the heterogeneous nature of animal phenomenology. While based on markers clearly associated with consciousness in humans, most of these strategies are theoretical constructs lacking empirical data and are based on metrics appropriate for humans but difficult to measure in most non-human species. I propose a novel symbolic profile based on readily observable behaviors that logically constitute subjective experience across the entire spectrum of animals that possess a centralized nervous system. Three modes (markers) of behavior displayed by all animals - volition, interaction, and self-direction - are quantified according to the frequency, variety, and dynamism of each mode. The resulting matrix of 3 modes x 3 metrics can be expressed as a bi-directional heatmap, allowing for quick and easy inter-species comparisons. The overall effect is to highlight both similarities and differences in the subjective experience of animals ranging from crustaceans to primates.
Collapse
Affiliation(s)
- Louis N Irwin
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
18
|
Davies JR, Clayton NS. Is episodic-like memory like episodic memory? Philos Trans R Soc Lond B Biol Sci 2024; 379:20230397. [PMID: 39278246 PMCID: PMC11449162 DOI: 10.1098/rstb.2023.0397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 09/18/2024] Open
Abstract
Episodic memory involves the conscious recollection of personally experienced events and when absent, results in profound losses to the typical human conscious experience. Over the last 2.5 decades, the debate surrounding whether episodic memory is unique to humans has seen a lot of controversy and accordingly has received significant research attention. Various behavioural paradigms have been developed to test episodic-like memory; a term designed to reflect the behavioural characteristics of episodic memory in the absence of evidence for consciously experienced recall. In this review, we first outline the most influential paradigms that have been developed to assess episodic-like memory across a variety of non-human taxa (including mammals, birds and cephalopods), namely the what-where-when memory, incidental encoding and unexpected question, and source memory paradigms. Then, we examine whether various key features of human episodic memory are conceptually represented in episodic-like memory across phylogenetically and neurologically diverse taxa, identifying similarities, differences and gaps in the literature. We conclude that the evidence is mixed, and as episodic memory encompasses a variety of cognitive structures and processes, research on episodic-like memory in non-humans should follow this multifaceted approach and assess evidence across various behavioural paradigms that each target different aspects of human episodic memory.This article is part of the theme issue 'Elements of episodic memory: lessons from 40 years of research'.
Collapse
Affiliation(s)
- James R Davies
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Nicola S Clayton
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| |
Collapse
|
19
|
Zipple MN, Hazelwood C, Webster MF, Benítez ME. Animal emotions and consciousness: a preliminary assessment of researchers' perceptions and biases and prospects for future progress. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241255. [PMID: 39539500 PMCID: PMC11558068 DOI: 10.1098/rsos.241255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/22/2024] [Indexed: 11/16/2024]
Abstract
Scientists and philosophers have long struggled with the question of whether non-human animals experience emotions or consciousness. Yet, it is unclear where the scientific consensus on these topics lies today. To address this gap, we administered a survey of professional animal behaviour researchers to assess perceptions regarding (i) the taxonomic distribution of emotions and consciousness in non-human animals, (ii) respondents' confidence in this assessment, and (iii) attitudes towards pitfalls and potential for progress when addressing these questions. Respondents (n = 100) ascribe emotionality and consciousness to a broad swath of the animal taxonomy, including non-human primates, other mammals, birds and cephalopods. Respondents' attribution of these phenomena was strongly associated with their confidence in their assessments (R 2 > 0.9), with respondents assuming an absence of emotions and consciousness when they were unsure. We also identify an emergent consensus of the components involved in a functional definition of emotions. Researchers are optimistic that tools either currently exist or will exist in the future to rigorously address these questions (>85%) and that animal behaviour, as a field, should do more to encourage research works on emotions (>70%). We discuss implications for publication bias and future work in this area as well as ethical considerations regarding animal care and use.
Collapse
Affiliation(s)
- Matthew N. Zipple
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY14853, USA
| | - Caleb Hazelwood
- Department of Philosophy, Duke University, Durham, NC27701, USA
| | | | | |
Collapse
|
20
|
Ajuwon V, Cruz B, Monteiro T. GoFish: a foray into open-source, aquatic behavioral automation. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39313915 DOI: 10.1111/jfb.15937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024]
Abstract
As the most species-rich vertebrate group, fish provide an array of opportunities to investigate the link between ecological interactions and the evolution of behavior and cognition, yet, as an animal model, they are relatively underutilized in studies of comparative cognition. To address this gap, we developed a fully automated platform for behavioral experiments in aquatic species, GoFish. GoFish includes closed-loop control of task contingencies using real-time video tracking, presentation of visual stimuli, automatic food reward dispensers, and built-in data acquisition. The hardware is relatively inexpensive and accessible, and all software components of the platform are open-source. GoFish facilitates experimental automation, allowing for customization of high-throughput protocols and the efficient acquisition of rich behavioral data. We hope this platform proves to be a useful tool for the research community, facilitating refined, reproducible behavioral experiments on aquatic species in comparative cognition, behavioral ecology, and neuroscience.
Collapse
Affiliation(s)
- Victor Ajuwon
- Department of Psychology, University of Cambridge, Cambridge, UK
| | | | - Tiago Monteiro
- Domestication Lab, Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
- William James Center for Research, University of Aveiro, Aveiro, Portugal
- Department of Education and Psychology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
21
|
Mercogliano R, Avolio A, Castiello F, Ferrante MC. Development of Welfare Protocols at Slaughter in Farmed Fish. Animals (Basel) 2024; 14:2730. [PMID: 39335320 PMCID: PMC11428536 DOI: 10.3390/ani14182730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
The study investigated fish welfare at slaughter. Killing animals may induce suffering to the animals even under the best available technical conditions. Moreover, fish have different physiological characteristics and are slaughtered differently from terrestrial animals. The use of commercially available methods exposes farmed fish to pain and suffering during slaughter, which could lead to acute stress and post mortem changes in fish quality. The study aimed to discuss (i) the current knowledge and knowledge gaps on fish welfare related to stunning and killing methods; (ii) the variables that affect the post mortem changes in fish meat, and (iii) the indicators of welfare during slaughter. Application of welfare protocols at slaughter improves fish welfare. Specific protocols for fish are not provided in EC Regulation 1099/2009 on animal protection at killing. Detailed guidelines in the fish welfare assessment may allow the development of specific fish legislation. Developing humane technologies might have important effects on fish quality, consumer perception and aquaculture economics.
