1
|
Zhang X, Zheng X, Tao Y, Xie C, Li D, Han Y. Moderate electric field-stimulated brown rice germination: Insights into membrane permeability modulation and antioxidant system activation. Food Chem 2025; 479:143737. [PMID: 40069078 DOI: 10.1016/j.foodchem.2025.143737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/14/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
This study investigated the effects of moderate electric fields (MEF) on the germination of brown rice (BR) and the underlying mechanisms, focusing on membrane permeability and the antioxidant system. The results revealed a significant increase in germination rate, from 62 % to 84 %, at the 12th hour after exposure to a 100-V MEF. This enhancement was attributed to an increase in cell membrane permeability, a crucial factor in MEF-induced germination. The MEF may induce the formation of reversible electrical pores, thereby increasing cell membrane permeability. Concurrently, MEF treatment triggered the production of reactive oxygen species (ROS), leading to oxidative stress, which has sustained membrane permeability during germination. Furthermore, MEF was found to enhance the antioxidant system, aiding in the elimination of excessive ROS and ensuring normal metabolic activities. These findings underscore the role of MEF in modulating BR germination and highlight its potential for practical applications in agricultural seed technology.
Collapse
Affiliation(s)
- Xuejiao Zhang
- Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Xiaoyuan Zheng
- Research Center for Natural Medicine and Chemical Metrology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Yang Tao
- Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Chong Xie
- Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Dandan Li
- Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China.
| | - Yongbin Han
- Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China; College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China.
| |
Collapse
|
2
|
Alves Filho EG, Alves de Queirós JR, Bonilla OH, Rodrigues Magalhães HC, de Brito ES, Vasconcelos Ribeiro PR, Canuto KM, Alexandre E Silva LM, Ribeiro de Castro AC. Analysis of germination and vigor of cashew seeds for germplasm conservation by NMR and uPLC-qTOF-MS/MS based metabolomics. Food Res Int 2025; 204:115918. [PMID: 39986765 DOI: 10.1016/j.foodres.2025.115918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 02/24/2025]
Abstract
The effective preservation of cashew germplasm faces significant challenges due to the loss of germination vigor over medium and long periods. Therefore, this study aimed to assess the biometric and chemical parameters that determine the germination and vigor of cashew seed. Seeds from seven cashew genotypes stored under refrigeration (18 ± 2 °C) were evaluated for biometric characteristics and post-emergence development analyzed by NMR, UPLC-QTOF-MSE and GC-MS methods for profiling primary and secondary metabolites along with fatty acids. The evaluated materials revealed significant variability in emergence percentage (0 % to 91.43 %), exhibiting a negative correlation with biometric characteristics. The emergence speed index (ESI) and emergence speed (ES) ranged from 1.20 to 3.61 and 16.58 to 22.84 days, respectively. The oleic acid is the major fatty acid (60 %) and the correlation of the fatty acid content with emergency remain unclear. The NMR and UPLC-QTOF-MSE analysis highlighted the compositional variability among the genotypes. In this regard, NMR and statistical modeling shows positive correlation which seeds with higher stachyose and acetic acid and lower sucrose contents exhibited greater germination. Additionally, seeds with enhanced germination parameters positively correlated with greater phenolic lipids content, such as anacardic acids. Therefore, this study indicates that seeds with reduced biometric parameters that presented increased content of stachyose, acetic acid, and anacardic acids were correlated higher emergence capacity making those seeds more suitable to cashew germplasm cryopreservation banks.
Collapse
Affiliation(s)
| | | | - Oriel Herrera Bonilla
- Universidade Estadual do Ceará, Av. Dr. Silas Munguba, 1700 Campus do Itaperi, Fortaleza, CE, Brazil
| | | | - Edy Sousa de Brito
- Embrapa Alimentos e Territórios, Rua Cincinato Pinto, 348, CEP 57020-050 Maceió, AL, Brazil
| | | | - Kirley Marques Canuto
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita, 2.270, Bairro Planalto do Pici, CEP 60511-110 Fortaleza, CE, Brazil
| | - Lorena Mara Alexandre E Silva
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita, 2.270, Bairro Planalto do Pici, CEP 60511-110 Fortaleza, CE, Brazil.
| | - Ana Cecília Ribeiro de Castro
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita, 2.270, Bairro Planalto do Pici, CEP 60511-110 Fortaleza, CE, Brazil
| |
Collapse
|
3
|
Gao D, Wu H, Lyu B, Zheng C, Zhou Y, Ma J. Waste-To-Energy: Sustainable Triboelectric Stimulating System Constructed by Bone Gelatin Based Triboelectric Nanogenerator for Crop Growth. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408925. [PMID: 39573874 DOI: 10.1002/smll.202408925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/31/2024] [Indexed: 01/23/2025]
Abstract
The misuse of synthetic chemicals such as pesticides and fertilizers harms the environment and human health. Abandoning them risks global food shortages. Urgent eco-friendly alternatives are needed for food production without excessive synthetic chemicals. To respond to this challenge, an innovative approach uses POSS polymer (PA) to modify waste bone gelatin (BG), constructinging a biodegradable triboelectric nanogenerator (PAG-TENG) tailored for the triboelectric stimulating system for seed germination (PTSS). Amide groups of PA improve the electron supplying capacity of BG and 3D cage structure captures and transfers charges of BG, thereby improving the output performance of PAG-TENG. The spatial electrostatic field formed by PAG-TENG promotes seed germination when subjected to pressure changes in the environment. Hence output performance of PAG-TENG is improved from 52.34 V and 40.25 nA to 247.15 V and 482.12 nA, the sensitivity is 14.4957 V*kPa-1. It maintains initial stable performance after the 6000 cycles of testing. Besides, the prepared PAG-TENG has good toughness, translucency, and degradability. Treated by the high voltage electrostatic field of PTSS, peas' germination rate remarkably increased by ≈27%. This work realizes the high-value utilization of waste resource BG, and provides a novel direction for the development of intelligent agriculture.
Collapse
Affiliation(s)
- Dangge Gao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Haoyuan Wu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Bin Lyu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Chi Zheng
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yingying Zhou
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an, 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an, 710021, China
| |
Collapse
|
4
|
Bataller S, Davis JA, Gu L, Baca S, Chen G, Majid A, Villacastin AJ, Barth D, Han MV, Rushton PJ, Shen QJ. Disruption of the OsWRKY71 transcription factor gene results in early rice seed germination under normal and cold stress conditions. BMC PLANT BIOLOGY 2024; 24:1090. [PMID: 39551730 PMCID: PMC11571745 DOI: 10.1186/s12870-024-05808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Early seed germination in crops can confer a competitive advantage against weeds and reduce the time to maturation and harvest. WRKY transcription factors regulate many aspects of plant development including seed dormancy and germination. Both positive and negative regulators of seed germination have been reported in many plants such as rice and Arabidopsis. Using a transient expression system, we previously demonstrated that OsWRKY71 is a negative regulator of gibberellin (GA) signaling in aleurone cells and likely forms a "repressosome" complex with other transcriptional repressors. Hence, it has the potential to impact seed germination properties. RESULTS In this study, we demonstrate that OsWRKY71, a Group IIa WRKY gene, appeared at the same time as seed-bearing plants. Rice mutants lacking OsWRKY71 have seeds and embryos that germinate earlier than wildtype controls. In oswrky71 aleurone layers, α-amylase activity was hypersensitive to stimulation by GA3 and hyposensitive to inhibition by abscisic acid (ABA). Early germination in oswrky71 intact seeds was also hyposensitive to ABA. Transcriptomic profiling during embryo germination and early post-germination growth demonstrates that OsWRKY71 influences the expression of 9-17% of genes in dry and imbibing embryos. Compared to wildtype embryos, the mutant transcriptomes have large temporal shifts at 4, 8 and 12 h after imbibition (HAI). Importantly, many genes involved in the ABA-dependent inhibition of seed germination were downregulated in oswrky71-1. This mutant also displayed altered expression of multiple ABA receptors (OsPYLs/RCARs) that control ABA signaling and the VP1-SDR4-DOG1L branch of ABA signaling that promotes seed dormancy. Association studies reveal an OsWRKY71-containing quantitative trait locus involved in low-temperature seed germinability, qLTG-2. Indeed, oswrky71 seeds germinated early at 15 °C. CONCLUSIONS Rice Group-IIa WRKY transcription factor OsWRKY71 is a master regulator of germination that influences the expression of 9-17% of genes in dry and imbibing embryos. It is also most likely the primary candidate of low-temperature seed germinability QTL, qLTG-2. We propose that knockouts of OsWRKY71 can generate rice varieties with improved germination properties under normal or low-temperature conditions.
Collapse
Affiliation(s)
- Santiago Bataller
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - James A Davis
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Lingkun Gu
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Sophia Baca
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Gaelan Chen
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Azeem Majid
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Anne J Villacastin
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Dylan Barth
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Mira V Han
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Paul J Rushton
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA
| | - Qingxi J Shen
- School of Life Sciences, University of Nevada, 4505 Maryland Parkway, Las Vegas, Las Vegas, NV, 89154-4004, USA.
| |
Collapse
|
5
|
Mohajer MH, Khademi A, Rahmani M, Monfaredi M, Hamidi A, Mirjalili MH, Ghomi H. Optimizing beet seed germination via dielectric barrier discharge plasma parameters. Heliyon 2024; 10:e40020. [PMID: 39553550 PMCID: PMC11565412 DOI: 10.1016/j.heliyon.2024.e40020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
This study explores the synergistic effects of gas composition and electric field modulation on beetroot seed germination using dielectric barrier discharge (DBD) plasma. The investigation initially focuses on the impact of air plasma exposure on germination parameters, varying both voltage and treatment duration. Subsequently, the study examines how different gas compositions (argon, nitrogen, oxygen, and carbon dioxide) affect germination outcomes under optimal air plasma conditions. Results indicate that plasma treatment significantly enhances germination rates and seedling growth relative to untreated controls. Notably, plasma exposure alters seed surface morphology and chemistry, increasing roughness, porosity, and hydrophilicity due to the formation of new polar functional groups. The highest germination rate (a 54.84 % increase) and germination index (a 40.11 % increase) were observed at the lowest voltage and shortest duration, whereas higher voltages and prolonged exposure reduced germination, likely due to oxidative stress. Among the tested gas environments, air plasma was most effective in enhancing water uptake and electrical conductivity, while oxygen plasma resulted in the highest germination index and marked improvements in root and shoot length. Conversely, carbon dioxide plasma treatment exhibited inhibitory effects on both germination and subsequent growth metrics. The results highlight the potential of DBD plasma technology to enhance agricultural productivity by optimizing seed germination and early growth. The study emphasizes the importance of precise parameter tuning, particularly gas composition and plasma exposure conditions, to maximize benefits while minimizing adverse effects, offering a refined approach to seed priming in agricultural practices.
