1
|
Nakamura T, Shimizu T, Nishinakama N, Takahashi R, Arasaki K, Uda A, Watanabe K, Watarai M. A novel method of Francisella infection of epithelial cells using HeLa cells expressing fc gamma receptor. BMC Infect Dis 2024; 24:1171. [PMID: 39420255 PMCID: PMC11488177 DOI: 10.1186/s12879-024-10083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Francisella tularensis, the causative agent of tularemia, is a facultative intracellular bacterium. Although the life cycle of this bacterium inside phagocytic cells (e.g., macrophages, neutrophils) has been well analyzed, the difficulty of gene silencing and editing genes in phagocytic cells makes it difficult to analyze host factors important for the infection. On the other hand, epithelial cell lines, such as HeLa, have been established as cell lines that are easy to perform gene editing. However, the infection efficiency of Francisella into these epithelial cells is extremely low. METHODS In order to facilitate the molecular biological analysis of Francisella infection using epithelial cells, we constructed an efficient infection model of F. tularensis subsp. novicida (F. novicida) in HeLa cells expressing mouse FcγRII (HeLa-FcγRII), and the system was applied to evaluate the role of host GLS1 on Francisella infection. RESULTS As a result of colony forming unit count, HeLa-FcγRII cells uptake F. novicida in a serum-dependent manner and demonstrated an approximately 100-fold increase in intracellular bacterial infection compared to parental HeLa cells. Furthermore, taking advantage of the gene silencing capability of HeLa-FcγRII cells, we developed GLS1, a gene encoding glutaminase, knockdown cells using lentiviral sh RNA vector and assessed the impact of GLS1 on F. novicida infection. LDH assay revealed that GLS1-knockdown HeLa-FcγRII cells exhibited increased cytotoxicity during infection with F. novicida compared with control HeLa-FcγRII cells. Furthermore, the cell death was inhibited by the addition of ammonia, the metabolite produced through glutaminase activity. These results suggest that ammonia plays an important role in the proliferation of F. novicida. CONCLUSIONS In this report, we proposed a new cell-based infection system for Francisella infection using HeLa-FcγRII cells and demonstrated its effectiveness. This system has the potential to accelerate cell-based infection assays, such as large-scale genetic screening, and to provide new insights into Francisella infection in epithelial cells, which has been difficult to analyze in phagocytic cells.
Collapse
Affiliation(s)
- Takemasa Nakamura
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Takashi Shimizu
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Naho Nishinakama
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Reika Takahashi
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Kohei Arasaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan
| | - Kenta Watanabe
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Masahisa Watarai
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
2
|
Marecic V, Shevchuk O, Link M, Viduka I, Ozanic M, Kostanjsek R, Mihelcic M, Antonic M, Jänsch L, Stulik J, Santic M. Francisella novicida-Containing Vacuole within Dictyostelium discoideum: Isolation and Proteomic Characterization. Microorganisms 2024; 12:1949. [PMID: 39458259 PMCID: PMC11509842 DOI: 10.3390/microorganisms12101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Francisella is a highly infectious gram-negative bacterium that causes tularemia in humans and animals. It can survive and multiply in a variety of cells, including macrophages, dendritic cells, amoebae, and arthropod-derived cells. However, the intracellular life cycle of a bacterium varies depending on the cell type. Shortly after the infection of mammalian cells, the bacterium escapes the phagosome into the cytosol, where it replicates. In contrast, in the amoebae Acanthamoeba castellanii and Hartmannella vermiformis, the bacterium replicates within the membrane-bound vacuole. In recent years, the amoeba Dictyostelium discoideum has emerged as a powerful model to study the intracellular cycle and virulence of many pathogenic bacteria. In this study, we used D. discoideum as a model for the infection and isolation of Francisella novicida-containing vacuoles (FCVs) formed after bacteria invade the amoeba. Our results showed that F. novicida localized in a vacuole after invading D. discoideum. Here, we developed a method to isolate FCV and determined its composition by proteomic analyses. Proteomic analyses revealed 689 proteins, including 13 small GTPases of the Rab family. This is the first evidence of F. novicida-containing vacuoles within amoeba, and this approach will contribute to our understanding of host-pathogen interactions and the process of pathogen vacuole formation, as vacuoles containing bacteria represent direct contact between pathogens and their hosts. Furthermore, this method can be translocated on other amoeba models.
Collapse
Affiliation(s)
- Valentina Marecic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.M.); (I.V.); (M.O.); (M.M.); (M.A.)
| | - Olga Shevchuk
- Department of Immunodynamics, Institute of Experimental Immunology and Imaging, University Hospital Essen, 45147 Essen, Germany;
| | - Marek Link
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (M.L.); (J.S.)
| | - Ina Viduka
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.M.); (I.V.); (M.O.); (M.M.); (M.A.)
| | - Mateja Ozanic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.M.); (I.V.); (M.O.); (M.M.); (M.A.)
| | - Rok Kostanjsek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Mirna Mihelcic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.M.); (I.V.); (M.O.); (M.M.); (M.A.)
| | - Masa Antonic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.M.); (I.V.); (M.O.); (M.M.); (M.A.)
| | - Lothar Jänsch
- Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (M.L.); (J.S.)
| | - Marina Santic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (V.M.); (I.V.); (M.O.); (M.M.); (M.A.)
- Department of Environmental Health, Teaching Institute of Public Health of Primorje-Gorski Kotar County, 51000 Rijeka, Croatia
| |
Collapse
|
3
|
Price CTD, Hanford HE, Al-Quadan T, Santic M, Shin CJ, Da'as MSJ, Abu Kwaik Y. Amoebae as training grounds for microbial pathogens. mBio 2024; 15:e0082724. [PMID: 38975782 PMCID: PMC11323580 DOI: 10.1128/mbio.00827-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Grazing of amoebae on microorganisms represents one of the oldest predator-prey dynamic relationships in nature. It represents a genetic "melting pot" for an ancient and continuous multi-directional inter- and intra-kingdom horizontal gene transfer between amoebae and its preys, intracellular microbial residents, endosymbionts, and giant viruses, which has shaped the evolution, selection, and adaptation of microbes that evade degradation by predatory amoeba. Unicellular phagocytic amoebae are thought to be the ancient ancestors of macrophages with highly conserved eukaryotic processes. Selection and evolution of microbes within amoeba through their evolution to target highly conserved eukaryotic processes have facilitated the expansion of their host range to mammals, causing various infectious diseases. Legionella and environmental Chlamydia harbor an immense number of eukaryotic-like proteins that are involved in ubiquitin-related processes or are tandem repeats-containing proteins involved in protein-protein and protein-chromatin interactions. Some of these eukaryotic-like proteins exhibit novel domain architecture and novel enzymatic functions absent in mammalian cells, such as ubiquitin ligases, likely acquired from amoebae. Mammalian cells and amoebae may respond similarly to microbial factors that target highly conserved eukaryotic processes, but mammalian cells may undergo an accidental response to amoeba-adapted microbial factors. We discuss specific examples of microbes that have evolved to evade amoeba predation, including the bacterial pathogens- Legionella, Chlamydia, Coxiella, Rickettssia, Francisella, Mycobacteria, Salmonella, Bartonella, Rhodococcus, Pseudomonas, Vibrio, Helicobacter, Campylobacter, and Aliarcobacter. We also discuss the fungi Cryptococcus, and Asperigillus, as well as amoebae mimiviruses/giant viruses. We propose that amoeba-microbe interactions will continue to be a major "training ground" for the evolution, selection, adaptation, and emergence of microbial pathogens equipped with unique pathogenic tools to infect mammalian hosts. However, our progress will continue to be highly dependent on additional genomic, biochemical, and cellular data of unicellular eukaryotes.