Collapse
Affiliation(s)
- Raffaelina Mercogliano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino 1, 80137 Napoli, Italy; (A.A.); (F.C.); (M.C.F.)
| | | | | | | |
Collapse
|
22
|
Ben-Ami Bartal I. The complex affective and cognitive capacities of rats. Science 2024; 385:1298-1305. [PMID: 39298607 DOI: 10.1126/science.adq6217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
For several decades, although studies of rat physiology and behavior have abounded, research on rat emotions has been limited in scope to fear, anxiety, and pain. Converging evidence for the capacity of many species to share others' affective states has emerged, sparking interest in the empathic capacities of rats. Recent research has demonstrated that rats are a highly cooperative species and are motivated by others' distress to prosocial actions, such as opening a door or pulling a chain to release trapped conspecifics. Studies of rat affect, cognition, and neural function provide compelling evidence that rats have some capacity to represent others' needs, to instrumentally act to improve their well-being, and are thus capable of forms of targeted helping. Rats' complex abilities raise the importance of integrating new measures of rat well-being into scientific research.
Collapse
Affiliation(s)
- Inbal Ben-Ami Bartal
- School of School of Psychological Sciences, Tel-Aviv University, Tel Aviv, 6997801, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
23
|
Grinde B. Consciousness makes sense in the light of evolution. Neurosci Biobehav Rev 2024; 164:105824. [PMID: 39047928 DOI: 10.1016/j.neubiorev.2024.105824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
I believe consciousness is a property of advanced nervous systems, and as such a product of evolution. Thus, to understand consciousness we need to describe the trajectory leading to its evolution and the selective advantages conferred. A deeper understanding of the neurology would be a significant contribution, but other advanced functions, such as hearing and vision, are explained with a comparable lack of detailed knowledge of the brain processes responsible. In this paper, I try to add details and credence to a previously suggested, evolution-based model of consciousness. According to this model, the feature started to evolve in early amniotes (reptiles, birds, and mammals) some 320 million years ago. The reason was the introduction of feelings as a strategy for making behavioral decisions.
Collapse
Affiliation(s)
- Bjørn Grinde
- Professor Emeritus, University of Oslo, Problemveien 11, Oslo 0313, Norway.
| |
Collapse
|
24
|
Nikolić M, di Plinio S, Sauter D, Keysers C, Gazzola V. The blushing brain: neural substrates of cheek temperature increase in response to self-observation. Proc Biol Sci 2024; 291:20240958. [PMID: 39013420 PMCID: PMC11251765 DOI: 10.1098/rspb.2024.0958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024] Open
Abstract
Darwin proposed that blushing-the reddening of the face owing to heightened self-awareness-is 'the most human of all expressions'. Yet, relatively little is known about the underlying mechanisms of blushing. Theories diverge on whether it is a rapid, spontaneous emotional response that does not involve reflection upon the self or whether it results from higher-order socio-cognitive processes. Investigating the neural substrates of blushing can shed light on the mental processes underlying blushing and the mechanisms involved in self-awareness. To reveal neural activity associated with blushing, 16-20 year-old participants (n = 40) watched pre-recorded videos of themselves (versus other people as a control condition) singing karaoke in a magnetic resonance imaging scanner. We measured participants' cheek temperature increase-an indicator of blushing-and their brain activity. The results showed that blushing is higher when watching oneself versus others sing. Those who blushed more while watching themselves sing had, on average, higher activation in the cerebellum (lobule V) and the left paracentral lobe and exhibited more time-locked processing of the videos in early visual cortices. These findings show that blushing is associated with the activation of brain areas involved in emotional arousal, suggesting that it may occur independently of higher-order socio-cognitive processes. Our results provide new avenues for future research on self-awareness in infants and non-human animals.
Collapse
Affiliation(s)
- Milica Nikolić
- Institute for Child Development and Education, University of Amsterdam, Amsterdam1018 WS, The Netherlands
| | - Simone di Plinio
- Department of Neuroscience, Imaging, and Clinical Sciences, D'Annunzio University of Chieti–Pescara, Pescara66100, Italy
| | - Disa Sauter
- Psychology Institute, University of Amsterdam, Amsterdam1018 WS, The Netherlands
| | - Christian Keysers
- Psychology Institute, University of Amsterdam, Amsterdam1018 WS, The Netherlands
- Netherlands Institute for Neuroscience, KNAW, Amsterdam1105 BA, The Netherlands
| | - Valeria Gazzola
- Psychology Institute, University of Amsterdam, Amsterdam1018 WS, The Netherlands
- Netherlands Institute for Neuroscience, KNAW, Amsterdam1105 BA, The Netherlands
| |
Collapse
|
25
|
Goudar V, Kim JW, Liu Y, Dede AJO, Jutras MJ, Skelin I, Ruvalcaba M, Chang W, Ram B, Fairhall AL, Lin JJ, Knight RT, Buffalo EA, Wang XJ. A Comparison of Rapid Rule-Learning Strategies in Humans and Monkeys. J Neurosci 2024; 44:e0231232024. [PMID: 38871463 PMCID: PMC11236592 DOI: 10.1523/jneurosci.0231-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
Interspecies comparisons are key to deriving an understanding of the behavioral and neural correlates of human cognition from animal models. We perform a detailed comparison of the strategies of female macaque monkeys to male and female humans on a variant of the Wisconsin Card Sorting Test (WCST), a widely studied and applied task that provides a multiattribute measure of cognitive function and depends on the frontal lobe. WCST performance requires the inference of a rule change given ambiguous feedback. We found that well-trained monkeys infer new rules three times more slowly than minimally instructed humans. Input-dependent hidden Markov model-generalized linear models were fit to their choices, revealing hidden states akin to feature-based attention in both species. Decision processes resembled a win-stay, lose-shift strategy with interspecies similarities as well as key differences. Monkeys and humans both test multiple rule hypotheses over a series of rule-search trials and perform inference-like computations to exclude candidate choice options. We quantitatively show that perseveration, random exploration, and poor sensitivity to negative feedback account for the slower task-switching performance in monkeys.