Collapse
Affiliation(s)
| | - Ahmad Khademi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Maede Rahmani
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Motahare Monfaredi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Aidin Hamidi
- Agriculture Research, Education and Extension Organization (AREEO), Seed and Plant Certification and Registration Institute (SPCRI), Karaj, Iran
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Hamid Ghomi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
6
|
Dahal R, Dhakal OB, Acharya TR, Lamichhane P, Gautam S, Chalise R, Kaushik N, Choi EH, Kaushik NK. Investigating plasma activated water as a sustainable treatment for improving growth and nutrient uptake in maize and pea plant. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109203. [PMID: 39427362 DOI: 10.1016/j.plaphy.2024.109203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
In this study, an atmospheric pressure air plasma jet (APAPJ) was employed to generate plasma-activated water (PAW), which was applied to treat maize (monocot) and pea (dicot) seeds for evaluating its influence. This research explored APAPJ diagnostics by varying the air feed rate as 1, 2, and 3 liter per minute (Lpm) through current-voltage characterization, optical emission spectroscopy, electron temperature and density, nitrogen metastable state density, and rotational and vibrational temperature of the plasma. Additionally, various reactive oxygen and nitrogen species (RONS) formed and physicochemical properties of PAW were analyzed by varying plasma treatment time from 0 to 8 min. Furthermore, the water uptake of maize (Zea mays) and pea (Pisum sativum) seeds were examined by the measurement of the contact angle. Results indicated that APAPJ has the capacity of fostering germination, growth, chlorophyll, phosphorus, nitrite, nitrate, ammonium ion and leaf area in plants significantly with an optimized 6 min treated PAW for maize and 2 min treated PAW for peas. Among various categories, seeds soaked in PAW and irrigated with PAW exhibited the most outstanding result in germination and plant growth. Non-thermal plasma showed promising green methods for enhancing plant growth and boosting nutrient content.
Collapse
Affiliation(s)
- Roshani Dahal
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, Republic of Korea; Department of Physics, Patan Multiple Campus, Tribhuvan University, Lalitpur, 44600, Kathmandu, Nepal
| | - Oat Bahadur Dhakal
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, Republic of Korea; Department of Physics, Patan Multiple Campus, Tribhuvan University, Lalitpur, 44600, Kathmandu, Nepal
| | - Tirtha Raj Acharya
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, Republic of Korea
| | - Prajwal Lamichhane
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, Republic of Korea
| | - Sandhya Gautam
- Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, 44618, Kathmandu, Nepal
| | - Roshan Chalise
- Department of Physics, Patan Multiple Campus, Tribhuvan University, Lalitpur, 44600, Kathmandu, Nepal
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, 18323, Hwaseong, Republic of Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, Republic of Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Li J, Yue Y, Lu Z, Hu Z, Tong Y, Yang L, Ji G, Liu P. Comparative sensitivity of A-type and B-type starch crystals to ultrahigh magnetic fields. Int J Biol Macromol 2024; 277:134552. [PMID: 39116966 DOI: 10.1016/j.ijbiomac.2024.134552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
In this study, maize starch (A-type) and potato starch (B-type) were treated with ultrahigh magnetic fields (UMF) of different intensities (5 T and 15 T) to investigate their sensitivity to UMF by measuring changes in their structure and rheological properties. The results indicate that the crystallinity of A-type starch significantly decreases, reaching a minimum of 20.01 % at 5 T. In contrast, the crystallinity of B-type starch significantly increases, peaking at 21.17 % at 15 T, accompanied by a brighter polarized cross and a more perfect crystal structure. Additionally, B-type starch exhibited a significant increase in double helix content (from 32.67 % to 42.07 %), branching degree (from 1.96 % to 3.84 %), and R1022/995 (from 0.803 to 0.519), compared to A-type starch. B-type starch also showed a greater propensity for cross-linking reactions forming OCOR groups (from 0 % to 6.81 %), and its enthalpy change (∆H) increased substantially (from 19.28 J/g to 31.70 J/g), indicating a marked enhancement in thermal stability. Furthermore, the average hydrodynamic radius (Rh) decreased more for B-type starch, reflecting an increase in gel strength. These findings demonstrate that B-type starch is more sensitive to UMF than A-type starch. This study provides foundational data on the effects of UMF treatment on different crystalline starches, aiming to explore its potential applications in food and industrial fields.
Collapse
Affiliation(s)
- Jingjing Li
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010000, Inner Mongolia Autonomous Region, China
| | - Yonggang Yue
- China Inner Mongolia EHV Power Supply Bureau, Hohhot 010080, China; State Key Laboratory of Electrical Insulation and Power Equipment (Xi'an Jiaotong University), Xi'an 710049, Shanxi Province, China
| | - Zhijian Lu
- State Key Laboratory of Electrical Insulation and Power Equipment (Xi'an Jiaotong University), Xi'an 710049, Shanxi Province, China
| | - Ziang Hu
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010000, Inner Mongolia Autonomous Region, China
| | - Yue Tong
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010000, Inner Mongolia Autonomous Region, China
| | - Lanjun Yang
- State Key Laboratory of Electrical Insulation and Power Equipment (Xi'an Jiaotong University), Xi'an 710049, Shanxi Province, China.
| | - Guojun Ji
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010000, Inner Mongolia Autonomous Region, China.
| | - Peiling Liu
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010000, Inner Mongolia Autonomous Region, China; Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore.
| |
Collapse
|
8
|
Zhang G, Hua D, Wang Y, Xu J, He Y, Liu Y, Tang A, Liu H, Sun J. Combined physicochemical and transcriptomic analyses reveal the effect of the OsGA20ox1 gene on the starch properties of germinated brown rice. Int J Biol Macromol 2024; 278:134849. [PMID: 39159794 DOI: 10.1016/j.ijbiomac.2024.134849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/27/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Genes play a pivotal role in regulating the germination of cereal grains; however, there is limited research on the impact of germination genes on the physicochemical properties of germinated cereal starch. We investigated the effects of the OsGA20ox1 gene on the multiscale structural features and adhesion behavior of germinated brown rice starch. Compared to the knockout lines group, the wild type exhibited a decrease in double-helix content (62.74 %), relative crystallinity (47.39 %), and short-range molecular ordering (2.47 %), accompanied by enhanced erosion on the surface of starch granules. The damage to glycosidic bonds at the double-helix level and the heightened structural amorphization (90.95 %) led to reduced entanglement and interaction among starch molecules, ultimately resulting in reduced characteristic viscosity. Further transcriptomic analysis revealed that OsGA20ox1 could regulate the expression of starch-related enzyme genes in the starch metabolism pathway during germination of brown rice. This study contributes to understanding the role of germination genes in promoting the physicochemical properties of starch in germinated grains, thereby opening up new avenues for the improvement of plant-based starch, and paving the way for further research in this field.
Collapse
Affiliation(s)
- Guangchen Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Dong Hua
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Yiqiao Wang
- Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jiaxin Xu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Yutang He
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Youhong Liu
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Northeast Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Ao Tang
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Northeast Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China.
| | - Jian Sun
- Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang, Liaoning, China.
| |
Collapse
|
9
|
Wang ZZ, Cao MJ, Yan J, Dong J, Chen MX, Yang JF, Li JH, Ying RN, Gao YY, Li L, Leng YN, Tian Y, Hewage KAH, Pei RJ, Huang ZY, Yin P, Zhu JK, Hao GF, Yang GF. Stabilization of dimeric PYR/PYL/RCAR family members relieves abscisic acid-induced inhibition of seed germination. Nat Commun 2024; 15:8077. [PMID: 39277642 PMCID: PMC11401921 DOI: 10.1038/s41467-024-52426-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024] Open
Abstract
Abscisic acid (ABA) is the primary preventing factor of seed germination, which is crucial to plant survival and propagation. ABA-induced seed germination inhibition is mainly mediated by the dimeric PYR/PYL/RCAR (PYLs) family members. However, little is known about the relevance between dimeric stability of PYLs and seed germination. Here, we reveal that stabilization of PYL dimer can relieve ABA-induced inhibition of seed germination using chemical genetic approaches. Di-nitrobensulfamide (DBSA), a computationally designed chemical probe, yields around ten-fold improvement in receptor affinity relative to ABA. DBSA reverses ABA-induced inhibition of seed germination mainly through dimeric receptors and recovers the expression of ABA-responsive genes. DBSA maintains PYR1 in dimeric state during protein oligomeric state experiment. X-ray crystallography shows that DBSA targets a pocket in PYL dimer interface and may stabilize PYL dimer by forming hydrogen networks. Our results illustrate the potential of PYL dimer stabilization in preventing ABA-induced seed germination inhibition.
Collapse
Affiliation(s)
- Zhi-Zheng Wang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China
| | - Min-Jie Cao
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Junjie Yan
- State Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin Dong
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Jing-Fang Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China
| | - Jian-Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Rui-Ning Ying
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China
| | - Yang-Yang Gao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Li Li
- State Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ya-Nan Leng
- State Key Laboratory of Tree Genetics and Breeding, the Southern Modern Forestry Collaborative Innovation Center, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuan Tian
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Kamalani Achala H Hewage
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China
| | - Rong-Jie Pei
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China
| | - Zhi-You Huang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China
| | - Ping Yin
- State Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China.
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, 550025, China.
| | - Guang-Fu Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
10
|
Gong M, Kong M, Huo Q, He J, He J, Yan Z, Lu C, Jiang Y, Song J, Han W, Lv G. Ultrasonic treatment can improve maize seed germination and abiotic stress resistance. BMC PLANT BIOLOGY 2024; 24:758. [PMID: 39112960 PMCID: PMC11308701 DOI: 10.1186/s12870-024-05474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Constant-frequency ultrasonic treatment helped to improve seed germination. However, variable-frequency ultrasonic treatment on maize seed germination were rarely reported. In this study, maize seeds were exposed to 20-40 kHz ultrasonic for 40 s. The germination percentage and radicle length of maize seeds increased by 10.4% and 230.5%. Ultrasonic treatment also significantly increased the acid protease, α-amylase, and β-amylase contents by 96.4%, 73.8%, and 49.1%, respectively. Transcriptome analysis showed that 11,475 differentially expressed genes (DEGs) were found in the ultrasonic treatment and control groups, including 5,695 upregulated and 5,780 downregulated. Metabolic pathways and transcription factors (TFs) were significantly enriched among DEGs after ultrasonic treatment. This included metabolism and genetic information processing, that is, ribosome, proteasome, and pyruvate metabolism, sesquiterpenoid, triterpenoid, and phenylpropanoid biosynthesis, and oxidative phosphorylation, as well as transcription factors in the NAC, MYB, bHLH, WRKY, AP2, bZIP, and ARF families. Variable-frequency ultrasonic treatment increased auxin, gibberellin, and salicylic acid by 5.5%, 37.3%, and 28.9%, respectively. Abscisic acid significantly decreased by 33.2%. The related DEGs were upregulated and downregulated to varying degrees. Seed germination under the abiotic stress conditions of salt stress (NaCl solution), drought (PEG solution), and waterlogging (water-saturated sand bed) under ultrasonic treatment were promoted, radicle length was significantly increased by 30.2%, 30.5%, and 27.3%, respectively; and germination percentage by 14.8%, 20.1%, and 21.6%, respectively. These findings provide new insight into the mechanisms through ultrasonic to promote maize seed germination.
