1
|
DuBose JG, de Roode JC. The link between gene duplication and divergent patterns of gene expression across a complex life cycle. Evol Lett 2024; 8:726-734. [PMID: 39328286 PMCID: PMC11424080 DOI: 10.1093/evlett/qrae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 09/28/2024] Open
Abstract
The diversification of many lineages throughout natural history has frequently been associated with evolutionary changes in life cycle complexity. However, our understanding of the processes that facilitate differentiation in the morphologies and functions expressed by organisms throughout their life cycles is limited. Theory suggests that the expression of traits is decoupled across life stages, thus allowing for their evolutionary independence. Although trait decoupling between stages is well established, explanations of how said decoupling evolves have seldom been considered. Because the different phenotypes expressed by organisms throughout their life cycles are coded for by the same genome, trait decoupling must be mediated through divergence in gene expression between stages. Gene duplication has been identified as an important mechanism that enables divergence in gene function and expression between cells and tissues. Because stage transitions across life cycles require changes in tissue types and functions, we investigated the potential link between gene duplication and expression divergence between life stages. To explore this idea, we examined the temporal changes in gene expression across the monarch butterfly (Danaus plexippus) metamorphosis. We found that within homologous groups, more phylogenetically diverged genes exhibited more distinct temporal expression patterns. This relationship scaled such that more phylogenetically diverse homologous groups showed more diverse patterns of gene expression. Furthermore, we found that duplicate genes showed increased stage-specificity relative to singleton genes. Overall, our findings suggest an important link between gene duplication and the evolution of complex life cycles.
Collapse
Affiliation(s)
- James G DuBose
- Department of Biology, Emory University, Atlanta, GA, United States
| | | |
Collapse
|
2
|
Gu X. A Simple Evolutionary Model of Genetic Robustness After Gene Duplication. J Mol Evol 2022; 90:352-361. [PMID: 35913597 DOI: 10.1007/s00239-022-10065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/23/2022] [Indexed: 10/16/2022]
Abstract
When a dispensable gene is duplicated (referred to the ancestral dispensability denoted by O+), genetic buffering and duplicate compensation together maintain the duplicate redundancy, whereas duplicate compensation is the only mechanism when an essential gene is duplicated (referred to the ancestral essentiality denoted by O-). To investigate these evolutionary scenarios of genetic robustness, I formulated a simple mixture model for analyzing duplicate pairs with one of the following states: double dispensable (DD), semi-dispensable (one dispensable one essential, DE), or double essential (EE). This model was applied to the yeast duplicate pairs from a whole-genome duplication (WGD) occurred about 100 million years ago (mya), and the mouse duplicate pairs from a WGD occurred about more than 500 mya. Both case studies revealed that the proportion of essentiality for those duplicates with ancestral essentiality [PE(O-)] was much higher than that for those with ancestral dispensability [PE(O+)]. While it was negligible in the yeast duplicate pairs, PE(O+) (about 20%) was shown statistically significant in the mouse duplicate pairs. These findings, together, support the hypothesis that both sub-functionalization and neo-functionalization may play some roles after gene duplication, though the former may be much faster than the later.
Collapse
Affiliation(s)
- Xun Gu
- The Laurence H. Baker Center in Bioinformatics on Biological Statistics, Department of Genetics, Development and Cell Biology, Program of Ecological and Evolutionary Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
3
|
Zhang Y, Chai M, Zhang X, Yang G, Yao X, Song H. The fate of drought-related genes after polyploidization in Arachis hypogaea cv. Tifrunner. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1249-1259. [PMID: 35910439 PMCID: PMC9334475 DOI: 10.1007/s12298-022-01198-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 06/03/2023]
Abstract
Drought stress affects plant growth and development. Cultivated peanut (Arachis hypogaea) was formed by a cross between A. duranensis and A. ipaensis. The drought tolerance of A. duranensis and A. ipaensis is reportedly stronger than that of cultivated peanut. However, there has been little study of drought tolerance genes in Arachis. In this study, we compared drought tolerance genes between A. hypogaea cv. Tifrunner and its diploid donors. We have observed that polyploidization does not generate more drought tolerance genes in A. hypogaea cv. Tifrunner but promotes the loss of many ancient drought tolerance genes. Although putative drought tolerance genes occurred on gene duplication events in A. hypogaea cv. Tifrunner, most copies lacked drought tolerance. These findings suggest that the loss of drought tolerance genes in A. hypogaea cv. Tifrunner could possibly result in weaker drought tolerance. In addition, we have observed that the three Arachis species stochastically lost putative drought tolerance genes. The evolution of drought tolerance genes could possibly have correlated with environmental changes. Our results enhance the current understanding of drought tolerance and polyploidy evolution in Arachis species. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01198-0.
Collapse
Affiliation(s)
- Yongli Zhang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Maofeng Chai
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Xiaojun Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Guofeng Yang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Xiang Yao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Hui Song
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
4
|
Jiang X, Assis R. Rapid functional divergence after small-scale gene duplication in grasses. BMC Evol Biol 2019; 19:97. [PMID: 31046675 PMCID: PMC6498639 DOI: 10.1186/s12862-019-1415-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/31/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Gene duplication has played an important role in the evolution and domestication of flowering plants. Yet little is known about how plant duplicate genes evolve and are retained over long timescales, particularly those arising from small-scale duplication (SSD) rather than whole-genome duplication (WGD) events. RESULTS We address this question in the Poaceae (grass) family by analyzing gene expression data from nine tissues of Brachypodium distachyon, Oryza sativa japonica (rice), and Sorghum bicolor (sorghum). Consistent with theoretical predictions, expression profiles of most grass genes are conserved after SSD, suggesting that functional conservation is the primary outcome of SSD in grasses. However, we also uncover support for widespread functional divergence, much of which occurs asymmetrically via the process of neofunctionalization. Moreover, neofunctionalization preferentially targets younger (child) duplicate gene copies, is associated with RNA-mediated duplication, and occurs quickly after duplication. Further analysis reveals that functional divergence of SSD-derived genes is positively correlated with both sequence divergence and tissue specificity in all three grass species, and particularly with anther expression in B. distachyon. CONCLUSIONS Our results suggest that SSD-derived grass genes often undergo rapid functional divergence that may be driven by natural selection on male-specific phenotypes. These observations are consistent with those in several animal species, suggesting that duplicate genes take similar evolutionary trajectories in plants and animals.
Collapse
Affiliation(s)
- Xueyuan Jiang
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Raquel Assis
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
- Department of Biology, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
5
|
Qiao X, Yin H, Li L, Wang R, Wu J, Wu J, Zhang S. Different Modes of Gene Duplication Show Divergent Evolutionary Patterns and Contribute Differently to the Expansion of Gene Families Involved in Important Fruit Traits in Pear ( Pyrus bretschneideri). FRONTIERS IN PLANT SCIENCE 2018; 9:161. [PMID: 29487610 PMCID: PMC5816897 DOI: 10.3389/fpls.2018.00161] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/29/2018] [Indexed: 05/21/2023]
Abstract
Pear is an important fruit crop of the Rosaceae family and has experienced two rounds of ancient whole-genome duplications (WGDs). However, whether different types of gene duplications evolved differently after duplication remains unclear in the pear genome. In this study, we identified the different modes of gene duplication in pear. Duplicate genes derived from WGD, tandem, proximal, retrotransposed, DNA-based transposed or dispersed duplications differ in genomic distribution, gene features, selection pressure, expression divergence, regulatory divergence and biological roles. Widespread sequence, expression and regulatory divergence have occurred between duplicate genes over the 30-45 million years of evolution after the recent genome duplication in pear. The retrotransposed genes show relatively higher expression and regulatory divergence than other gene duplication modes. In contrast, WGD genes underwent a slower sequence divergence and may be influenced by abundant gene conversion events. Moreover, the different classes of duplicate genes exhibited biased functional roles. We also investigated the evolution and expansion patterns of the gene families involved in sugar and organic acid metabolism pathways, which are closely related to the fruit quality and taste in pear. Single-gene duplications largely account for the extensive expansion of gene families involved in the sorbitol metabolism pathway in pear. Gene family expansion was also detected in the sucrose metabolism pathway and tricarboxylic acid cycle pathways. Thus, this study provides insights into the evolutionary fates of duplicated genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Li Z, Woo HR, Guo H. Genetic redundancy of senescence-associated transcription factors in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:811-823. [PMID: 29309664 DOI: 10.1093/jxb/erx345] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/29/2017] [Indexed: 05/25/2023]
Abstract
Leaf senescence is a genetically programmed process that constitutes the last stage of leaf development, and involves massive changes in gene expression. As a result of the intensive efforts that have been made to elucidate the molecular genetic mechanisms underlying leaf senescence, 184 genes that alter leaf senescence phenotypes when mutated or overexpressed have been identified in Arabidopsis thaliana over the past two decades. Concurrently, experimental evidence on functional redundancy within senescence-associated genes (SAGs) has increased. In this review, we focus on transcription factors that play regulatory roles in Arabidopsis leaf senescence, and describe the relationships among gene duplication, gene expression level, and senescence phenotypes. Previous findings and our re-analysis demonstrate the widespread existence of duplicate SAG pairs and a correlation between gene expression levels in duplicate genes and senescence-related phenotypic severity of the corresponding mutants. We also highlight effective and powerful tools that are available for functional analyses of redundant SAGs. We propose that the study of duplicate SAG pairs offers a unique opportunity to understand the regulation of leaf senescence and can guide the investigation of the functions of redundant SAGs via reverse genetic approaches.
Collapse
Affiliation(s)
- Zhonghai Li
- Center for Plant Aging Research, Institute for Basic Science (IBS), Daegu, Republic of Korea
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Hongwei Guo
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Liang P, Saqib HSA, Zhang X, Zhang L, Tang H. Single-Base Resolution Map of Evolutionary Constraints and Annotation of Conserved Elements across Major Grass Genomes. Genome Biol Evol 2018; 10:473-488. [PMID: 29378032 PMCID: PMC5798027 DOI: 10.1093/gbe/evy006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2018] [Indexed: 12/20/2022] Open
Abstract
Conserved noncoding sequences (CNSs) are evolutionarily conserved DNA sequences that do not encode proteins but may have potential regulatory roles in gene expression. CNS in crop genomes could be linked to many important agronomic traits and ecological adaptations. Compared with the relatively mature exon annotation protocols, efficient methods are lacking to predict the location of noncoding sequences in the plant genomes. We implemented a computational pipeline that is tailored to the comparisons of plant genomes, yielding a large number of conserved sequences using rice genome as the reference. In this study, we used 17 published grass genomes, along with five monocot genomes as well as the basal angiosperm genome of Amborella trichopoda. Genome alignments among these genomes suggest that at least 12.05% of the rice genome appears to be evolving under constraints in the Poaceae lineage, with close to half of the evolutionarily constrained sequences located outside protein-coding regions. We found evidence for purifying selection acting on the conserved sequences by analyzing segregating SNPs within the rice population. Furthermore, we found that known functional motifs were significantly enriched within CNS, with many motifs associated with the preferred binding of ubiquitous transcription factors. The conserved elements that we have curated are accessible through our public database and the JBrowse server. In-depth functional annotations and evolutionary dynamics of the identified conserved sequences provide a solid foundation for studying gene regulation, genome evolution, as well as to inform gene isolation for cereal biologists.