Collapse
Affiliation(s)
- Vishwa Goudar
- Center for Neural Science, New York University, New York 10003
| | - Jeong-Woo Kim
- Center for Neural Science, New York University, New York 10003
| | - Yue Liu
- Center for Neural Science, New York University, New York 10003
| | - Adam J O Dede
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Michael J Jutras
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Ivan Skelin
- Department of Neurology, University of California, Davis, California 95616
- The Center for Mind and Brain, University of California, Davis, California 95616
| | - Michael Ruvalcaba
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720
| | - William Chang
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720
| | - Bhargavi Ram
- Department of Neurology, University of California, Davis, California 95616
- The Center for Mind and Brain, University of California, Davis, California 95616
| | - Adrienne L Fairhall
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Jack J Lin
- Department of Neurology, University of California, Davis, California 95616
- The Center for Mind and Brain, University of California, Davis, California 95616
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720
- Department of Psychology, University of California, Berkeley, California 94720
| | - Elizabeth A Buffalo
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
- Washington Primate Research Center, University of Washington, Seattle, Washington 98195
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York 10003
| |
Collapse
|
26
|
Hansen MJ. Modelling developments in consciousness within a multidimensional framework. Neurosci Conscious 2024; 2024:niae026. [PMID: 38895541 PMCID: PMC11184344 DOI: 10.1093/nc/niae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/17/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
A recent advancement in consciousness science has been the introduction of a multidimensional framework of consciousness. This framework has been applied to global states of consciousness, including psychedelic states and disorders of consciousness, and the consciousness of non-human animals. The multidimensional framework enables a finer parsing of both various states of consciousness and forms of animal consciousness, paving the way for new scientific investigations into consciousness. In this paper, the multidimensional model is expanded by constructing temporal profiles. This expansion allows for the modelling of changes in consciousness across the life cycles of organisms and the progression over time of disorders of consciousness. The result of this expansion is 2-fold: (i) it enables new modes of comparison, both across stages of development and across species; (ii) it proposes that more attention be given to the various types of fluctuations that occur in patients who are suffering from disorders of consciousness.
Collapse
Affiliation(s)
- Mads Jørgensen Hansen
- Department of Philosophy and History of Ideas, School of Culture and Society, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
27
|
Kaufmann A. All animals are conscious in their own way: comparing the markers hypothesis with the universal consciousness hypothesis. Front Psychol 2024; 15:1405394. [PMID: 38803831 PMCID: PMC11128545 DOI: 10.3389/fpsyg.2024.1405394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/19/2024] [Indexed: 05/29/2024] Open
|
28
|
Lacalli T. Mental causation: an evolutionary perspective. Front Psychol 2024; 15:1394669. [PMID: 38741757 PMCID: PMC11089241 DOI: 10.3389/fpsyg.2024.1394669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
The relationship between consciousness and individual agency is examined from a bottom-up evolutionary perspective, an approach somewhat different from other ways of dealing with the issue, but one relevant to the question of animal consciousness. Two ways are identified that would decouple the two, allowing consciousness of a limited kind to exist without agency: (1) reflex pathways that incorporate conscious sensations as an intrinsic component (InCs), and (2) reflexes that are consciously conditioned and dependent on synaptic plasticity but not memory (CCRs). Whether InCs and CCRs exist as more than hypothetical constructs is not clear, and InCs are in any case limited to theories where consciousness depends directly on EM field-based effects. Consciousness with agency, as we experience it, then belongs in a third category that allows for deliberate choice of alternative actions (DCs), where the key difference between this and CCR-level pathways is that DCs require access to explicit memory systems whereas CCRs do not. CCRs are nevertheless useful from a heuristic standpoint as a conceptual model for how conscious inputs could act to refine routine behaviors while allowing evolution to optimize phenomenal experience (i.e., qualia) in the absence of individual agency, a somewhat counterintuitive result. However, so long as CCRs are not a required precondition for the evolution of memory-dependent DC-level processes, the later could have evolved first. If so, the adaptive benefit of consciousness when it first evolved may be linked as much to the role it plays in encoding memories as to any other function. The possibility that CCRs are more than a theoretical construct, and have played a role in the evolution of consciousness, argues against theories of consciousness focussed exclusively on higher-order functions as the appropriate way to deal with consciousness as it first evolved, as it develops in the early postnatal period of life, or with the conscious experiences of animals other than ourselves. An evolutionary perspective also resolves the problem of free will, that it is best treated as a property of a species rather than the individuals belonging to that species whereas, in contrast, agency is an attribute of individuals.
Collapse
Affiliation(s)
- Thurston Lacalli
- Department of Biology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
29
|
Irwin LN. Behavioral indicators of heterogeneous subjective experience in animals across the phylogenetic spectrum: Implications for comparative animal phenomenology. Heliyon 2024; 10:e28421. [PMID: 38623251 PMCID: PMC11016586 DOI: 10.1016/j.heliyon.2024.e28421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/17/2024] Open
Abstract
This behavioral study was undertaken to provide empirical evidence in favor of or opposed to the notion that animals across a wide breadth of the animal kingdom have subjective (personal) experience that varies with their lifestyles, ecological constraints, or phylogeny. Twelve species representing two invertebrate phyla and six vertebrate classes were observed unobtrusively in 15-min episodes, during which three modes of behavior (volitional, interactive, and egocentric) were quantified according to the frequency, variety, and dynamism of each mode. Volitional behavior was the most prevalent and dynamic mode for nearly all species, largely without regard to phylogenetic position. Interactive behavior likewise varied inconsistently across the entire evolutionary spectrum. Egocentric behavior was concentrated among the avian and mammalian species, but evidence of it were observed in the invertebrate species as well. Diagrams of the matrix constructed from the three qualitative modes and three quantitative attributes for each mode provide a metaphorical representation of the unique experiential profile of each species. To the extent that these behavioral measures correlate with the nature of the animal's subjective experience, they support the growing view that phenomenology is heterogeneous, multimodal, and non-linear in extent across the animal kingdom.
