1
|
Smaldino PE, Russell A, Zefferman MR, Donath J, Foster JG, Guilbeault D, Hilbert M, Hobson EA, Lerman K, Miton H, Moser C, Lasser J, Schmer-Galunder S, Shapiro JN, Zhong Q, Patt D. Information architectures: a framework for understanding socio-technical systems. NPJ COMPLEXITY 2025; 2:13. [PMID: 40255931 PMCID: PMC12006018 DOI: 10.1038/s44260-025-00037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/28/2025] [Indexed: 04/22/2025]
Abstract
A sequence of technological inventions over several centuries has dramatically lowered the cost of producing and distributing information. Because societies ride on a substrate of information, these changes have profoundly impacted how we live, work, and interact. This paper explores the nature of information architectures (IAs)-the features that govern how information flows within human populations. IAs include physical and digital infrastructures, norms and institutions, and algorithmic technologies for filtering, producing, and disseminating information. IAs can reinforce societal biases and lead to prosocial outcomes as well as social ills. IAs have culturally evolved rapidly with human usage, creating new affordances and new problems for the dynamics of social interaction. We explore societal outcomes instigated by shifts in IAs and call for an enhanced understanding of the social implications of increasing IA complexity, the nature of competition among IAs, and the creation of mechanisms for the beneficial use of IAs.
Collapse
Affiliation(s)
- Paul E. Smaldino
- Department of Cognitive and Information Sciences, University of California-Merced, Merced, CA USA
- Santa Fe Institute, Santa Fe, NM USA
| | - Adam Russell
- Information Sciences Institute, University of Southern California, Los Angeles, CA USA
| | | | - Judith Donath
- Berkman Klein Center, Harvard University, Cambridge, MA USA
| | - Jacob G. Foster
- Santa Fe Institute, Santa Fe, NM USA
- Departments of Informatics and Cognitive Science, Indiana University-Bloomington, Bloomington, IN USA
| | | | - Martin Hilbert
- Department of Communication, University of California-Davis, Davis, CA USA
| | - Elizabeth A. Hobson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH USA
| | - Kristina Lerman
- Information Sciences Institute, University of Southern California, Los Angeles, CA USA
| | - Helena Miton
- Graduate School of Business, Stanford University, Stanford, CA USA
| | - Cody Moser
- Department of Cognitive and Information Sciences, University of California-Merced, Merced, CA USA
| | - Jana Lasser
- IDea_Lab, University of Graz, Graz, Austria
- Complexity Science Hub Vienna, Vienna, Austria
| | - Sonja Schmer-Galunder
- Department of Computer & Information Science & Engineering, University of Florida, Gainesville, FL USA
| | - Jacob N. Shapiro
- Department of Politics, School of Public and International Affairs, Princeton University, Princeton, NJ USA
| | - Qiankun Zhong
- Max Planck Institute for Human Development, Berlin, Germany
| | - Dan Patt
- Hudson Institute, Washington, DC USA
| |
Collapse
|
2
|
Moser C. Myth as model: Group-level interpretive frameworks. Behav Brain Sci 2025; 47:e185. [PMID: 39743823 DOI: 10.1017/s0140525x24000724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
I argue that while recruitment might explain some of the design features of historical myths, origin myths in general more importantly provide shared narrative frameworks for aligning and coordinating members of a group. Furthermore, by providing in-group members with shared frameworks for interfacing with the world, the contents of myths likely facilitate the selection of belief systems at the group-level.
Collapse
Affiliation(s)
- Cody Moser
- Department of Cognitive and Information Sciences, University of California, Merced, CA, USA ://culturologies.co/
| |
Collapse
|
3
|
Butz MV, Mittenbühler M, Schwöbel S, Achimova A, Gumbsch C, Otte S, Kiebel S. Contextualizing predictive minds. Neurosci Biobehav Rev 2025; 168:105948. [PMID: 39580009 DOI: 10.1016/j.neubiorev.2024.105948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/13/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
The structure of human memory seems to be optimized for efficient prediction, planning, and behavior. We propose that these capacities rely on a tripartite structure of memory that includes concepts, events, and contexts-three layers that constitute the mental world model. We suggest that the mechanism that critically increases adaptivity and flexibility is the tendency to contextualize. This tendency promotes local, context-encoding abstractions, which focus event- and concept-based planning and inference processes on the task and situation at hand. As a result, cognitive contextualization offers a solution to the frame problem-the need to select relevant features of the environment from the rich stream of sensorimotor signals. We draw evidence for our proposal from developmental psychology and neuroscience. Adopting a computational stance, we present evidence from cognitive modeling research which suggests that context sensitivity is a feature that is critical for maximizing the efficiency of cognitive processes. Finally, we turn to recent deep-learning architectures which independently demonstrate how context-sensitive memory can emerge in a self-organized learning system constrained by cognitively-inspired inductive biases.