Collapse
Affiliation(s)
- Pingping Liang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Center for Genomics and Biotechnology, Ministry of Education; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, China
| | - Hafiz Sohaib Ahmed Saqib
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingtan Zhang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Center for Genomics and Biotechnology, Ministry of Education; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liangsheng Zhang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Center for Genomics and Biotechnology, Ministry of Education; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haibao Tang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Center for Genomics and Biotechnology, Ministry of Education; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
Benchouaia M, Ripoche H, Sissoko M, Thiébaut A, Merhej J, Delaveau T, Fasseu L, Benaissa S, Lorieux G, Jourdren L, Le Crom S, Lelandais G, Corel E, Devaux F. Comparative Transcriptomics Highlights New Features of the Iron Starvation Response in the Human Pathogen Candida glabrata. Front Microbiol 2018; 9:2689. [PMID: 30505294 PMCID: PMC6250833 DOI: 10.3389/fmicb.2018.02689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/22/2018] [Indexed: 11/21/2022] Open
Abstract
In this work, we used comparative transcriptomics to identify regulatory outliers (ROs) in the human pathogen Candida glabrata. ROs are genes that have very different expression patterns compared to their orthologs in other species. From comparative transcriptome analyses of the response of eight yeast species to toxic doses of selenite, a pleiotropic stress inducer, we identified 38 ROs in C. glabrata. Using transcriptome analyses of C. glabrata response to five different stresses, we pointed out five ROs which were more particularly responsive to iron starvation, a process which is very important for C. glabrata virulence. Global chromatin Immunoprecipitation and gene profiling analyses showed that four of these genes are actually new targets of the iron starvation responsive Aft2 transcription factor in C. glabrata. Two of them (HBS1 and DOM34b) are required for C. glabrata optimal growth in iron limited conditions. In S. cerevisiae, the orthologs of these two genes are involved in ribosome rescue by the NO GO decay (NGD) pathway. Hence, our results suggest a specific contribution of NGD co-factors to the C. glabrata adaptation to iron starvation.
Collapse
Affiliation(s)
- Médine Benchouaia
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Hugues Ripoche
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Mariam Sissoko
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Antonin Thiébaut
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Jawad Merhej
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Thierry Delaveau
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Laure Fasseu
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Sabrina Benaissa
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Geneviève Lorieux
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Laurent Jourdren
- École Normale Supérieure, PSL Research University, CNRS, Inserm U1024, Institut de Biologie de l’École Normale Supérieure, Plateforme Génomique, Paris, France
| | - Stéphane Le Crom
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7138, Évolution, Paris, France
| | - Gaëlle Lelandais
- UMR 9198, Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Sud, UPSay, Gif-sur-Yvette, France
| | - Eduardo Corel
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7138, Évolution, Paris, France
| | - Frédéric Devaux
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
- *Correspondence: Frédéric Devaux,
| |
Collapse
|
9
|
Diversification of Transcriptional Regulation Determines Subfunctionalization of Paralogous Branched Chain Aminotransferases in the Yeast Saccharomyces cerevisiae. Genetics 2017; 207:975-991. [PMID: 28912343 DOI: 10.1534/genetics.117.300290] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/05/2017] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae harbors BAT1 and BAT2 paralogous genes that encode branched chain aminotransferases and have opposed expression profiles and physiological roles . Accordingly, in primary nitrogen sources such as glutamine, BAT1 expression is induced, supporting Bat1-dependent valine-isoleucine-leucine (VIL) biosynthesis, while BAT2 expression is repressed. Conversely, in the presence of VIL as the sole nitrogen source, BAT1 expression is hindered while that of BAT2 is activated, resulting in Bat2-dependent VIL catabolism. The presented results confirm that BAT1 expression is determined by transcriptional activation through the action of the Leu3-α-isopropylmalate (α-IPM) active isoform, and uncovers the existence of a novel α-IPM biosynthetic pathway operating in a put3Δ mutant grown on VIL, through Bat2-Leu2-Leu1 consecutive action. The classic α-IPM biosynthetic route operates in glutamine through the action of the leucine-sensitive α-IPM synthases. The presented results also show that BAT2 repression in glutamine can be alleviated in a ure2Δ mutant or through Gcn4-dependent transcriptional activation. Thus, when S. cerevisiae is grown on glutamine, VIL biosynthesis is predominant and is preferentially achieved through BAT1; while on VIL as the sole nitrogen source, catabolism prevails and is mainly afforded by BAT2.
Collapse
|
10
|
Cao J, Jiang M, Li P, Chu Z. Genome-wide identification and evolutionary analyses of the PP2C gene family with their expression profiling in response to multiple stresses in Brachypodium distachyon. BMC Genomics 2016; 17:175. [PMID: 26935448 PMCID: PMC4776448 DOI: 10.1186/s12864-016-2526-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 02/24/2016] [Indexed: 12/21/2022] Open
Abstract
Background The type-2C protein phosphatases (PP2Cs), negatively regulating ABA responses and MAPK cascade pathways, play important roles in stress signal transduction in plants. Brachypodium distachyon is a new model plant for exploring the functional genomics of temperate grasses, cereals and biofuel crops. To date, genome-wide identification and analysis of the PP2C gene family in B. distachyon have not been investigated. Results In this study, 86 PP2C genes in B. distachyon were identified. Domain-based analyses of PP2C proteins showed that they all contained the phosphatase domains featured as 11 conserved signature motifs. Although not all phosphatase domains of BdPP2C members included all 11 motifs, tertiary structure analysis showed that four residues contributing to magnesium/manganese ions (Mg2+/Mn2+) coordination were conserved, except for two noncanonical members. The analysis of their chromosomal localizations showed that most of the BdPP2C genes were located within the low CpG density region. Phylogenetic tree and synteny blocks analyses among B. distachyon, Arabidopsis thaliana and Oryza sativa revealed that all PP2C members from the three species can be phylogenetically categorized into 13 subgroups (A–M) and BdPP2Cs were evolutionarily more closely related to OsPP2Cs than to AtPP2Cs. Segmental duplications contributed particularly to the expansion of the BdPP2C gene family and all duplicated BdPP2Cs evolved mainly from purifying selection. Real-time quantitative reverse transcription PCR (qRT-PCR) analysis showed that BdPP2Cs were broadly expressed in disparate tissues. We also found that almost all members displayed up-regulation in response to abiotic stresses such as cold, heat, PEG and NaCl treatments, but down-regulation to biotic stresses such as Ph14, Guy11 and F0968 infection. Conclusions In the present study, a comprehensive analysis of genome-wide identification and characterization of protein domains, phylogenetic relationship, gene and protein structure, chromosome location and expression pattern of the PP2C gene family was carried out for the first time in a new model monocot, i.e., B. distachyon. Our results provide a reference for genome-wide identification of the PP2C gene family of other species and also provide a foundation for future functional research on PP2C genes in B. distachyon. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2526-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianmei Cao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Min Jiang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Peng Li
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Zhaoqing Chu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China. .,Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, 201602, China.
| |
Collapse
|
11
|
Abstract
Transcriptional control of gene expression requires interactions between the cis-regulatory elements (CREs) controlling gene promoters. We developed a sensitive computational method to identify CRE combinations with conserved spacing that does not require genome alignments. When applied to seven sensu stricto and sensu lato Saccharomyces species, 80% of the predicted interactions displayed some evidence of combinatorial transcriptional behavior in several existing datasets including: (1) chromatin immunoprecipitation data for colocalization of transcription factors, (2) gene expression data for coexpression of predicted regulatory targets, and (3) gene ontology databases for common pathway membership of predicted regulatory targets. We tested several predicted CRE interactions with chromatin immunoprecipitation experiments in a wild-type strain and strains in which a predicted cofactor was deleted. Our experiments confirmed that transcription factor (TF) occupancy at the promoters of the CRE combination target genes depends on the predicted cofactor while occupancy of other promoters is independent of the predicted cofactor. Our method has the additional advantage of identifying regulatory differences between species. By analyzing the S. cerevisiae and S. bayanus genomes, we identified differences in combinatorial cis-regulation between the species and showed that the predicted changes in gene regulation explain several of the species-specific differences seen in gene expression datasets. In some instances, the same CRE combinations appear to regulate genes involved in distinct biological processes in the two different species. The results of this research demonstrate that (1) combinatorial cis-regulation can be inferred by multi-genome analysis and (2) combinatorial cis-regulation can explain differences in gene expression between species.
Collapse
|
12
|
Pougach K, Voet A, Kondrashov FA, Voordeckers K, Christiaens JF, Baying B, Benes V, Sakai R, Aerts J, Zhu B, Van Dijck P, Verstrepen KJ. Duplication of a promiscuous transcription factor drives the emergence of a new regulatory network. Nat Commun 2014; 5:4868. [PMID: 25204769 PMCID: PMC4172970 DOI: 10.1038/ncomms5868] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/31/2014] [Indexed: 11/08/2022] Open
Abstract
The emergence of new genes throughout evolution requires rewiring and extension of regulatory networks. However, the molecular details of how the transcriptional regulation of new gene copies evolves remain largely unexplored. Here we show how duplication of a transcription factor gene allowed the emergence of two independent regulatory circuits. Interestingly, the ancestral transcription factor was promiscuous and could bind different motifs in its target promoters. After duplication, one paralogue evolved increased binding specificity so that it only binds one type of motif, whereas the other copy evolved a decreased activity so that it only activates promoters that contain multiple binding sites. Interestingly, only a few mutations in both the DNA-binding domains and in the promoter binding sites were required to gradually disentangle the two networks. These results reveal how duplication of a promiscuous transcription factor followed by concerted cis and trans mutations allows expansion of a regulatory network.
