1
|
Ruf S, Trösch R, Schollbach L, Kroop X, Forner J, Gefen‐Treves S, Henze A, Thiele W, Schöttler MA, Zoschke R, Bock R. Reverse genetics in the Arabidopsis chloroplast genome identifies rps16 as a transcribed pseudogene. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70198. [PMID: 40336164 PMCID: PMC12058238 DOI: 10.1111/tpj.70198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/14/2025] [Accepted: 04/21/2025] [Indexed: 05/09/2025]
Abstract
The plastid (chloroplast) genomes of seed plants contain a conserved set of ribosomal protein genes. The rps16 gene represents an exception: It has been lost from the plastid genomes of gymnosperms and several lineages of angiosperms, and may have undergone pseudogenization in a few other lineages, including members of the Brassicaceae family. Here we report a reverse genetic approach to test the annotated rps16 gene in the Arabidopsis plastid genome for functionality. Employing the recently developed plastid transformation technology for the model plant Arabidopsis, we have deleted the putative rps16 gene from the Arabidopsis plastid genome. We report that the resulting transplastomic plants display wild-type-like growth and photosynthetic performance under a wide range of conditions. Moreover, genome-wide analyses of chloroplast transcript levels and ribosome footprints revealed unaltered plastid translational activity in Δrps16 mutants compared with wild-type plants. We conclude that the annotated rps16 gene in the plastid genome of Arabidopsis is a transcribed pseudogene that has been replaced in evolution by a nuclear gene copy that supplies functional S16 protein to chloroplasts.
Collapse
Affiliation(s)
- Stephanie Ruf
- Max‐Planck‐Institut für Molekulare PflanzenphysiologieAm Mühlenberg 1D‐14476Potsdam‐GolmGermany
| | - Raphael Trösch
- Max‐Planck‐Institut für Molekulare PflanzenphysiologieAm Mühlenberg 1D‐14476Potsdam‐GolmGermany
| | - Laura Schollbach
- Max‐Planck‐Institut für Molekulare PflanzenphysiologieAm Mühlenberg 1D‐14476Potsdam‐GolmGermany
| | - Xenia Kroop
- Max‐Planck‐Institut für Molekulare PflanzenphysiologieAm Mühlenberg 1D‐14476Potsdam‐GolmGermany
| | - Joachim Forner
- Max‐Planck‐Institut für Molekulare PflanzenphysiologieAm Mühlenberg 1D‐14476Potsdam‐GolmGermany
| | - Shany Gefen‐Treves
- Max‐Planck‐Institut für Molekulare PflanzenphysiologieAm Mühlenberg 1D‐14476Potsdam‐GolmGermany
- Present address:
Faculty of BiologyRheinland‐Pfälzische Technische Universität Kaiserslautern‐Landau67663KaiserslauternGermany
| | - Anita Henze
- Max‐Planck‐Institut für Molekulare PflanzenphysiologieAm Mühlenberg 1D‐14476Potsdam‐GolmGermany
| | - Wolfram Thiele
- Max‐Planck‐Institut für Molekulare PflanzenphysiologieAm Mühlenberg 1D‐14476Potsdam‐GolmGermany
| | - Mark A. Schöttler
- Max‐Planck‐Institut für Molekulare PflanzenphysiologieAm Mühlenberg 1D‐14476Potsdam‐GolmGermany
| | - Reimo Zoschke
- Max‐Planck‐Institut für Molekulare PflanzenphysiologieAm Mühlenberg 1D‐14476Potsdam‐GolmGermany
| | - Ralph Bock
- Max‐Planck‐Institut für Molekulare PflanzenphysiologieAm Mühlenberg 1D‐14476Potsdam‐GolmGermany
| |
Collapse
|
2
|
Narra M, Nakazato I, Polley B, Arimura SI, Woronuk GN, Bhowmik PK. Recent trends and advances in chloroplast engineering and transformation methods. FRONTIERS IN PLANT SCIENCE 2025; 16:1526578. [PMID: 40313723 PMCID: PMC12043724 DOI: 10.3389/fpls.2025.1526578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/17/2025] [Indexed: 05/03/2025]
Abstract
Chloroplast transformation technology has become a powerful platform for generating plants that express foreign proteins of pharmaceutical and agricultural importance at high levels. Chloroplasts are often chosen as attractive targets for the introduction of new agronomic traits because they have their own genome and protein synthesis machinery. Certain valuable traits have been genetically engineered into plastid genomes to improve crop yield, nutritional quality, resistance to abiotic and biotic stresses, and the production of industrial enzymes and therapeutic proteins. Synthetic biology approaches aim to play an important role in expressing multiple genes through plastid engineering, without the risk of pleiotropic effects in transplastomic plants. Despite many promising laboratory-level successes, no transplastomic crop has been commercialized to date. This technology is mostly confined to model species in academic laboratories and needs to be expanded to other agronomically important crop species to capitalize on its significant commercial potential. However, in recent years, some transplastomic lines are progressing in field trials, offering hope that they will pass regulatory approval and enter the marketplace. This review provides a comprehensive summary of new and emerging technologies employed for plastid transformation and discusses key synthetic biology elements that are necessary for the construction of modern transformation vectors. It also focuses on various novel insights and challenges to overcome in chloroplast transformation.