Collapse
Affiliation(s)
- Martin V Butz
- Cognitive Modeling, Faculty of Science, University of Tübingen, Sand 14, Tübingen 72076, Germany.
| | - Maximilian Mittenbühler
- Cognitive Modeling, Faculty of Science, University of Tübingen, Sand 14, Tübingen 72076, Germany
| | - Sarah Schwöbel
- Cognitive Computational Neuroscience, Faculty of Psychology, TU Dresden, School of Science, Dresden 01062, Germany
| | - Asya Achimova
- Cognitive Modeling, Faculty of Science, University of Tübingen, Sand 14, Tübingen 72076, Germany
| | - Christian Gumbsch
- Cognitive Modeling, Faculty of Science, University of Tübingen, Sand 14, Tübingen 72076, Germany; Chair of Cognitive and Clinical Neuroscience, Faculty of Psychology, TU Dresden, Dresden 01069, Germany
| | - Sebastian Otte
- Cognitive Modeling, Faculty of Science, University of Tübingen, Sand 14, Tübingen 72076, Germany; Adaptive AI Lab, Institute of Robotics and Cognitive Systems, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
| | - Stefan Kiebel
- Cognitive Computational Neuroscience, Faculty of Psychology, TU Dresden, School of Science, Dresden 01062, Germany
| |
Collapse
|
4
|
Olsson H, Galesic M. Analogies for modeling belief dynamics. Trends Cogn Sci 2024; 28:907-923. [PMID: 39069399 DOI: 10.1016/j.tics.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Belief dynamics has an important role in shaping our responses to natural and societal phenomena, ranging from climate change and pandemics to immigration and conflicts. Researchers often base their models of belief dynamics on analogies to other systems and processes, such as epidemics or ferromagnetism. Similar to other analogies, analogies for belief dynamics can help scientists notice and study properties of belief systems that they would not have noticed otherwise (conceptual mileage). However, forgetting the origins of an analogy may lead to some less appropriate inferences about belief dynamics (conceptual baggage). Here, we review various analogies for modeling belief dynamics, discuss their mileage and baggage, and offer recommendations for using analogies in model development.
Collapse
Affiliation(s)
- Henrik Olsson
- Santa Fe Institute, Santa Fe, NM 87501, USA; Complexity Science Hub, 1080 Vienna, Austria.
| | - Mirta Galesic
- Santa Fe Institute, Santa Fe, NM 87501, USA; Complexity Science Hub, 1080 Vienna, Austria; Vermont Complex Systems Center, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
5
|
Felsche E, Völter CJ, Herrmann E, Seed AM, Buchsbaum D. How can I find what I want? Can children, chimpanzees and capuchin monkeys form abstract representations to guide their behavior in a sampling task? Cognition 2024; 245:105721. [PMID: 38262272 DOI: 10.1016/j.cognition.2024.105721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/23/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
concepts are a powerful tool for making wide-ranging predictions in new situations based on little experience. Whereas looking-time studies suggest an early emergence of this ability in human infancy, other paradigms like the relational match to sample task often fail to detect abstract concepts until late preschool years. Similarly, non-human animals show difficulties and often succeed only after long training regimes. Given the considerable influence of slight task modifications, the conclusiveness of these findings for the development and phylogenetic distribution of abstract reasoning is debated. Here, we tested the abilities of 3 to 5-year-old children, chimpanzees, and capuchin monkeys in a unified and more ecologically valid task design based on the concept of "overhypotheses" (Goodman, 1955). Participants sampled high- and low-valued items from containers that either each offered items of uniform value or a mix of high- and low-valued items. In a test situation, participants should switch away earlier from a container offering low-valued items when they learned that, in general, items within a container are of the same type, but should stay longer if they formed the overhypothesis that containers bear a mix of types. We compared each species' performance to the predictions of a probabilistic hierarchical Bayesian model forming overhypotheses at a first and second level of abstraction, adapted to each species' reward preferences. Children and, to a more limited extent, chimpanzees demonstrated their sensitivity to abstract patterns in the evidence. In contrast, capuchin monkeys did not exhibit conclusive evidence for the ability of abstract knowledge formation.