Collapse
Affiliation(s)
- Christopher T. D. Price
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Hannah E. Hanford
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Tasneem Al-Quadan
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | | | - Cheon J. Shin
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Manal S. J. Da'as
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
4
|
Rytter H, Roger K, Chhuon C, Ding X, Coureuil M, Jamet A, Henry T, Guerrera IC, Charbit A. Dual proteomics of infected macrophages reveal bacterial and host players involved in the Francisella intracellular life cycle and cell to cell dissemination by merocytophagy. Sci Rep 2024; 14:7797. [PMID: 38565565 PMCID: PMC10987565 DOI: 10.1038/s41598-024-58261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Bacterial pathogens adapt and replicate within host cells, while host cells develop mechanisms to eliminate them. Using a dual proteomic approach, we characterized the intra-macrophage proteome of the facultative intracellular pathogen, Francisella novicida. More than 900 Francisella proteins were identified in infected macrophages after a 10-h infection. Biotin biosynthesis-related proteins were upregulated, emphasizing the role of biotin-associated genes in Francisella replication. Conversely, proteins encoded by the Francisella pathogenicity island (FPI) were downregulated, supporting the importance of the F. tularensis Type VI Secretion System for vacuole escape, not cytosolic replication. In the host cell, over 300 proteins showed differential expression among the 6200 identified during infection. The most upregulated host protein was cis-aconitate decarboxylase IRG1, known for itaconate production with antimicrobial properties in Francisella. Surprisingly, disrupting IRG1 expression did not impact Francisella's intracellular life cycle, suggesting redundancy with other immune proteins or inclusion in larger complexes. Over-representation analysis highlighted cell-cell contact and actin polymerization in macrophage deregulated proteins. Using flow cytometry and live cell imaging, we demonstrated that merocytophagy involves diverse cell-to-cell contacts and actin polymerization-dependent processes. These findings lay the groundwork for further exploration of merocytophagy and its molecular mechanisms in future research.Data are available via ProteomeXchange with identifier PXD035145.
Collapse
Affiliation(s)
- Héloïse Rytter
- Université Paris CitéINSERM UMR-S1151, CNRS UMR-S8253Institut Necker Enfants Malades, 156-160 rue de Vaugirard, 75015, Paris, France
- INSERM U1151-CNRS UMR 8253, Team 7: Pathogénie des Infections Systémiques, 75015, Paris, France
| | - Kevin Roger
- INSERM US24/CNRS UAR3633, Proteomic Platform Necker, UniversitéParis-Cité, Federative Research Structure Necker, Paris, France
| | - Cerina Chhuon
- INSERM US24/CNRS UAR3633, Proteomic Platform Necker, UniversitéParis-Cité, Federative Research Structure Necker, Paris, France
| | - Xiongqi Ding
- Université Paris CitéINSERM UMR-S1151, CNRS UMR-S8253Institut Necker Enfants Malades, 156-160 rue de Vaugirard, 75015, Paris, France
- INSERM U1151-CNRS UMR 8253, Team 7: Pathogénie des Infections Systémiques, 75015, Paris, France
| | - Mathieu Coureuil
- Université Paris CitéINSERM UMR-S1151, CNRS UMR-S8253Institut Necker Enfants Malades, 156-160 rue de Vaugirard, 75015, Paris, France
- INSERM U1151-CNRS UMR 8253, Team 7: Pathogénie des Infections Systémiques, 75015, Paris, France
| | - Anne Jamet
- Université Paris CitéINSERM UMR-S1151, CNRS UMR-S8253Institut Necker Enfants Malades, 156-160 rue de Vaugirard, 75015, Paris, France
- INSERM U1151-CNRS UMR 8253, Team 7: Pathogénie des Infections Systémiques, 75015, Paris, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Université Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, 69007, Lyon, France
| | - Ida Chiara Guerrera
- INSERM US24/CNRS UAR3633, Proteomic Platform Necker, UniversitéParis-Cité, Federative Research Structure Necker, Paris, France.
| | - Alain Charbit
- Université Paris CitéINSERM UMR-S1151, CNRS UMR-S8253Institut Necker Enfants Malades, 156-160 rue de Vaugirard, 75015, Paris, France.
- INSERM U1151-CNRS UMR 8253, Team 7: Pathogénie des Infections Systémiques, 75015, Paris, France.
| |
Collapse
|
5
|
Selezneva AI, Harding LNM, Gutka HJ, Movahedzadeh F, Abad-Zapatero C. New structures of Class II Fructose-1,6-Bisphosphatase from Francisella tularensis provide a framework for a novel catalytic mechanism for the entire class. PLoS One 2023; 18:e0274723. [PMID: 37352301 PMCID: PMC10289334 DOI: 10.1371/journal.pone.0274723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 06/06/2023] [Indexed: 06/25/2023] Open
Abstract
Class II Fructose-1,6-bisphosphatases (FBPaseII) (EC: 3.1.3.11) are highly conserved essential enzymes in the gluconeogenic pathway of microorganisms. Previous crystallographic studies of FBPasesII provided insights into various inactivated states of the enzyme in different species. Presented here is the first crystal structure of FBPaseII in an active state, solved for the enzyme from Francisella tularensis (FtFBPaseII), containing native metal cofactor Mn2+ and complexed with catalytic product fructose-6-phosphate (F6P). Another crystal structure of the same enzyme complex is presented in the inactivated state due to the structural changes introduced by crystal packing. Analysis of the interatomic distances among the substrate, product, and divalent metal cations in the catalytic centers of the enzyme led to a revision of the catalytic mechanism suggested previously for class II FBPases. We propose that phosphate-1 is cleaved from the substrate fructose-1,6-bisphosphate (F1,6BP) by T89 in a proximal α-helix backbone (G88-T89-T90-I91-T92-S93-K94) in which the substrate transition state is stabilized by the positive dipole of the 〈-helix backbone. Once cleaved a water molecule found in the active site liberates the inorganic phosphate from T89 completing the catalytic mechanism. Additionally, a crystal structure of Mycobacterium tuberculosis FBPaseII (MtFBPaseII) containing a bound F1,6BP is presented to further support the substrate binding and novel catalytic mechanism suggested for this class of enzymes.
Collapse
Affiliation(s)
- Anna I. Selezneva
- Institute for Tuberculosis Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Luke N. M. Harding
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Hiten J. Gutka
- Institute for Tuberculosis Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Farahnaz Movahedzadeh
- Institute for Tuberculosis Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Celerino Abad-Zapatero
- Institute for Tuberculosis Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
6
|
Nakamura T, Shimizu T, Ikegaya R, Uda A, Watanabe K, Watarai M. Identification of pyrC gene as an immunosuppressive factor in Francisella novicida infection. Front Cell Infect Microbiol 2022; 12:1027424. [DOI: 10.3389/fcimb.2022.1027424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Francisella tularensis, a bacterial causative agent of the zoonosis tularemia, is highly pathogenic to humans. The pathogenicity of this bacterium is characterized by intracellular growth in immune cells, like macrophages, and host immune suppression. However, the detailed mechanism of immune suppression by F. tularensis is still unclear. To identify the key factors causing Francisella-mediated immunosuppression, large-scale screening using a transposon random mutant library containing 3552 mutant strains of F. tularensis subsp. novicida (F. novicida) was performed. Thirteen mutants that caused stronger tumor necrosis factor (TNF)-α production in infected U937 human macrophage cells than the wild-type F. novicida strain were isolated. Sequencing analysis of transposon insertion sites revealed 10 genes, including six novel genes, as immunosuppressive factors of Francisella. Among these, the relationship of the pyrC gene, which encodes dihydroorotase in the pyrimidine biosynthesis pathway, with Francisella-mediated immunosuppression was investigated. The pyrC deletion mutant strain (ΔpyrC) induced higher TNF-α production in U937 host cells than the wild-type F. novicida strain. The ΔpyrC mutant strain was also found to enhance host interleukin-1β and interferon (IFN)-β production. The heat-inactivated ΔpyrC mutant strain could not induce host TNF-α production. Moreover, the production of IFN-β resulting from ΔpyrC infection in U937 cells was repressed upon treatment with the stimulator of interferon genes (STING)-specific inhibitor, H-151. These results suggest that pyrC is related to the immunosuppressive activity and pathogenicity of Francisella via the STING pathway.