Collapse
Affiliation(s)
- Ksenia Pougach
- Laboratory for Genetics and Genomics, Department M2S, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, B-3001 Leuven, Belgium
- Laboratory for Systems biology, Vlaams Instituut voor Biotechnologie (VIB), B-3001 Leuven, Belgium
| | - Arnout Voet
- Structural Bioinformatics, Center for Life Science Technologies (CLST), RIKEN, 230-0045 Yokohama, Japan
| | - Fyodor A. Kondrashov
- Laboratory of Evolutionary Genomics, Centre for genomic regulation (CRG), 08003 Barcelona, Spain
| | - Karin Voordeckers
- Laboratory for Genetics and Genomics, Department M2S, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, B-3001 Leuven, Belgium
- Laboratory for Systems biology, Vlaams Instituut voor Biotechnologie (VIB), B-3001 Leuven, Belgium
| | - Joaquin F. Christiaens
- Laboratory for Genetics and Genomics, Department M2S, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, B-3001 Leuven, Belgium
- Laboratory for Systems biology, Vlaams Instituut voor Biotechnologie (VIB), B-3001 Leuven, Belgium
| | - Bianka Baying
- Genomics Core Facility, European Molecular Biology Laboratory Heidelberg (EMBL), 69117 Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory Heidelberg (EMBL), 69117 Heidelberg, Germany
| | - Ryo Sakai
- Department of Electrical Engineering, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, B-3001 Leuven, Belgium
- iMinds Medical Information Technologies Department, KU Leuven, B-3001 Leuven, Belgium
| | - Jan Aerts
- Department of Electrical Engineering, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, B-3001 Leuven, Belgium
- iMinds Medical Information Technologies Department, KU Leuven, B-3001 Leuven, Belgium
| | - Bo Zhu
- Laboratory for Genetics and Genomics, Department M2S, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, B-3001 Leuven, Belgium
- Laboratory for Systems biology, Vlaams Instituut voor Biotechnologie (VIB), B-3001 Leuven, Belgium
| | - Patrick Van Dijck
- Molecular Microbiology and Biotechnology Section, KU Leuven, B-3001 Leuven, Belgium
- Department of Molecular Microbiology, VIB, B-3001 Leuven, Belgium
| | - Kevin J. Verstrepen
- Laboratory for Genetics and Genomics, Department M2S, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, B-3001 Leuven, Belgium
- Laboratory for Systems biology, Vlaams Instituut voor Biotechnologie (VIB), B-3001 Leuven, Belgium
| |
Collapse
|
13
|
Hurst LD, Sachenkova O, Daub C, Forrest ARR, the FANTOM consortium, Huminiecki L. A simple metric of promoter architecture robustly predicts expression breadth of human genes suggesting that most transcription factors are positive regulators. Genome Biol 2014; 15:413. [PMID: 25079787 PMCID: PMC4310617 DOI: 10.1186/s13059-014-0413-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 07/15/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Conventional wisdom holds that, owing to the dominance of features such as chromatin level control, the expression of a gene cannot be readily predicted from knowledge of promoter architecture. This is reflected, for example, in a weak or absent correlation between promoter divergence and expression divergence between paralogs. However, an inability to predict may reflect an inability to accurately measure or employment of the wrong parameters. Here we address this issue through integration of two exceptional resources: ENCODE data on transcription factor binding and the FANTOM5 high-resolution expression atlas. RESULTS Consistent with the notion that in eukaryotes most transcription factors are activating, the number of transcription factors binding a promoter is a strong predictor of expression breadth. In addition, evolutionarily young duplicates have fewer transcription factor binders and narrower expression. Nonetheless, we find several binders and cooperative sets that are disproportionately associated with broad expression, indicating that models more complex than simple correlations should hold more predictive power. Indeed, a machine learning approach improves fit to the data compared with a simple correlation. Machine learning could at best moderately predict tissue of expression of tissue specific genes. CONCLUSIONS We find robust evidence that some expression parameters and paralog expression divergence are strongly predictable with knowledge of transcription factor binding repertoire. While some cooperative complexes can be identified, consistent with the notion that most eukaryotic transcription factors are activating, a simple predictor, the number of binding transcription factors found on a promoter, is a robust predictor of expression breadth.
Collapse
Affiliation(s)
- Laurence D Hurst
- />Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY UK
| | - Oxana Sachenkova
- />Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- />Science for Life Laboratory, SciLifeLab, Stockholm, Sweden
| | - Carsten Daub
- />Science for Life Laboratory, SciLifeLab, Stockholm, Sweden
| | - Alistair RR Forrest
- />RIKEN Omics Science Center, Yokohama, Japan
- />Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa Japan
| | - the FANTOM consortium
- />Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY UK
- />Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- />Science for Life Laboratory, SciLifeLab, Stockholm, Sweden
- />RIKEN Omics Science Center, Yokohama, Japan
- />Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- />BILS bioinformatics infrastructure for life sciences, Stockholm, Sweden
- />Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
- />Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa Japan
| | - Lukasz Huminiecki
- />Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- />Science for Life Laboratory, SciLifeLab, Stockholm, Sweden
- />Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- />BILS bioinformatics infrastructure for life sciences, Stockholm, Sweden
- />Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Mosesson Y, Voichek Y, Barkai N. Divergence and selectivity of expression-coupled histone modifications in budding yeasts. PLoS One 2014; 9:e101538. [PMID: 25007273 PMCID: PMC4090005 DOI: 10.1371/journal.pone.0101538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/09/2014] [Indexed: 11/18/2022] Open
Abstract
Various histone modifications are widely associated with gene expression, but their functional selectivity at individual genes remains to be characterized. Here, we identify widespread differences between genome-wide patterns of two prominent marks, H3K9ac and H3K4me3, in budding yeasts. As well as characteristic gene profiles, relative modification levels vary significantly amongst genes, irrespective of expression. Interestingly, we show that these differences couple to contrasting features: higher methylation to essential, periodically expressed, 'DPN' (Depleted Proximal Nucleosome) genes, and higher acetylation to non-essential, responsive, 'OPN' (Occupied Proximal Nucleosome) genes. Thus, H3K4me3 may generally associate with expression stability, and H3K9ac, with variability. To evaluate this notion, we examine their association with expression divergence between the closely related species, S. cerevisiae and S. paradoxus. Although individually well conserved at orthologous genes, changes between modifications are mostly uncorrelated, indicating largely non-overlapping regulatory mechanisms. Notably, we find that inter-species differences in methylation, but not acetylation, are well correlated with expression changes, thereby proposing H3K4me3 as a candidate regulator of expression divergence. Taken together, our results suggest distinct evolutionary roles for expression-linked modifications, wherein H3K4me3 may contribute to stabilize average expression, whilst H3K9ac associates with more indirect aspects such as responsiveness.
Collapse
Affiliation(s)
- Yaron Mosesson
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Voichek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
15
|
Application of community phylogenetic approaches to understand gene expression: differential exploration of venom gene space in predatory marine gastropods. BMC Evol Biol 2014; 14:123. [PMID: 24903151 PMCID: PMC4064522 DOI: 10.1186/1471-2148-14-123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 05/23/2014] [Indexed: 11/10/2022] Open
Abstract
Background Predatory marine gastropods of the genus Conus exhibit substantial variation in venom composition both within and among species. Apart from mechanisms associated with extensive turnover of gene families and rapid evolution of genes that encode venom components (‘conotoxins’), the evolution of distinct conotoxin expression patterns is an additional source of variation that may drive interspecific differences in the utilization of species’ ‘venom gene space’. To determine the evolution of expression patterns of venom genes of Conus species, we evaluated the expression of A-superfamily conotoxin genes of a set of closely related Conus species by comparing recovered transcripts of A-superfamily genes that were previously identified from the genomes of these species. We modified community phylogenetics approaches to incorporate phylogenetic history and disparity of genes and their expression profiles to determine patterns of venom gene space utilization. Results Less than half of the A-superfamily gene repertoire of these species is expressed, and only a few orthologous genes are coexpressed among species. Species exhibit substantially distinct expression strategies, with some expressing sets of closely related loci (‘under-dispersed’ expression of available genes) while others express sets of more disparate genes (‘over-dispersed’ expression). In addition, expressed genes show higher dN/dS values than either unexpressed or ancestral genes; this implies that expression exposes genes to selection and facilitates rapid evolution of these genes. Few recent lineage-specific gene duplicates are expressed simultaneously, suggesting that expression divergence among redundant gene copies may be established shortly after gene duplication. Conclusions Our study demonstrates that venom gene space is explored differentially by Conus species, a process that effectively permits the independent and rapid evolution of venoms in these species.
Collapse
|
16
|
Zhou Z, Zhou J, Su Z, Gu X. Asymmetric Evolution of Human Transcription Factor Regulatory Networks. Mol Biol Evol 2014; 31:2149-55. [DOI: 10.1093/molbev/msu163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
17
|
Tints K, Prink M, Neuman T, Palm K. LXXLL peptide converts transportan 10 to a potent inducer of apoptosis in breast cancer cells. Int J Mol Sci 2014; 15:5680-98. [PMID: 24705462 PMCID: PMC4013589 DOI: 10.3390/ijms15045680] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 12/15/2022] Open
Abstract
Degenerate expression of transcription coregulator proteins is observed in most human cancers. Therefore, in targeted anti-cancer therapy development, intervention at the level of cancer-specific transcription is of high interest. The steroid receptor coactivator-1 (SRC-1) is highly expressed in breast, endometrial, and prostate cancer. It is present in various transcription complexes, including those containing nuclear hormone receptors. We examined the effects of a peptide that contains the LXXLL-motif of the human SRC-1 nuclear receptor box 1 linked to the cell-penetrating transportan 10 (TP10), hereafter referred to as TP10-SRC1LXXLL, on proliferation and estrogen-mediated transcription of breast cancer cells in vitro. Our data show that TP10-SRC1LXXLL induced dose-dependent cell death of breast cancer cells, and that this effect was not affected by estrogen receptor (ER) status. Surprisingly TP10-SRC1LXXLL severely reduced the viability and proliferation of hormone-unresponsive breast cancer MDA-MB-231 cells. In addition, the regulation of the endogenous ERα direct target gene pS2 was not affected by TP10-SRC1LXXLL in estrogen-stimulated MCF-7 cells. Dermal fibroblasts were similarly affected by treatment with higher concentrations of TP10-SRC1LXXLL and this effect was significantly delayed. These results suggest that the TP10-SRC1LXXLL peptide may be an effective drug candidate in the treatment of cancers with minimal therapeutic options, for example ER-negative tumors.
Collapse
Affiliation(s)
- Kairit Tints
- Protobios LLC, Mäealuse 4, Tallinn 12618, Estonia.
| | - Madis Prink
- Protobios LLC, Mäealuse 4, Tallinn 12618, Estonia.
| | | | - Kaia Palm
- Protobios LLC, Mäealuse 4, Tallinn 12618, Estonia.
| |
Collapse
|
18
|
Owens SM, Harberson NA, Moore RC. Asymmetric functional divergence of young, dispersed gene duplicates in Arabidopsis thaliana. J Mol Evol 2013; 76:13-27. [PMID: 23344714 DOI: 10.1007/s00239-012-9530-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/29/2012] [Indexed: 11/28/2022]
Abstract
One prediction of the classic Ohno model of gene duplication predicts that new genes form from the asymmetric functional divergence of a newly arisen, redundant duplicate locus. In order to understand the mechanisms which give rise to functional divergence of newly formed dispersed duplicates, we assessed the expression and molecular evolutionary divergence of a suite of 19 highly similar dispersed duplicates in Arabidopsis thaliana. These duplicates have a K sil equal to or less than 5 % and are specific to the A. thaliana lineage; thus, they predictably represent some of the youngest duplicates in the A. thaliana genome. We found that the majority of young duplicate loci exhibit asymmetric expression patterns, with the daughter locus exhibiting reduced expression across all tissues analyzed relative to the progenitor locus or simply not expressed. Furthermore, daughter loci, on the whole, have significantly more nonsynonymous substitutions than the progenitor loci. We also identified four pairs of loci which exhibit significant (P < 0.05) evolutionary rate asymmetry, three of which exhibit elevated dN/dS in the duplicate copy. We suggest, based on these data, that functional diversification initially takes the form of asymmetric regulatory divergence that can be a direct consequence of the mode of duplication. The reduced and/or absence of expression in the daughter copy relaxes functional constraint on its protein coding sequence leading to the asymmetric accumulation of nonsynonymous mutations. Thus, our data both affirm Ohno's prediction while explaining the mechanism by which functional divergence initially occurs following duplication for dispersed gene duplicates.