Collapse
Affiliation(s)
- Muralikrishna Narra
- Aquatic and Crop Resource Development, National Research Council of Canada (NRC), Saskatoon, SK, Canada
| | - Issei Nakazato
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Brittany Polley
- Aquatic and Crop Resource Development, National Research Council of Canada (NRC), Saskatoon, SK, Canada
| | - Shin-ichi Arimura
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Pankaj K. Bhowmik
- Aquatic and Crop Resource Development, National Research Council of Canada (NRC), Saskatoon, SK, Canada
| |
Collapse
|
3
|
He S, Liu Y, Zhang Z, Cai M, Hao Y, Hu H. Gene Editing in Ganoderma lucidum: Development, Challenges, and Future Prospects. J Fungi (Basel) 2025; 11:310. [PMID: 40278130 PMCID: PMC12029067 DOI: 10.3390/jof11040310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/05/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
As an emerging and innovative technology, gene-editing technology has been widely applied in crop breeding, human disease treatment, animal model research, drug and vaccine development, and microbial engineering. We mainly introduce the development of gene-editing technology, the application of clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) in Ganoderma lucidum breeding, the current challenges and optimization strategies in the use of gene-editing technology in Ganoderma breeding, as well as the current status of gene-editing technology in Ganoderma breeding. Finally, the future research directions and innovative strategies that gene editing may explore in Ganoderma breeding are prospects given the existing background, future research directions, and innovative strategies that gene editing may explore in Ganoderma breeding prospects.
Collapse
Affiliation(s)
- Shiqi He
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.H.); (Y.L.); (Z.Z.); (M.C.); (Y.H.)
| | - Yuanchao Liu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.H.); (Y.L.); (Z.Z.); (M.C.); (Y.H.)
| | - Zhi Zhang
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.H.); (Y.L.); (Z.Z.); (M.C.); (Y.H.)
- Guangdong Yuewei Biotechnology Co., Ltd., Shaoguan 512029, China
| | - Manjun Cai
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.H.); (Y.L.); (Z.Z.); (M.C.); (Y.H.)
| | - Yufan Hao
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.H.); (Y.L.); (Z.Z.); (M.C.); (Y.H.)
| | - Huiping Hu
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (S.H.); (Y.L.); (Z.Z.); (M.C.); (Y.H.)