Collapse
|
7
|
Ozanic M, Marecic V, Knezevic M, Kelava I, Stojková P, Lindgren L, Bröms JE, Sjöstedt A, Abu Kwaik Y, Santic M. The type IV pili component PilO is a virulence determinant of Francisella novicida. PLoS One 2022; 17:e0261938. [PMID: 35077486 PMCID: PMC8789160 DOI: 10.1371/journal.pone.0261938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022] Open
Abstract
Francisella tularensis is a highly pathogenic intracellular bacterium that causes the disease tularemia. While its ability to replicate within cells has been studied in much detail, the bacterium also encodes a less characterised type 4 pili (T4P) system. T4Ps are dynamic adhesive organelles identified as major virulence determinants in many human pathogens. In F. tularensis, the T4P is required for adherence to the host cell, as well as for protein secretion. Several components, including pilins, a pili peptidase, a secretin pore and two ATPases, are required to assemble a functional T4P, and these are encoded within distinct clusters on the Francisella chromosome. While some of these components have been functionally characterised, the role of PilO, if any, still is unknown. Here, we examined the role of PilO in the pathogenesis of F. novicida. Our results show that the PilO is essential for pilus assembly on the bacterial surface. In addition, PilO is important for adherence of F. novicida to human monocyte-derived macrophages, secretion of effector proteins and intracellular replication. Importantly, the pilO mutant is attenuated for virulence in BALB/c mice regardless of the route of infection. Following intratracheal and intradermal infection, the mutant caused no histopathology changes, and demonstrated impaired phagosomal escape and replication within lung liver as well as spleen. Thus, PilO is an essential virulence determinant of F. novicida.
Collapse
Affiliation(s)
- Mateja Ozanic
- Faculty of Medicine, Department of Microbiology and Parasitology, University of Rijeka, Rijeka, Croatia
| | - Valentina Marecic
- Faculty of Medicine, Department of Microbiology and Parasitology, University of Rijeka, Rijeka, Croatia
| | - Masa Knezevic
- Faculty of Medicine, Department of Microbiology and Parasitology, University of Rijeka, Rijeka, Croatia
| | - Ina Kelava
- Faculty of Medicine, Department of Microbiology and Parasitology, University of Rijeka, Rijeka, Croatia
| | - Pavla Stojková
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Lena Lindgren
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Jeanette E. Bröms
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Anders Sjöstedt
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology and Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Marina Santic
- Faculty of Medicine, Department of Microbiology and Parasitology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
8
|
Marghani D, Ma Z, Centone AJ, Huang W, Malik M, Bakshi CS. An AraC/XylS Family Transcriptional Regulator Modulates the Oxidative Stress Response of Francisella tularensis. J Bacteriol 2021; 203:e0018521. [PMID: 34543107 PMCID: PMC8570275 DOI: 10.1128/jb.00185-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis is a Gram-negative bacterium that causes a fatal human disease known as tularemia. The Centers for Disease Control and Prevention have classified F. tularensis as a category A tier 1 select agent. The virulence mechanisms of Francisella are not entirely understood. Francisella possesses very few transcription regulators, and most of these regulate the expression of genes involved in intracellular survival and virulence. The F. tularensis genome sequence analysis reveals an AraC (FTL_0689) transcriptional regulator homologous to the AraC/XylS family of transcriptional regulators. In Gram-negative bacteria, AraC activates genes required for l-arabinose utilization and catabolism. The role of the FTL_0689 regulator in F. tularensis is not known. In this study, we characterized the role of FTL_0689 in the gene regulation of F. tularensis and investigated its contribution to intracellular survival and virulence. The results demonstrate that FTL_0689 in Francisella is not required for l-arabinose utilization. Instead, FTL_0689 specifically regulates the expression of the oxidative and global stress response, virulence, metabolism, and other key pathways genes required by Francisella when exposed to oxidative stress. The FTL_0689 mutant is attenuated for intramacrophage growth and virulence in mice. Based on the deletion mutant phenotype, FTL_0689 was termed osrR (oxidative stress response regulator). Altogether, this study elucidates the role of the osrR transcriptional regulator in tularemia pathogenesis. IMPORTANCE The virulence mechanisms of category A select agent Francisella tularensis, the causative agent of a fatal human disease known as tularemia, remain largely undefined. The present study investigated the role of a transcriptional regulator and its overall contribution to the oxidative stress resistance of F. tularensis. The results provide an insight into a novel gene regulatory mechanism, especially when Francisella is exposed to oxidative stress conditions. Understanding such Francisella- specific regulatory mechanisms will help identify potential targets for developing effective therapies and vaccines to prevent tularemia.
Collapse
Affiliation(s)
- Dina Marghani
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| | - Zhuo Ma
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Anthony J. Centone
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| | - Weihua Huang
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| | - Meenakshi Malik
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Chandra Shekhar Bakshi
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
9
|
Suresh RV, Bradley EW, Higgs M, Russo VC, Alqahtani M, Huang W, Bakshi CS, Malik M. Nlrp3 Increases the Host's Susceptibility to Tularemia. Front Microbiol 2021; 12:725572. [PMID: 34690967 PMCID: PMC8527020 DOI: 10.3389/fmicb.2021.725572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Francisella tularensis (F. tularensis) is a Gram-negative, intracellular bacterium and the causative agent of a fatal human disease known as tularemia. The CDC has classified F. tularensis as a Tier 1 Category A select agent based on its ease of aerosolization, low infectious dose, past use as a bioweapon, and the potential to be used as a bioterror agent. Francisella has a unique replication cycle. Upon its uptake, Francisella remains in the phagosomes for a short period and then escapes into the cytosol, where the replication occurs. Francisella is recognized by cytosolic pattern recognition receptors, Absent In Melanoma 2 (Aim2) and Nacht LRR and PYD domains containing Protein 3 (Nlrp3). The recognition of Francisella ligands by Aim2 and Nlrp3 triggers the assembly and activation of the inflammasome. The mechanism of activation of Aim2 is well established; however, how Nlrp3 inflammasome is activated in response to F. tularensis infection is not known. Unlike Aim2, the protective role of Nlrp3 against Francisella infection is not fully established. This study investigated the role of Nlrp3 and the potential mechanisms through which Nlrp3 exerts its detrimental effects on the host in response to F. tularensis infection. The results from in vitro studies demonstrate that Nlrp3 dampens NF-κB and MAPK signaling, and pro-inflammatory cytokine production, which allows replication of F. tularensis in infected macrophages. In vivo, Nlrp3 deficiency results in differential expression of several genes required to induce a protective immune response against respiratory tularemia. Nlrp3-deficient mice mount a stronger innate immune response, clear bacteria efficiently with minimal organ damage, and are more resistant to Francisella infection than their wild-type counterparts. Together, these results demonstrate that Nlrp3 enhances the host's susceptibility to F. tularensis by modulating the protective innate immune responses. Collectively, this study advances our understanding of the detrimental role of Nlrp3 in tularemia pathogenesis.
Collapse
Affiliation(s)
- Ragavan V. Suresh
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Elizabeth W. Bradley
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Matthew Higgs
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Vincenzo C. Russo
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Maha Alqahtani
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Wiehua Huang
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Chandra Shekhar Bakshi
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, United States
| | - Meenakshi Malik
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| |
Collapse
|
10
|
Rytter H, Jamet A, Ziveri J, Ramond E, Coureuil M, Lagouge-Roussey P, Euphrasie D, Tros F, Goudin N, Chhuon C, Nemazanyy I, de Moraes FE, Labate C, Guerrera IC, Charbit A. The pentose phosphate pathway constitutes a major metabolic hub in pathogenic Francisella. PLoS Pathog 2021; 17:e1009326. [PMID: 34339477 PMCID: PMC8360588 DOI: 10.1371/journal.ppat.1009326] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/12/2021] [Accepted: 07/14/2021] [Indexed: 11/19/2022] Open
Abstract
Metabolic pathways are now considered as intrinsic virulence attributes of pathogenic bacteria and thus represent potential targets for antibacterial strategies. Here we focused on the role of the pentose phosphate pathway (PPP) and its connections with other metabolic pathways in the pathophysiology of Francisella novicida. The involvement of the PPP in the intracellular life cycle of Francisella was first demonstrated by studying PPP inactivating mutants. Indeed, we observed that inactivation of the tktA, rpiA or rpe genes severely impaired intramacrophage multiplication during the first 24 hours. However, time-lapse video microscopy demonstrated that rpiA and rpe mutants were able to resume late intracellular multiplication. To better understand the links between PPP and other metabolic networks in the bacterium, we also performed an extensive proteo-metabolomic analysis of these mutants. We show that the PPP constitutes a major bacterial metabolic hub with multiple connections to glycolysis, the tricarboxylic acid cycle and other pathways, such as fatty acid degradation and sulfur metabolism. Altogether our study highlights how PPP plays a key role in the pathogenesis and growth of Francisella in its intracellular niche.