Collapse
Affiliation(s)
- Sarah M Owens
- Botany Department, Miami University, Oxford, OH 45056, USA
| | | | | |
Collapse
|
19
|
Jiang SY, Ma Z, Vanitha J, Ramachandran S. Genetic variation and expression diversity between grain and sweet sorghum lines. BMC Genomics 2013; 14:18. [PMID: 23324212 PMCID: PMC3616923 DOI: 10.1186/1471-2164-14-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/09/2013] [Indexed: 01/20/2023] Open
Abstract
Background Biological scientists have long sought after understanding how genes and their structural/functional changes contribute to morphological diversity. Though both grain (BT×623) and sweet (Keller) sorghum lines originated from the same species Sorghum bicolor L., they exhibit obvious phenotypic variations. However, the genome re-sequencing data revealed that they exhibited limited functional diversity in their encoding genes in a genome-wide level. The result raises the question how the obvious morphological variations between grain and sweet sorghum occurred in a relatively short evolutionary or domesticated period. Results We implemented an integrative approach by using computational and experimental analyses to provide a detail insight into phenotypic, genetic variation and expression diversity between BT×623 and Keller lines. We have investigated genome-wide expression divergence between BT×623 and Keller under normal and sucrose treatment. Through the data analysis, we detected more than 3,000 differentially expressed genes between these two varieties. Such expression divergence was partially contributed by differential cis-regulatory elements or DNA methylation, which was genetically determined by functionally divergent genes between these two varieties. Both tandem and segmental duplication played important roles in the genome evolution and expression divergence. Conclusion Substantial differences in gene expression patterns between these two varieties have been observed. Such an expression divergence is genetically determined by the divergence in genome level.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Temasek Life Sciences Laboratory, 1 Research Link, the National University of Singapore, Singapore, 117604, Singapore
| | | | | | | |
Collapse
|
20
|
Ouedraogo M, Bettembourg C, Bretaudeau A, Sallou O, Diot C, Demeure O, Lecerf F. The duplicated genes database: identification and functional annotation of co-localised duplicated genes across genomes. PLoS One 2012; 7:e50653. [PMID: 23209799 PMCID: PMC3508997 DOI: 10.1371/journal.pone.0050653] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 10/24/2012] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND There has been a surge in studies linking genome structure and gene expression, with special focus on duplicated genes. Although initially duplicated from the same sequence, duplicated genes can diverge strongly over evolution and take on different functions or regulated expression. However, information on the function and expression of duplicated genes remains sparse. Identifying groups of duplicated genes in different genomes and characterizing their expression and function would therefore be of great interest to the research community. The 'Duplicated Genes Database' (DGD) was developed for this purpose. METHODOLOGY Nine species were included in the DGD. For each species, BLAST analyses were conducted on peptide sequences corresponding to the genes mapped on a same chromosome. Groups of duplicated genes were defined based on these pairwise BLAST comparisons and the genomic location of the genes. For each group, Pearson correlations between gene expression data and semantic similarities between functional GO annotations were also computed when the relevant information was available. CONCLUSIONS The Duplicated Gene Database provides a list of co-localised and duplicated genes for several species with the available gene co-expression level and semantic similarity value of functional annotation. Adding these data to the groups of duplicated genes provides biological information that can prove useful to gene expression analyses. The Duplicated Gene Database can be freely accessed through the DGD website at http://dgd.genouest.org.
Collapse
Affiliation(s)
- Marion Ouedraogo
- INRA, UMR1348 PEGASE, Saint-Gilles, France
- Agrocampus OUEST, UMR1348 PEGASE, Rennes, France
| | - Charles Bettembourg
- INRA, UMR1348 PEGASE, Saint-Gilles, France
- Agrocampus OUEST, UMR1348 PEGASE, Rennes, France
| | | | - Olivier Sallou
- GenOuest Platform, INRIA/Irisa – Campus de Beaulieu, Rennes, France
| | - Christian Diot
- INRA, UMR1348 PEGASE, Saint-Gilles, France
- Agrocampus OUEST, UMR1348 PEGASE, Rennes, France
| | - Olivier Demeure
- INRA, UMR1348 PEGASE, Saint-Gilles, France
- Agrocampus OUEST, UMR1348 PEGASE, Rennes, France
| | - Frédéric Lecerf
- INRA, UMR1348 PEGASE, Saint-Gilles, France
- Agrocampus OUEST, UMR1348 PEGASE, Rennes, France
- * E-mail:
| |
Collapse
|
21
|
Zou Y, Su Z, Huang W, Gu X. Histone modification pattern evolution after yeast gene duplication. BMC Evol Biol 2012; 12:111. [PMID: 22776110 PMCID: PMC3495647 DOI: 10.1186/1471-2148-12-111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/09/2012] [Indexed: 12/17/2022] Open
Abstract
Background Gene duplication and subsequent functional divergence especially expression divergence have been widely considered as main sources for evolutionary innovations. Many studies evidenced that genetic regulatory network evolved rapidly shortly after gene duplication, thus leading to accelerated expression divergence and diversification. However, little is known whether epigenetic factors have mediated the evolution of expression regulation since gene duplication. In this study, we conducted detailed analyses on yeast histone modification (HM), the major epigenetics type in this organism, as well as other available functional genomics data to address this issue. Results Duplicate genes, on average, share more common HM-code patterns than random singleton pairs in their promoters and open reading frames (ORF). Though HM-code divergence between duplicates in both promoter and ORF regions increase with their sequence divergence, the HM-code in ORF region evolves slower than that in promoter region, probably owing to the functional constraints imposed on protein sequences. After excluding the confounding effect of sequence divergence (or evolutionary time), we found the evidence supporting the notion that in yeast, the HM-code may co-evolve with cis- and trans-regulatory factors. Moreover, we observed that deletion of some yeast HM-related enzymes increases the expression divergence between duplicate genes, yet the effect is lower than the case of transcription factor (TF) deletion or environmental stresses. Conclusions Our analyses demonstrate that after gene duplication, yeast histone modification profile between duplicates diverged with evolutionary time, similar to genetic regulatory elements. Moreover, we found the evidence of the co-evolution between genetic and epigenetic elements since gene duplication, together contributing to the expression divergence between duplicate genes.
Collapse
Affiliation(s)
- Yangyun Zou
- Ministry of Education Key Laboratory of Contemporary Anthropology and Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | | | | | | |
Collapse
|
22
|
Transcriptional noise as a driver of gene evolution. J Theor Biol 2012; 293:27-33. [DOI: 10.1016/j.jtbi.2011.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 09/16/2011] [Accepted: 10/03/2011] [Indexed: 01/09/2023]
|
23
|
Elcoroaristizabal Martín X, Gómez Busto F, González Fernández MC, de Pancorbo MM. [Role of genetics in the etiology of synucleinopathies]. Rev Esp Geriatr Gerontol 2011; 46 Suppl 1:3-11. [PMID: 22152908 DOI: 10.1016/j.regg.2011.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The protein family known as synucleins is composed of α-, β- and γ-synuclein. The most widely studied is the α-synuclein protein due to its participation in essential processes of the central nervous system. Neurotoxicity of this protein is related to the presence of multiplications (duplications and triplications) and point mutations in the gene sequence of the α-synuclein gene (SNCA), differential expression of its isoforms and variations in post-transductional modifications. Neurotoxicity is also related to cytoplasmic inclusions known as Lewy bodies (LBs) and Lewy neurites (LNs), which are also present in α-synucleinopathies. In general, the β-synuclein protein, codified by the SNCB gene, acts as a regulator of processes triggered by α-synuclein and its function is altered by variations in the gene sequence, while γ-synuclein, codified by the SNCG gene, seems to play a major role in certain tumoral processes.
Collapse
Affiliation(s)
- Xabier Elcoroaristizabal Martín
- Grupo de Investigación BIOMICS, Departamento de Biología Celular A, Centro de Investigación y Estudios Avanzados Lucio Lascaray, Universidad del País Vasco UPV/EHU, Vitoria-Gasteiz, España
| | | | | | | |
Collapse
|
24
|
Ames RM, Lovell SC. Diversification at transcription factor binding sites within a species and the implications for environmental adaptation. Mol Biol Evol 2011; 28:3331-44. [PMID: 21693437 DOI: 10.1093/molbev/msr167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Evolution of new cellular functions can be achieved both by changes in protein coding sequences and by alteration of expression patterns. Variation of expression may lead to changes in cellular function with relatively little change in genomic sequence. We therefore hypothesize that one of the first signals of functional divergence should be evolution of transcription factor-binding sites (TFBSs). This adaptation should be detectable as substantial variation in the TFBSs of alleles. New data sets allow the first analyses of intraspecies variation from large number of whole-genome sequences. Using data from the Saccharomyces Genome Resequencing Project, we have analyzed variation in TFBSs. We find a large degree of variation both between these closely related strains and between pairs of duplicated genes. There is a correlation between changes in promoter regions and changes in coding sequences, indicating a coupling of changes in expression and function. We show that 1) the types genes with diverged promoters vary between strains from different environments and 2) that patterns of divergence in promoters consistent with positive selection are detectable in alleles between strains and on duplicate promoters. This variation is likely to reflect adaptation to each strain's natural environment. We conclude that, even within a species, we detect signs of selection acting on promoter regions that may act to alter expression patterns. These changes may indicate functional innovation in multiple genes and across the whole genome. Change in function could represent adaptation to the environment and be a precursor to speciation.
Collapse
Affiliation(s)
- Ryan M Ames
- University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
25
|
Zou Y, Huang W, Gu Z, Gu X. Predominant Gain of Promoter TATA Box after Gene Duplication Associated with Stress Responses. Mol Biol Evol 2011; 28:2893-904. [DOI: 10.1093/molbev/msr116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
26
|
Tirosh I, Reikhav S, Sigal N, Assia Y, Barkai N. Chromatin regulators as capacitors of interspecies variations in gene expression. Mol Syst Biol 2010; 6:435. [PMID: 21119629 PMCID: PMC3010112 DOI: 10.1038/msb.2010.84] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 10/02/2010] [Indexed: 12/21/2022] Open
Abstract
Gene expression varies widely between closely related species and strains, yet the genetic basis of most differences is still unknown. Several studies suggested that chromatin regulators have a key role in generating expression diversity, predicting a reduction in the interspecies differences on deletion of genes that influence chromatin structure or modifications. To examine this, we compared the genome-wide expression profiles of two closely related yeast species following the individual deletions of eight chromatin regulators and one transcription factor. In all cases, regulator deletions increased, rather than decreased, the expression differences between the species, revealing hidden genetic variability that was masked in the wild-type backgrounds. This effect was not observed for individual deletions of 11 enzymes involved in central metabolic pathways. The buffered variations were associated with trans differences, as revealed by allele-specific profiling of the interspecific hybrids. Our results support the idea that regulatory proteins serve as capacitors that buffer gene expression against hidden genetic variability.