- Guangdong Yuewei Biotechnology Co., Ltd., Shaoguan 512029, China
| |
Collapse
|
4
|
Del Arco J, Acosta J, Fernández-Lucas J. Biotechnological applications of purine and pyrimidine deaminases. Biotechnol Adv 2024; 77:108473. [PMID: 39505057 DOI: 10.1016/j.biotechadv.2024.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/21/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Deaminases, ubiquitous enzymes found in all living organisms from bacteria to humans, serve diverse and crucial functions. Notably, purine and pyrimidine deaminases, while biologically essential for regulating nucleotide pools, exhibit exceptional versatility in biotechnology. This review systematically consolidates current knowledge on deaminases, showcasing their potential uses and relevance in the field of biotechnology. Thus, their transformative impact on pharmaceutical manufacturing is highlighted as catalysts for the synthesis of nucleic acid derivatives. Additionally, the role of deaminases in food bioprocessing and production is also explored, particularly in purine content reduction and caffeine production, showcasing their versatility in this field. The review also delves into most promising biomedical applications including deaminase-based GDEPT and genome and transcriptome editing by deaminase-based systems. All in all, illustrated with practical examples, we underscore the role of purine and pyrimidine deaminases in advancing sustainable and efficient biotechnological practices. Finally, the review highlights future challenges and prospects in deaminase-based biotechnological processes, encompassing both industrial and medical perspectives.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia; Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
5
|
Khan A, Pudhuvai B, Shrestha A, Mishra AK, Shah MP, Koul B, Dey N. CRISPR-mediated iron and folate biofortification in crops: advances and perspectives. Biotechnol Genet Eng Rev 2024; 40:4138-4168. [PMID: 37092872 DOI: 10.1080/02648725.2023.2205202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Micronutrient deficiency conditions, such as anemia, are the most prevalent global health problem due to inadequate iron and folate in dietary sources. Biofortification advancements can propel the rapid amelioration of nutritionally beneficial components in crops that are required to combat the adverse effects of micronutrient deficiencies on human health. To date, several strategies have been proposed to increase micronutrients in plants to improve food quality, but very few approaches have intrigued `clustered regularly interspaced short palindromic repeats' (CRISPR) modules for the enhancement of iron and folate concentration in the edible parts of plants. In this review, we discuss two important approaches to simultaneously enhance the bioavailability of iron and folate concentrations in rice endosperms by utilizing advanced CRISPR-Cas9-based technology. This includes the 'tuning of cis-elements' and 'enhancer re-shuffling' in the regulatory components of genes that play a vital role in iron and folate biosynthesis/transportation pathways. In particular, base-editing and enhancer re-installation in native promoters of selected genes can lead to enhanced accumulation of iron and folate levels in the rice endosperm. The re-distribution of micronutrients in specific plant organs can be made possible using the above-mentioned contemporary approaches. Overall, the present review discusses the possible approaches for synchronized iron and folate biofortification through modification in regulatory gene circuits employing CRISPR-Cas9 technology.
Collapse
Affiliation(s)
- Ahamed Khan
- Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Baveesh Pudhuvai
- Department of Genetics and Biotechnology, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
| | - Ankita Shrestha
- Division of Microbial and Plant Biotechnology, Department of Biotechnology, Government of India, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Ajay Kumar Mishra
- Khalifa Centre for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maulin P Shah
- Division of Applied and Environmental Microbiology, Enviro Technology Ltd, Ankleshwar, Gujarat, India
| | - Bhupendra Koul
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, India
| | - Nrisingha Dey
- Division of Microbial and Plant Biotechnology, Department of Biotechnology, Government of India, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
6
|
Kawale AS, Zou L. Regulation, functional impact, and therapeutic targeting of APOBEC3A in cancer. DNA Repair (Amst) 2024; 141:103734. [PMID: 39047499 PMCID: PMC11330346 DOI: 10.1016/j.dnarep.2024.103734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Enzymes of the apolipoprotein B mRNA editing catalytic polypeptide like (APOBEC) family are cytosine deaminases that convert cytosine to uracil in DNA and RNA. Among these proteins, APOBEC3 sub-family members, APOBEC3A (A3A) and APOBEC3B (A3B), are prominent sources of mutagenesis in cancer cells. The aberrant expression of A3A and A3B in cancer cells leads to accumulation of mutations with specific single-base substitution (SBS) signatures, characterized by C→T and C→G changes, in a number of tumor types. In addition to fueling mutagenesis, A3A and A3B, particularly A3A, induce DNA replication stress, DNA damage, and chromosomal instability through their catalytic activities, triggering a range of cellular responses. Thus, A3A/B have emerged as key drivers of genome evolution during cancer development, contributing to tumorigenesis, tumor heterogeneity, and therapeutic resistance. Yet, the expression of A3A/B in cancer cells presents a cancer vulnerability that can be exploited therapeutically. In this review, we discuss the recent studies that shed light on the mechanisms regulating A3A expression and the impact of A3A in cancer. We also review recent advances in the development of A3A inhibitors and provide perspectives on the future directions of A3A research.