Collapse
Affiliation(s)
- Louis N. Irwin
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
30
|
Andersen S. The maps of meaning consciousness theory. Front Psychol 2024; 15:1161132. [PMID: 38659681 PMCID: PMC11040679 DOI: 10.3389/fpsyg.2024.1161132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/07/2024] [Indexed: 04/26/2024] Open
Abstract
In simple terms, consciousness is constituted by multiple goals for action and the continuous adjudication of such goals to implement action, which is referred to as the maps of meaning (MoM) consciousness theory. The MoM theory triangulates through three parallel corollaries: action (behavior), mechanism (morphology/pathophysiology), and goals (teleology). (1) An organism's consciousness contains fluid, nested goals. These goals are not intentionality, but intersectionality, via the Darwinian byproduct of embodiment meeting the world, i.e., Darwinian inclusive fitness or randomization and then survival of the fittest. (2) These goals are formed via a gradual descent under inclusive fitness and are the abstraction of a "match" between the evolutionary environment and the organism. (3) Human consciousness implements the brain efficiency hypothesis, genetics, epigenetics, and experience-crystallized efficiencies, not necessitating best or objective but fitness, i.e., perceived efficiency based on one's adaptive environment. These efficiencies are objectively arbitrary but determine the operation and level of one's consciousness, termed as extreme thrownness. (4) Since inclusive fitness drives efficiencies in the physiologic mechanism, morphology, and behavior (action) and originates one's goals, embodiment is necessarily entangled to human consciousness as it is at the intersection of mechanism or action (both necessitating embodiment) occurring in the world that determines fitness. (5) Perception is the operant process of consciousness and is the de facto goal adjudication process of consciousness. Goal operationalization is fundamentally efficiency-based via one's unique neuronal mapping as a byproduct of genetics, epigenetics, and experience. (6) Perception involves information intake and information discrimination, equally underpinned by efficiencies of inclusive fitness via extreme thrownness. Perception is not a 'frame rate' but Bayesian priors of efficiency based on one's extreme thrownness. (7) Consciousness and human consciousness are modular (i.e., a scalar level of richness, which builds up like building blocks) and dimensionalized (i.e., cognitive abilities become possibilities as the emergent phenomena at various modularities such as the stratified factors in factor analysis). (8) The meta dimensions of human consciousness seemingly include intelligence quotient, personality (five-factor model), richness of perception intake, and richness of perception discrimination, among other potentialities. (9) Future consciousness research should utilize factor analysis to parse modularities and dimensions of human consciousness and animal models.
Collapse
Affiliation(s)
- Scott Andersen
- United States Department of Homeland Security, Washington, DC, United States
- Liberty University, Lynchburg, VA, United States
| |
Collapse
|
31
|
Boyd JL. Moral considerability of brain organoids from the perspective of computational architecture. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae004. [PMID: 38595940 PMCID: PMC10995847 DOI: 10.1093/oons/kvae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/06/2024] [Accepted: 02/27/2024] [Indexed: 04/11/2024]
Abstract
Human brain organoids equipped with complex cytoarchitecture and closed-loop feedback from virtual environments could provide insights into neural mechanisms underlying cognition. Yet organoids with certain cognitive capacities might also merit moral consideration. A precautionary approach has been proposed to address these ethical concerns by focusing on the epistemological question of whether organoids possess neural structures for morally-relevant capacities that bear resemblance to those found in human brains. Critics challenge this similarity approach on philosophical, scientific, and practical grounds but do so without a suitable alternative. Here, I introduce an architectural approach that infers the potential for cognitive-like processing in brain organoids based on the pattern of information flow through the system. The kind of computational architecture acquired by an organoid then informs the kind of cognitive capacities that could, theoretically, be supported and empirically investigated. The implications of this approach for the moral considerability of brain organoids are discussed.
Collapse
Affiliation(s)
- J Lomax Boyd
- Berman Institute of Bioethics, Johns Hopkins University, 1809 Ashland Ave, Baltimore, MD 21205, USA
| |
Collapse
|
32
|
Shupe E. The irreconcilability of insight. Anim Cogn 2024; 27:16. [PMID: 38429535 PMCID: PMC10907412 DOI: 10.1007/s10071-024-01844-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/02/2023] [Accepted: 11/19/2023] [Indexed: 03/03/2024]
Abstract
We are said to experience insight when we suddenly and unexpectedly become aware of the solution to a problem that we previously took ourselves to be unable to solve. In the field of comparative cognition, there is rising interest in the question of whether non-human animals are capable of insightful problem-solving. Putative cases of animals demonstrating insight have generally attracted two types of criticism: first, that insight is being conflated with other cognitive capacities (e.g., causal cognition, or mental trial and error); and, second, that the relevant performances merely reflect associative learning-and on the received understanding of insight within comparative cognition, insight necessarily involves non-associative processes. I argue that even if we grant that some cases of animal insight do withstand these two criticisms, these cases of purported animal insight cannot shed light on the nature of insightful problem-solving in humans. For the phenomenon studied by cognitive psychologists under the heading of insight is fundamentally different from that studied in comparative cognition. In light of this impasse, I argue that the reinterpretation of the extant research on animal insight in terms of other high-level cognitive capacities (means-end reasoning in particular) can improve the prospect of a successful comparative research program.
Collapse
Affiliation(s)
- Eli Shupe
- University of Texas at Arlington, Arlington, USA.
| |
Collapse
|
33
|
Crook RJ. Perspective: Social License as a Lens for Improving Ethical and Welfare Standards in Cephalopod Research. Integr Comp Biol 2023; 63:1307-1315. [PMID: 37442633 DOI: 10.1093/icb/icad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Interest in cephalopods as comparative models in neuroscience, cognition, behavior, and ecology is surging due to recent advances in culture and experimental techniques. Although cephalopods have a long history in research, their use had remained limited due to the challenges of funding work on comparative models, the lack of modern techniques applicable to them, and the small number of labs with the facilities to keep and house large numbers of healthy animals for long periods. Breakthroughs in each of these areas are now creating new interest in cephalopods from researchers who trained and worked in other models, as well as allowing established cephalopod labs to grow and collaborate more widely. This broadening of the field is essential to its long-term health, but also brings with it new and heightened scrutiny from animal rights organizations, federal regulatory agencies, and members of the public. As a community, it is critical that scientists working with cephalopods engage in discussions, studies, and communication that promote high standards for cephalopod welfare. The concept of "social license to operate," more commonly encountered in industry, recreation, and agriculture, provides a useful lens through which to view proactive steps the cephalopod research community may take to ensure a strong future for our field. In this Perspective, I discuss recent progress in cephalopod ethics and welfare studies, and use the conceptual framework of Social License to Operate to propose a forward-looking, public-facing strategy for the parallel development of welfare-focused best practices and scientific breakthroughs.