Collapse
Affiliation(s)
- Itay Tirosh
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon Reikhav
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nadejda Sigal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Assia
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
27
|
Dong D, Yuan Z, Zhang Z. Evidences for increased expression variation of duplicate genes in budding yeast: from cis- to trans-regulation effects. Nucleic Acids Res 2010; 39:837-47. [PMID: 20935054 PMCID: PMC3035465 DOI: 10.1093/nar/gkq874] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Duplicate genes tend to have a more variable expression program than singleton genes, which was thought to be an important way for the organism to respond and adapt to fluctuating environment. However, the underlying molecular mechanisms driving such expression variation remain largely unexplored. In this work, we first rigorously confirmed that duplicate genes indeed have higher gene expression variation than singleton genes in several aspects, i.e. responses to environmental perturbation, between-strain divergence, and expression noise. To investigate the underlying mechanism, we further analyzed a previously published expression dataset of yeast segregants produced from genetic crosses. We dissected the observed expression divergence between segregant strains into cis- and trans-variabilities, and demonstrated that trans-regulation effect can explain larger fraction of the expression variation than cis-regulation effect. This is true for both duplicate genes and singleton genes. In contrast, we found, between a pair of sister paralogs, cis-variability explains more of the expression divergence between the paralogs than trans-variability. We next investigated the presence of cis- and trans-features that are associated with elevated expression variations. For cis-acting regulation, duplicate genes have higher genetic diversity in their promoters and coding regions than singleton genes. For trans-acting regulation, duplicate and singleton genes are differentially regulated by chromatin regulators and transcription factors, and duplicate genes are more severely affected by the deletion of histone tails. These results showed that both cis-and trans-factors have great effect in causing the increased expression variation of duplicate genes, and explained the previously observed differences in transcription regulation between duplicate genes and singleton genes.
Collapse
Affiliation(s)
- Dong Dong
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8 and Banting and Best Department of Medical Research, University of Toronto, 112 College Street, Toronto, ON M5G 1L6, Canada
- *To whom correspondence should be addressed. Tel: (416) 946 0924; Fax: (416) 978 8287;
| | - Zineng Yuan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8 and Banting and Best Department of Medical Research, University of Toronto, 112 College Street, Toronto, ON M5G 1L6, Canada
| | - Zhaolei Zhang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8 and Banting and Best Department of Medical Research, University of Toronto, 112 College Street, Toronto, ON M5G 1L6, Canada
- *To whom correspondence should be addressed. Tel: (416) 946 0924; Fax: (416) 978 8287;
| |
Collapse
|
28
|
Divergence of nucleosome positioning between two closely related yeast species: genetic basis and functional consequences. Mol Syst Biol 2010; 6:365. [PMID: 20461072 PMCID: PMC2890324 DOI: 10.1038/msb.2010.20] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/15/2010] [Indexed: 11/11/2022] Open
Abstract
Inter-species hybrids can be used to dissect the relative contribution of cis and trans effects to the evolution of nucleosome positioning. Most (∼70%) differences in nucleosome positioning between two closely related yeast species are due to cis effects. Cis effects are primarily due to divergence of AT-rich nucleosome-disfavoring sequences, but are not associated with divergence of nucleosome-favoring sequences. Differences in nucleosome positioning propagate to multiple adjacent nucleosomes, supporting the statistical positioning hypothesis. Divergence of nucleosome positioning is excluded from regulatory elements and is not correlated with gene expression divergence, suggesting a neutral mode of evolution.
Phenotypic diversity is often due to changes in gene regulation, and recent studies have characterized extensive differences between the gene expression programs of closely related species (Khaitovich et al, 2006; Tirosh et al, 2009). However, very little is known about the mechanisms that drive this divergence. Here, we analyze the evolution of nucleosome positioning, by comparing the patterns of nucleosomes between two yeast species, as well as generating the allele-specific nucleosome profile in their hybrid. We ask two main questions: (1) what is the genetic basis of inter-species differences in nucleosome positioning? and (2) what is the regulatory function of these differences? Generally speaking, we can classify the genetic basis of the divergence in nucleosome positioning into two mechanisms. First, mutations in the local DNA sequence may influence the ability to bind nucleosomes at this region; we refer to these as cis effects. Second, mutations may affect the activity of various proteins that alter nucleosome positioning either actively (e.g. chromatin-remodeling enzymes) or by simply competing with nucleosomes for binding to the same DNA sequence (e.g. transcription factors); we refer to these as trans effects. To classify the observed inter-species differences into cis versus trans effects, we measured allele-specific nucleosome positions within the inter-specific hybrid of the two species (Wittkopp et al, 2004; Tirosh et al, 2009). The hybrid contains the alleles of both species; hence, cis effects, which involve mutations that discriminate between the two alleles, will be maintained in the hybrid so that nucleosome positioning will be different between the alleles coming from the different species. Trans effects, in contrast, will not discriminate between the two hybrid alleles from the different species, as these two alleles reside together at the same trans environment (hybrid nucleus) and are thus regulated by the same set of proteins—the combination of proteins from the two species. Using this approach, we found that ∼70% of the inter-species differences in nucleosome positioning are due to cis effects, whereas the rest is due to trans effects. The local DNA sequence is indeed known to affect nucleosome positions, and many features of DNA sequences were proposed to influence nucleosome binding, either by rejecting nucleosomes, or by being favorable for nucleosome binding (Segal et al, 2006; Lee et al, 2007; Kaplan et al, 2009). We find, however, that nucleosome positions diverged primarily through changes in AT-rich sequences, which exclude nucleosomes, whereas mutations in sequences that correlate with high-nucleosome occupancy do not influence inter-species divergence. Nucleosomes restrict the access of proteins to the DNA and may thus affect DNA-related processes such as transcription, recombination or replication. Indeed, promoters and regulatory sequences are often depleted of nucleosomes, and highly transcribed genes are associated with low occupancy of nucleosomes at their promoters (Lee et al, 2007). Several earlier studies also suggested that evolutionary divergence of gene expression is driven by changes in chromatin structure (Lee et al, 2006; Choi and Kim, 2008; Tirosh et al, 2008; Field et al, 2009). However, we find that nucleosome positions (or occupancy) at regulatory elements are largely conserved, and furthermore, that the inter-species differences in nucleosome positions do not correlate with gene expression differences. These results suggest that nucleosome positioning is not a central mechanism for evolutionary changes in gene regulation and that most of the observed changes may be due to neutral drift. Does the apparent low influence of nucleosome positioning on gene expression divergence implies that nucleosome positions do not have a function in gene regulation? To address this, we examined two additional modes of gene regulation: transcriptional response to changes in growth conditions (glucose versus glycerol media), and the expression differences between different cell types (haploid versus diploid cells). Consistent with earlier studies, we found that the response to growth conditions is significantly, albeit weakly, associated with changes in nucleosome positioning. Interestingly, we also found a strikingly strong association between gene expression and nucleosomal changes in the two cell types. Taken together, these results suggest that nucleosome positioning is used preferentially for biological processes in which genes are turned on and off (e.g. different cell type), but less so during divergence of closely related species in which gradual changes accumulate over time. Gene regulation differs greatly between related species, constituting a major source of phenotypic diversity. Recent studies characterized extensive differences in the gene expression programs of closely related species. In contrast, virtually nothing is known about the evolution of chromatin structure and how it influences the divergence of gene expression. Here, we compare the genome-wide nucleosome positioning of two closely related yeast species and, by profiling their inter-specific hybrid, trace the genetic basis of the observed differences into mutations affecting the local DNA sequences (cis effects) or the upstream regulators (trans effects). The majority (∼70%) of inter-species differences is due to cis effects, leaving a significant contribution (30%) for trans factors. We show that cis effects are well explained by mutations in nucleosome-disfavoring AT-rich sequences, but are not associated with divergence of nucleosome-favoring sequences. Differences in nucleosome positioning propagate to multiple adjacent nucleosomes, supporting the statistical positioning hypothesis, and we provide evidence that nucleosome-free regions, but not the +1 nucleosome, serve as stable border elements. Surprisingly, although we find that differential nucleosome positioning among cell types is strongly correlated with differential expression, this does not seem to be the case for evolutionary changes: divergence of nucleosome positioning is excluded from regulatory elements and is not correlated with gene expression divergence, suggesting a primarily neutral mode of evolution. Our results provide evolutionary insights to the genetic determinants and regulatory function of nucleosome positioning.
Collapse
|
29
|
Chen K, van Nimwegen E, Rajewsky N, Siegal ML. Correlating gene expression variation with cis-regulatory polymorphism in Saccharomyces cerevisiae. Genome Biol Evol 2010; 2:697-707. [PMID: 20829281 PMCID: PMC2953268 DOI: 10.1093/gbe/evq054] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Identifying the nucleotides that cause gene expression variation is a critical step in dissecting the genetic basis of complex traits. Here, we focus on polymorphisms that are predicted to alter transcription factor binding sites (TFBSs) in the yeast, Saccharomyces cerevisiae. We assembled a confident set of transcription factor motifs using recent protein binding microarray and ChIP-chip data and used our collection of motifs to predict a comprehensive set of TFBSs across the S. cerevisiae genome. We used a population genomics analysis to show that our predictions are accurate and significantly improve on our previous annotation. Although predicting gene expression from sequence is thought to be difficult in general, we identified a subset of genes for which changes in predicted TFBSs correlate well with expression divergence between yeast strains. Our analysis thus demonstrates both the accuracy of our new TFBS predictions and the feasibility of using simple models of gene regulation to causally link differences in gene expression to variation at individual nucleotides.
Collapse
Affiliation(s)
- Kevin Chen
- Center for Genomics and Systems Biology, Department of Biology, New York University
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin-Buch, Germany
- Department of Genetics and BioMaPS Institute, Rutgers University
- Corresponding author: E-mail: ;
| | - Erik van Nimwegen
- Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Basel, Switzerland
| | | | - Mark L. Siegal
- Center for Genomics and Systems Biology, Department of Biology, New York University
- Corresponding author: E-mail: ;
| |
Collapse
|
30
|
Li J, Yuan Z, Zhang Z. Revisiting the contribution of cis-elements to expression divergence between duplicated genes: the role of chromatin structure. Mol Biol Evol 2010; 27:1461-6. [PMID: 20139146 DOI: 10.1093/molbev/msq041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although divergence in expression is thought to be a hallmark of functional dispersal between paralogs postduplication, there is currently a limited understanding of the mechanisms underlying the necessary transcriptional alterations as recent studies have suggested that only a very small proportion of expression variation could be explained by transcriptional variation between paralogs. To further this understanding, we examined comprehensively curated regulatory interactions and genomewide nucleosome occupancy in budding yeast to specifically determine the contribution of cis-elements to expression divergence between extant duplicates. We found that divergence in activation by transcription factors plays a more important role in expression divergence of paralogs than previously appreciated; further, analysis of promoter chromatin structure demonstrated that differential nucleosome organization is coupled with divergent expression of paralogs. By incorporating information of cis-elements encoding transcriptional regulation and chromatin structure, we improved the fraction of expression variation that was previously shown to be explained based on known cis-transcriptional effects by approximately 3-fold. Taken together, our analysis highlights the importance of chromatin divergence involved in expression evolution between paralogs.
Collapse
|
31
|
Abstract
Microarrays are becoming a widely used tool to study gene expression evolution. A recent paper by Wang and Rekaya describes a comprehensive study of gene expression evolution by microarray. The work provides a perspective to study gene expression evolution in terms of functional enrichment and promoter conservation. It was found that gene expression patterns are highly conserved in some biological processes, but the correlation between promoter and gene expression is insignificant. This scope of this work and future improvement to study gene expression evolution will be discussed in this article.