Collapse
Affiliation(s)
- Ajinkya S Kawale
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
7
|
Xie Y, Liu W, Guo L, Zhang X. Mitochondrial genome complexity in Stemona sessilifolia: nanopore sequencing reveals chloroplast gene transfer and DNA rearrangements. Front Genet 2024; 15:1395805. [PMID: 38903753 PMCID: PMC11188483 DOI: 10.3389/fgene.2024.1395805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Mitochondria are semi-autonomous organelles in eukaryotic cells with their own genome. Plant mitogenomes differ from animal mitogenomes in size, structure, and repetitive DNA sequences. Despite larger sizes, plant mitogenomes do not have significantly more genes. They exhibit diverse structures due to variations in size, repetitive DNA, recombination frequencies, low gene densities, and reduced nucleotide substitution rates. In this study, we analyzed the mitochondrial genome of Stemona sessilifolia using Nanopore and Illumina sequencing. De-novo assembly and annotation were conducted using Unicycler, Geseq, tRNAscan-SE and BLASTN, followed by codon usage, repeat sequence, RNA-editing, synteny, and phylogenetic analyses. S. sessilifolia's mitogenome consisted of one linear contig and six circular contigs totaling 724,751 bp. It had 39 protein-coding genes, 27 tRNA genes, and 3 rRNA genes. Transfer of chloroplast sequences accounted for 13.14% of the mitogenome. Various analyses provided insights into genetic characteristics, evolutionary dynamics, and phylogenetic placement. Further investigations can explore transferred genes' functions and RNA-editing's role in mitochondrial gene expression in S. sessilifolia.
Collapse
Affiliation(s)
- Yuning Xie
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Wenqiong Liu
- Public Health Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liwen Guo
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Xuemei Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China
- College of Life Science, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
8
|
Ye Z, Zhang Y, He S, Li S, Luo L, Zhou Y, Tan J, Wan J. Efficient genome editing in rice with miniature Cas12f variants. ABIOTECH 2024; 5:184-188. [PMID: 38974870 PMCID: PMC11224166 DOI: 10.1007/s42994-024-00168-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/01/2024] [Indexed: 07/09/2024]
Abstract
Genome editing, particularly using the CRISPR/Cas system, has revolutionized biological research and crop improvement. Despite the widespread use of CRISPR/Cas9, it faces limitations such as PAM sequence requirements and challenges in delivering its large protein into plant cells. The hypercompact Cas12f, derived from Acidibacillus sulfuroxidans (AsCas12f), stands out due to its small size of only 422 amino acids and its preference for a T-rich motif, presenting advantageous features over SpCas9. However, its editing efficiency is extremely low in plants. Recent studies have generated two AsCas12f variants, AsCas12f-YHAM and AsCas12f-HKRA, demonstrating higher editing efficiencies in mammalian cells, yet their performance in plants remains unexplored. In this study, through a systematic investigation of genome cleavage activity in rice, we unveiled a substantial enhancement in editing efficiency for both AsCas12f variants, particularly for AsCas12f-HKRA, which achieved an editing efficiency of up to 53%. Furthermore, our analysis revealed that AsCas12f predominantly induces deletion in the target DNA, displaying a unique deletion pattern primarily concentrated at positions 12, 13, 23, and 24, resulting in deletion size mainly of 10 and 11 bp, suggesting significant potential for targeted DNA deletion using AsCas12f. These findings expand the toolbox for efficient genome editing in plants, offering promising prospects for precise genetic modifications in agriculture. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-024-00168-2.