Collapse
Affiliation(s)
- Elisa Felsche
- School of Psychology and Neuroscience, University of St Andrews, Scotland, UK; Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Germany.
| | - Christoph J Völter
- School of Psychology and Neuroscience, University of St Andrews, Scotland, UK; Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Germany; Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria.
| | | | - Amanda M Seed
- School of Psychology and Neuroscience, University of St Andrews, Scotland, UK.
| | - Daphna Buchsbaum
- The Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, USA.
| |
Collapse
|
6
|
Varallyay A, Beller N, Subiaul F. Generative cultural learning in children and adults: the role of compositionality and generativity in cultural evolution. Proc Biol Sci 2023; 290:20222418. [PMID: 37122258 PMCID: PMC10130722 DOI: 10.1098/rspb.2022.2418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
Are human cultures distinctively cumulative because they are uniquely compositional? We addressed this question using a summative learning paradigm where participants saw different models build different tower elements, consisting of discrete actions and objects: stacking cubes (tower base) and linking squares (tower apex). These elements could be combined to form a tower that was optimal in terms of height and structural soundness. In addition to measuring copying fidelity, we explored whether children and adults (i) extended the knowledge demonstrated to additional tower elements and (ii) productively combined them. Results showed that children and adults copied observed demonstrations and applied them to novel exemplars. However, only adults in the imitation condition combined the two newly derived base and apex, relative to adults in a control group. Nonetheless, there were remarkable similarities between children's and adults' performance across measures. Composite measures capturing errors and overall generativity in children's and adults' performance produced few population by condition interactions. Results suggest that early in development, humans possess a suite of cognitive skills-compositionality and generativity-that transforms phylogenetically widespread social learning competencies into something that may be unique to our species, cultural learning; allowing human cultures to evolve towards greater complexity.
Collapse
Affiliation(s)
- Adrian Varallyay
- The Institute for Social and Economic Research and Policy, Quantitative Methods in the Social Sciences, Columbia University, New York, NY, USA
| | - Nathalia Beller
- Department of Psychological and Brain Sciences, The George Washington University, Washington, DC, USA
| | - Francys Subiaul
- Department of Speech, Language, and Hearing Sciences, The George Washington University, Washington, DC, USA
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
- Mind-Brain Institute, The George Washington University, Washington, DC, USA
| |
Collapse
|
7
|
Lin Y, Li Q, Chen A. The causal mechanisms underlying analogical reasoning performance improvement by executive attention intervention. Hum Brain Mapp 2023; 44:3241-3253. [PMID: 36971608 PMCID: PMC10171494 DOI: 10.1002/hbm.26278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Analogical reasoning is important for human. We have found that a short executive attention intervention improved analogical reasoning performance in healthy young adults. Nevertheless, previous electrophysiological evidence was limited for comprehensively characterizing the neural mechanisms underlying the improvement. And although we hypothesized that the intervention improved active inhibitory control and attention shift first and then relation integration, it is still unclear whether there are two sequential cognitive neural activities were indeed changed during analogical reasoning. In the present study, we combined hypothesis with multivariate pattern analysis (MVPA) to explore the effects of the intervention on electrophysiology. Results showed that in the resting state after the intervention, alpha and high gamma power and the functional connectivity between the anterior and middle in the alpha band could discriminate the experimental group from the active control group, respectively. These indicated that the intervention influenced the activity of multiple bands and the interaction of frontal and parietal regions. In the analogical reasoning, alpha, theta, and gamma activities could also fulfill such discrimination, and furthermore, they were sequential (alpha first, theta, and gamma later). These results directly supported our previous hypothesis. The present study deepens our understanding about how executive attention contributes to higher-order cognition.
Collapse
|
8
|
Osiurak F, Claidière N, Federico G. Cultural cognition and technology: Mechanical actions speak louder than bodily actions: Comment on "Blind alleys and fruitful pathways in the comparative study of cultural cognition" by Andrew Whiten. Phys Life Rev 2023; 44:141-144. [PMID: 36640588 DOI: 10.1016/j.plrev.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Affiliation(s)
- François Osiurak
- Laboratoire d'Étude des Mécanismes Cognitifs, Université de Lyon, 5 avenue Pierre Mendès France, 69676 Bron Cedex, France; Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 5, France.