Collapse
Affiliation(s)
- Min Gong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Meng Kong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Qiuyan Huo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Jiuxing He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Juan He
- National Agro-tech Extension and Service Center, Beijing, 100125, China
| | - Zhuosheng Yan
- Guangzhou Jindao Agricultural Technology Co., Ltd, Guangzhou, 510940, China
| | - Chun Lu
- Guangzhou Jindao Agricultural Technology Co., Ltd, Guangzhou, 510940, China
| | - Yawen Jiang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Jiqing Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China
| | - Wei Han
- Shandong Agri-tech Extension Center, Jiefang Road No. 15, Lixia District, Jinan, 250013, China.
| | - Guohua Lv
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Zhongguancun South Street No. 12, Haidian District, Beijing, 100081, China.
- Institute of Dongying Shengli Salt Alkali Agriculture Industrialization and Technology Research, Dongying, 257000, China.
| |
Collapse
|
11
|
Jin Z, Wang YC. Mitigating fungal contamination of cereals: The efficacy of microplasma-based far-UVC lamps against Aspergillus flavus and Fusarium graminearum. Food Res Int 2024; 190:114550. [PMID: 38945594 DOI: 10.1016/j.foodres.2024.114550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/19/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024]
Abstract
Fungal contaminations of cereal grains are a profound food-safety and food-security concern worldwide, threatening consumers' and animals' health and causing enormous economic burdens. Because far-ultraviolet C (far-UVC) light at 222 nm has recently been shown to be human-safe, we investigated its efficacy as an alternative to thermal, chemical, and conventional 254 nm UVC anti-fungal treatments. Our microplasma-based far-UVC lamp system achieved a 5.21-log reduction in the conidia of Aspergillus flavus suspended in buffer with a dose of 1032.0 mJ/cm2, and a 5.11-log reduction of Fusarium graminearum conidia in suspension with a dose of 619.2 mJ/cm2. We further observed that far-UVC treatments could induce fungal-cell apoptosis, alter mitochondrial membrane potential, lead to the accumulation of intracellular reactive oxygen species, cause lipid peroxidation, and result in cell-membrane damage. The lamp system also exhibited a potent ability to inhibit the mycelial growth of both A. flavus and F. graminearum. On potato dextrose agar plates, such growth was completely inhibited after doses of 576.0 mJ/cm2 and 460.8 mJ/cm2, respectively. To test our approach's efficacy at decontaminating actual cereal grains, we designed a cubical 3D treatment chamber fitted with six lamps. At a dose of 780.0 mJ/cm2 on each side, the chamber achieved a 1.88-log reduction of A. flavus on dried yellow corn kernels and a 1.11-log reduction of F. graminearum on wheat grains, without significant moisture loss to either cereal type (p > 0.05). The treatment did not cause significant changes in the propensity of wheat grains to germinate in the week following treatment (p > 0.05). However, it increased the germination propensity of corn kernels by more than 71% in the same timeframe (p < 0.05). Collectively, our results demonstrate that 222 nm far-UVC radiation can effectively inactivate fungal growth in liquid, on solid surfaces, and on cereal grains. If scalable, its emergence as a safe, cost-effective alternative tool for reducing fungi-related post-harvest cereal losses could have important positive implications for the fight against world hunger and food insecurity.
Collapse
Affiliation(s)
- Zhenhui Jin
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Yi-Cheng Wang
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States; Center for Digital Agriculture, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
12
|
Bhabani MG, Shams R, Dash KK. Microgreens and novel non-thermal seed germination techniques for sustainable food systems: a review. Food Sci Biotechnol 2024; 33:1541-1557. [PMID: 38623424 PMCID: PMC11016050 DOI: 10.1007/s10068-024-01529-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 04/17/2024] Open
Abstract
There are a number of cutting-edge techniques implemented in the germination process, including high pressure processing, ultrasonic, ultraviolet, light, non-thermal plasma, magnetic field, microwave radiation, electrolyzed oxidizing water, and plasma activated water. The influence of these technological advances on seed germination procedure is addressed in this review. The use of these technologies has several benefits, including the enhancement of plant growth rate and the modulation of bioactive chemicals like ABA, protein, and peroxidase concentrations, as well as the suppression of microbial development. Microgreens' positive health effects, such as their antioxidant, anticancer, antiproliferative/pro-oxidant, anti-obesity, and anti-inflammatory properties are extensively reviewed. The phytochemical and bioactive components of microgreens were investigated, including the concentrations of vitamin K, vitamin C, vitamin E, micro and macro nutrients, pro-vitamin A, polyphenols, and glucosinolates. Furthermore, the potential commercial uses of microgreens, as well as the current market transformation and prospects for the future are explored.
Collapse
Affiliation(s)
- Mulakala Geeta Bhabani
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab India
| | - Kshirod Kumar Dash
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, West Bengal India
| |
Collapse
|
13
|
Bagarinao NC, King J, Leong SY, Agyei D, Sutton K, Oey I. Effect of Germination on Seed Protein Quality and Secondary Metabolites and Potential Modulation by Pulsed Electric Field Treatment. Foods 2024; 13:1598. [PMID: 38890827 PMCID: PMC11172214 DOI: 10.3390/foods13111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/03/2024] [Accepted: 05/18/2024] [Indexed: 06/20/2024] Open
Abstract
Plant-based foods are being increasingly favored to feed the ever-growing population, but these need to exhibit improved nutritional value in terms of protein quality and digestibility to be considered a useful alternative to animal-based foods. Germination is essential for plant growth and represents a viable method through which the protein quality of plants can be further improved. However, it will be a challenge to maintain efficient rates of germination in a changing climate when seeds are sown. In the context of the indoor germination of seeds for food, consumption, or processing purposes, a more efficient and sustainable process is desired. Therefore, novel techniques to facilitate seed germination are required. Pulsed electric fields (PEF) treatment of seeds results in the permeabilization of the cell membrane, allowing water to be taken up more quickly and triggering biochemical changes to the macromolecules in the seed during germination. Therefore, PEF could be a chemical-free approach to induce a stress response in seeds, leading to the production of secondary metabolites known to exert beneficial effects on human health. However, this application of PEF, though promising, requires further research to optimize its impact on the protein and bioactive compounds in germinating seeds.
Collapse
Affiliation(s)
- Norma Cecille Bagarinao
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (N.C.B.); (J.K.); (S.Y.L.); (D.A.)
- Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand;
| | - Jessie King
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (N.C.B.); (J.K.); (S.Y.L.); (D.A.)
- Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand;
| | - Sze Ying Leong
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (N.C.B.); (J.K.); (S.Y.L.); (D.A.)
- Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand;
| | - Dominic Agyei
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (N.C.B.); (J.K.); (S.Y.L.); (D.A.)
| | - Kevin Sutton
- Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand;
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand
| | - Indrawati Oey
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (N.C.B.); (J.K.); (S.Y.L.); (D.A.)
- Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand;
| |
Collapse
|
14
|
Levent H, Aktaş K. The effect of germinated black lentils on cookie quality by applying ultraviolet radiation and ultrasound technology. J Food Sci 2024; 89:2557-2566. [PMID: 38578119 DOI: 10.1111/1750-3841.17002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/23/2024] [Accepted: 02/10/2024] [Indexed: 04/06/2024]
Abstract
Black lentils contain protein, carbohydrates, dietary fiber, minerals, and vitamins, as well as phytochemicals and various bioactive compounds. Ultraviolet (UV) radiation and ultrasound (US) methods are innovative technologies that can be used to increase the efficiency of the germination process in grains and legumes. To improve the nutritional value and bioactive compounds of the cookies, black lentils germinated by applying UV radiation and US technology were used in the cookie formulation. Before the germination process, UV, US, and their combination (UV+US) were applied, and pretreated and unpretreated germinated black lentil flours were used at a level of 20% in the cookie formulation. The results revealed that pretreatment application increased the total phenolic content and antioxidant activity more than the lentil sample germinated without any treatment. In addition, the pretreatments applied further reduced the amount of phytic acid in black lentils and the lowest phytic acid content was obtained with the UV-US combination. Compared to cookies containing unpretreated germinated black lentil flour, higher L* values and lower a* values were obtained in the cookie samples containing pretreated germinated black lentil flour. Cookies containing all pretreated germinated lentils generally exhibited higher Ca and K content. This study demonstrated that UV radiation and US improved the nutritional value and bioactive components of the germinated black lentil flour and the cookies in which it was used, compared to the black lentils germinated without any treatment. PRACTICAL APPLICATION: Pretreatment of black lentils with UV/US application before germination resulted in a greater increase in total phenolic content and antioxidant activity compared to the control sample. The applied pretreatments caused a further decrease in the amount of phytic acid in black lentil samples. Black lentils germinated with the UV+US combination revealed higher Ca, Fe, K, and Mg content compared to the sample germinated without any treatment.
Collapse
Affiliation(s)
- Hacer Levent
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karamanoğlu Mehmetbey University, Karaman, Turkey
| | - Kübra Aktaş
- Department of Gastronomy and Culinary Arts, School of Applied Sciences, Karamanoğlu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
15
|
Ahmadnia F, Alebrahim MT, Nabati Souha L, MacGregor DR. Evaluation of techniques to break seed dormancy in Redroot pigweed ( Amaranthus retroflexus). Food Sci Nutr 2024; 12:2334-2345. [PMID: 38628215 PMCID: PMC11016410 DOI: 10.1002/fsn3.3920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 04/19/2024] Open
Abstract
By identifying the factors that initiate seed dormancy release, we can reliably predict whether a seed will remain dormant within or exit the seed bank and become a seedling. With regard to annual weed species, assessing which factors efficiently break seed dormancy is critical for estimating the number of weed seeds that will develop into problematic weeds. To better understand dormancy breaking in Redroot pigweed (Amaranthus retroflexus), dormant seeds were treated with cold stratification (4°C for 30 days), application of gibberellic acid (at 500, 1000, 1500, and 2000 parts per million), ultrasound (for 10, 20, 30, and 40 min), soaking in hot water (90°C for 3, 5, 7, and 10 min), and 98% sulfuric acid (for 1, 2, and 3 min). The results showed that Redroot pigweed seed dormancy was effectively broken by cold stratification, gibberellic acid, and ultrasound. Short treatments with hot water had minimal effect while longer times or treatment with sulfuric acid stopped seed germination. In addition to germination percentage, germination rate, plumule length, radicle length, seedling length, seedling dry weight, and seed vigor index were also measured; similarly, application of gibberellic acid had the most significant effect on these parameters. The results of this study add to our knowledge of what processes effectively or ineffectively break Redroot pigweed seed dormancy and promote growth.