Collapse
Affiliation(s)
- Héloise Rytter
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Anne Jamet
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Jason Ziveri
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Elodie Ramond
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Mathieu Coureuil
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Pauline Lagouge-Roussey
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Daniel Euphrasie
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Fabiola Tros
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Nicolas Goudin
- Pole Bio-analyse d’images, Structure Fédérative de Recherche Necker INSERM US24- CNRS UMS 3633, Paris, France
| | - Cerina Chhuon
- Université de Paris, Paris, France
- Plateforme Protéome Institut Necker, PPN, Structure Fédérative de Recherche Necker INSERM US24-CNRS UMS 3633, Paris, France
| | - Ivan Nemazanyy
- Université de Paris, Paris, France
- Plateforme Etude du métabolisme, Structure Fédérative de Recherche Necker INSERM US24-CNRS UMS 3633, Paris, France
| | - Fabricio Edgar de Moraes
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Carlos Labate
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Ida Chiara Guerrera
- Université de Paris, Paris, France
- Plateforme Protéome Institut Necker, PPN, Structure Fédérative de Recherche Necker INSERM US24-CNRS UMS 3633, Paris, France
- * E-mail: (ICG); (AC)
| | - Alain Charbit
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
- * E-mail: (ICG); (AC)
| |
Collapse
|
11
|
Selezneva AI, Gutka HJ, Wolf NM, Qurratulain F, Movahedzadeh F, Abad-Zapatero C. Structural and biochemical characterization of the class II fructose-1,6-bisphosphatase from Francisella tularensis. Acta Crystallogr F Struct Biol Commun 2020; 76:524-535. [PMID: 33135671 PMCID: PMC7605111 DOI: 10.1107/s2053230x20013370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/05/2020] [Indexed: 11/10/2022] Open
Abstract
The crystal structure of the class II fructose-1,6-bisphosphatase (FBPaseII) from the important pathogen Francisella tularensis is presented at 2.4 Å resolution. Its structural and functional relationships to the closely related phosphatases from Mycobacterium tuberculosis (MtFBPaseII) and Escherichia coli (EcFBPaseII) and to the dual phosphatase from Synechocystis strain 6803 are discussed. FBPaseII from F. tularensis (FtFBPaseII) was crystallized in a monoclinic crystal form (space group P21, unit-cell parameters a = 76.30, b = 100.17, c = 92.02 Å, β = 90.003°) with four chains in the asymmetric unit. Chain A had two coordinated Mg2+ ions in its active center, which is distinct from previous findings, and is presumably deactivated by their presence. The structure revealed an approximate 222 (D2) symmetry homotetramer analogous to that previously described for MtFBPaseII, which is formed by a crystallographic dyad and which differs from the exact tetramer found in EcFBPaseII at a 222 symmetry site in the crystal. Instead, the approximate homotetramer is very similar to that found in the dual phosphatase from Synechocystis, even though no allosteric effector was found in FtFBPase. The amino-acid sequence and folding of the active site of FtFBPaseII result in structural characteristics that are more similar to those of the previously published EcFBPaseII than to those of MtFBPaseII. The kinetic parameters of native FtFBPaseII were found to be in agreement with published studies. Kinetic analyses of the Thr89Ser and Thr89Ala mutations in the active site of the enzyme are consistent with the previously proposed mechanism for other class II bisphosphatases. The Thr89Ala variant enzyme was inactive but the Thr89Ser variant was partially active, with an approximately fourfold lower Km and Vmax than the native enzyme. The structural and functional insights derived from the structure of FtFBPaseII will provide valuable information for the design of specific inhibitors.
Collapse
Affiliation(s)
- Anna I. Selezneva
- Institute for Tuberculosis Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Hiten J. Gutka
- Institute for Tuberculosis Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Nina M. Wolf
- Institute for Tuberculosis Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Fnu Qurratulain
- Institute for Tuberculosis Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Farahnaz Movahedzadeh
- Institute for Tuberculosis Research, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Celerino Abad-Zapatero
- Institute for Tuberculosis Research, University of Illinois at Chicago, Chicago, Illinois, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
12
|
Appelt S, Faber M, Köppen K, Jacob D, Grunow R, Heuner K. Francisella tularensis Subspecies holarctica and Tularemia in Germany. Microorganisms 2020; 8:microorganisms8091448. [PMID: 32971773 PMCID: PMC7564102 DOI: 10.3390/microorganisms8091448] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022] Open
Abstract
Tularemia is a zoonotic disease caused by Francisella tularensis a small, pleomorphic, facultative intracellular bacterium. In Europe, infections in animals and humans are caused mainly by Francisella tularensis subspecies holarctica. Humans can be exposed to the pathogen directly and indirectly through contact with sick animals, carcasses, mosquitoes and ticks, environmental sources such as contaminated water or soil, and food. So far, F. tularensis subsp. holarctica is the only Francisella species known to cause tularemia in Germany. On the basis of surveillance data, outbreak investigations, and literature, we review herein the epidemiological situation-noteworthy clinical cases next to genetic diversity of F. tularensis subsp. holarctica strains isolated from patients. In the last 15 years, the yearly number of notified cases of tularemia has increased steadily in Germany, suggesting that the disease is re-emerging. By sequencing F. tularensis subsp. holarctica genomes, knowledge has been added to recent findings, completing the picture of genotypic diversity and geographical segregation of Francisella clades in Germany. Here, we also shortly summarize the current knowledge about a new Francisella species (Francisella sp. strain W12-1067) that has been recently identified in Germany. This species is the second Francisella species discovered in Germany.
Collapse
Affiliation(s)
- Sandra Appelt
- Centre for Biological Threats and Special Pathogens (ZBS 2), Robert Koch Institute, 13353 Berlin, Germany; (S.A.); (D.J.); (R.G.)
| | - Mirko Faber
- Gastrointestinal Infections, Zoonoses and Tropical Infections (Division 35), Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353 Berlin, Germany;
| | - Kristin Köppen
- Cellular Interactions of Bacterial Pathogens, ZBS 2, Robert Koch Institute, 13353 Berlin, Germany;
| | - Daniela Jacob
- Centre for Biological Threats and Special Pathogens (ZBS 2), Robert Koch Institute, 13353 Berlin, Germany; (S.A.); (D.J.); (R.G.)
| | - Roland Grunow
- Centre for Biological Threats and Special Pathogens (ZBS 2), Robert Koch Institute, 13353 Berlin, Germany; (S.A.); (D.J.); (R.G.)
| | - Klaus Heuner
- Cellular Interactions of Bacterial Pathogens, ZBS 2, Robert Koch Institute, 13353 Berlin, Germany;
- Correspondence: ; Tel.: +49-301-8754-2226
| |
Collapse
|
13
|
Ziveri J, Chhuon C, Jamet A, Rytter H, Prigent G, Tros F, Barel M, Coureuil M, Lays C, Henry T, Keep NH, Guerrera IC, Charbit A. Critical Role of a Sheath Phosphorylation Site On the Assembly and Function of an Atypical Type VI Secretion System. Mol Cell Proteomics 2019; 18:2418-2432. [PMID: 31578219 PMCID: PMC6885697 DOI: 10.1074/mcp.ra119.001532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
The bacterial pathogen Francisella tularensis possesses a noncanonical type VI secretion system (T6SS) that is required for phagosomal escape in infected macrophages. KCl stimulation has been previously used to trigger assembly and secretion of the T6SS in culture. By differential proteomics, we found here that the amounts of the T6SS proteins remained unchanged upon KCl stimulation, suggesting involvement of post-translational modifications in T6SS assembly. A phosphoproteomic analysis indeed identified a unique phosphorylation site on IglB, a key component of the T6SS sheath. Substitutions of Y139 with alanine or phosphomimetics prevented T6SS formation and abolished phagosomal escape whereas substitution with phenylalanine delayed but did not abolish phagosomal escape in J774-1 macrophages. Altogether our data demonstrated that the Y139 site of IglB plays a critical role in T6SS biogenesis, suggesting that sheath phosphorylation could participate to T6SS dynamics.Data are available via ProteomeXchange with identifier PXD013619; and on MS-Viewer, key lkaqkllxwx.