Collapse
Affiliation(s)
- Robyn J Crook
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| |
Collapse
|
34
|
Aru J, Larkum ME, Shine JM. The feasibility of artificial consciousness through the lens of neuroscience. Trends Neurosci 2023; 46:1008-1017. [PMID: 37863713 DOI: 10.1016/j.tins.2023.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/23/2023] [Accepted: 09/27/2023] [Indexed: 10/22/2023]
Abstract
Interactions with large language models (LLMs) have led to the suggestion that these models may soon be conscious. From the perspective of neuroscience, this position is difficult to defend. For one, the inputs to LLMs lack the embodied, embedded information content characteristic of our sensory contact with the world around us. Secondly, the architectures of present-day artificial intelligence algorithms are missing key features of the thalamocortical system that have been linked to conscious awareness in mammals. Finally, the evolutionary and developmental trajectories that led to the emergence of living conscious organisms arguably have no parallels in artificial systems as envisioned today. The existence of living organisms depends on their actions and their survival is intricately linked to multi-level cellular, inter-cellular, and organismal processes culminating in agency and consciousness.
Collapse
Affiliation(s)
- Jaan Aru
- Institute of Computer Science, University of Tartu, Tartu, Estonia.
| | - Matthew E Larkum
- Institute of Biology, Humboldt University Berlin, Berlin, Germany.
| | - James M Shine
- Brain and Mind Center, The University of Sydney, Sydney, Australia.
| |
Collapse
|
35
|
Osorio D. Cephalopods and the law. Curr Biol 2023; 33:R1078-R1080. [PMID: 37875086 DOI: 10.1016/j.cub.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
In this My word Daniel Osorio explains why cephalopod molluscs were protected by a European Union directive on laboratory animal legislation in 2013, and how the scientific community responded to the challenges posed by this development.
Collapse
Affiliation(s)
- Daniel Osorio
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| |
Collapse
|
36
|
Thomsen AM, Borrie WT, Miller KK, Cardilini APA. Listen to Us: Perceptions of Animal Voice and Agency. Animals (Basel) 2023; 13:3271. [PMID: 37893995 PMCID: PMC10603673 DOI: 10.3390/ani13203271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In many contexts, the interests of nonhuman animals (hereafter "animals") are often overlooked or considered to be a lower priority than those of humans. While strong arguments exist for taking animal moral claims seriously, these largely go unheard due to dominant anthropocentric attitudes and beliefs. This study aimed to explore how animal interests might be best represented in the human world. We conducted interviews to investigate people's perceptions of what it means to speak for other animals and who can reliably represent animal interests. Using Grounded Theory analytical methods, we identified one major theme: "Animal voice", and its subthemes: "Animals do/do not have a voice", "Human language constructs realities and paradigms", and "Let animals speak". Our findings illustrate how human language constructs contribute to shaping the realities of animals by contextually defining them as voiceless. This has serious implications for animals, society, and the environment. Drawing parallels with the relevant literature, our results reflect calls for the social and political recognition of animal voice as fundamental to animal representation. We recommend future research to focus on developing ethical and compassionate approaches to understanding animal subjective experiences to empower and amplify animal voices.
Collapse
Affiliation(s)
- Anja M. Thomsen
- School of Life and Environmental Sciences, Deakin University, Melbourne, VIC 3125, Australia; (W.T.B.); (K.K.M.); (A.P.A.C.)
| | - William T. Borrie
- School of Life and Environmental Sciences, Deakin University, Melbourne, VIC 3125, Australia; (W.T.B.); (K.K.M.); (A.P.A.C.)
- PAN Works, Marlborough, MA 01752, USA
| | - Kelly K. Miller
- School of Life and Environmental Sciences, Deakin University, Melbourne, VIC 3125, Australia; (W.T.B.); (K.K.M.); (A.P.A.C.)
| | - Adam P. A. Cardilini
- School of Life and Environmental Sciences, Deakin University, Melbourne, VIC 3125, Australia; (W.T.B.); (K.K.M.); (A.P.A.C.)
- PAN Works, Marlborough, MA 01752, USA
| |
Collapse
|
37
|
Kaufmann A. Introducing individual sentience profiles in nonhuman primate neuroscience research. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100104. [PMID: 37576492 PMCID: PMC10415712 DOI: 10.1016/j.crneur.2023.100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/30/2023] [Accepted: 07/23/2023] [Indexed: 08/15/2023] Open
Abstract
The Animal Research Declaration is committed to establishing cohesive and rigorous ethical standards to safeguard the welfare of nonhuman primates (NHPs) engaged in neuroscience research (Petkov et al., 2022 this issue). As part of this mission, there is an expanding dialogue amongst neuroscientists, philosophers, and policymakers, that is centred on diverse aspects of animal welfare and scientific practice. This paper emphasises the necessity of integrating the assessment of animal sentience into the declaration. Animal sentience, in this context, refers to the recognized capacity that animals have for various kinds of subjective experience, with an associated positive or negative valence (Browning and Birch, 2022). Accordingly, NHP neuroscience researchers should work toward instituting a standardised approach for evaluating what can be termed "individual sentience profiles," representing the unique manner in which an individual NHP experiences specific events or environments. The adoption of this novel parameter would serve a triad of indispensable purposes: enhancing NHP welfare throughout research involvement, elevating the quality of life for NHPs in captivity, and refining the calibre of research outcomes.