Collapse
Affiliation(s)
- Fatemeh Ahmadnia
- Department of Plant Production and Genetics, Faculty of Agricultural Sciences & Natural ResourcesUniversity of Mohaghegh ArdabiliArdabilIran
| | - Mohammad Taghi Alebrahim
- Department of Plant Production and Genetics, Faculty of Agricultural Sciences & Natural ResourcesUniversity of Mohaghegh ArdabiliArdabilIran
| | - Leyli Nabati Souha
- Department of Plant Production and Genetics, Faculty of Agricultural Sciences & Natural ResourcesUniversity of Mohaghegh ArdabiliArdabilIran
| | - Dana R. MacGregor
- Department of Protecting Crops and the EnvironmentRothamsted ResearchHarpendenUK
| |
Collapse
|
16
|
Kim SH, Park SH, Ahn JB, Kang DH. Inactivation of E. coli O157:H7, Salmonella enterica, and L. monocytogenes through semi-continuous superheated steam treatment with additional effects of enhancing initial germination rate and salinity tolerance. Food Microbiol 2024; 117:104373. [PMID: 37918996 DOI: 10.1016/j.fm.2023.104373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 11/04/2023]
Abstract
Superheated steam (SHS) is a powerful technology used to reduce bacteria on food surfaces while causing less damage to the underlying sublayer of food compared to conventional heating treatments. In this study, a semi-continuous SHS system was developed to inactivate foodborne pathogens within 1 s (Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes) on radish seed surfaces and to enhance the seeds' salinity tolerance, which is vital for adapting to arid and semi-arid regions. The temperature of the SHS was set to 200 °C and 300 °C, with flow rates of 5 m/s and 7 m/s, and treatments were cycled either once or three times. As a result, increased temperature (200 °C-300 °C) and number of treatments (1 time to 3 times) led to a significantly larger microbial reduction on the surface of radish seeds. E. coli O157:H7, S. enterica, and L. monocytogenes were reduced by 4.42, 4.73, and 3.95 log CFU/g (P < 0.05), respectively, after three SHS treatments at 300 °C and 7 m/s. However, due to the ongoing potential for recovery of residual microorganisms, further research involving combinations is essential to enhance the microbicidal effect. Water imbibition showed significantly higher values in the SHS-treated group up to 30 min, indicating faster germination rates in the SHS-treated group (71.3-81.3%) compared to the control group (52.7%) on the second day, indicating a significant enhancement in germination rate. In addition, the salinity resistance of the radish seeds increased after SHS treatment. When moisturized with 0.5% NaCl solution, more radish seeds germinated after treatment with SHS (40%) than controls (22.7%) (P < 0.05). The results of this study, the first to apply semi-continuous SHS to seeds, are expected to serve as a cornerstone for future pilot-scale investigations aiming to implement the system within the seed industry.
Collapse
Affiliation(s)
- Soo-Hwan Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang-Hyun Park
- Department of Food Science and Technology, Kongju National University, Yesan, Chungnam, 32439, Republic of Korea
| | - Jun-Bae Ahn
- 4 School of Food Service & Culinary Arts, Seowon University, Cheongju, Chungbuk, Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea.
| |
Collapse
|
17
|
Nogueira A, Puga H, Gerós H, Teixeira A. Seed germination and seedling development assisted by ultrasound: gaps and future research directions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:583-597. [PMID: 37728938 DOI: 10.1002/jsfa.12994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 09/22/2023]
Abstract
Since the early 1930s, when the first corn hybrids were grown commercially, innovations in the agriculture industry have had an unprecedent impact worldwide, helping to meet the demands for food of an exponentially growing population. In particular, seed technology research has contributed substantially to the improvement of crop performance over the years. Ultrasonic treatment of seeds is a green technology that promises to have an impact on the food industry, enhancing germination and seedling development in different species through the stimulation of water and oxygen uptake and seed metabolism. The increase in starch degradation has been associated with the stimulation of the α-amylases of the endosperm, but relatively few reports focus on how ultrasound affects seed germination at the biochemical and molecular levels. For instance, the picture is still unclear regarding the impact of ultrasound on transcriptional reprogramming in seeds. The purpose of this review is to assess the literature on ultrasound seed treatment accurately and critically, ultimately aiming to encourage new scientific and technological breakthroughs with a real impact on worldwide agricultural production while promoting sustainable practices on biological systems. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- António Nogueira
- CMEMS-UMinho - Centre for Microelectromechanical Systems, University of Minho, Guimarães, Portugal
- CBMA-UMinho - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Hélder Puga
- CMEMS-UMinho - Centre for Microelectromechanical Systems, University of Minho, Guimarães, Portugal
| | - Hernâni Gerós
- CBMA-UMinho - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - António Teixeira
- CBMA-UMinho - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
18
|
Costa PS, Ferraz RLS, Dantas-Neto J, Martins VD, Viégas PRA, Meira KS, Ndhlala AR, Azevedo CAV, Melo AS. Seed priming with light quality and Cyperus rotundus L. extract modulate the germination and initial growth of Moringa oleifera Lam. seedlings. BRAZ J BIOL 2024; 84:e255836. [DOI: 10.1590/1519-6984.255836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract Improving plant germination is essential to guarantee better quality seedlings. Thus, this research aimed to evaluate whether the seed priming with light quality (LIQ) and the aqueous extract of Cyperus rotundus (AEC) tuber could modulate the germination and initial growth of Moringa oleifera L. seedlings. The experimental design was a completely randomized in the 4x4 factorial scheme, composed of four LIQ conditions (white, blue, red, and distant red light) and four AEC concentrations (0, 25, 50 and 100%). Seed priming with red light reduced the average emergence time, while blue, red, and extreme red lights associated with 50% of aqueous extract of C. rotundus increased shoot initial length and photosynthetic pigment accumulation. Seed priming with blue light resulted in seedlings with a shorter final shoot length. However, application of 100% of aqueous extract of C. rotundus reversed this. The white light in combination with concentrations of 50 and 100% of AEC promoted a higher relative shoot growth rate of seedlings. The research revealed that seed priming with light quality and aqueous extracts of C. rotundus tubers modulates the germination and initial growth of M. oleifera seedlings. More work needs to be done to determine the responsible compounds in AEC that is responsible for priming growth as phytohormones.
Collapse
Affiliation(s)
- P. S. Costa
- Universidade Federal de Campina Grande, Brasil
| | | | | | | | | | | | | | | | - A. S. Melo
- Universidade Estadual da Paraíba, Brasil
| |
Collapse
|
19
|
Aljutaily T, Almutairi SM, Alharbi HF. The Nephroprotective Potential of Brassica nigra Sprout Hydroalcoholic Extract against Carbon Tetrachloride-Induced Renal Toxicity in Rats. Foods 2023; 12:3906. [PMID: 37959024 PMCID: PMC10648930 DOI: 10.3390/foods12213906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The nephroprotective potential of the Brassica nigra sprout (BNS) hydroalcoholic extract against carbon tetrachloride (CCl4)-induced renal toxicity in rats was the object of this study. B. nigra sprouts were prepared in the lab to monitor the bio-changes in bioactive compounds during the sprouting for up to 7 days at 17 ± 1 °C and 90% relative humidity. Subsequently, 6-day sprouts of B. nigra were selected according to their phenolics and antioxidant activity, extracted, and examined for their nephroprotective and antioxidative stress potential at 250 and 500 mg sprout extracts kg-1 bw, in vivo. Weight gain, organ weight, lipid profile, atherogenic index, kidney functions, and oxidative stress biomarkers were assessed. The results indicated that the most proficient treatment for weight gain improvement was BNS extract at 500 mg kg-1. BNS at 250 mg kg-1 was remarked as the lowest weight gain enhancer compared to the NR group. A significant increase in TG, TC, LDL-c, and VLDL-c levels in the rats with CCl4-induced renal toxicity, and a significant decrease in HDL level, was noted. The administration of the BNS extract at 250 and 500 mg kg-1 considerably attenuated TG, TC, LDL-c, and VLDL-c levels, compared to the NR group. The most efficient treatment for improving the lipid profile was the BNS extract at 500 mg kg-1, even better than 250 mg kg-1. Administrating the BNS extract substantially attenuated the alterations in the creatinine, urea, and BUN caused by the CCl4 injection. The most efficient improvement was markedly recorded with the BNS extract at 500 mg kg-1, compared to the NR group. The rats treated with the BNS extract showed significant enhancement in GSH, CAT, and SOD activities and a considerable reduction in MDA levels. Administering the BNS extract at 250 and 500 mg kg-1 can efficiently reverse CCl4 inhibition of antioxidant enzyme activities, significantly increase GSH, CAT, and SOD, and decrease the MDA levels dose-dependently. The BNS extract at 250 and 500 mg kg-1 exhibits nephroprotection and antioxidative stress in a dose-dependent matter. The total nephroprotection % was recorded at 65.18% and 99.21% for rats treated with 250 and 500 mg kg-1, respectively. These findings could prove and potentiate the nephroprotective activities of the BNS extract in the range of the given doses. Further clinical studies are highly recommended for confirming the nephroprotection efficiency of the B. nigra sprout.
Collapse
Affiliation(s)
- Thamer Aljutaily
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (S.M.A.); (H.F.A.)
| | | | | |
Collapse
|
20
|
Yang G, Xu J, Xu Y, Guan X, Ramaswamy HS, Lyng JG, Li R, Wang S. Recent developments in applications of physical fields for microbial decontamination and enhancing nutritional properties of germinated edible seeds and sprouts: a review. Crit Rev Food Sci Nutr 2023; 64:12638-12669. [PMID: 37712259 DOI: 10.1080/10408398.2023.2255671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Germinated edible seeds and sprouts have attracted consumers because of their nutritional values and health benefits. To ensure the microbial safety of the seed and sprout, emerging processing methods involving physical fields (PFs), having the characteristics of high efficiency and environmental safety, are increasingly proposed as effective decontamination processing technologies. This review summarizes recent progress on the application of PFs to germinating edible seeds, including their impact on microbial decontamination and nutritional quality and the associated influencing mechanisms in germination. The effectiveness, application scope, and limitation of the various physical techniques, including ultrasound, microwave, radio frequency, infrared heating, irradiation, pulsed light, plasma, and high-pressure processing, are symmetrically reviewed. Good application potential for improving seed germination and sprout growth is also described for promoting the accumulation of bioactive compounds in sprouts, and subsequently enhancing the antioxidant capacity under favorable PFs processing conditions. Moreover, the challenges and future directions of PFs in the application to germinated edible seeds are finally proposed. This review also attempts to provide an in-depth understanding of the effects of PFs on microbial safety and changes in nutritional properties of germinating edible seeds and a theoretical reference for the future development of PFs in processing safe sprouted seeds.