Collapse
Affiliation(s)
- Honghuang Lin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Singh LN, Hannenhalli S. Correlated changes between regulatory cis elements and condition-specific expression in paralogous gene families. Nucleic Acids Res 2009; 38:738-49. [PMID: 19933262 PMCID: PMC2817486 DOI: 10.1093/nar/gkp989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gene duplication is integral to evolution, providing novel opportunities for organisms to diversify in function. One fundamental pathway of functional diversification among initially redundant gene copies, or paralogs, is via alterations in their expression patterns. Although the mechanisms underlying expression divergence are not completely understood, transcription factor binding sites and nucleosome occupancy are known to play a significant role in the process. Previous attempts to detect genomic variations mediating expression divergence in orthologs have had limited success for two primary reasons. First, it is inherently challenging to compare expressions among orthologs due to variable trans-acting effects and second, previous studies have quantified expression divergence in terms of an overall similarity of expression profiles across multiple samples, thereby obscuring condition-specific expression changes. Moreover, the inherently inter-correlated expressions among homologs present statistical challenges, not adequately addressed in many previous studies. Using rigorous statistical tests, here we characterize the relationship between cis element divergence and condition-specific expression divergence among paralogous genes in Saccharomyces cerevisiae. In particular, among all combinations of gene family and TFs analyzed, we found a significant correlation between TF binding and the condition-specific expression patterns in over 20% of the cases. In addition, incorporating nucleosome occupancy reveals several additional correlations. For instance, our results suggest that GAL4 binding plays a major role in the expression divergence of the genes in the sugar transporter family. Our work presents a novel means of investigating the cis regulatory changes potentially mediating expression divergence in paralogous gene families under specific conditions.
Collapse
Affiliation(s)
- Larry N Singh
- Penn Center for Bioinformatics, Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA.
| | | |
Collapse
|
33
|
Zou C, Lehti-Shiu MD, Thomashow M, Shiu SH. Evolution of stress-regulated gene expression in duplicate genes of Arabidopsis thaliana. PLoS Genet 2009; 5:e1000581. [PMID: 19649161 PMCID: PMC2709438 DOI: 10.1371/journal.pgen.1000581] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 06/30/2009] [Indexed: 01/10/2023] Open
Abstract
Due to the selection pressure imposed by highly variable environmental conditions, stress sensing and regulatory response mechanisms in plants are expected to evolve rapidly. One potential source of innovation in plant stress response mechanisms is gene duplication. In this study, we examined the evolution of stress-regulated gene expression among duplicated genes in the model plant Arabidopsis thaliana. Key to this analysis was reconstructing the putative ancestral stress regulation pattern. By comparing the expression patterns of duplicated genes with the patterns of their ancestors, duplicated genes likely lost and gained stress responses at a rapid rate initially, but the rate is close to zero when the synonymous substitution rate (a proxy for time) is >∼0.8. When considering duplicated gene pairs, we found that partitioning of putative ancestral stress responses occurred more frequently compared to cases of parallel retention and loss. Furthermore, the pattern of stress response partitioning was extremely asymmetric. An analysis of putative cis-acting DNA regulatory elements in the promoters of the duplicated stress-regulated genes indicated that the asymmetric partitioning of ancestral stress responses are likely due, at least in part, to differential loss of DNA regulatory elements; the duplicated genes losing most of their stress responses were those that had lost more of the putative cis-acting elements. Finally, duplicate genes that lost most or all of the ancestral responses are more likely to have gained responses to other stresses. Therefore, the retention of duplicates that inherit few or no functions seems to be coupled to neofunctionalization. Taken together, our findings provide new insight into the patterns of evolutionary changes in gene stress responses after duplication and lay the foundation for testing the adaptive significance of stress regulatory changes under highly variable biotic and abiotic environments. Plants have developed a multitude of response mechanisms to survive stressful environments. Since the environment is highly variable, these stress response mechanisms are expected to undergo frequent innovation. Duplicate genes represent a potential source for such innovation. In this paper, we explored the evolutionary changes in stress responses at the transcriptional level among duplicated genes in the model plant Arabidopsis thaliana. We found that after gene duplication, ancestral stress responses tend to be retained by only one of the gene duplicates (partitioning). In addition, the pattern of partitioning of multiple stress responses is extremely asymmetric, where one duplicate tends to inherit most or all of the ancestral stress responses. We present evidence that the asymmetric loss of stress responses is correlated with the asymmetric loss of putative transcription factor binding sites. Interestingly, those duplicate genes inheriting few or no ancestral responses tend to have gained new stress responses, providing support for the model that gene duplicates are a source of innovation. Our findings provide important insight into the mechanisms of gene function evolution and lay the foundation for experimental studies to determine the significance of gain of stress responses in plant adaptation.
Collapse
Affiliation(s)
- Cheng Zou
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Statistics and Probability, Michigan State University, East Lansing, Michigan, United States of America
| | - Melissa D. Lehti-Shiu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Michael Thomashow
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, United States of America
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
34
|
Wang Y, Rekaya R. A comprehensive analysis of gene expression evolution between humans and mice. Evol Bioinform Online 2009; 5:81-90. [PMID: 19812728 PMCID: PMC2747126 DOI: 10.4137/ebo.s2874] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Evolutionary changes in gene expression account for most phenotypic differences between species. Advances in microarray technology have made the systematic study of gene expression evolution possible. In this study, gene expression patterns were compared between human and mouse genomes using two published methods. Specifically, we studied how gene expression evolution was related to GO terms and tried to decode the relationship between promoter evolution and gene expression evolution. The results showed that (1) the significant enrichment of biological processes in orthologs of expression conservation reveals functional significance of gene expression conservation. The more conserved gene expression in some biological processes than is expected in a purely neutral model reveals negative selection on gene expression. However, fast evolving genes mainly support the neutrality of gene expression evolution, and (2) gene expression conservation is positively but only slightly correlated with promoter conservation based on a motif-count score of the promoter alignment. Our results suggest a neutral model with negative selection for gene expression evolution between humans and mice, and promoter evolution could have some effects on gene expression evolution.
Collapse
Affiliation(s)
- Yupeng Wang
- Department of Animal and Dairy Science
- Institute of Bioinformatics
| | - Romdhane Rekaya
- Department of Animal and Dairy Science
- Institute of Bioinformatics
- Department of Statistics, University of Georgia Athens, GA 30602, USA.
| |
Collapse
|
35
|
Abstract
Complex transcriptional behaviours are encoded in the DNA sequences of gene regulatory regions. Advances in our understanding of these behaviours have been recently gained through quantitative models that describe how molecules such as transcription factors and nucleosomes interact with genomic sequences. An emerging view is that every regulatory sequence is associated with a unique binding affinity landscape for each molecule and, consequently, with a unique set of molecule-binding configurations and transcriptional outputs. We present a quantitative framework based on existing methods that unifies these ideas. This framework explains many experimental observations regarding the binding patterns of factors and nucleosomes and the dynamics of transcriptional activation. It can also be used to model more complex phenomena such as transcriptional noise and the evolution of transcriptional regulation.
Collapse
Affiliation(s)
- Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, 76100, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Jonathan Widom
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3500 USA
| |
Collapse
|
36
|
Stewart AJ, Seymour RM, Pomiankowski A. Degree dependence in rates of transcription factor evolution explains the unusual structure of transcription networks. Proc Biol Sci 2009; 276:2493-501. [PMID: 19364737 DOI: 10.1098/rspb.2009.0210] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transcription networks have an unusual structure. In both prokaryotes and eukaryotes, the number of target genes regulated by each transcription factor, its out-degree, follows a broad tailed distribution. By contrast, the number of transcription factors regulating a target gene, its in-degree, follows a much narrower distribution, which has no broad tail. We constructed a model of transcription network evolution through trans- and cis-mutations, gene duplication and deletion. The effects of these different evolutionary processes on the network structure are enough to produce an asymmetrical in- and out-degree distribution. However, the parameter values required to replicate known in- and out-degree distributions are unrealistic. We then considered variation in the rate of evolution of a gene dependent upon its position in the network. When transcription factors with many regulatory interactions are constrained to evolve more slowly than those with few interactions, the details of the in- and out-degree distributions of transcription networks can be fully reproduced over a range of plausible parameter values. The networks produced by our model depend on the relative rates of the different evolutionary processes. By determining the circumstances under which the networks with the correct degree distributions are produced, we are able to assess the relative importance of the different evolutionary processes in our model during evolution.
Collapse
Affiliation(s)
- Alexander J Stewart
- CoMPLEX, University College London, Physics Building, Gower Street, London WC1E 6BT, UK.
| | | | | |
Collapse
|
37
|
Li J, Musso G, Zhang Z. Preferential regulation of duplicated genes by microRNAs in mammals. Genome Biol 2008; 9:R132. [PMID: 18727826 PMCID: PMC2575522 DOI: 10.1186/gb-2008-9-8-r132] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 07/05/2008] [Accepted: 08/26/2008] [Indexed: 11/27/2022] Open
Abstract
Analysis of duplicate genes and predicted microRNA targets in human and mouse shows that microRNAs are important in how the regulatory patterns of mammalian paralogs have evolved. Background Although recent advances have been made in identifying and analyzing instances of microRNA-mediated gene regulation, it remains unclear by what mechanisms attenuation of transcript expression through microRNAs becomes an integral part of post-transcriptional modification, and it is even less clear to what extent this process occurs for mammalian gene duplicates (paralogs). Specifically, while mammalian paralogs are known to overcome their initial complete functional redundancy through variation in regulation and expression, the potential involvement of microRNAs in this process has not been investigated. Results We comprehensively investigated the impact of microRNA-mediated post-transcriptional regulation on duplicated genes in human and mouse. Using predicted targets derived from several analysis methods, we report the following observations: microRNA targets are significantly enriched for duplicate genes, implying their roles in the differential regulation of paralogs; on average, duplicate microRNA target genes have longer 3' untranslated regions than singleton targets, and are regulated by more microRNA species, suggesting a more sophisticated mode of regulation; ancient duplicates were more likely to be regulated by microRNAs and, on average, have greater expression divergence than recent duplicates; and ancient duplicate genes share fewer ancestral microRNA regulators, and recent duplicate genes share more common regulating microRNAs. Conclusion Collectively, these results demonstrate that microRNAs comprise an important element in evolving the regulatory patterns of mammalian paralogs. We further present an evolutionary model in which microRNAs not only adjust imbalanced dosage effects created by gene duplication, but also help maintain long-term buffering of the phenotypic consequences of gene deletion or ablation.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | | | | |
Collapse
|
38
|
De Grassi A, Lanave C, Saccone C. Genome duplication and gene-family evolution: the case of three OXPHOS gene families. Gene 2008; 421:1-6. [PMID: 18573316 DOI: 10.1016/j.gene.2008.05.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 05/15/2008] [Accepted: 05/21/2008] [Indexed: 10/22/2022]
Abstract
DNA duplication is one of the main forces acting on the evolution of organisms because it creates the raw genetic material that natural selection can subsequently modify. Duplicated regions are mainly due to "errors" in different phases of meiosis, but DNA transposable elements and reverse transcription also contribute to amplify and move the genomic material to different genomic locations. As a result, redundancy affects genomes to variable degrees: from the single gene to the whole genome (WGD). Gene families are clusters of genes created by duplication and their size reflects the number of duplicated genes, called paralogs, in each species. The aim of this review is to describe the state of the art in the identification and analysis of gene families in eukaryotes, with specific attention to those generated by ancient large scale events in vertebrates (WGD or large segmental duplications). As a case study, we report our work on the evolution of gene families encoding subunits of the five OXPHOS (oxidative phosphorylation) complexes, fundamental and highly conserved in all respiring cells. Although OXPHOS gene families are smaller than the general trend in nuclear gene families, some exceptions are observed, such as three gene families with at least two paralogs in vertebrates. These gene families encode cytochrome c (Cyt c, the electron shuttle protein between complex III and IV), Lipid Binding Protein (LBP, the channel protein of complex V which transfers protons through the inner mitochondrial membrane) and the MLRQ subunit (MLRQ, a supernumerary subunit of the large complex I, with unknown function). We provide a two-step approach, based on structural genomic data, to demonstrate that these gene families should have arisen through WGD (or large segmental duplication) events at the origin of vertebrates and, only afterwards, underwent species-specific events of further gene duplications and loss. In summary, this review reflects the need to apply genome comparative approaches, deriving from both "classical" molecular phylogenetic analysis and "new" genome map analysis, to successfully define the complex evolutionary relations between gene family members which, in turn, are essential to obtain any other comparative phylogenetic or functional results.