Collapse
Affiliation(s)
- Angelica Kaufmann
- Cognition in Action Unit, University of Milan, Italy
- Center for Mind & Cognition, Ruhr-Universität Bochum, Germany
| |
Collapse
|
38
|
Huang Z. Temporospatial Nestedness in Consciousness: An Updated Perspective on the Temporospatial Theory of Consciousness. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1074. [PMID: 37510023 PMCID: PMC10378228 DOI: 10.3390/e25071074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Time and space are fundamental elements that permeate the fabric of nature, and their significance in relation to neural activity and consciousness remains a compelling yet unexplored area of research. The Temporospatial Theory of Consciousness (TTC) provides a framework that links time, space, neural activity, and consciousness, shedding light on the intricate relationships among these dimensions. In this review, I revisit the fundamental concepts and mechanisms proposed by the TTC, with a particular focus on the central concept of temporospatial nestedness. I propose an extension of temporospatial nestedness by incorporating the nested relationship between the temporal circuit and functional geometry of the brain. To further unravel the complexities of temporospatial nestedness, future research directions should emphasize the characterization of functional geometry and the temporal circuit across multiple spatial and temporal scales. Investigating the links between these scales will yield a more comprehensive understanding of how spatial organization and temporal dynamics contribute to conscious states. This integrative approach holds the potential to uncover novel insights into the neural basis of consciousness and reshape our understanding of the world-brain dynamic.
Collapse
Affiliation(s)
- Zirui Huang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
39
|
Browning H, Veit W. Optimism about Measuring Animal Feelings. Asian Bioeth Rev 2023; 15:351-355. [PMID: 37396677 PMCID: PMC10313588 DOI: 10.1007/s41649-023-00244-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 03/28/2023] Open
Abstract
While animal sentience research has flourished in the last decade, scepticism about our ability to accurately measure animal feelings has unfortunately remained fairly common. Here, we argue that evolutionary considerations about the functions of feelings will give us more reason for optimism and outline a method for how this might be achieved.
Collapse
|
40
|
Sun W, Dong X, Yu G, Yang Y, He B, Wei Y, Li S, Feng Z, Ma C. Behavioral assessment scale of consciousness for nonhuman primates: A Delphi study. Sci Prog 2023; 106:368504231200995. [PMID: 37731354 PMCID: PMC10515545 DOI: 10.1177/00368504231200995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
OBJECTIVE Nonhuman primates (NHPs) are suitable for being model animals in the study of consciousness and loss of consciousness (LoC) with a similar brain structure and function to humans. However, there is no effective consciousness assessment scale for them. This study aimed to develop a behavioral assessment scale of consciousness for NHPs. METHODS We constructed an initial indicator framework based on the clinical consciousness disorder assessment scales and the physiological characteristics, consciousness, and arousal behavior of NHPs. A two-round online Delphi method was conducted by a multidisciplinary expert panel to construct a behavioral assessment scale of consciousness for NHPs. The indicators and descriptions were revised according to the experts' feedback and then sent out for repeated consultations along with a summary of the results of the previous round of consultations. The accepted competencies of indicators were established with mean scores in two scoring criteria (importance and feasibility) ≥4.0, agreement rate with a rating of importance or essential ≥70.0%, and a coefficient of variation ≤0.25, as well as discussions of the research group. RESULTS Consensus was achieved after the second round of consultations, which was completed by 28 experts who specialized in rehabilitation, neuroscience, psychology, neurosurgery, and neurology. A new behavioral assessment scale of consciousness for NHPs, including 37 items organized hierarchically within seven dimensions including visual function, auditory function, motor function, orofacial movements, arousal, brainstem reflexes, and respiration, was developed in this study. CONCLUSIONS This study has successfully developed a behavioral assessment scale for measuring the conscious state of NHPs or NHP models with LoC. This tool is expected to facilitate future research into the underlying mechanisms of consciousness by providing a detailed and comprehensive means of measurement.
Collapse
Affiliation(s)
- Weiming Sun
- School of Life Science, Nanchang University, Nanchang, China
- Department of Rehabilitation Medicine, Hospital of Nanchang University, Nanchang, China
- Institute of Life Science, Nanchang University, Nanchang, China
| | - Xiangli Dong
- Department of Psychosomatic Medicine, Hospital of Nanchang University, Nanchang, China
| | - Guohua Yu
- Department of Rehabilitation Medicine, Hospital of Nanchang University, Nanchang, China
| | - Yang Yang
- School of Life Science, Nanchang University, Nanchang, China
- Institute of Life Science, Nanchang University, Nanchang, China
| | - Binjun He
- School of Life Science, Nanchang University, Nanchang, China
- Institute of Life Science, Nanchang University, Nanchang, China
| | - Yingming Wei
- School of Life Science, Nanchang University, Nanchang, China
- Institute of Life Science, Nanchang University, Nanchang, China
| | - Shijin Li
- School of Life Science, Nanchang University, Nanchang, China
- Institute of Life Science, Nanchang University, Nanchang, China
| | - Zhen Feng
- Department of Rehabilitation Medicine, Hospital of Nanchang University, Nanchang, China
| | - Chaolin Ma
- School of Life Science, Nanchang University, Nanchang, China
- Institute of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
41
|
Hart PJB. Exploring the limits to our understanding of whether fish feel pain. JOURNAL OF FISH BIOLOGY 2023; 102:1272-1280. [PMID: 36961257 DOI: 10.1111/jfb.15386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/19/2023] [Indexed: 06/09/2023]
Affiliation(s)
- Paul J B Hart
- Department of Neuroscience, Psychology and Behaviour, School of Life Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
42
|
Paoli M, Macri C, Giurfa M. A cognitive account of trace conditioning in insects. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101034. [PMID: 37044245 DOI: 10.1016/j.cois.2023.101034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/07/2023]
Abstract
Trace conditioning is a form of Pavlovian learning in which the conditioned stimulus (CS) and the unconditioned stimulus (US) are separated by a temporal gap. Insects learn trace associations of variable nature (appetitive, aversive) and involving CSs of different sensory modalities (olfactory, visual). The accessibility of the insect neural system in behaving animals allowed identifying neural processes driving trace conditioning: the existence of prolonged neural responses to the CS after stimulus offset and the anticipation of US responses during the free-stimulus gap. Specific brain structures, such as the mushroom bodies seem to be allocated to this learning form. Here, we posit that a further component facilitating trace conditioning in insects relates to neuromodulatory mechanisms underlying enhanced attention. We thus propose a model based on different types of mushroom-body neurons, which provides a cognitive account of trace conditioning in insects.