Collapse
Affiliation(s)
- Gaoji Yang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Juanjuan Xu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanmei Xu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiangyu Guan
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Hosahalli S Ramaswamy
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, Canada
| | - James G Lyng
- Institute of Food and Health, University College Dublin, Belfield, Ireland
| | - Rui Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
| |
Collapse
|
21
|
Dong Y, Wang N, Wang S, Wang J, Peng W. A review: The nutrition components, active substances and flavonoid accumulation of Tartary buckwheat sprouts and innovative physical technology for seeds germinating. Front Nutr 2023; 10:1168361. [PMID: 37476405 PMCID: PMC10355155 DOI: 10.3389/fnut.2023.1168361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Compared with the common grain, Tartary buckwheat enjoys higher nutritional value. Some distinctive nutrition associated with physiological activity of Tartary buckwheat is valuable in medicine. In addition, it's a good feed crop. In the paper, the main components (starch, protein, amino acid, fatty acid and mineral) and polyphenol bioactive components in Tartary buckwheat and its sprouts were reviewed, and the accumulation of flavonoids in sprouts during germination, especially the methods, synthetic pathways and mechanisms of flavonoid accumulation was summarized. The research on bioactive components and health benefits of Tartary buckwheat also were reviewed. Besides, the applications of innovative physical technology including microwave, magnetic, electromagnetic, ultrasonic, and light were also mentioned and highlighted, which could promote the enrichment of some active substances during seeds germination and growth of Tartary buckwheat sprouts. It would give a good support and benefit for the research and processing of Tartary buckwheat and its sprouts in next day.
Collapse
Affiliation(s)
- Yulu Dong
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Nan Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Shunmin Wang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Junzhen Wang
- Academy of Agricultural Science Liang Shan, Liangshan, China
| | - Wenping Peng
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| |
Collapse
|
22
|
Chen J, Shao F, Igbokwe CJ, Duan Y, Cai M, Ma H, Zhang H. Ultrasound treatments improve germinability of soybean seeds: The key role of working frequency. ULTRASONICS SONOCHEMISTRY 2023; 96:106434. [PMID: 37187120 DOI: 10.1016/j.ultsonch.2023.106434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/17/2023]
Abstract
In this paper, the effects of ultrasound with different frequency modes on the sprouting rate, sprouting vigor, metabolism-related enzyme activity and late nutrient accumulation in soybean were investigated, and the mechanism of dual-frequency ultrasound promoting bean sprout development was explored. The results showed that, compared with control, the sprouting time was shortened by 24 h after dual-frequency ultrasound treatment (20/60 kHz), and the longest shoot was 7.82 cm at 96 h. Meanwhile, ultrasonic treatment significantly enhanced the activities of protease, amylase, lipase and peroxidase (p < 0.05), particularly the phenylalanine ammonia-lyase increased by 20.50%, which not only accelerated the seed metabolism, but also led to the accumulation of phenolics (p < 0.05), as well as more potent antioxidant activity at later stages of sprouting. In addition, the seed coat exhibited remarkable cracks and holes after ultrasonication, resulting in accelerated water absorption. Moreover, the immobilized water in seeds increased significantly, which was beneficial to seed metabolism and later sprouting. These findings confirmed that dual-frequency ultrasound pretreatment has a great potential to be used for seed sprouting and promoting the accumulation of nutrients in bean sprouts by accelerating water absorption and increasing enzyme activity.
Collapse
Affiliation(s)
- Jiahao Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Feng Shao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chidimma Juliet Igbokwe
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Food Science and Technology, University of Nigeria Nsukka, Enugu State, Nigeria
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China; Nourse Pet Nutrition Jiangsu Research Institute, Zhenjiang 212009, China.
| | - Meihong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
23
|
Bai J, Huang J, Feng J, Jiang P, Zhu R, Dong L, Liu Z, Li L, Luo Z. Combined ultrasound and germination treatment on the fine structure of highland barley starch. ULTRASONICS SONOCHEMISTRY 2023; 95:106394. [PMID: 37018984 PMCID: PMC10122010 DOI: 10.1016/j.ultsonch.2023.106394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Highland barley is a grain crop grown in Tibet, China. This study investigated the structure of highland barley starch using ultrasound (40 kHz, 40 min, 165.5 W) and germination treatments (30℃ with 80% relative humidity). The macroscopic morphology and the barley's fine and molecular structure were evaluated. After sequential ultrasound pretreatment and germination, a significant difference in moisture content and surface roughness was noted between highland barley and the other groups. All test groups showed an increased particle size distribution range with increasing germination time. FTIR results also indicated that after sequential ultrasound pretreatment and germination, the absorption intensity of the intramolecular hydroxyl (-OH) group of starch increased, and hydrogen bonding was stronger compared to the untreated germinated sample. In addition, XRD analysis revealed that starch crystallinity increased following sequential ultrasound treatment and germination, but a-type of crystallinity remained after sonication. Further, the Mw of sequential ultrasound pretreatment and germination at any time is higher than that of sequential germination and ultrasound. As a result of sequential ultrasound pretreatment and germination, changes in the content of chain length of barley starch were consistent with germination alone. At the same time, the average degree of polymerisation (DP) fluctuated slightly. Lastly, the starch was modified during the sonication process, either prior to or following sonication. Pretreatment with ultrasound illustrated a more profound effect on barley starch than sequential germination and ultrasound treatment. In conclusion, these results indicate that sequential ultrasound pretreatment and germination improve the fine structure of highland barley starch.
Collapse
Affiliation(s)
- Jiayi Bai
- Food Science College, Tibet Agriculture & Animal Husbandry University, R&D Center of Agricultural Products with Tibetan Plateau Characteristics, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, Tibet, China
| | - Jiayi Huang
- Food Science College, Tibet Agriculture & Animal Husbandry University, R&D Center of Agricultural Products with Tibetan Plateau Characteristics, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, Tibet, China
| | - Jinxin Feng
- Food Science College, Tibet Agriculture & Animal Husbandry University, R&D Center of Agricultural Products with Tibetan Plateau Characteristics, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, Tibet, China
| | - Pengli Jiang
- Tibet Autonomous Region Grain Administration Grain and Oil Center Laboratory, Lhasa 850000, Tibet, China
| | - Rui Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Liwen Dong
- Food Science College, Tibet Agriculture & Animal Husbandry University, R&D Center of Agricultural Products with Tibetan Plateau Characteristics, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, Tibet, China
| | - Zhendong Liu
- Food Science College, Tibet Agriculture & Animal Husbandry University, R&D Center of Agricultural Products with Tibetan Plateau Characteristics, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, Tibet, China
| | - Liang Li
- Food Science College, Tibet Agriculture & Animal Husbandry University, R&D Center of Agricultural Products with Tibetan Plateau Characteristics, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, Tibet, China.
| | - Zhang Luo
- Food Science College, Tibet Agriculture & Animal Husbandry University, R&D Center of Agricultural Products with Tibetan Plateau Characteristics, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, Tibet, China
| |
Collapse
|
24
|
Effect of static magnetic field treatment on γ-aminobutyric acid content and sensory characteristics of germinated brown rice cake. Food Chem 2023; 404:134709. [DOI: 10.1016/j.foodchem.2022.134709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/22/2022]
|
25
|
Sestili S, Platani C, Palma D, Dattoli MA, Beleggia R. Can the use of magnetized water affect the seedling development and the metabolite profiles of two different species: Lentil and durum wheat? FRONTIERS IN PLANT SCIENCE 2023; 13:1066088. [PMID: 36865947 PMCID: PMC9971934 DOI: 10.3389/fpls.2022.1066088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
Seedlings of durum wheat and lentil were utilized to investigate the efficiency of magnetic water on growth and metabolic epicotyl profile. Tap water was passed through a magnetic device with a flow rate of max. 12900 - 13200 Gauss (G). Seeds and plantlets were grown on sand-free paper soaked by magnetized water, with unmagnetized tap water used in a control group. The growth parameters were collected at three time points (48, 96, and 144 hours after treatment), the same times at which metabolomic analysis was conducted on seeds, roots, and epicotyls. Although the effects varied with the species, tissues, and time point considered, compared with tap water (TW), the use of magnetized water treatment (MWT) led to higher root elongation in both genotypes. On the contrary, epicotyl length was not affected by treatment both in durum wheat and lentil. The results indicate that the use of magnetized water in agriculture can be considered a sustainable technology to promote plant development and quality with reduced and more efficient water usage, leading to cost-saving and environmental protection.