Collapse
Affiliation(s)
- Zhengyan Ye
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, 210014 China
| | - Yuanyan Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, 210014 China
| | - Shiqi He
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, 210014 China
| | - Shaokang Li
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, 210014 China
| | - Longjiong Luo
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, 210014 China
| | - Yanbiao Zhou
- Key Laboratory of Southern Rice Innovation & Improvement, Ministry of Agriculture and Rural Affairs/Hunan Engineering Laboratory of Disease and Pest Resistant Rice Breeding, Yuan Longping High-Tech Agriculture Co., Ltd, Changsha, 410001 China
| | - Junjie Tan
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, 210014 China
| | - Jianmin Wan
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095 China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, 210014 China
| |
Collapse
|
9
|
Huang CH, Chiu SY, Chou YC, Wu KJ. A refined Uni-vector prime editing system improves genome editing outcomes in mammalian cells. Biotechnol J 2024; 19:e2300353. [PMID: 38403398 DOI: 10.1002/biot.202300353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/27/2024]
Abstract
Prime editing is an advanced technology in CRISPR/Cas research with increasing numbers of improved methodologies. The original multi-vector method hampers the efficiency and precision of prime editing and also has inherent difficulty in generating homozygous mutations in mammalian cells. To overcome these technical issues, we developed a Uni-vector prime editing system, wherein the major components for prime editing were constructed in all-in-one plasmids, pPE3-pPuro and pePEmax-pPuro. The Uni-vector prime editing plasmids enhance the editing efficiency of prime editing and improved the generation of homozygous mutated mammalian cell lines. The editing efficiency is dependent of the transfection efficiency. Remarkably, the Uni-vector ePE5max system achieved an impressive editing rate approximately 79% in average, even in cell lines that are traditionally difficult to transfect, such as FaDu cell line. Furthermore, it resulted in a high frequency of homozygous knocked-in cells, with a rate of 99% in HeLa and 85% in FaDu cells. Together, our Uni-vector approach simplifies the delivery of editing components and improves the editing efficiency, especially in cells with low transfection efficiency. This approach presents an advancement in the field of prime editing.
Collapse
Affiliation(s)
- Ching-Hui Huang
- Cancer Genome Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Szu-Ying Chiu
- Cancer Genome Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| |
Collapse
|
10
|
Nicolia A, Scotti N, D'Agostino N, Festa G, Sannino L, Aufiero G, Arimura SI, Cardi T. Mitochondrial DNA editing in potato through mitoTALEN and mitoTALECD: molecular characterization and stability of editing events. PLANT METHODS 2024; 20:4. [PMID: 38183104 PMCID: PMC10768376 DOI: 10.1186/s13007-023-01124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND The aim of this study was to evaluate and characterize the mutations induced by two TALE-based approaches, double-strand break (DSB) induction by the FokI nuclease (mitoTALEN) and targeted base editing by the DddA cytidine deaminase (mitoTALECD), to edit, for the first time, the mitochondrial genome of potato, a vegetatively propagated crop. The two methods were used to knock out the same mitochondrial target sequence (orf125). RESULTS Targeted chondriome deletions of different sizes (236-1066 bp) were induced by mitoTALEN due to DSB repair through ectopic homologous recombination of short direct repeats (11-12 bp) present in the target region. Furthermore, in one case, the induced DSB and subsequent repair resulted in the amplification of an already present substoichiometric molecule showing a 4288 bp deletion spanning the target sequence. With the mitoTALECD approach, both nonsense and missense mutations could be induced by base substitution. The deletions and single nucleotide mutations were either homoplasmic or heteroplasmic. The former were stably inherited in vegetative offspring. CONCLUSIONS Both editing approaches allowed us to obtain plants with precisely modified mitochondrial genomes at high frequency. The use of the same plant genotype and mtDNA region allowed us to compare the two methods for efficiency, accuracy, type of modifications induced and stability after vegetative propagation.
Collapse
Affiliation(s)
- Alessandro Nicolia
- CREA, Research Centre for Vegetable and Ornamental Crops, via Cavalleggeri 25, 84098, Pontecagnano, SA, Italy
| | - Nunzia Scotti
- CNR-IBBR, Institute of Biosciences and BioResources, 80055, Portici, NA, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | - Giovanna Festa
- CREA, Research Centre for Vegetable and Ornamental Crops, via Cavalleggeri 25, 84098, Pontecagnano, SA, Italy
| | - Lorenza Sannino
- CNR-IBBR, Institute of Biosciences and BioResources, 80055, Portici, NA, Italy
| | - Gaetano Aufiero
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | - Shin-Ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Teodoro Cardi
- CREA, Research Centre for Vegetable and Ornamental Crops, via Cavalleggeri 25, 84098, Pontecagnano, SA, Italy.