| | - Nicolas Claidière
- Aix-Marseille Univ, CNRS, LPC, 3 Place Victor Hugo, 13331 Marseille, France
| | - Giovanni Federico
- IRCCS Synlab SDN S.p.A., Via Emanuele Gianturco 113, 80143, Naples, Italy; Laboratory of Experimental Psychology, Suor Orsola Benincasa University, Via Suor Orsola 10, 80135, Naples, Italy; Department of Psychology, University of Campania "Luigi Vanvitelli", Viale Ellittico 31, 81100, Caserta, Italy
| |
Collapse
|
9
|
Neuroplasticity enables bio-cultural feedback in Paleolithic stone-tool making. Sci Rep 2023; 13:2877. [PMID: 36807588 PMCID: PMC9938911 DOI: 10.1038/s41598-023-29994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/14/2023] [Indexed: 02/20/2023] Open
Abstract
Stone-tool making is an ancient human skill thought to have played a key role in the bio-cultural co-evolutionary feedback that produced modern brains, culture, and cognition. To test the proposed evolutionary mechanisms underpinning this hypothesis we studied stone-tool making skill learning in modern participants and examined interactions between individual neurostructural differences, plastic accommodation, and culturally transmitted behavior. We found that prior experience with other culturally transmitted craft skills increased both initial stone tool-making performance and subsequent neuroplastic training effects in a frontoparietal white matter pathway associated with action control. These effects were mediated by the effect of experience on pre-training variation in a frontotemporal pathway supporting action semantic representation. Our results show that the acquisition of one technical skill can produce structural brain changes conducive to the discovery and acquisition of additional skills, providing empirical evidence for bio-cultural feedback loops long hypothesized to link learning and adaptive change.
Collapse
|
10
|
Osiurak F, Claidière N, Federico G. Bringing cumulative technological culture beyond copying versus reasoning. Trends Cogn Sci 2023; 27:30-42. [PMID: 36283920 DOI: 10.1016/j.tics.2022.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
The dominant view of cumulative technological culture suggests that high-fidelity transmission rests upon a high-fidelity copying ability, which allows individuals to reproduce the tool-use actions performed by others without needing to understand them (i.e., without causal reasoning). The opposition between copying versus reasoning is well accepted but with little supporting evidence. In this article, we investigate this distinction by examining the cognitive science literature on tool use. Evidence indicates that the ability to reproduce others' tool-use actions requires causal understanding, which questions the copying versus reasoning distinction and the cognitive reality of the so-called copying ability. We conclude that new insights might be gained by considering causal understanding as a key driver of cumulative technological culture.
Collapse
Affiliation(s)
- François Osiurak
- Laboratoire d'Étude des Mécanismes Cognitifs, Université de Lyon, 5 avenue Pierre Mendès France, 69676 Bron Cedex, France; Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 5, France.
| | - Nicolas Claidière
- Aix-Marseille Univ, CNRS, LPC, 3 Place Victor Hugo, 13331 Marseille, France
| | - Giovanni Federico
- IRCCS Synlab SDN S.p.A., Via Emanuele Gianturco 113, 80143, Naples, Italy
| |
Collapse
|
11
|
Scott-Phillips T. Biological adaptations for cultural transmission? Biol Lett 2022; 18:20220439. [PMID: 36448292 PMCID: PMC9709567 DOI: 10.1098/rsbl.2022.0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
According to several interlinked and influential lines of argument, human minds have been shaped by natural selection so as to include biological adaptations with the evolved, naturally selected function to facilitate the transmission of cultural knowledge. This 'cultural minds' hypothesis has proved highly influential, and if it is correct it is a major step forward in understanding how and why humans have survived and prospered in a hugely diverse range of ecologies. It can be contrasted with a 'social minds' hypothesis, according to which cultural transmission occurs as an outcome, but not the biologically evolved function, of social cognition the domain of which is relatively small-group interaction. Here, I critique the cultural minds hypothesis and I argue that the data favour the social minds perspective. Cultural phenomena can clearly emerge and persist over time without cognitive adaptations for cultural transmission. Overtly intentional communication plays an especially pivotal role.