Collapse
Affiliation(s)
- Sara Sestili
- Council for Agricultural Research and Economics (CREA) Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - Cristiano Platani
- Council for Agricultural Research and Economics (CREA) Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - Daniela Palma
- Council for Agricultural Research and Economics (CREA) Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - Maria Assunta Dattoli
- Council for Agricultural Research and Economics (CREA) Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, AP, Italy
| | - Romina Beleggia
- Council for Agricultural Research and Economics (CREA) Research Centre for Cereals and Industrial Crops, Foggia FG, Italy
| |
Collapse
|
26
|
Kathuria D, Hamid, Chavan P, Jaiswal AK, Thaku A, Dhiman AK. A Comprehensive Review on Sprouted Seeds Bioactives, the Impact of Novel Processing Techniques and Health Benefits. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2169453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Deepika Kathuria
- Dairy Chemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Hamid
- Food Technology and Nutrition, Lovely Professional University, Phagwara, India
| | - Prasad Chavan
- Food Technology and Nutrition, Lovely Professional University, Phagwara, India
| | - Amit K. Jaiswal
- School of Food Science and Environmental Health, Technological University Dublin-City Campus, Dublin, Ireland
- Environmental Sustainability and Health Institute (ESHI), Technological University Dublin-City Campus, Dublin, Ireland
| | - Abhimanyu Thaku
- Department of Food Science and Technology, Dr YS Parmar University of Horticulture and Forestry, Solan, India
| | - Anju K. Dhiman
- Department of Food Science and Technology, Dr YS Parmar University of Horticulture and Forestry, Solan, India
| |
Collapse
|
27
|
Loi M, Logrieco AF, Pusztahelyi T, Leiter É, Hornok L, Pócsi I. Advanced mycotoxin control and decontamination techniques in view of an increased aflatoxin risk in Europe due to climate change. Front Microbiol 2023; 13:1085891. [PMID: 36762096 PMCID: PMC9907446 DOI: 10.3389/fmicb.2022.1085891] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Aflatoxins are toxic secondary metabolites produced by Aspergillus spp. found in staple food and feed commodities worldwide. Aflatoxins are carcinogenic, teratogenic, and mutagenic, and pose a serious threat to the health of both humans and animals. The global economy and trade are significantly affected as well. Various models and datasets related to aflatoxins in maize have been developed and used but have not yet been linked. The prevention of crop loss due to aflatoxin contamination is complex and challenging. Hence, the set-up of advanced decontamination is crucial to cope with the challenge of climate change, growing population, unstable political scenarios, and food security problems also in European countries. After harvest, decontamination methods can be applied during transport, storage, or processing, but their application for aflatoxin reduction is still limited. Therefore, this review aims to investigate the effects of environmental factors on aflatoxin production because of climate change and to critically discuss the present-day and novel decontamination techniques to unravel gaps and limitations to propose them as a tool to tackle an increased aflatoxin risk in Europe.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, National Research Council, Bari, Italy,*Correspondence: Martina Loi, ✉
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, Institute of Biotechnology, University of Debrecen, Debrecen, Hungary,ELRN-UD Fungal Stress Biology Research Group, University of Debrecen, Debrecen, Hungary
| | - László Hornok
- Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, Institute of Biotechnology, University of Debrecen, Debrecen, Hungary,ELRN-UD Fungal Stress Biology Research Group, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
28
|
Nguyen NTT, Nguyen LM, Nguyen TTT, Tran UPN, Nguyen DTC, Tran TV. A critical review on the bio-mediated green synthesis and multiple applications of magnesium oxide nanoparticles. CHEMOSPHERE 2023; 312:137301. [PMID: 36410506 DOI: 10.1016/j.chemosphere.2022.137301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/05/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Nowadays, advancements in nanotechnology have efficiently solved many global problems, such as environmental pollution, climate change, and infectious diseases. Nano-scaled materials have played a central role in this evolution. Chemical synthesis of nanomaterials, however, required hazardous chemicals, unsafe, eco-unfriendly, and cost-ineffective, calling for green synthesis methods. Here, we review the green synthesis of MgO nanoparticles and their applications in biochemical, environmental remediation, catalysis, and energy production. Green MgO nanoparticles can be safely produced using biomolecules extracted from plants, fungus, bacteria, algae, and lichens. They exhibited fascinating and unique properties in morphology, surface area, particle size, and stabilization. Green MgO nanoparticles served as excellent antimicrobial agents, adsorbents, colorimetric sensors, and had enormous potential in biomedical therapies against cancers, oxidants, diseases, and the sensing detection of dopamine. In addition, green MgO nanoparticles are of great interests in plant pathogens, phytoremediation, plant cell and organ culture, and seed germination in the agricultural sector. This review also highlighted recent advances in using green MgO nanoparticles as nanocatalysts, nano-fertilizers, and nano-pesticides. Thanks to many emerging applications, green MgO nanoparticles can become a promising platform for future studies.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Luan Minh Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam; Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Uyen P N Tran
- Faculty of Engineering and Technology, Van Hien University, Ho Chi Minh City, Viet Nam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
29
|
Nazari M, Yaghoubian I, Smith DL. The stimulatory effect of Thuricin 17, a PGPR-produced bacteriocin, on canola ( Brassica, napus L.) germination and vegetative growth under stressful temperatures. FRONTIERS IN PLANT SCIENCE 2022; 13:1079180. [PMID: 36618613 PMCID: PMC9816380 DOI: 10.3389/fpls.2022.1079180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Exposure to unfavorable conditions is becoming more frequent for plants due to climate change, posing a threat to global food security. Stressful temperature, as a major environmental factor, adversely affects plant growth and development, and consequently agricultural production. Hence, development of sustainable approaches to assist plants in dealing with environmental challenges is of great importance. Compatible plant-microbe interactions and signal molecules produced within these interactions, such as bacteriocins, could be promising approaches to managing the impacts of abiotic stresses on crops. Although the use of bacteriocins in food preservation is widespread, only a small number of studies have examined their potential in agriculture. Therefore, we studied the effect of three concentrations of Thuricin17 (Th17), a plant growth-promoting rhizobacterial signal molecule produced by Bacillus thuringiensis, on germination and vegetative growth of canola (Brassica napus L.) under stressful temperatures. Canola responded positively to treatment with the bacterial signal molecule under stressful temperatures. Treatment with 10 -9 M Th17 (Thu2) was found to significantly enhance germination rate, seed vigor index, radical and shoot length and seedling fresh weight under low temperature, and this treatment reduced germination time which would be an asset for higher latitude, short growing season climates. Likewise, Thu2 was able to alleviate the adverse effects of high temperature on germination and seed vigor. Regarding vegetative growth, interestingly, moderate high temperature with the assistance of the compound caused more growth and development than the control conditions. Conversely, low temperature negatively affected plant growth, and Th17 did not help overcome this effect. Specifically, the application of 10 -9 (Thu2) and 10 -11 M (Thu3) Th17 had a stimulatory effect on height, leaf area and biomass accumulation under above-optimal conditions, which could be attributed to modifications of below-ground structures, including root length, root surface, root volume and root diameter, as well as photosynthetic rate. However, no significant effects were observed under optimal conditions for almost all measured variables. Therefore, the signal compound tends to have a stimulatory impact at stressful temperatures but not under optimal conditions. Hence, supplementation with Th17 would have the potential as a plant growth promoter under stressed circumstances.
Collapse
|
30
|
Wu T, Li H, Li J, Hao J. Nutrient Composition of Germinated Foxtail Millet Flour Treated with Mixed Salt Solution and Slightly Acidic Electrolyzed Water. Foods 2022; 12:foods12010075. [PMID: 36613291 PMCID: PMC9818339 DOI: 10.3390/foods12010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Germination of millet can improve its consumption quality, optimize its nutritional composition, and promote the accumulation of functional components such as γ-aminobutyric acid (GABA). In the present study, foxtail millet was germinated with tap water, a mixed salt solution of 7.5 mmol/L NaCl and 15 mmol/L CaCl2, and slightly acidic electrolyzed water (SAEW) with three available chlorine concentrations (ACCs; 10.92, 20.25, and 30.35 mg/L). The effects of the salt solution and SAEW on the germination of foxtail millet and the GABA, crude protein, and amino acid composition of the germinated millet flour were analyzed. The results showed that the salt solution and SAEW treatments promoted the growth of millet sprouts, contributed to the accumulation of GABA in germinated millet flour, and optimized the protein and amino acid composition. The GABA content of germinated foxtail millet flour treated with salt solution for 60 h (336.52 mg/100 g) was 29.5 times higher than that of ungerminated millet flour. In conclusion, the highest GABA content and amino acid scores of germinated millet flour obtained by germination treatment with salt solution at 25 °C and 86% humidity for 60 h were more acceptable for human nutritional requirements.
Collapse
Affiliation(s)
- Tongjiao Wu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Huiying Li
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
- Correspondence:
| | - Jiaxin Li
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Jianxiong Hao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
31
|
Zhang G, Xu J, Wang Y, Sun X, Huang S, Huang L, Liu Y, Liu H, Sun J. Combined transcriptome and metabolome analyses reveal the mechanisms of ultrasonication improvement of brown rice germination. ULTRASONICS SONOCHEMISTRY 2022; 91:106239. [PMID: 36435087 PMCID: PMC9694063 DOI: 10.1016/j.ultsonch.2022.106239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/12/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the effects of ultrasonication treatment on the germination rate of brown rice. Brown rice grains were subjected to ultrasound (40 kHz/30 min) and then incubated for 36 h at 37 °C to germinate the seeds. Ultrasonic treatment increased the germination rate of brown rice by up to ∼28 % at 30 h. Transcriptomic and metabolomic analyses were performed to explore the mechanisms underlying the effect of ultrasonic treatment on the brown rice germination rate. Comparing the treated and control check samples, 867 differentially expressed genes (DEGs) were identified, including 638 upregulated and 229 downregulated), as well as 498 differentially accumulated metabolites (DAMs), including 422 up accumulated and 76 down accumulated. Multi-omics analysis revealed that the germination rate of brown rice was promoted by increased concentrations of low-molecular metabolites (carbohydrates and carbohydrate conjugates, fatty acids, amino acids, peptides, and analogues), and transcription factors (ARR-B, NAC, bHLH and AP2/EREBP families) as well as increased carbon metabolism. These findings provide new insights into the mechanisms of action of ultrasound in improving the brown rice germination rate and candidate DEGs and DAMs responsible for germination have been identified.
Collapse
Affiliation(s)
- Guangchen Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Jiaxin Xu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Yiqiao Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xue Sun
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Shaosong Huang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Lihua Huang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China
| | - Youhong Liu
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences/Northeast Branch of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning, China.
| | - Jian Sun
- Rice Research Institute, Shenyang Agricultural University, Shenyang, Liaoning, China; Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China, Shenyang Agricultural University, Shenyang, Liaoning, China.
| |
Collapse
|
32
|
Wang H, Zhang Y, Jiang H, Cao J, Jiang W. A comprehensive review of effects of electrolyzed water and plasma-activated water on growth, chemical compositions, microbiological safety and postharvest quality of sprouts. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Namjoo M, Moradi M, Dibagar N, Taghvaei M, Niakousari M. Effect of green technologies of cold plasma and airborne ultrasound wave on the germination and growth indices of cumin (
Cuminum cyminum
L.) seeds. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Moslem Namjoo
- Department of Biosystems Engineering, College of Agriculture Shiraz University Shiraz Iran
- Department of Mechanical Engineering of Biosystems, Faculty of Agriculture University of Jiroft Jiroft Iran
| | - Mehdi Moradi
- Department of Biosystems Engineering, College of Agriculture Shiraz University Shiraz Iran
| | - Nesa Dibagar
- Department of Biosystems Engineering Faculty of Agriculture, Bu‐Ali Sina University Hamedan Iran
| | - Mansour Taghvaei
- Department of Plant Production and Genetics, College of Agriculture Shiraz University Shiraz Iran
| | - Mehrdad Niakousari
- Department of Food Science and Technology, College of Agriculture Shiraz University Shiraz Iran
| |
Collapse
|
34
|
Farghaly FA, Nafady NA, Abdel-Wahab DA. The efficiency of arbuscular mycorrhiza in increasing tolerance of Triticum aestivum L. to alkaline stress. BMC PLANT BIOLOGY 2022; 22:490. [PMID: 36253754 PMCID: PMC9575269 DOI: 10.1186/s12870-022-03790-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/25/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND Evaluation of native soil microbes is a realistic way to develop bio-agents for ecological restoration. Soil alkalinity, which has a high pH, is one of the most common concerns in dry and semi-arid climates. Alkaline soils face problems due to poor physical properties, which affect plant growth and crop production. A pot experiment was carried out to investigate the impact of native mycorrhizal fungi (AMF) on the wheat plant (Triticum aestivum L.) under two levels of alkalinity stress -T1 (37 mM NaHCO3), T2 (74 mM NaHCO3) - at two developmental stages (the vegetative and productive stages). RESULTS Alkalinity stress significantly inhibited the germination percentage, plant biomass, photosynthetic pigments, and some nutrients (K, N, and P). Mycorrhizal inoculation improved growth parameters and productivity of wheat-stressed plants. However, lipid peroxidation was significantly lowered in mycorrhizal-inoculated plants compared to non-inoculated plants. Catalase and peroxidase were inhibited in wheat leaves and roots by alkalinity, while mycorrhiza promoted the activity of these enzymes. CONCLUSION The results of this study demonstrated that alkalinity stress had highly negative effects on some growth parameters of the wheat plant, while AMF inoculation attenuated these detrimental effects of alkalinity stress at two stages by reducing the pH and Na concentration and increasing the availability of P and the productivity of wheat in particular crop yield parameters.