- CNR-IBBR, Institute of Biosciences and BioResources, 80055, Portici, NA, Italy.
| |
Collapse
|
11
|
Forner J, Kleinschmidt D, Meyer EH, Gremmels J, Morbitzer R, Lahaye T, Schöttler MA, Bock R. Targeted knockout of a conserved plant mitochondrial gene by genome editing. NATURE PLANTS 2023; 9:1818-1831. [PMID: 37814021 PMCID: PMC10654050 DOI: 10.1038/s41477-023-01538-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/07/2023] [Indexed: 10/11/2023]
Abstract
Fusion proteins derived from transcription activator-like effectors (TALEs) have emerged as genome editing tools for mitochondria. TALE nucleases (TALENs) have been applied to delete chimaeric reading frames and duplicated (redundant) genes but produced complex genomic rearrangements due to the absence of non-homologous end-joining. Here we report the targeted deletion of a conserved mitochondrial gene, nad9, encoding a subunit of respiratory complex I. By generating a large number of TALEN-mediated mitochondrial deletion lines, we isolated, in addition to mutants with rearranged genomes, homochondriomic mutants harbouring clean nad9 deletions. Characterization of the knockout plants revealed impaired complex I biogenesis, male sterility and defects in leaf and flower development. We show that these defects can be restored by expressing a functional Nad9 protein from the nuclear genome, thus creating a synthetic cytoplasmic male sterility system. Our data (1) demonstrate the feasibility of using genome editing to study mitochondrial gene functions by reverse genetics, (2) highlight the role of complex I in plant development and (3) provide proof-of-concept for the construction of synthetic cytoplasmic male sterility systems for hybrid breeding by genome editing.
Collapse
Affiliation(s)
- Joachim Forner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Dennis Kleinschmidt
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Etienne H Meyer
- Institut für Pflanzenphysiologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Jürgen Gremmels
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Robert Morbitzer
- ZMBP, Allgemeine Genetik, Universität Tübingen, Tübingen, Germany
| | - Thomas Lahaye
- ZMBP, Allgemeine Genetik, Universität Tübingen, Tübingen, Germany
| | - Mark A Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
| |
Collapse
|
12
|
Cardi T, Murovec J, Bakhsh A, Boniecka J, Bruegmann T, Bull SE, Eeckhaut T, Fladung M, Galovic V, Linkiewicz A, Lukan T, Mafra I, Michalski K, Kavas M, Nicolia A, Nowakowska J, Sági L, Sarmiento C, Yıldırım K, Zlatković M, Hensel G, Van Laere K. CRISPR/Cas-mediated plant genome editing: outstanding challenges a decade after implementation. TRENDS IN PLANT SCIENCE 2023; 28:1144-1165. [PMID: 37331842 DOI: 10.1016/j.tplants.2023.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023]
Abstract
The discovery of the CRISPR/Cas genome-editing system has revolutionized our understanding of the plant genome. CRISPR/Cas has been used for over a decade to modify plant genomes for the study of specific genes and biosynthetic pathways as well as to speed up breeding in many plant species, including both model and non-model crops. Although the CRISPR/Cas system is very efficient for genome editing, many bottlenecks and challenges slow down further improvement and applications. In this review we discuss the challenges that can occur during tissue culture, transformation, regeneration, and mutant detection. We also review the opportunities provided by new CRISPR platforms and specific applications related to gene regulation, abiotic and biotic stress response improvement, and de novo domestication of plants.