Collapse
Affiliation(s)
- Anna De Grassi
- Istituto di Tecnologie Biomediche, Sede di Bari, CNR, Bari, Italy
| | | | | |
Collapse
|
39
|
Bertrand S, Thisse B, Tavares R, Sachs L, Chaumot A, Bardet PL, Escrivà H, Duffraisse M, Marchand O, Safi R, Thisse C, Laudet V. Unexpected novel relational links uncovered by extensive developmental profiling of nuclear receptor expression. PLoS Genet 2008; 3:e188. [PMID: 17997606 PMCID: PMC2065881 DOI: 10.1371/journal.pgen.0030188] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 09/11/2007] [Indexed: 11/19/2022] Open
Abstract
Nuclear receptors (NRs) are transcription factors that are implicated in several biological processes such as embryonic development, homeostasis, and metabolic diseases. To study the role of NRs in development, it is critically important to know when and where individual genes are expressed. Although systematic expression studies using reverse transcriptase PCR and/or DNA microarrays have been performed in classical model systems such as Drosophila and mouse, no systematic atlas describing NR involvement during embryonic development on a global scale has been assembled. Adopting a systems biology approach, we conducted a systematic analysis of the dynamic spatiotemporal expression of all NR genes as well as their main transcriptional coregulators during zebrafish development (101 genes) using whole-mount in situ hybridization. This extensive dataset establishes overlapping expression patterns among NRs and coregulators, indicating hierarchical transcriptional networks. This complete developmental profiling provides an unprecedented examination of expression of NRs during embryogenesis, uncovering their potential function during central nervous system and retina formation. Moreover, our study reveals that tissue specificity of hormone action is conferred more by the receptors than by their coregulators. Finally, further evolutionary analyses of this global resource led us to propose that neofunctionalization of duplicated genes occurs at the levels of both protein sequence and RNA expression patterns. Altogether, this expression database of NRs provides novel routes for leading investigation into the biological function of each individual NR as well as for the study of their combinatorial regulatory circuitry within the superfamily. NRs are key molecules controlling development, metabolism, and reproduction in metazoans. Since NRs are implicated in many human diseases such as cancer, metabolic syndrome, and hormone resistance, they are important pharmaceutical targets and are under intense scrutiny to better understand their biological functions. In the present study, we determined the expression patterns of all NR genes as well as their main transcriptional coregulators during zebrafish development. We used zebrafish because the transparency of its embryo allows us to perform whole-mount in situ hybridization from early development to late organogenesis. This complete developmental profiling offers an unprecedented view of NR expression during embryogenesis, uncovering their potential function during central nervous system and retina formation. We observed that in contrast to NR genes, only a few coregulators exhibit a restricted expression pattern, suggesting that tissue specificity of hormone action is conferred more by the receptors than by their coregulators. Lastly, by evolutionary analysis of expression pattern divergence of duplicated genes, we observed that neofunctionalization occurs at the levels of both protein sequence and mRNA expression patterns. Taken together, our data provide the starting point for functional analysis of an entire gene family during development and call for the study of the intersection between metabolism and development.
Collapse
Affiliation(s)
- Stéphanie Bertrand
- Molecular Zoology, Institut de Génomique Fonctionelle de Lyon; UMR 5242 du CNRS, INRA, IFR128 BioSciences Lyon-Gerland, Université de Lyon, UCB; Ecole Normale Supérieure de Lyon, France
| | - Bernard Thisse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, BP 10142, 67404 Illkirch, CU de Strasbourg, France
| | - Raquel Tavares
- Molecular Zoology, Institut de Génomique Fonctionelle de Lyon; UMR 5242 du CNRS, INRA, IFR128 BioSciences Lyon-Gerland, Université de Lyon, UCB; Ecole Normale Supérieure de Lyon, France
| | - Laurent Sachs
- CNRS UMR 5166, Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, CP32, Paris, France
| | | | - Pierre-Luc Bardet
- Molecular Zoology, Institut de Génomique Fonctionelle de Lyon; UMR 5242 du CNRS, INRA, IFR128 BioSciences Lyon-Gerland, Université de Lyon, UCB; Ecole Normale Supérieure de Lyon, France
| | - Héctor Escrivà
- Molecular Zoology, Institut de Génomique Fonctionelle de Lyon; UMR 5242 du CNRS, INRA, IFR128 BioSciences Lyon-Gerland, Université de Lyon, UCB; Ecole Normale Supérieure de Lyon, France
| | - Maryline Duffraisse
- Molecular Zoology, Institut de Génomique Fonctionelle de Lyon; UMR 5242 du CNRS, INRA, IFR128 BioSciences Lyon-Gerland, Université de Lyon, UCB; Ecole Normale Supérieure de Lyon, France
| | - Oriane Marchand
- Molecular Zoology, Institut de Génomique Fonctionelle de Lyon; UMR 5242 du CNRS, INRA, IFR128 BioSciences Lyon-Gerland, Université de Lyon, UCB; Ecole Normale Supérieure de Lyon, France
| | - Rachid Safi
- Molecular Zoology, Institut de Génomique Fonctionelle de Lyon; UMR 5242 du CNRS, INRA, IFR128 BioSciences Lyon-Gerland, Université de Lyon, UCB; Ecole Normale Supérieure de Lyon, France
| | - Christine Thisse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, BP 10142, 67404 Illkirch, CU de Strasbourg, France
| | - Vincent Laudet
- Molecular Zoology, Institut de Génomique Fonctionelle de Lyon; UMR 5242 du CNRS, INRA, IFR128 BioSciences Lyon-Gerland, Université de Lyon, UCB; Ecole Normale Supérieure de Lyon, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
40
|
On the relation between promoter divergence and gene expression evolution. Mol Syst Biol 2008; 4:159. [PMID: 18197176 PMCID: PMC2238714 DOI: 10.1038/msb4100198] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 11/06/2007] [Indexed: 01/05/2023] Open
Abstract
Recent studies have characterized significant differences in the cis-regulatory sequences of related organisms, but the impact of these differences on gene expression remains largely unexplored. Here, we show that most previously identified differences in transcription factor (TF)-binding sequences of yeasts and mammals have no detectable effect on gene expression, suggesting that compensatory mechanisms allow promoters to rapidly evolve while maintaining a stabilized expression pattern. To examine the impact of changes in cis-regulatory elements in a more controlled setting, we compared the genes induced during mating of three yeast species. This response is governed by a single TF (STE12), and variations in its predicted binding sites can indeed account for about half of the observed expression differences. The remaining unexplained differences are correlated with the increased divergence of the sequences that flank the binding sites and an apparent modulation of chromatin structure. Our analysis emphasizes the flexibility of promoter structure, and highlights the interplay between specific binding sites and general chromatin structure in the control of gene expression.
Collapse
|
41
|
Clements M, van Someren EP, Knijnenburg TA, Reinders MJT. Integration of known transcription factor binding site information and gene expression data to advance from co-expression to co-regulation. GENOMICS PROTEOMICS & BIOINFORMATICS 2007; 5:86-101. [PMID: 17893074 PMCID: PMC5054099 DOI: 10.1016/s1672-0229(07)60019-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The common approach to find co-regulated genes is to cluster genes based on gene expression. However, due to the limited information present in any dataset, genes in the same cluster might be co-expressed but not necessarily co-regulated. In this paper, we propose to integrate known transcription factor binding site information and gene expression data into a single clustering scheme. This scheme will find clusters of co-regulated genes that are not only expressed similarly under the measured conditions, but also share a regulatory structure that may explain their common regulation. We demonstrate the utility of this approach on a microarray dataset of yeast grown under different nutrient and oxygen limitations. Our integrated clustering method not only unravels many regulatory modules that are consistent with current biological knowledge, but also provides a more profound understanding of the underlying process. The added value of our approach, compared with the clustering solely based on gene expression, is its ability to uncover clusters of genes that are involved in more specific biological processes and are evidently regulated by a set of transcription factors.
Collapse
Affiliation(s)
- Maarten Clements
- Information and Communication Theory Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, 2600 GA Delft, the Netherlands.
| | | | | | | |
Collapse
|
42
|
Abstract
Background The duplication-degeneration-complementation (DDC) model has been proposed as an explanation for the unexpectedly high retention of duplicate genes. The hypothesis proposes that, following gene duplication, the two gene copies degenerate to perform complementary functions that jointly match that of the single ancestral gene, a process also known as subfunctionalization. We distinguish between subfunctionalization at the regulatory level and at the product level (e.g within temporal or spatial expression domains). Results In contrast to what is expected under the DDC model, we use in silico modeling to show that regulatory subfunctionalization is expected to peak and then decrease significantly. At the same time, neofunctionalization (recruitment of novel interactions) increases monotonically, eventually affecting the regulatory elements of the majority of genes. Furthermore, since this process occurs under conditions of stabilizing selection, there is no need to invoke positive selection. At the product level, the frequency of subfunctionalization is no higher than would be expected by chance, a finding that was corroborated using yeast microarray time-course data. We also find that product subfunctionalization is not necessarily caused by regulatory subfunctionalization. Conclusion Our results suggest a more complex picture of post-duplication evolution in which subfunctionalization plays only a partial role in conjunction with redundancy and neofunctionalization. We argue that this behavior is a consequence of the high evolutionary plasticity in gene networks.