Collapse
Affiliation(s)
- Fatma Aly Farghaly
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Nivien Allam Nafady
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Dalia Ahmed Abdel-Wahab
- Botany and Microbiology Department, Faculty of Science, New Valley University, El Kharja, Egypt.
| |
Collapse
|
35
|
Hassan S, Zeng XA, Khan MK, Farooq MA, Ali A, Kumari A, Mahwish, Rahaman A, Tufail T, Liaqat A. Recent developments in physical invigoration techniques to develop sprouts of edible seeds as functional foods. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.997261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For nutritional security, the availability of nutrients from food sources is a crucial factor. Global consumption of edible seeds including cereals, pulses, and legumes makes it a valuable source of nutrients particularly vitamins, minerals, and fiber. The presence of anti-nutritional factors forms complexes with nutrients, this complexity of the nutritional profile and the presence of anti-nutritional factors in edible seeds lead to reduced bioavailability of nutrients. By overcoming these issues, the germination process may help improve the nutrient profile and make them more bioavailable. Physical, physiological, and biological methods of seed invigoration can be used to reduce germination restraints, promote germination, enhance early crop development, to increase yields and nutrient levels through sprouting. During sprouting early start of metabolic activities through hydrolytic enzymes and resource mobilization causes a reduction in emergence time which leads to a better nutritional profile. The use of physical stimulating methods to increase the sprouting rate gives several advantages compared to conventional chemical-based methods. The advantages of physical seed treatments include environment-friendly, high germination rate, early seedling emergence, uniform seedling vigor, protection from chemical hazards, and improved yield. Different physical methods are available for seed invigoration viz. gamma irradiation, laser irradiation, microwaves, magnetic field, plasma, sound waves, and ultrasonic waves. Still, further research is needed to apply each technique to different seeds to identify the best physical method and factors for seed species along with different environmental parameters. The present review will describe the use and effects of physical processing techniques for seed invigoration.
Collapse
|
36
|
Chauhan P, Kumari M, Chaudhary S, Chaudhary GR, Umar A, Baskoutas S. Seed germination studies on Chickpeas, Barley, Mung beans and Wheat with natural biomass and plastic waste derived C-dots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155593. [PMID: 35490802 DOI: 10.1016/j.scitotenv.2022.155593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Agronomical providence of nanoparticles in enhancing food productivity has brought new revolution in agricultural sector. However, the comprehensive ingenuity of their synergetic impact on environment and living flora and fauna is still poorly explored. The current study endeavours to tackle this apprehension by systematically exploring the agronomical paradigm of six different types of C-dots derived from natural biomass and plastic waste on the four different types of seeds viz. black chick peas (Cicer arietinum), barley (Hordeum vulgare), mung beans (Vigna radiata) and wheat (Triticum aestivum) at room temperature. C-dots have displayed a dose responsive effect (250 to 5000 mg/L) on the growth of chosen seeds, including the elongation of root length and coleoptile length. The development of seedlings under atmospheric conditions exhibited excellent physiological stability in presence of synthesized C-dots for all types of seeds with concentrations as high as 3000 mg/L for dry seed. The direct exposure of C-dots resulted in enhanced growth as compared to the water exposure and considered as the most important novel aspect of present work. The developed C-dots provide more nutrient content and easy penetration to the seeds due to their enhanced surface area and very small size. The germination and Vigor index have also been augmented in presence of C-dots after 7 days of exposure. C-dots have affected the chlorophyll content in mung beans as a function of time and concentration. The developed C-dots possess excellent biocompatible behaviour and help in the complete growth of the different types of seeds which suggest their enhanced utilization in the agronomical field. This is one of the detailed studies, which explore the impact of C-dots on widely used food crops with the non-toxic and biocompatible C-dots. The information achieved herein will allow the usage of C-dots as a capable nanopriming agent for the natural germination of seeds.
Collapse
Affiliation(s)
- Pooja Chauhan
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Manisha Kumari
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Savita Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts, Najran University, Najran 11001, Saudi Arabia; Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Saudi Arabia.
| | | |
Collapse
|
37
|
Luo X, Li D, Tao Y, Wang P, Yang R, Han Y. Effect of static magnetic field treatment on the germination of brown rice: Changes in α-amylase activity and structural and functional properties in starch. Food Chem 2022; 383:132392. [PMID: 35176715 DOI: 10.1016/j.foodchem.2022.132392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/09/2022] [Accepted: 02/06/2022] [Indexed: 11/04/2022]
Abstract
The study aimed to explore the stimulating effect of static magnetic field (SMF) treatment on germinated brown rice (GBR) by monitoring changes in α-amylase activity and structural and functional properties of starch. Brown rice was exposed to SMF (10 mT, 60 min, 25 °C) and then germinated for 0 h -72 h at 30 °C. Compared with the control, SMF treatment improved α-amylase activity (15.2%), leading to the hydrolysis of starch into reducing sugar (8.2%) and increasing the germination rate (9.7% -158.8%), shoot length (9.1% -87.3%), root length (19.2% -110.0%), and fresh weight (0.9% -16.5%). In view of the properties of starch, SMF treatment also altered the surface microstructure, induced partial losses of birefringence, exerted no significant effect on the crystalline type, slightly increased the gelatinization temperatures, and significantly decreased the peak viscosity. This study suggested that SMF could serve as a prospective technique for GBR products processing.
Collapse
Affiliation(s)
- Xiaoyun Luo
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| | - Yang Tao
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Pei Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yongbin Han
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| |
Collapse
|
38
|
Seed Priming with Carbon Nanomaterials Improves the Bioactive Compounds of Tomato Plants under Saline Stress. PLANTS 2022; 11:plants11151984. [PMID: 35956461 PMCID: PMC9370608 DOI: 10.3390/plants11151984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 01/09/2023]
Abstract
The consumption of food with a high content of bioactive compounds is correlated with the prevention of chronic degenerative diseases. Tomato is a food with exceptional nutraceutical value; however, saline stress severely affects the yield, the quality of fruits, and the agricultural productivity of this crop. Recent studies have shown that seed priming can mitigate or alleviate the negative effects caused by this type of stress. However, the use of carbon nanomaterials (CNMs) in this technique has not been tested for this purpose. In the present study, the effects of tomato seed priming with carbon nanotubes (CNTs) and graphene (GP) (50, 250, and 500 mg L−1) and two controls (not sonicated and sonicated) were evaluated based on the content of photosynthetic pigments in the leaves; the physicochemical parameters of the fruits; and the presence of enzymatic and non-enzymatic antioxidant compounds, carotenoids, and stress biomarkers such as hydrogen peroxide (H2O2) and malondialdehyde (MDA) in the leaves and fruits of tomato plants without saline stress and with saline stress (50 mM NaCl). The results show that saline stress in combination with CNTs and GP increased the content of chlorophylls (9.1–21.7%), ascorbic acid (19.5%), glutathione (≈13%), proteins (9.9–11.9%), and phenols (14.2%) on the leaves. The addition of CNTs and GP increased the activity of enzymes (CAT, APX, GPX, and PAL). Likewise, there was also a slight increase in the content of H2O2 (by 20.5%) and MDA (3.7%) in the leaves. Salinity affected the quality of tomato fruits. The physico-chemical parameters and bioactive compounds in both the stressed and non-stressed tomato plants were modified with the addition of CNTs and GP. Higher contents of total soluble solids (25.9%), phenols (up to 144.85%), flavonoids (up to 37.63%), ascorbic acid (≈28%), and lycopene (12.4–36.2%) were observed. The addition of carbon nanomaterials by seed priming in tomato plants subjected to saline stress modifies the content of bioactive compounds in tomato fruits and improves the antioxidant defense system, suggesting possible protection of the plant from the negative impacts of stress by salinity. However, analysis of the mechanism of action of CNMs through seed priming, in greater depth is suggested, perhaps with the use of omics sciences.
Collapse
|
39
|
De-La-Cruz-Yoshiura S, Vidaurre-Ruiz J, Alcázar-Alay S, Encina-Zelada CR, Cabezas DM, Correa MJ, Repo-Carrasco-Valencia R. Sprouted Andean grains: an alternative for the development of nutritious and functional products. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2083158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Shigeki De-La-Cruz-Yoshiura
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Julio Vidaurre-Ruiz
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
- Departamento de Ingeniería de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Sylvia Alcázar-Alay
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Christian R. Encina-Zelada
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
- Departamento de Tecnología de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Dario M. Cabezas
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - María Jimena Correa
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (Facultad de Ciencias Exactas-UNLP, la Plata, Argentina
| | - Ritva Repo-Carrasco-Valencia
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
- Departamento de Ingeniería de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Perú
| |
Collapse
|
40
|
Chiu KY. Effect of selenium fortification during sprouting of peanut seeds receiving
HVEF
and selenium soaking combination on yield, selenium and resveratrol contents, anti‐oxidative properties, and microbial control. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kai Ying Chiu
- Department of Post‐Modern Agriculture MingDao University Pitou Changhua County 52345 Taiwan
| |
Collapse
|
41
|
Effects of Microwave Treatment on Structure, Functional Properties and Antioxidant Activities of Germinated Tartary Buckwheat Protein. Foods 2022; 11:foods11101373. [PMID: 35626943 PMCID: PMC9142102 DOI: 10.3390/foods11101373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 12/13/2022] Open
Abstract
Tartary buckwheat protein (TBP) has promise as a potential source of novel natural nutrient plant protein ingredients. The modulating effects of microwave pretreatment at varying powers and times on the structure, functional properties, and antioxidant activities of germinated TBP were investigated. Compared with native germinated TBP, after microwave pretreatment, the content of free sulfhydryl groups in the germinated TBP increased, and the secondary structure changes showed a significant decrease in α-helix and an increase in random coil contents, and the intensity of the ultraviolet absorption peak increased (p < 0.05). In addition, microwave pretreatment significantly improved the solubility (24.37%), water-holding capacity (38.95%), emulsifying activity index (17.21%), emulsifying stability index (11.22%), foaming capacity (71.43%), and foaming stability (33.60%) of germinated TBP (p < 0.05), and the in vitro protein digestibility (5.56%) and antioxidant activities (DPPH (32.35%), ABTS (41.95%), and FRAP (41.46%)) of germinated TBP have also been improved. Among different treatment levels, a microwave level of 300 W/50 s gave the best results for the studied parameters. Specifically, microwave pretreatment could be a promising approach for modulating other germinated plant protein resources, as well as expanding the application of TBP.
Collapse
|
42
|
Polachini TC, Norwood EA, Le-Bail P, Le-Bail A. Clean-label techno-functional ingredients for baking products - a review. Crit Rev Food Sci Nutr 2022; 63:7461-7476. [PMID: 35258383 DOI: 10.1080/10408398.2022.2046541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The increased awareness of consumers regarding unfamiliar labels speeded up the ongoing clean label trend. As baking products are widely consumed worldwide, the reduction of non-natural baking aids and improvers is of great interest for consumer's health but also representing a big challenge for food industries. Thus, this paper aims at describing new techno-functional clean label ingredients for baked products and their production processes conditions. Firstly, it includes ingredients such as sustainable protein sources, fat replacers and leavening alternatives. Then, it addresses new process alternatives for producing baking ingredients with natural claim as well as current concepts as the natural fermentation. In particular, molecular and functional modifications of the flour are discussed regarding malting and dry heat treatments. By being considered as green and emerging technologies that improve flour functionality, the resulting ingredients can replace additives. Changes in quality and technological attributes of breads and cakes will be discussed as a consequence of the partial to total replacement of conventional ingredients. This paper provides new alternatives for the baking industry to meet the demand of a growing health-concerned population. In addition, it focused on opening up new possibilities for the food industry to go in line with the consumers' expectations.