Collapse
Affiliation(s)
- Teodoro Cardi
- Consiglio Nazionale delle Ricerche (CNR), Institute of Biosciences and Bioresources (IBBR), Portici, Italy; CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano, Italy
| | - Jana Murovec
- University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| | - Allah Bakhsh
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey; Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Justyna Boniecka
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | | | - Simon E Bull
- Molecular Plant Breeding, Institute of Agricultural Sciences, Eidgenössische Technische Hochschule (ETH) Zurich, Switzerland; Plant Biochemistry, Institute of Molecular Plant Biology, ETH, Zurich, Switzerland
| | - Tom Eeckhaut
- Flanders Research Institute for Agricultural, Fisheries and Food, Melle, Belgium
| | | | - Vladislava Galovic
- University of Novi Sad, Institute of Lowland Forestry and Environment (ILFE), Novi Sad, Serbia
| | - Anna Linkiewicz
- Molecular Biology and Genetics Department, Institute of Biological Sciences, Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszyński University, Warsaw, Poland
| | - Tjaša Lukan
- National Institute of Biology, Department of Biotechnology and Systems Biology, Ljubljana, Slovenia
| | - Isabel Mafra
- Rede de Química e Tecnologia (REQUIMTE) Laboratório Associado para a Química Verde (LAQV), Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Krzysztof Michalski
- Plant Breeding and Acclimatization Institute, National Research Institute, Błonie, Poland
| | - Musa Kavas
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayis University, Samsun, Turkey
| | - Alessandro Nicolia
- CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano, Italy
| | - Justyna Nowakowska
- Molecular Biology and Genetics Department, Institute of Biological Sciences, Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszyński University, Warsaw, Poland
| | - Laszlo Sági
- Centre for Agricultural Research, Loránd Eötvös Research Network, Martonvásár, Hungary
| | - Cecilia Sarmiento
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kubilay Yıldırım
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayis University, Samsun, Turkey
| | - Milica Zlatković
- University of Novi Sad, Institute of Lowland Forestry and Environment (ILFE), Novi Sad, Serbia
| | - Goetz Hensel
- Heinrich-Heine-University, Institute of Plant Biochemistry, Centre for Plant Genome Engineering, Düsseldorf, Germany; Division of Molecular Biology, Centre of the Region Hana for Biotechnological and Agriculture Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Katrijn Van Laere
- Flanders Research Institute for Agricultural, Fisheries and Food, Melle, Belgium.
| |
Collapse
|
13
|
Shi L, Su J, Cho MJ, Song H, Dong X, Liang Y, Zhang Z. Promoter editing for the genetic improvement of crops. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4349-4366. [PMID: 37204916 DOI: 10.1093/jxb/erad175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/06/2023] [Indexed: 05/21/2023]
Abstract
Gene expression plays a fundamental role in the regulation of agronomically important traits in crop plants. The genetic manipulation of plant promoters through genome editing has emerged as an effective strategy to create favorable traits in crops by altering the expression pattern of the pertinent genes. Promoter editing can be applied in a directed manner, where nucleotide sequences associated with favorable traits are precisely generated. Alternatively, promoter editing can also be exploited as a random mutagenic approach to generate novel genetic variations within a designated promoter, from which elite alleles are selected based on their phenotypic effects. Pioneering studies have demonstrated the potential of promoter editing in engineering agronomically important traits as well as in mining novel promoter alleles valuable for plant breeding. In this review, we provide an update on the application of promoter editing in crops for increased yield, enhanced tolerance to biotic and abiotic stresses, and improved quality. We also discuss several remaining technical bottlenecks and how this strategy may be better employed for the genetic improvement of crops in the future.
Collapse
Affiliation(s)
- Lu Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jing Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 210095, China
| | - Myeong-Je Cho
- Innovative Genomics Institute, University of California, Berkeley, CA 94704, USA
| | - Hao Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoou Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 210095, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Ying Liang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhiyong Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
14
|
Miranda JA, Fenner K, McKinzie PB, Dobrovolsky VN, Revollo JR. Unbiased whole genome detection of ultrarare off-target mutations in genome-edited cell populations by HiFi sequencing. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:374-381. [PMID: 37488781 DOI: 10.1002/em.22566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 07/26/2023]
Abstract
DNA base editors (BEs) composed of a nuclease-deficient Cas9 fused to a DNA-modifying enzyme can achieve on-target mutagenesis without creating double-strand DNA breaks (DSBs). As a result, BEs generate far less DNA damage than traditional nuclease-proficient Cas9 systems, which do rely on the creation of DSBs to achieve on-target mutagenesis. The inability of BEs to create DSBs makes the detection of their undesired off-target effects very difficult. PacBio HiFi sequencing can efficiently detect ultrarare mutations resulting from chemical mutagenesis in whole genomes with a sensitivity ~1 × 10-8 mutations per base pair. In this proof-of-principle study, we evaluated whether this technique could also detect the on- and off-target mutations generated by a cytosine-to-thymine (C>T) BE targeting the LacZ gene in Escherichia coli (E. coli). HiFi sequencing detected on-target mutant allele fractions ranging from ~7% to ~63%, depending on the single-guide RNA (sgRNA) used, while no on-target mutations were detected in controls lacking the BE. The presence of the BE resulted in a ~3-fold increase in mutation frequencies compared to controls lacking the BE, irrespective of the sgRNA used. These increases were mostly composed of C:G>T:A substitutions distributed throughout the genome. Our results demonstrate that HiFi sequencing can efficiently identify on- and off-target mutations in cell populations that have undergone genome editing.