Collapse
Affiliation(s)
- Jason Ziveri
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogenesis of Systemic Infections, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Cerina Chhuon
- Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Anne Jamet
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogenesis of Systemic Infections, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Héloïse Rytter
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogenesis of Systemic Infections, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Guénolé Prigent
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogenesis of Systemic Infections, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Fabiola Tros
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogenesis of Systemic Infections, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Monique Barel
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogenesis of Systemic Infections, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Mathieu Coureuil
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogenesis of Systemic Infections, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Claire Lays
- CIRI, Centre International de Recherche en Infectiologie, Université Lyon, Inserm, U1111, University Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Labex ECOFECT, Eco-evolutionary dynamics of infectious diseases, F-69007, LYON, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Université Lyon, Inserm, U1111, University Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Labex ECOFECT, Eco-evolutionary dynamics of infectious diseases, F-69007, LYON, France
| | - Nicholas H Keep
- Crystallography, Institute for Structural and Molecular Biology, Department of Biological Sciences Birkbeck, University of London, United Kingdom
| | - Ida Chiara Guerrera
- Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France.
| | - Alain Charbit
- Université Paris Descartes, Sorbonne Paris Cité, INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogenesis of Systemic Infections, Paris 75015, France; Plateforme protéomique 3P5-Necker, Universit[c33c]zpi;● Paris Descartes - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France.
| |
Collapse
|
14
|
Stringent response governs the oxidative stress resistance and virulence of Francisella tularensis. PLoS One 2019; 14:e0224094. [PMID: 31648246 PMCID: PMC6812791 DOI: 10.1371/journal.pone.0224094] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/04/2019] [Indexed: 01/04/2023] Open
Abstract
Francisella tularensis is a Gram-negative bacterium responsible for causing tularemia in the northern hemisphere. F. tularensis has long been developed as a biological weapon due to its ability to cause severe illness upon inhalation of as few as ten organisms and, based on its potential to be used as a bioterror agent is now classified as a Tier 1 Category A select agent by the CDC. The stringent response facilitates bacterial survival under nutritionally challenging starvation conditions. The hallmark of stringent response is the accumulation of the effector molecules ppGpp and (p)ppGpp known as stress alarmones. The relA and spoT gene products generate alarmones in several Gram-negative bacterial pathogens. RelA is a ribosome-associated ppGpp synthetase that gets activated under amino acid starvation conditions whereas, SpoT is a bifunctional enzyme with both ppGpp synthetase and ppGpp hydrolase activities. Francisella encodes a monofunctional RelA and a bifunctional SpoT enzyme. Previous studies have demonstrated that stringent response under nutritional stresses increases expression of virulence-associated genes encoded on Francisella Pathogenicity Island. This study investigated how stringent response governs the oxidative stress response of F. tularensis. We demonstrate that RelA/SpoT-mediated ppGpp production alters global gene transcriptional profile of F. tularensis in the presence of oxidative stress. The lack of stringent response in relA/spoT gene deletion mutants of F. tularensis makes bacteria more susceptible to oxidants, attenuates survival in macrophages, and virulence in mice. This work is an important step forward towards understanding the complex regulatory network underlying the oxidative stress response of F. tularensis.
Collapse
|
15
|
The D-alanyl-d-alanine carboxypeptidase enzyme is essential for virulence in the Schu S4 strain of Francisella tularensis and a dacD mutant is able to provide protection against a pneumonic challenge. Microb Pathog 2019; 137:103742. [PMID: 31513897 DOI: 10.1016/j.micpath.2019.103742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/22/2019] [Accepted: 09/09/2019] [Indexed: 01/04/2023]
Abstract
Low molecular mass penicillin binding proteins (LMM PBP) are bacterial enzymes involved in the final steps of peptidoglycan biosynthesis. In Escherichia coli, most LMM PBP exhibit dd-carboxypeptidase activity, are not essential for growth in routine laboratory media, and contributions to virulent phenotypes remain largely unknown. The Francisella tularensis Schu S4 genome harbors the dacD gene (FTT_1029), which encodes a LMM PBP with homology to PBP6b of E. coli. Disruption of this locus in the fully virulent Schu S4 strain resulted in a mutant that could not grow in Chamberlain's Defined Medium and exhibited severe morphological defects. Further characterization studies demonstrated that the growth defects of the dacD mutant were pH-dependent, and could be partially restored by growth at neutral pH or fully restored by genetic complementation. Infection of murine macrophage-like cells showed that the Schu S4 dacD mutant is capable of intracellular replication. However, this mutant was attenuated in BALB/c mice following intranasal challenge (LD50 = 603 CFU) as compared to mice challenged with the parent (LD50 = 1 CFU) or complemented strain (LD50 = 1 CFU). Additionally, mice that survived infection with the dacD mutant showed significant protection against subsequent challenge with the parent strain. Collectively, these results indicate that the DacD protein of F. tularensis is essential for growth in low pH environments and virulence in vivo. These results also suggest that a PBP mutant could serve as the basis of a novel, live attenuated vaccine strain.
Collapse
|
16
|
Kubelkova K, Macela A. Innate Immune Recognition: An Issue More Complex Than Expected. Front Cell Infect Microbiol 2019; 9:241. [PMID: 31334134 PMCID: PMC6616152 DOI: 10.3389/fcimb.2019.00241] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022] Open
Abstract
Primary interaction of an intracellular bacterium with its host cell is initiated by activation of multiple signaling pathways in response to bacterium recognition itself or as cellular responses to stress induced by the bacterium. The leading molecules in these processes are cell surface membrane receptors as well as cytosolic pattern recognition receptors recognizing pathogen-associated molecular patterns or damage-associated molecular patterns induced by the invading bacterium. In this review, we demonstrate possible sequences of events leading to recognition of Francisella tularensis, present findings on known mechanisms for manipulating cell responses to protect Francisella from being killed, and discuss newly published data from the perspective of early stages of host-pathogen interaction.
Collapse
Affiliation(s)
- Klara Kubelkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | | |
Collapse
|
17
|
Trivedi NH, Yu JJ, Hung CY, Doelger RP, Navara CS, Armitige LY, Seshu J, Sinai AP, Chambers JP, Guentzel MN, Arulanandam BP. Microbial co-infection alters macrophage polarization, phagosomal escape, and microbial killing. Innate Immun 2018; 24:152-162. [PMID: 29482417 PMCID: PMC6852389 DOI: 10.1177/1753425918760180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Macrophages are important innate immune cells that respond to microbial insults.
In response to multi-bacterial infection, the macrophage activation state may
change upon exposure to nascent mediators, which results in different bacterial
killing mechanism(s). In this study, we utilized two respiratory bacterial
pathogens, Mycobacterium bovis (Bacillus Calmette
Guẻrin, BCG) and Francisella tularensis live
vaccine strain (LVS) with different phagocyte evasion mechanisms, as model
microbes to assess the influence of initial bacterial infection on the
macrophage response to secondary infection. Non-activated (M0) macrophages or
activated M2-polarized cells (J774 cells transfected with the mouse IL-4 gene)
were first infected with BCG for 24–48 h, subsequently challenged with LVS, and
the results of inhibition of LVS replication in the macrophages was assessed.
BCG infection in M0 macrophages activated TLR2-MyD88 and Mincle-CARD9 signaling
pathways, stimulating nitric oxide (NO) production and enhanced killing of LVS.
BCG infection had little effect on LVS escape from phagosomes into the cytosol
in M0 macrophages. In contrast, M2-polarized macrophages exhibited enhanced
endosomal acidification, as well as inhibiting LVS replication. Pre-infection
with BCG did not induce NO production and thus did not further reduce LVS
replication. This study provides a model for studies of the complexity of
macrophage activation in response to multi-bacterial infection.