Collapse
|
43
|
Song S, Qu H, Chen C, Hu S, Yu J. Differential gene expression in an elite hybrid rice cultivar (Oryza sativa, L) and its parental lines based on SAGE data. BMC PLANT BIOLOGY 2007; 7:49. [PMID: 17877838 PMCID: PMC2077334 DOI: 10.1186/1471-2229-7-49] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 09/19/2007] [Indexed: 05/17/2023]
Abstract
BACKGROUND It was proposed that differentially-expressed genes, aside from genetic variations affecting protein processing and functioning, between hybrid and its parents provide essential candidates for studying heterosis or hybrid vigor. Based our serial analysis of gene expression (SAGE) data from an elite Chinese super-hybrid rice (LYP9) and its parental cultivars (93-11 and PA64s) in three major tissue types (leaves, roots and panicles) at different developmental stages, we analyzed the transcriptome and looked for candidate genes related to rice heterosis. RESULTS By using an improved strategy of tag-to-gene mapping and two recently annotated genome assemblies (93-11 and PA64s), we identified 10,268 additional high-quality tags, reaching a grand total of 20,595 together with our previous result. We further detected 8.5% and 5.9% physically-mapped genes that are differentially-expressed among the triad (in at least one of the three stages) with P-values less than 0.05 and 0.01, respectively. These genes distributed in 12 major gene expression patterns; among them, 406 up-regulated and 469 down-regulated genes (P < 0.05) were observed. Functional annotations on the identified genes highlighted the conclusion that up-regulated genes (some of them are known enzymes) in hybrid are mostly related to enhancing carbon assimilation in leaves and roots. In addition, we detected a group of up-regulated genes related to male sterility and 442 down-regulated genes related to signal transduction and protein processing, which may be responsible for rice heterosis. CONCLUSION We improved tag-to-gene mapping strategy by combining information from transcript sequences and rice genome annotation, and obtained a more comprehensive view on genes that related to rice heterosis. The candidates for heterosis-related genes among different genotypes provided new avenue for exploring the molecular mechanism underlying heterosis.
Collapse
Affiliation(s)
- Shuhui Song
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China
- Department of Biology, Graduate University of the Chinese Academy of Sciences, Beijing 100094, China
| | - Hongzhu Qu
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China
- Department of Biology, Graduate University of the Chinese Academy of Sciences, Beijing 100094, China
| | - Chen Chen
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China
- Department of Biology, Graduate University of the Chinese Academy of Sciences, Beijing 100094, China
| | - Songnian Hu
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China
| | - Jun Yu
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China
| |
Collapse
|
44
|
Conrad B, Antonarakis SE. Gene Duplication: A Drive for Phenotypic Diversity and Cause of Human Disease. Annu Rev Genomics Hum Genet 2007; 8:17-35. [PMID: 17386002 DOI: 10.1146/annurev.genom.8.021307.110233] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene duplication is one of the key factors driving genetic innovation, i.e., producing novel genetic variants. Although the contribution of whole-genome and segmental duplications to phenotypic diversity across species is widely appreciated, the phenotypic spectrum and potential pathogenicity of small-scale duplications in individual genomes are less well explored. This review discusses the nature of small-scale duplications and the phenotypes produced by such duplications. Phenotypic variation and disease phenotypes induced by duplications are more diverse and widespread than previously anticipated, and duplications are a major class of disease-related genomic variation. Pathogenic duplications particularly involve dosage-sensitive genes with both similar and dissimilar over- and underexpression phenotypes, and genes encoding proteins with a propensity to aggregate. Phenotypes related to human-specific copy number variation in genes regulating environmental responses and immunity are increasingly recognized. Small genomic duplications containing defense-related genes also contribute to complex common phenotypes.
Collapse
Affiliation(s)
- Bernard Conrad
- Department of Genetic Medicine & Development, University of Geneva Medical School and Geneva University Hospitals, CH-1211 Geneva 4, Switzerland.
| | | |
Collapse
|
45
|
Artamonova II, Gelfand MS. Comparative Genomics and Evolution of Alternative Splicing: The Pessimists' Science. Chem Rev 2007; 107:3407-30. [PMID: 17645315 DOI: 10.1021/cr068304c] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Irena I Artamonova
- Group of Bioinformatics, Vavilov Institute of General Genetics, RAS, Gubkina 3, Moscow 119991, Russia
| | | |
Collapse
|
46
|
Hughes AL, Friedman R. Sharing of transcription factors after gene duplication in the yeast Saccharomyces cerevisiae. Genetica 2007; 129:301-8. [PMID: 16897462 DOI: 10.1007/s10709-006-0011-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
In a set of 190 duplicate gene pairs in yeast Saccharomyces cerevisiae, the sharing of transcription factors tended to decrease with increased divergence in coding sequence, at both synonymous and nonsynonymous sites. Our results showed a significantly higher sharing of transcription factors by duplicated gene pairs falling within duplicated genomic blocks than in other duplicated gene pairs; and genes in duplicated blocks also showed significantly greater conservation at the coding sequence level. In spite of the overall trends, there were certain gene pairs, both in duplicated blocks and in other genomic regions, which were highly divergent in coding sequence and yet had identical patterns of transcription factor binding. These results suggest that functional differentiation of genes after duplication is a multi-dimensional process, with different duplicate pairs differentiating in different ways.
Collapse
Affiliation(s)
- Austin L Hughes
- Department of Biological Sciences, University of South Carolina, Coker Life Sciences Bldg. 700 Sumter St., Columbia, SC 29208, USA.
| | | |
Collapse
|
47
|
Gu X, Su Z. Tissue-driven hypothesis of genomic evolution and sequence-expression correlations. Proc Natl Acad Sci U S A 2007; 104:2779-84. [PMID: 17301236 PMCID: PMC1815258 DOI: 10.1073/pnas.0610797104] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2006] [Indexed: 01/03/2023] Open
Abstract
To maintain normal physiological functions, different tissues may have different developmental constraints on expressed genes. Consequently, the evolutionary tolerance for genomic evolution varies among tissues. Here, we formulate this argument as a "tissue-driven hypothesis" based on the stabilizing selection model. Moreover, several predicted genomic correlations are tested by the human-mouse microarray data. Our results are as follows. First, between the human and mouse, we have elaborated the among-tissue covariation between tissue expression distance (E(ti)) and tissue sequence distance (D(ti)). This highly significant E(ti) - D(ti) correlation emerges when the expression divergence and protein sequence divergence are under the same tissue constraints. Second, the tissue-driven hypothesis further explains the observed significant correlation between the tissue expression distance (between the human and mouse) and the duplicate tissue distance (T(dup)) between human (or mouse) paralogous genes. In other words, between-duplicate and interspecies expression divergences covary among tissues. Third, for genes with the same expression broadness, we found that genes expressed in more stringent tissues (e.g., neurorelated) generally tend to evolve more slowly than those in more relaxed tissues (e.g., hormone-related). We conclude that tissue factors should be considered as an important component in shaping the pattern of genomic evolution and correlations.
Collapse
Affiliation(s)
- Xun Gu
- School of Life Sciences, Institutes of Biomedical Sciences, Center for Evolutionary Biology, Fudan University, Shanghai 200433, China.
| | | |
Collapse
|
48
|
Guan Y, Dunham MJ, Troyanskaya OG. Functional analysis of gene duplications in Saccharomyces cerevisiae. Genetics 2006; 175:933-43. [PMID: 17151249 PMCID: PMC1800624 DOI: 10.1534/genetics.106.064329] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gene duplication can occur on two scales: whole-genome duplications (WGD) and smaller-scale duplications (SSD) involving individual genes or genomic segments. Duplication may result in functionally redundant genes or diverge in function through neofunctionalization or subfunctionalization. The effect of duplication scale on functional evolution has not yet been explored, probably due to the lack of global knowledge of protein function and different times of duplication events. To address this question, we used integrated Bayesian analysis of diverse functional genomic data to accurately evaluate the extent of functional similarity and divergence between paralogs on a global scale. We found that paralogs resulting from the whole-genome duplication are more likely to share interaction partners and biological functions than smaller-scale duplicates, independent of sequence similarity. In addition, WGD paralogs show lower frequency of essential genes and higher synthetic lethality rate, but instead diverge more in expression pattern and upstream regulatory region. Thus, our analysis demonstrates that WGD paralogs generally have similar compensatory functions but diverging expression patterns, suggesting a potential of distinct evolutionary scenarios for paralogs that arose through different duplication mechanisms. Furthermore, by identifying these functional disparities between the two types of duplicates, we reconcile previous disputes on the relationship between sequence divergence and expression divergence or essentiality.
Collapse
Affiliation(s)
- Yuanfang Guan
- Lewis-Sigler Institute for Integrative Genomics, Carl Icahn Laboratory, New Jersey, USA
| | | | | |
Collapse
|
49
|
Cui Q, Yu Z, Pan Y, Purisima EO, Wang E. MicroRNAs preferentially target the genes with high transcriptional regulation complexity. Biochem Biophys Res Commun 2006; 352:733-8. [PMID: 17141185 DOI: 10.1016/j.bbrc.2006.11.080] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 11/15/2006] [Indexed: 01/26/2023]
Abstract
Over the past few years, microRNAs (miRNAs) have emerged as a new prominent class of gene regulatory factors that negatively regulate expression of approximately one-third of the genes in animal genomes at post-transcriptional level. However, it is still unclear why some genes are regulated by miRNAs but others are not, i.e. what principles govern miRNA regulation in animal genomes. In this study, we systematically analyzed the relationship between transcription factors (TFs) and miRNAs in gene regulation. We found that the genes with more TF-binding sites have a higher probability of being targeted by miRNAs and have more miRNA-binding sites on average. This observation reveals that the genes with higher cis-regulation complexity are more coordinately regulated by TFs at the transcriptional level and by miRNAs at the post-transcriptional level. This is a potentially novel discovery of mechanism for coordinated regulation of gene expression. Gene ontology analysis further demonstrated that such coordinated regulation is more popular in the developmental genes.
Collapse
Affiliation(s)
- Qinghua Cui
- Biotechnology Research Institute, National Research Council Canada, Montreal, Que., Canada H4P 2R2
| | | | | | | | | |
Collapse
|
50
|
Itzkovitz S, Tlusty T, Alon U. Coding limits on the number of transcription factors. BMC Genomics 2006; 7:239. [PMID: 16984633 PMCID: PMC1590034 DOI: 10.1186/1471-2164-7-239] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 09/19/2006] [Indexed: 12/02/2022] Open
Abstract
Background Transcription factor proteins bind specific DNA sequences to control the expression of genes. They contain DNA binding domains which belong to several super-families, each with a specific mechanism of DNA binding. The total number of transcription factors encoded in a genome increases with the number of genes in the genome. Here, we examined the number of transcription factors from each super-family in diverse organisms. Results We find that the number of transcription factors from most super-families appears to be bounded. For example, the number of winged helix factors does not generally exceed 300, even in very large genomes. The magnitude of the maximal number of transcription factors from each super-family seems to correlate with the number of DNA bases effectively recognized by the binding mechanism of that super-family. Coding theory predicts that such upper bounds on the number of transcription factors should exist, in order to minimize cross-binding errors between transcription factors. This theory further predicts that factors with similar binding sequences should tend to have similar biological effect, so that errors based on mis-recognition are minimal. We present evidence that transcription factors with similar binding sequences tend to regulate genes with similar biological functions, supporting this prediction. Conclusion The present study suggests limits on the transcription factor repertoire of cells, and suggests coding constraints that might apply more generally to the mapping between binding sites and biological function.
Collapse
Affiliation(s)
- Shalev Itzkovitz
- Dept. Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
- Dept. Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tsvi Tlusty
- Dept. Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Uri Alon
- Dept. Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
- Dept. Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|