Collapse
Affiliation(s)
- Jaime A Miranda
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Kristina Fenner
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Page B McKinzie
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Vasily N Dobrovolsky
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Javier R Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
15
|
Liang Y, Chen F, Wang K, Lai L. Base editors: development and applications in biomedicine. Front Med 2023; 17:359-387. [PMID: 37434066 DOI: 10.1007/s11684-023-1013-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/19/2023] [Indexed: 07/13/2023]
Abstract
Base editor (BE) is a gene-editing tool developed by combining the CRISPR/Cas system with an individual deaminase, enabling precise single-base substitution in DNA or RNA without generating a DNA double-strand break (DSB) or requiring donor DNA templates in living cells. Base editors offer more precise and secure genome-editing effects than other conventional artificial nuclease systems, such as CRISPR/Cas9, as the DSB induced by Cas9 will cause severe damage to the genome. Thus, base editors have important applications in the field of biomedicine, including gene function investigation, directed protein evolution, genetic lineage tracing, disease modeling, and gene therapy. Since the development of the two main base editors, cytosine base editors (CBEs) and adenine base editors (ABEs), scientists have developed more than 100 optimized base editors with improved editing efficiency, precision, specificity, targeting scope, and capacity to be delivered in vivo, greatly enhancing their application potential in biomedicine. Here, we review the recent development of base editors, summarize their applications in the biomedical field, and discuss future perspectives and challenges for therapeutic applications.
Collapse
Affiliation(s)
- Yanhui Liang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
| | - Fangbing Chen
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Kepin Wang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Liangxue Lai
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China.
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
16
|
Jing Q, Liu W, Jiang H, Liao Y, Yang Q, Xing Y. Highly Efficient A-to-G Editing in PFFs via Multiple ABEs. Genes (Basel) 2023; 14:genes14040908. [PMID: 37107666 PMCID: PMC10137487 DOI: 10.3390/genes14040908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Cytosine base editors (CBEs) and adenine base editors (ABEs) are recently developed CRISPR-mediated genome-editing tools that do not introduce double-strand breaks. In this study, five ABEs, ABE7.10, ABEmax, NG-ABEmax, ABE8e and NG-ABE8e, were used to generate A-to-G (T-to-C) conversions in five genome loci in porcine fetal fibroblasts (PFFs). Variable yet appreciable editing efficiencies and variable activity windows were observed in these targeting regions via these five editors. The strategy of two sgRNAs in one vector exhibited superior editing efficiency to that of using two separate sgRNA expression vectors. ABE-mediated start-codon mutation in APOE silenced its expression of protein and, unexpectedly, eliminated the vast majority of its mRNA. No off-target DNA site was detected for these editors. Substantial off-target RNA events were present in the ABE-edited cells, but no KEGG pathway was found to be significantly enriched. Our study supports that ABEs are powerful tools for A-to-G (T-to-C) point-mutation modification in porcine cells.
Collapse
Affiliation(s)
- Qiqi Jing
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Weiwei Liu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haoyun Jiang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yaya Liao
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qiang Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuyun Xing
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
17
|
Dai C, Wang J, Tu L, Pan Z, Yang J, Zhou S, Luo Q, Zhu L, Ye Y. Genetically-encoded degraders as versatile modulators of intracellular therapeutic targets. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023. [DOI: 10.1016/j.cobme.2023.100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
18
|
Chiu CH. CRISPR/Cas9 genetic screens in hepatocellular carcinoma gene discovery. CURRENT RESEARCH IN BIOTECHNOLOGY 2023; 5:100127. [DOI: 10.1016/j.crbiot.2023.100127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|