Collapse
Affiliation(s)
- Marco Paoli
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse cedex 9, France
| | - Catherine Macri
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse cedex 9, France
| | - Martin Giurfa
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse cedex 9, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
43
|
Farnsworth KD, Elwood RW. Why it hurts: with freedom comes the biological need for pain. Anim Cogn 2023:10.1007/s10071-023-01773-2. [PMID: 37029847 DOI: 10.1007/s10071-023-01773-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
We argue that pain is not needed to protect the body from damage unless the organism is able to make free choices in action selection. Then pain (including its affective and evaluative aspects) provides a necessary prioritising motivation to select actions expected to avoid it, whilst leaving the possibility of alternative actions to serve potentially higher priorities. Thus, on adaptive grounds, only organisms having free choice over action selection should experience pain. Free choice implies actions must be selected following appraisal of their effects, requiring a predictive model generating estimates of action outcomes. These features give organisms anticipatory behavioural autonomy (ABA), for which we propose a plausible system using an internal predictive model, integrated into a system able to produce the qualitative and affective aspects of pain. Our hypothesis can be tested using behavioural experiments designed to elicit trade-off responses to novel experiences for which algorithmic (automaton) responses might be inappropriate. We discuss the empirical evidence for our hypothesis among taxonomic groups, showing how testing for ABA guides thinking on which groups might experience pain. It is likely that all vertebrates do and plausible that some invertebrates do (decapods, cephalopods and at least some insects).
Collapse
Affiliation(s)
- Keith D Farnsworth
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT95DL, UK.
| | - Robert W Elwood
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT95DL, UK
| |
Collapse
|
44
|
Abstract
Consciousness-based approaches to non-human moral status maintain that consciousness is necessary for (some degree or level of) moral status. While these approaches are intuitive to many, in this paper I argue that the judgment that consciousness is necessary for moral status is not secure enough to guide policy regarding non-humans, that policies responsive to the moral status of non-humans should take seriously the possibility that psychological features independent of consciousness are sufficient for moral status. Further, I illustrate some practical consequences of calling consciousness-based views into question.
Collapse
|
45
|
Dung L, Newen A. Profiles of animal consciousness: A species-sensitive, two-tier account to quality and distribution. Cognition 2023; 235:105409. [PMID: 36821996 DOI: 10.1016/j.cognition.2023.105409] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/25/2023] [Accepted: 02/11/2023] [Indexed: 02/25/2023]
Abstract
The science of animal consciousness investigates (i) which animal species are conscious (the distribution question) and (ii) how conscious experience differs in detail between species (the quality question). We propose a framework which clearly distinguishes both questions and tackles both of them. This two-tier account distinguishes consciousness along ten dimensions and suggests cognitive capacities which serve as distinct operationalizations for each dimension. The two-tier account achieves three valuable aims: First, it separates strong and weak indicators of the presence of consciousness. Second, these indicators include not only different specific contents but also differences in the way particular contents are processed (by processes of learning, reasoning or abstraction). Third, evidence of consciousness from each dimension can be combined to derive the distinctive multi-dimensional consciousness profile of various species. Thus, the two-tier account shows how the kind of conscious experience of different species can be systematically compared.
Collapse
Affiliation(s)
- Leonard Dung
- Ruhr-University Bochum, Institut of Philosophy II, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Albert Newen
- Ruhr-University Bochum, Institut of Philosophy II, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
46
|
Gaffney LP, Lavery JM, Schiestl M, Trevarthen A, Schukraft J, Miller R, Schnell AK, Fischer B. A theoretical approach to improving interspecies welfare comparisons. FRONTIERS IN ANIMAL SCIENCE 2023. [DOI: 10.3389/fanim.2022.1062458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The number of animals bred, raised, and slaughtered each year is on the rise, resulting in increasing impacts to welfare. Farmed animals are also becoming more diverse, ranging from pigs to bees. The diversity and number of species farmed invite questions about how best to allocate currently limited resources towards safeguarding and improving welfare. This is of the utmost concern to animal welfare funders and effective altruism advocates, who are responsible for targeting the areas most likely to cause harm. For example, is tail docking worse for pigs than beak trimming is for chickens in terms of their pain, suffering, and general experience? Or are the welfare impacts equal? Answering these questions requires making an interspecies welfare comparison; a judgment about how good or bad different species fare relative to one another. Here, we outline and discuss an empirical methodology that aims to improve our ability to make interspecies welfare comparisons by investigating welfare range, which refers to how good or bad animals can fare. Beginning with a theory of welfare, we operationalize that theory by identifying metrics that are defensible proxies for measuring welfare, including cognitive, affective, behavioral, and neuro-biological measures. Differential weights are assigned to those proxies that reflect their evidential value for the determinants of welfare, such as the Delphi structured deliberation method with a panel of experts. The evidence should then be reviewed and its quality scored to ascertain whether particular taxa may possess the proxies in question to construct a taxon-level welfare range profile. Finally, using a Monte Carlo simulation, an overall estimate of comparative welfare range relative to a hypothetical index species can be generated. Interspecies welfare comparisons will help facilitate empirically informed decision-making to streamline the allocation of resources and ultimately better prioritize and improve animal welfare.
Collapse
|
47
|
Goudar V, Kim JW, Liu Y, Dede AJO, Jutras MJ, Skelin I, Ruvalcaba M, Chang W, Fairhall AL, Lin JJ, Knight RT, Buffalo EA, Wang XJ. Comparing rapid rule-learning strategies in humans and monkeys. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523416. [PMID: 36711889 PMCID: PMC9882042 DOI: 10.1101/2023.01.10.523416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Inter-species comparisons are key to deriving an understanding of the behavioral and neural correlates of human cognition from animal models. We perform a detailed comparison of macaque monkey and human strategies on an analogue of the Wisconsin Card Sort Test, a widely studied and applied multi-attribute measure of cognitive function, wherein performance requires the inference of a changing rule given ambiguous feedback. We found that well-trained monkeys rapidly infer rules but are three times slower than humans. Model fits to their choices revealed hidden states akin to feature-based attention in both species, and decision processes that resembled a Win-stay lose-shift strategy with key differences. Monkeys and humans test multiple rule hypotheses over a series of rule-search trials and perform inference-like computations to exclude candidates. An attention-set based learning stage categorization revealed that perseveration, random exploration and poor sensitivity to negative feedback explain the under-performance in monkeys.