Collapse
Affiliation(s)
- Nikita H Trivedi
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - Jieh-Juen Yu
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - Chiung-Yu Hung
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - Richard P Doelger
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - Christopher S Navara
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | | | - Janakiram Seshu
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - Anthony P Sinai
- 3 The Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, USA
| | - James P Chambers
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - M Neal Guentzel
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| | - Bernard P Arulanandam
- 1 Department of Biology, the South Texas Center for Emerging Infectious Diseases, and the Center for Excellence in Infection Genomics, University of Texas at San Antonio, USA
| |
Collapse
|
18
|
The metabolic enzyme fructose-1,6-bisphosphate aldolase acts as a transcriptional regulator in pathogenic Francisella. Nat Commun 2017; 8:853. [PMID: 29021545 PMCID: PMC5636795 DOI: 10.1038/s41467-017-00889-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 08/02/2017] [Indexed: 12/31/2022] Open
Abstract
The enzyme fructose-bisphosphate aldolase occupies a central position in glycolysis and gluconeogenesis pathways. Beyond its housekeeping role in metabolism, fructose-bisphosphate aldolase has been involved in additional functions and is considered as a potential target for drug development against pathogenic bacteria. Here, we address the role of fructose-bisphosphate aldolase in the bacterial pathogen Francisella novicida. We demonstrate that fructose-bisphosphate aldolase is important for bacterial multiplication in macrophages in the presence of gluconeogenic substrates. In addition, we unravel a direct role of this metabolic enzyme in transcription regulation of genes katG and rpoA, encoding catalase and an RNA polymerase subunit, respectively. We propose a model in which fructose-bisphosphate aldolase participates in the control of host redox homeostasis and the inflammatory immune response.The enzyme fructose-bisphosphate aldolase (FBA) plays central roles in glycolysis and gluconeogenesis. Here, Ziveri et al. show that FBA of the pathogen Francisella novicida acts, in addition, as a transcriptional regulator and is important for bacterial multiplication in macrophages.
Collapse
|
19
|
Chen F, Rydzewski K, Kutzner E, Häuslein I, Schunder E, Wang X, Meighen-Berger K, Grunow R, Eisenreich W, Heuner K. Differential Substrate Usage and Metabolic Fluxes in Francisella tularensis Subspecies holarctica and Francisella novicida. Front Cell Infect Microbiol 2017; 7:275. [PMID: 28680859 PMCID: PMC5478678 DOI: 10.3389/fcimb.2017.00275] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/06/2017] [Indexed: 12/14/2022] Open
Abstract
Francisella tularensis is an intracellular pathogen for many animals causing the infectious disease, tularemia. Whereas F. tularensis subsp. holarctica is highly pathogenic for humans, F. novicida is almost avirulent for humans, but virulent for mice. In order to compare metabolic fluxes between these strains, we performed 13C-labeling experiments with F. tularensis subsp. holarctica wild type (beaver isolate), F. tularensis subsp. holarctica strain LVS, or F. novicida strain U112 in complex media containing either [U-13C6]glucose, [1,2-13C2]glucose, [U-13C3]serine, or [U-13C3]glycerol. GC/MS-based isotopolog profiling of amino acids, polysaccharide-derived glucose, free fructose, amino sugars derived from the cell wall, fatty acids, 3-hydroxybutyrate, lactate, succinate and malate revealed uptake and metabolic usage of all tracers under the experimental conditions with glucose being the major carbon source for all strains under study. The labeling patterns of the F. tularensis subsp. holarctica wild type were highly similar to those of the LVS strain, but showed remarkable differences to the labeling profiles of the metabolites from the F. novicida strain. Glucose was directly used for polysaccharide and cell wall biosynthesis with higher rates in F. tularensis subsp. holarctica or metabolized, with higher rates in F. novicida, via glycolysis and the non-oxidative pentose phosphate pathway (PPP). Catabolic turnover of glucose via gluconeogenesis was also observed. In all strains, Ala was mainly synthesized from pyruvate, although no pathway from pyruvate to Ala is annotated in the genomes of F. tularensis and F. novicida. Glycerol efficiently served as a gluconeogenetic substrate in F. novicida, but only less in the F. tularensis subsp. holarctica strains. In any of the studied strains, serine did not serve as a major substrate and was not significantly used for gluconeogenesis under the experimental conditions. Rather, it was only utilized, at low rates, in downstream metabolic processes, e.g., via acetyl-CoA in the citrate cycle and for fatty acid biosynthesis, especially in the F. tularensis subsp. holarctica strains. In summary, the data reflect differential metabolite fluxes in F. tularensis subsp. holarctica and F. novicida suggesting that the different utilization of substrates could be related to host specificity and virulence of Francisella.
Collapse
Affiliation(s)
- Fan Chen
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Kerstin Rydzewski
- Working Group "Cellular Interactions of Bacterial Pathogens", ZBS 2, Robert Koch InstituteBerlin, Germany
| | - Erika Kutzner
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Ina Häuslein
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Eva Schunder
- Working Group "Cellular Interactions of Bacterial Pathogens", ZBS 2, Robert Koch InstituteBerlin, Germany
| | - Xinzhe Wang
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Kevin Meighen-Berger
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Roland Grunow
- Centre for Biological Threats and Special Pathogens, Division 2 (ZBS 2), Highly Pathogenic Microorganisms, Robert Koch InstituteBerlin, Germany
| | - Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Klaus Heuner
- Working Group "Cellular Interactions of Bacterial Pathogens", ZBS 2, Robert Koch InstituteBerlin, Germany
| |
Collapse
|
20
|
Ziveri J, Barel M, Charbit A. Importance of Metabolic Adaptations in Francisella Pathogenesis. Front Cell Infect Microbiol 2017; 7:96. [PMID: 28401066 PMCID: PMC5368251 DOI: 10.3389/fcimb.2017.00096] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/13/2017] [Indexed: 01/25/2023] Open
Abstract
Francisella tularensis is a highly infectious Gram-negative bacterium and the causative agent of the zoonotic disease tularemia. This bacterial pathogen can infect a broad variety of animal species and can be transmitted to humans in numerous ways with various clinical outcomes. Although, Francisella possesses the capacity to infect numerous mammalian cell types, the macrophage constitutes the main intracellular niche, used for in vivo bacterial dissemination. To survive and multiply within infected macrophages, Francisella must imperatively escape from the phagosomal compartment. In the cytosol, the bacterium needs to control the host innate immune response and adapt its metabolism to this nutrient-restricted niche. Our laboratory has shown that intracellular Francisella mainly relied on host amino acid as major gluconeogenic substrates and provided evidence that the host metabolism was also modified upon Francisella infection. We will review here our current understanding of how Francisella copes with the available nutrient sources provided by the host cell during the course of infection.
Collapse
Affiliation(s)
- Jason Ziveri
- Sorbonne Paris Cité, Université Paris DescartesParis, France; Institut National de la Santé et de la Recherche Médicale U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades, Team 11: Pathogenesis of Systemic InfectionsParis, France
| | - Monique Barel
- Sorbonne Paris Cité, Université Paris DescartesParis, France; Institut National de la Santé et de la Recherche Médicale U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades, Team 11: Pathogenesis of Systemic InfectionsParis, France
| | - Alain Charbit
- Sorbonne Paris Cité, Université Paris DescartesParis, France; Institut National de la Santé et de la Recherche Médicale U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades, Team 11: Pathogenesis of Systemic InfectionsParis, France
| |
Collapse
|
21
|
A spontaneous mutation in kdsD, a biosynthesis gene for 3 Deoxy-D-manno-Octulosonic Acid, occurred in a ciprofloxacin resistant strain of Francisella tularensis and caused a high level of attenuation in murine models of tularemia. PLoS One 2017; 12:e0174106. [PMID: 28328947 PMCID: PMC5362203 DOI: 10.1371/journal.pone.0174106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/03/2017] [Indexed: 12/26/2022] Open
Abstract
Francisella tularensis, a gram-negative facultative intracellular bacterial pathogen, is the causative agent of tularemia and able to infect many mammalian species, including humans. Because of its ability to cause a lethal infection, low infectious dose, and aerosolizable nature, F. tularensis subspecies tularensis is considered a potential biowarfare agent. Due to its in vitro efficacy, ciprofloxacin is one of the antibiotics recommended for post-exposure prophylaxis of tularemia. In order to identify therapeutics that will be efficacious against infections caused by drug resistant select-agents and to better understand the threat, we sought to characterize an existing ciprofloxacin resistant (CipR) mutant in the Schu S4 strain of F. tularensis by determining its phenotypic characteristics and sequencing the chromosome to identify additional genetic alterations that may have occurred during the selection process. In addition to the previously described genetic alterations, the sequence of the CipR mutant strain revealed several additional mutations. Of particular interest was a frameshift mutation within kdsD which encodes for an enzyme necessary for the production of 3-Deoxy-D-manno-Octulosonic Acid (KDO), an integral component of the lipopolysaccharide (LPS). A kdsD mutant was constructed in the Schu S4 strain. Although it was not resistant to ciprofloxacin, the kdsD mutant shared many phenotypic characteristics with the CipR mutant, including growth defects under different conditions, sensitivity to hydrophobic agents, altered LPS profiles, and attenuation in multiple models of murine tularemia. This study demonstrates that the KdsD enzyme is essential for Francisella virulence and may be an attractive therapeutic target for developing novel medical countermeasures.