Collapse
Affiliation(s)
- Thom Scott-Phillips
- Institute of Language, Cognition Logic and Information, Ikerbasque, San Sebastian, Spain
| |
Collapse
|
12
|
Moser C, Smaldino PE. Organizational Development as Generative Entrenchment. ENTROPY (BASEL, SWITZERLAND) 2022; 24:879. [PMID: 35885102 PMCID: PMC9318524 DOI: 10.3390/e24070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022]
Abstract
A critical task for organizations is how to best structure themselves to efficiently allocate information and resources to individuals tasked with solving sub-components of the organization's central problems. Despite this criticality, the processes by which organizational structures form remain largely opaque within organizational theory, with most approaches focused on how structure is influenced by individual managerial heuristics, normative cultural perceptions, and trial-and-error. Here, we propose that a broad understanding of organizational formation can be aided by appealing to generative entrenchment, a theory from developmental biology that helps explain why phylogenetically diverse animals appear similar as embryos. Drawing inferences from generative entrenchment and applying it to organizational differentiation, we argue that the reason many organizations appear structurally similar is due to core informational restraints on individual actors beginning at the top and descending to the bottom of these informational hierarchies, which reinforces these structures via feedback between separate levels. We further argue that such processes can lead to the emergence of a variety of group-level traits, an important but undertheorized class of phenomena in cultural evolution.
Collapse
Affiliation(s)
- Cody Moser
- Department of Cognitive and Information Science, University of California, Merced, CA 95343, USA
| | - Paul E. Smaldino
- Department of Cognitive and Information Science, University of California, Merced, CA 95343, USA
- Center for Advanced Study in Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Mangalam M, Fragaszy DM, Wagman JB, Day BM, Kelty-Stephen DG, Bongers RM, Stout DW, Osiurak F. On the psychological origins of tool use. Neurosci Biobehav Rev 2022; 134:104521. [PMID: 34998834 DOI: 10.1016/j.neubiorev.2022.104521] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/01/2021] [Accepted: 01/01/2022] [Indexed: 01/13/2023]
Abstract
The ubiquity of tool use in human life has generated multiple lines of scientific and philosophical investigation to understand the development and expression of humans' engagement with tools and its relation to other dimensions of human experience. However, existing literature on tool use faces several epistemological challenges in which the same set of questions generate many different answers. At least four critical questions can be identified, which are intimately intertwined-(1) What constitutes tool use? (2) What psychological processes underlie tool use in humans and nonhuman animals? (3) Which of these psychological processes are exclusive to tool use? (4) Which psychological processes involved in tool use are exclusive to Homo sapiens? To help advance a multidisciplinary scientific understanding of tool use, six author groups representing different academic disciplines (e.g., anthropology, psychology, neuroscience) and different theoretical perspectives respond to each of these questions, and then point to the direction of future work on tool use. We find that while there are marked differences among the responses of the respective author groups to each question, there is a surprising degree of agreement about many essential concepts and questions. We believe that this interdisciplinary and intertheoretical discussion will foster a more comprehensive understanding of tool use than any one of these perspectives (or any one of these author groups) would (or could) on their own.
Collapse
Affiliation(s)
- Madhur Mangalam
- Department of Physical Therapy, Movement and Rehabilitation Science, Northeastern University, Boston, Massachusetts 02115, USA.
| | | | - Jeffrey B Wagman
- Department of Psychology, Illinois State University, Normal, IL 61761, USA
| | - Brian M Day
- Department of Psychology, Butler University, Indianapolis, IN 46208, USA
| | | | - Raoul M Bongers
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, Netherlands
| | - Dietrich W Stout
- Department of Anthropology, Emory University, Atlanta, GA 30322, USA
| | - François Osiurak
- Laboratoire d'Etude des Mécanismes Cognitifs, Université de Lyon, Lyon 69361, France; Institut Universitaire de France, Paris 75231, France
| |
Collapse
|
14
|
Stout D. The Cognitive Science of Technology. Trends Cogn Sci 2021; 25:964-977. [PMID: 34362661 DOI: 10.1016/j.tics.2021.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 01/23/2023]
Abstract
Technology is central to human life but hard to define and study. This review synthesizes advances in fields from anthropology to evolutionary biology and neuroscience to propose an interdisciplinary cognitive science of technology. The foundation of this effort is an evolutionarily motivated definition of technology that highlights three key features: material production, social collaboration, and cultural reproduction. This broad scope respects the complexity of the subject but poses a challenge for theoretical unification. Addressing this challenge requires a comparative approach to reduce the diversity of real-world technological cognition to a smaller number of recurring processes and relationships. To this end, a synthetic perceptual-motor hypothesis (PMH) for the evolutionary-developmental-cultural construction of technological cognition is advanced as an initial target for investigation.
Collapse
Affiliation(s)
- Dietrich Stout
- Department of Anthropology, Emory University, 1557 Dickey Drive, Atlanta, GA 30322, USA.
| |
Collapse
|