Collapse
Affiliation(s)
- Vishwa Goudar
- Center for Neural Science, New York University, NY, USA
| | - Jeong-Woo Kim
- Center for Neural Science, New York University, NY, USA
| | - Yue Liu
- Center for Neural Science, New York University, NY, USA
| | - Adam J. O. Dede
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Michael J. Jutras
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Ivan Skelin
- Department of Neurology, University of California, Davis, Davis, CA, USA
- The Center for Mind and Brain, University of California, Davis, Davis, CA, USA
| | - Michael Ruvalcaba
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - William Chang
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Adrienne L. Fairhall
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Jack J. Lin
- Department of Neurology, University of California, Davis, Davis, CA, USA
- The Center for Mind and Brain, University of California, Davis, Davis, CA, USA
| | - Robert T. Knight
- Department of Psychology, University of California Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Elizabeth A. Buffalo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
- Washington Primate Research Center, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
48
|
Huang Z, Mashour GA, Hudetz AG. Functional geometry of the cortex encodes dimensions of consciousness. Nat Commun 2023; 14:72. [PMID: 36604428 PMCID: PMC9814511 DOI: 10.1038/s41467-022-35764-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Consciousness is a multidimensional phenomenon, but key dimensions such as awareness and wakefulness have been described conceptually rather than neurobiologically. We hypothesize that dimensions of consciousness are encoded in multiple neurofunctional dimensions of the brain. We analyze cortical gradients, which are continua of the brain's overarching functional geometry, to characterize these neurofunctional dimensions. We demonstrate that disruptions of human consciousness - due to pharmacological, neuropathological, or psychiatric causes - are associated with a degradation of one or more of the major cortical gradients depending on the state. Network-specific reconfigurations within the multidimensional cortical gradient space are associated with behavioral unresponsiveness of various etiologies, and these spatial reconfigurations correlate with a temporal disruption of structured transitions of dynamic brain states. In this work, we therefore provide a unifying neurofunctional framework for multiple dimensions of human consciousness in both health and disease.
Collapse
Affiliation(s)
- Zirui Huang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA. .,Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - George A Mashour
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Anthony G Hudetz
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
49
|
von Mücke-Heim IA, Urbina-Treviño L, Bordes J, Ries C, Schmidt MV, Deussing JM. Introducing a depression-like syndrome for translational neuropsychiatry: a plea for taxonomical validity and improved comparability between humans and mice. Mol Psychiatry 2023; 28:329-340. [PMID: 36104436 PMCID: PMC9812782 DOI: 10.1038/s41380-022-01762-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 01/11/2023]
Abstract
Depressive disorders are the most burdensome psychiatric disorders worldwide. Although huge efforts have been made to advance treatment, outcomes remain unsatisfactory. Many factors contribute to this gridlock including suboptimal animal models. Especially limited study comparability and replicability due to imprecise terminology concerning depressive-like states are major problems. To overcome these issues, new approaches are needed. Here, we introduce a taxonomical concept for modelling depression in laboratory mice, which we call depression-like syndrome (DLS). It hinges on growing evidence suggesting that mice possess advanced socioemotional abilities and can display non-random symptom patterns indicative of an evolutionary conserved disorder-like phenotype. The DLS approach uses a combined heuristic method based on clinical depression criteria and the Research Domain Criteria to provide a biobehavioural reference syndrome for preclinical rodent models of depression. The DLS criteria are based on available, species-specific evidence and are as follows: (I) minimum duration of phenotype, (II) significant sociofunctional impairment, (III) core biological features, (IV) necessary depressive-like symptoms. To assess DLS presence and severity, we have designed an algorithm to ensure statistical and biological relevance of findings. The algorithm uses a minimum combined threshold for statistical significance and effect size (p value ≤ 0.05 plus moderate effect size) for each DLS criterion. Taken together, the DLS is a novel, biologically founded, and species-specific minimum threshold approach. Its long-term objective is to gradually develop into an inter-model validation standard and microframework to improve phenotyping methodology in translational research.
Collapse
Affiliation(s)
- Iven-Alex von Mücke-Heim
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany ,grid.419548.50000 0000 9497 5095Department of Translational Research, Max Planck Institute of Psychiatry, Munich, Germany ,grid.4372.20000 0001 2105 1091International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Lidia Urbina-Treviño
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany
| | - Joeri Bordes
- grid.4372.20000 0001 2105 1091International Max Planck Research School for Translational Psychiatry, Munich, Germany ,grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, Neurobiology of Stress Resilience, Munich, Germany
| | - Clemens Ries
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany ,grid.4372.20000 0001 2105 1091International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Mathias V. Schmidt
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, Neurobiology of Stress Resilience, Munich, Germany
| | - Jan M. Deussing
- grid.419548.50000 0000 9497 5095Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany
| |
Collapse
|
50
|
Mather J. The Case for Octopus Consciousness: Valence. NEUROSCI 2022; 3:656-666. [PMID: 39483764 PMCID: PMC11523718 DOI: 10.3390/neurosci3040047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/16/2022] [Indexed: 11/03/2024] Open
Abstract
Octopuses may demonstrate perceptual richness, neural unity, temporality, and finally, valence or affective evaluation, as the neural basis for consciousness. Octopuses attach a positive valence to food as 'specializing generalists' with long-term learning and flexible choices. They value shelter, yet modify, adapt and even transport it where necessary. They attach a negative valence to what may be described as pain, monitoring and protecting the damaged area and learning to associate locations with pain relief. Finally and surprisingly, octopuses attach a negative value to uncertainty so that they explore their environment before exploiting certain aspects of it and even exhibit motor play. This series of four papers, culminating in the present one, demonstrates in detail why the Cambridge Declaration of Consciousness has suggested octopuses might have the substrate for consciousness, although it is likely not similar to or as complex as that shown by 'higher' vertebrate lineages.
Collapse
Affiliation(s)
- Jennifer Mather
- Department of Psychology, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| |
Collapse
|