Collapse
|
22
|
Suzuki J, Hashino M, Matsumoto S, Takano A, Kawabata H, Takada N, Andoh M, Oikawa Y, Kajita H, Uda A, Watanabe K, Shimizu T, Watarai M. Detection of Francisella tularensis and analysis of bacterial growth in ticks in Japan. Lett Appl Microbiol 2016; 63:240-6. [PMID: 27432517 DOI: 10.1111/lam.12616] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 11/28/2022]
Abstract
UNLABELLED Francisella tularensis is distributed in the Northern hemisphere and it is the bacterial agent responsible for tularaemia, a zoonotic disease. We collected 4 527 samples of DNA from ticks in Japan, which were then analysed by real-time PCR and nested PCR. Francisella DNA was detected by real-time PCR in 2·15% (45/2 093) of Ixodes ovatus, 0·66% (14/2 107) of I. persulcatus, 8·22% (6/73) of I. monospinosus and 0·72% (1/138) of Haemaphysalis flava specimens. Finally, Francisella DNA was detected by nested PCR in 42 and five samples I. ovatus and I. persulcatus, respectively, which were positive according to real-time PCR. Phylogenetic analysis showed that the sequence from I. ovatus and I. persulcatus were clustered with F. tularensis type B strains distributed in Eurasia. Microinjected live F. tularensis persisted in ticks, whereas heat-killed F. tularensis decreased. Microinjected F. tularensis hlyD mutant decreased in ticks significantly compared to parent strain, thereby suggesting that HlyD in F. tularensis contributes to the adaptation or survive of bacterial infection in ticks. SIGNIFICANCE AND IMPACTS OF THE STUDY Francisella tularensis has been detected in ticks, suggesting that it is a tick-borne pathogen. However, F. tularensis has not been detected in ticks in Japan since 1991. In this study, we performed a large-scale analysis of DNA isolated from ticks in Japan and detected F. tularensis by real-time polymerase chain reaction (PCR) and nested PCR. We found that F. tularensis could survive in ticks based on an experimental tick-infection model. We also identified a bacterial factor that contributes to survival in ticks. Our results suggest that ticks are candidate vectors that mediate F. tularensis infection in Japan.
Collapse
Affiliation(s)
- J Suzuki
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - M Hashino
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - S Matsumoto
- Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - A Takano
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - H Kawabata
- Laboratory of Systemic Infection, Department of Bacteriology-I, National Institute of Infectious Diseases, Tokyo, Japan
| | - N Takada
- Faculty of Medical Science, University of Fukui, Eiheiji, Fukui, Japan
| | - M Andoh
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Y Oikawa
- Department of Medical Zoology, Kanazawa Medical University, Kahoku, Ishikawa, Japan
| | - H Kajita
- Meat Inspection Center of Iwate Prefecture, Iwate, Japan
| | - A Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - K Watanabe
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - T Shimizu
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - M Watarai
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan. .,Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan.
| |
Collapse
|
23
|
Manipulation of host membranes by the bacterial pathogens Listeria, Francisella, Shigella and Yersinia. Semin Cell Dev Biol 2016; 60:155-167. [PMID: 27448494 PMCID: PMC7082150 DOI: 10.1016/j.semcdb.2016.07.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 01/07/2023]
Abstract
Bacterial pathogens display an impressive arsenal of molecular mechanisms that allow survival in diverse host niches. Subversion of plasma membrane and cytoskeletal functions are common themes associated to infection by both extracellular and intracellular pathogens. Moreover, intracellular pathogens modify the structure/stability of their membrane-bound compartments and escape degradation from phagocytic or autophagic pathways. Here, we review the manipulation of host membranes by Listeria monocytogenes, Francisella tularensis, Shigella flexneri and Yersinia spp. These four bacterial model pathogens exemplify generalized strategies as well as specific features observed during bacterial infection processes.
Collapse
|
24
|
Ma Z, Russo VC, Rabadi SM, Jen Y, Catlett SV, Bakshi CS, Malik M. Elucidation of a mechanism of oxidative stress regulation in Francisella tularensis live vaccine strain. Mol Microbiol 2016; 101:856-78. [PMID: 27205902 DOI: 10.1111/mmi.13426] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2016] [Indexed: 12/21/2022]
Abstract
Francisella tularensis causes a lethal human disease known as tularemia. As an intracellular pathogen, Francisella survives and replicates in phagocytic cells, such as macrophages. However, to establish an intracellular niche, Francisella must overcome the oxidative stress posed by the reactive oxygen species (ROS) produced by the infected macrophages. OxyR and SoxR/S are two well-characterized transcriptional regulators of oxidative stress responses in several bacterial pathogens. Only the OxyR homolog is present in F. tularensis, while the SoxR homologs are absent. The functional role of OxyR has not been established in F. tularensis. We demonstrate that OxyR regulates oxidative stress responses and provides resistance against ROS, thereby contributing to the survival of the F. tularensis subsp. holarctica live vaccine strain (LVS) in macrophages and epithelial cells and contributing to virulence in mice. Proteomic analysis reveals the differential production of 128 proteins in the oxyR gene deletion mutant, indicating its global regulatory role in the oxidative stress response of F. tularensis. Moreover, OxyR regulates the transcription of the primary antioxidant enzyme genes by binding directly to their putative promoter regions. This study demonstrates that OxyR is an important virulence factor and transcriptional regulator of the oxidative stress response of the F. tularensis LVS.
Collapse
Affiliation(s)
- Zhuo Ma
- Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Vincenzo C Russo
- Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | - Seham M Rabadi
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Yu Jen
- Department of Pathology, Westchester Medical Center, Valhalla, NY, USA
| | - Sally V Catlett
- Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| | | | - Meenakshi Malik
- Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| |
Collapse
|
25
|
Brissac T, Ziveri J, Ramond E, Tros F, Kock S, Dupuis M, Brillet M, Barel M, Peyriga L, Cahoreau E, Charbit A. Gluconeogenesis, an essential metabolic pathway for pathogenic Francisella. Mol Microbiol 2015; 98:518-34. [PMID: 26192619 DOI: 10.1111/mmi.13139] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2015] [Indexed: 01/23/2023]
Abstract
Intracellular multiplication and dissemination of the infectious bacterial pathogen Francisella tularensis implies the utilization of multiple host-derived nutrients. Here, we demonstrate that gluconeogenesis constitutes an essential metabolic pathway in Francisella pathogenesis. Indeed, inactivation of gene glpX, encoding the unique fructose 1,6-bisphosphatase of Francisella, severely impaired bacterial intracellular multiplication when cells were supplemented by gluconeogenic substrates such as glycerol or pyruvate. The ΔglpX mutant also showed a severe virulence defect in the mouse model, confirming the importance of this pathway during the in vivo life cycle of the pathogen. Isotopic profiling revealed the major role of the Embden-Meyerhof (glycolysis) pathway in glucose catabolism in Francisella and confirmed the importance of glpX in gluconeogenesis. Altogether, the data presented suggest that gluconeogenesis allows Francisella to cope with the limiting glucose availability it encounters during its infectious cycle by relying on host amino acids. Hence, targeting the gluconeogenic pathway might constitute an interesting therapeutic approach against this pathogen.