Collapse
Affiliation(s)
| | | | | | - Alain Le-Bail
- ONIRIS-GEPEA, Nantes, France
- SFR 4202 IBSM, Nantes, France
| |
Collapse
|
43
|
Naamala J, Msimbira LA, Antar M, Subramanian S, Smith DL. Cell-Free Supernatant Obtained From a Salt Tolerant Bacillus amyloliquefaciens Strain Enhances Germination and Radicle Length Under NaCl Stressed and Optimal Conditions. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.788939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Seed germination and early plant growth are key stages in plant development that are, susceptible to salinity stress. Plant growth promoting microorganisms (PGPMs) produce substances, in their growth media, that could enhance plant growth under more optimal conditions, and or mitigate abiotic stresses, such as salinity. This study was carried out to elucidate the ability of a NaCl tolerant Bacillus amyloliquefaciens strain's cell-free supernatant to enhance germination and radicle length of corn and soybean, under optimal and NaCl stressed growth conditions. Three NaCl levels (0, 50, and 75 mM) and four cell-free supernatant concentrations (1.0, 0.2, 0.13, and 0.1% v/v) were used to formulate treatments that were used in the study. There were observed variations in the effect of treatments on mean radicle length and mean percentage germination of corn and soybean. Overall, the study showed that Bacillus amyloliquefaciens (BA) EB2003 cell-free supernatant could enhance mean percentage germination and or mean radicle length of corn and soybean. At optimal conditions (0 mM NaCl), 0.2% BA, 0.13% BA, and 0.1% BA concentrations resulted in 36.4, 39.70, and 39.91%, increase in mean radicle length of soybean, respectively. No significant observations were observed in mean radicle length of corn, and mean percentage germination of both corn and soybean. At 50 mM NaCl, 1.0% BA resulted in 48.65% increase in mean percentage germination of soybean, at 24 h. There was no observed effect of the cell-free supernatant on mean radicle length and mean percentage germination, at 72 and 48 h, in soybean. In corn however, at 50 mM NaCl, treatment with 0.2% BA and 0.13% BA enhanced mean radicle length by 23.73 and 37.5%, respectively. The resulting radicle lengths (43.675 and 49.7125 cm) were not significantly different from that of the 0 mM control. There was no observed significant effect of the cell-free supernatant on mean germination percentage of corn, at 50 mM NaCl. At 75 mM NaCl, none of the treatments enhanced mean radicle length or mean percentage germination to levels significantly higher than the 75 mM NaCl. Treatment with 1.0% BA, however, enhanced mean percentage germination to a level not significantly different from that of the 0 mM control, at 72 h. Likewise, in corn, none of the treatments enhanced radicle length to lengths significantly higher than the 75 mM control, although treatment with 1.0% BA, 0.13% BA, and 0.1% BA elongated radicles to lengths not significantly different from the 0 mM NaCl control. Treatment with 0.2% BA, 0.13% BA, and 0.1% BA resulted in mean percentage germination significantly higher than the 75 mM NaCl by 25.3% (in all 3), not significantly different from that of the 0 mM NaCl. In conclusion, concentration of cell-free supernatant and NaCl level influence the effect of Bacillus amyloliquefaciens strain EB2003A cell-free supernatant on mean percentage germination and mean radicle length of corn and soybean.
Collapse
|
44
|
Premjit Y, Sruthi NU, Pandiselvam R, Kothakota A. Aqueous ozone: Chemistry, physiochemical properties, microbial inactivation, factors influencing antimicrobial effectiveness, and application in food. Compr Rev Food Sci Food Saf 2022; 21:1054-1085. [DOI: 10.1111/1541-4337.12886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/04/2021] [Accepted: 11/25/2021] [Indexed: 12/29/2022]
Affiliation(s)
- Yashaswini Premjit
- Agricultural & Food Engineering Department Indian Institute of Technology Kharagpur West Bengal India
| | - N. U. Sruthi
- Agricultural & Food Engineering Department Indian Institute of Technology Kharagpur West Bengal India
| | - R. Pandiselvam
- Physiology, Biochemistry and Post Harvest Technology Division ICAR‐Central Plantation Crops Research Institute (CPCRI) Kasaragod Kerala India
| | - Anjineyulu Kothakota
- Agro‐Processing & Technology Division CSIR‐National Institute for Interdisciplinary Science and Technology (NIIST) Trivandrum Kerala India
| |
Collapse
|
45
|
Guragain RP, Baniya HB, Basnet N, Pradhan SP, Dhungana S, Chhetri GK, Panta GP, Sedhai B, Shrestha B, Shrestha S, Guragain DP, Joshi UM, Pandey BP, Subedi DP. Effects of plasma activated water on soyabean and wheat: germination and seedling development. PLASMA MEDICINE 2022. [DOI: 10.1615/plasmamed.2022042374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
Abstract
The present study reports the generation of plasma-activated water (PAW) using dielectric barrier discharge (DBD), its physicochemical properties, and its potential impact on the seed germination and seedling growth of soybean. The results revealed significant changes in physical parameters, such as pH, total dissolved solids, total suspended solids, turbidity, conductivity, dissolved oxygen, and chemical parameters, such as calcium, chromium, sodium, manganese, nitrate, nitrites, phosphorus, and sulfur and biological parameter such as E. coli in water after plasma treatment. The concentration of dissolved oxygen, conductivity, nitrate, nitrite, and sulfur was increased with an increase in water treatment time, and the amounts of the other analyzed parameters decreased with the increase in water treatment time. The effects of untreated water and plasma-activated water treated for 20 minutes on soybean germination and growth were studied. The germination rate was found to be higher with plasma-treated water. Shoot lengths, seedlings length, vigor index, and germination rates were increased as compared to those germinated by normal water irrigation. The seedlings irrigated with PAW responded to the abundance of nitrogen by producing intensely green leaves because of their increased chlorophyll a as compared to seedlings irrigated with normal water. However, the content of chlorophyll b and carotenoids was found to decrease in the case of seedlings irrigated with PAW. Based on this report, we conclude that PAW could be used to substantially enhance seed germination and seedling growth.
Collapse
|
47
|
Causal theory on acceleration of seed germination in the vicinity of high voltage direct current transmission line. J Theor Biol 2021; 531:110899. [PMID: 34509491 DOI: 10.1016/j.jtbi.2021.110899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022]
Abstract
Seed germination is the primary stage of growth in a seed. A wealth of experiments exist in literature to support the existence of correlation between seed germination to the electric and magnetic fields. This becomes more important as researchers have suggested to develop technologies to build ecologically clean and environment-friendly solutions to agricultural practices. Although the literature supports the existence of seed germination acceleration, the lack of a definite causal theory has been observed by numerous researchers over decades. After considering all the existing experimental data, we have formulated a causal theory to explain the factors influencing seed germination around high voltage DC transmission lines. This work opens new avenues of research in this field.
Collapse
|
48
|
Wong KS, Hung YM, Tan MK. Hybrid Treatment via MHz Acoustic Waves and Plasma to Enhance Seed Germination in Mung Bean. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3438-3445. [PMID: 34152983 DOI: 10.1109/tuffc.2021.3091155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We investigate a hybrid treatment-consisting of an atmospheric pressure plasma pretreatment, followed by an MHz surface acoustic waves (SAWs) treatment with either de-ionized (DI) water or plasma activated water (PAW)-on mung beans to accelerate the germination process, as mung bean sprout is one of the important food staples. For the early growth rate (after 320 min), we observe that the hybrid treatment with PAW can lead to approximately 217% higher moisture content for the treated beans when compared with that without hybrid treatment. Additionally, the hybrid-treated beans germinate in around 120 min, while the untreated beans germinate only in around 420 min, that is, 3.5-fold faster for treated beans. This can be attributed to the dominant effect of SAW that accelerates stage 1 water absorption process and the effect of direct plasma and PAW that promote stage 2 metabolism process, leading to the enhancement in stage 3 germination process in early growth rate. For the post growth rate (after 24 h), we observe that the hybrid treatment with DI water can lead to an approximately 44.20% in higher moisture and 71.17% in radicle length when compared with untreated beans. Interestingly, the hybrid treatment with PAW, on the other hand, is observed to have an adverse effect on germination after 24 h, that is, approximately 14.51% lower in moisture content and 43.49% lower in radicle length for the hybrid-treated beans with PAW when compared with that with DI water.
Collapse
|
49
|
Abarghuei FM, Etemadi M, Ramezanian A, Esehaghbeygi A, Alizargar J. An Application of Cold Atmospheric Plasma to Enhance Physiological and Biochemical Traits of Basil. PLANTS 2021; 10:plants10102088. [PMID: 34685897 PMCID: PMC8540659 DOI: 10.3390/plants10102088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022]
Abstract
This study aimed to investigate the effects of dielectric barrier discharge cold atmospheric plasma on the performance of basil (Ocimum basilicum L. cv. Genovese Gigante). Evaluations were carried out on several physiological and biochemical traits, including ion leakage, water relative content, proline and protein accumulation, chlorophyll and carotenoid contents, and antioxidant activity. Before planting, basil seeds were treated by cold atmospheric plasma under voltages of 10, 15, and 20 kV for 10, 20, and 30 min. The ion leakage rate in plants was significantly affected by the interaction between plasma and radiation time. In most treatments, the application of plasma significantly reduced the ion leakage rate. The application of plasma (10 and 20 kV) for 10 min significantly increased the relative water content of basil leaves. The maximum amount of total chlorophyll and carotenoid content occurred after applying plasma for 20 min with 15 kV. Furthermore, 10 and 15 kV treatments of atmospheric cold plasma for 10 min caused a significant increase in antioxidant activity. The highest total flavonoids were obtained after applying 15 kV treatments for 20 min and 20 kV for 30 min, respectively. Cold atmospheric plasma significantly increased the activity of peroxidase as an antioxidant enzyme. Moreover, the minimum and maximum values of microbial load based on logarithm ten were reached after applying 10 kV for 30 min and in the control group, respectively. In general, the results showed that dielectric barrier discharge cold atmospheric plasma could significantly improve basil plants’ physiological and biochemical traits.
Collapse
Affiliation(s)
- Faezeh Mirazimi Abarghuei
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran; (F.M.A.); (A.R.)
| | - Mohammad Etemadi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran; (F.M.A.); (A.R.)
- Correspondence: (M.E.); (J.A.); Tel.: +98-71-36138447 (M.E.)
| | - Asghar Ramezanian
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran; (F.M.A.); (A.R.)
| | - Ali Esehaghbeygi
- Department of Biosystems Engineering, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Javad Alizargar
- Research Center for Healthcare Industry Innovation, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
- Correspondence: (M.E.); (J.A.); Tel.: +98-71-36138447 (M.E.)
| |
Collapse
|
50
|
Effects of high-pressure carbon dioxide on microbial quality and germination of cereal grains and beans. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|