Collapse
Affiliation(s)
- Terry Brissac
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections Systémiques, Paris, France
| | - Jason Ziveri
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections Systémiques, Paris, France
| | - Elodie Ramond
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections Systémiques, Paris, France
| | - Fabiola Tros
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections Systémiques, Paris, France
| | - Stephanie Kock
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections Systémiques, Paris, France
| | - Marion Dupuis
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections Systémiques, Paris, France
| | - Magali Brillet
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections Systémiques, Paris, France
| | - Monique Barel
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections Systémiques, Paris, France
| | - Lindsay Peyriga
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, Toulouse, 31077, France.,INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, 31400, France.,CNRS, UMR5504, Toulouse, 31400, France
| | - Edern Cahoreau
- Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, Toulouse, 31077, France.,INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, 31400, France.,CNRS, UMR5504, Toulouse, 31400, France
| | - Alain Charbit
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, Paris, France.,INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades, Equipe 11: Pathogénie des Infections Systémiques, Paris, France
| |
Collapse
|
26
|
Plzakova L, Krocova Z, Kubelkova K, Macela A. Entry of Francisella tularensis into Murine B Cells: The Role of B Cell Receptors and Complement Receptors. PLoS One 2015; 10:e0132571. [PMID: 26161475 PMCID: PMC4498600 DOI: 10.1371/journal.pone.0132571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/16/2015] [Indexed: 01/06/2023] Open
Abstract
Francisella tularensis, the etiological agent of tularemia, is an intracellular pathogen that dominantly infects and proliferates inside phagocytic cells but can be seen also in non-phagocytic cells, including B cells. Although protective immunity is known to be almost exclusively associated with the type 1 pathway of cellular immunity, a significant role of B cells in immune responses already has been demonstrated. Whether their role is associated with antibody-dependent or antibody-independent B cell functions is not yet fully understood. The character of early events during B cell–pathogen interaction may determine the type of B cell response regulating the induction of adaptive immunity. We used fluorescence microscopy and flow cytometry to identify the basic requirements for the entry of F. tularensis into B cells within in vivo and in vitro infection models. Here, we present data showing that Francisella tularensis subsp. holarctica strain LVS significantly infects individual subsets of murine peritoneal B cells early after infection. Depending on a given B cell subset, uptake of Francisella into B cells is mediated by B cell receptors (BCRs) with or without complement receptor CR1/2. However, F. tularensis strain FSC200 ΔiglC and ΔftdsbA deletion mutants are defective in the ability to enter B cells. Once internalized into B cells, F. tularensis LVS intracellular trafficking occurs along the endosomal pathway, albeit without significant multiplication. The results strongly suggest that BCRs alone within the B-1a subset can ensure the internalization process while the BCRs on B-1b and B-2 cells need co-signaling from the co receptor containing CR1/2 to initiate F. tularensis engulfment. In this case, fluidity of the surface cell membrane is a prerequisite for the bacteria’s internalization. The results substantially underline the functional heterogeneity of B cell subsets in relation to F. tularensis.
Collapse
Affiliation(s)
- Lenka Plzakova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Zuzana Krocova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Klara Kubelkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
- * E-mail:
| | - Ales Macela
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| |
Collapse
|
27
|
RX-P873, a Novel Protein Synthesis Inhibitor, Accumulates in Human THP-1 Monocytes and Is Active against Intracellular Infections by Gram-Positive (Staphylococcus aureus) and Gram-Negative (Pseudomonas aeruginosa) Bacteria. Antimicrob Agents Chemother 2015; 59:4750-8. [PMID: 26014952 DOI: 10.1128/aac.00428-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/24/2015] [Indexed: 11/20/2022] Open
Abstract
The pyrrolocytosine RX-P873, a new broad-spectrum antibiotic in preclinical development, inhibits protein synthesis at the translation step. The aims of this work were to study RX-P873's ability to accumulate in eukaryotic cells, together with its activity against extracellular and intracellular forms of infection by Staphylococcus aureus and Pseudomonas aeruginosa, using a pharmacodynamic approach allowing the determination of maximal relative efficacies (Emax values) and bacteriostatic concentrations (Cs values) on the basis of Hill equations of the concentration-response curves. RX-P873's apparent concentration in human THP-1 monocytes was about 6-fold higher than the extracellular one. In broth, MICs ranged from 0.125 to 0.5 mg/liter (S. aureus) and 2 to 8 mg/liter (P. aeruginosa), with no significant shift in these values against strains resistant to currently used antibiotics being noted. In concentration-dependent experiments, the pharmacodynamic profile of RX-P873 was not influenced by the resistance phenotype of the strains. Emax values (expressed as the decrease in the number of CFU from that in the initial inoculum) against S. aureus and P. aeruginosa reached more than 4 log units and 5 log units in broth, respectively, and 0.7 log unit and 2.7 log units in infected THP-1 cells, respectively, after 24 h. Cs values remained close to the MIC in all cases, making RX-P873 more potent than antibiotics to which the strains were resistant (moxifloxacin, vancomycin, and daptomycin for S. aureus; ciprofloxacin and ceftazidime for P. aeruginosa). Kill curves in broth showed that RX-P873 was more rapidly bactericidal against P. aeruginosa than against S. aureus. Taken together, these data suggest that RX-P873 may constitute a useful alternative for infections involving intracellular bacteria, especially Gram-negative species.
Collapse
|
28
|
Hare RF, Hueffer K. Francisella novicida pathogenicity island encoded proteins were secreted during infection of macrophage-like cells. PLoS One 2014; 9:e105773. [PMID: 25158041 PMCID: PMC4144950 DOI: 10.1371/journal.pone.0105773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/25/2014] [Indexed: 01/13/2023] Open
Abstract
Intracellular pathogens and other organisms have evolved mechanisms to exploit host cells for their life cycles. Virulence genes of some intracellular bacteria responsible for these mechanisms are located in pathogenicity islands, such as secretion systems that secrete effector proteins. The Francisella pathogenicity island is required for phagosomal escape, intracellular replication, evasion of host immune responses, virulence, and encodes a type 6 secretion system. We hypothesize that some Francisella novicida pathogenicity island proteins are secreted during infection of host cells. To test this hypothesis, expression plasmids for all Francisella novicida FPI-encoded proteins with C-terminal and N-terminal epitope FLAG tags were developed. These plasmids expressed their respective epitope FLAG-tagged proteins at their predicted molecular weights. J774 murine macrophage-like cells were infected with Francisella novicida containing these plasmids. The FPI proteins expressed from these plasmids successfully restored the intramacrophage growth phenotype in mutants of the respective genes that were deficient for intramacrophage growth. Using these expression plasmids, the localization of the Francisella pathogenicity island proteins were examined via immuno-fluorescence microscopy within infected macrophage-like cells. Several Francisella pathogenicity island encoded proteins (IglABCDEFGHIJ, PdpACE, DotU and VgrG) were detected extracellularly and they were co-localized with the bacteria, while PdpBD and Anmk were not detected and thus remained inside bacteria. Proteins that were co-localized with bacteria had different patterns of localization. The localization of IglC was dependent on the type 6 secretion system. This suggests that some Francisella pathogenicity island proteins were secreted while others remain within the bacterium during infection of host cells as structural components of the secretion system and were necessary for secretion.
Collapse
Affiliation(s)
- Rebekah F. Hare
- Department of Biology and Wildlife, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Karsten Hueffer
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
- * E-mail:
| |
Collapse
|
29
|
Law HT, Sriram A, Fevang C, Nix EB, Nano FE, Guttman JA. IglC and PdpA are important for promoting Francisella invasion and intracellular growth in epithelial cells. PLoS One 2014; 9:e104881. [PMID: 25115488 PMCID: PMC4130613 DOI: 10.1371/journal.pone.0104881] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 07/17/2014] [Indexed: 01/06/2023] Open
Abstract
The highly infectious bacteria, Francisella tularensis, colonize a variety of organs and replicate within both phagocytic as well as non-phagocytic cells, to cause the disease tularemia. These microbes contain a conserved cluster of important virulence genes referred to as the Francisella Pathogenicity Island (FPI). Two of the most characterized FPI genes, iglC and pdpA, play a central role in bacterial survival and proliferation within phagocytes, but do not influence bacterial internalization. Yet, their involvement in non-phagocytic epithelial cell infections remains unexplored. To examine the functions of IglC and PdpA on bacterial invasion and replication during epithelial cell infections, we infected liver and lung epithelial cells with F. novicida and F. tularensis 'Type B' Live Vaccine Strain (LVS) deletion mutants (ΔiglC and ΔpdpA) as well as their respective gene complements. We found that deletion of either gene significantly reduced their ability to invade and replicate in epithelial cells. Gene complementation of iglC and pdpA partially rescued bacterial invasion and intracellular growth. Additionally, substantial LAMP1-association with both deletion mutants was observed up to 12 h suggesting that the absence of IglC and PdpA caused deficiencies in their ability to dissociate from LAMP1-positive Francisella Containing Vacuoles (FCVs). This work provides the first evidence that IglC and PdpA are important pathogenic factors for invasion and intracellular growth of Francisella in epithelial cells, and further highlights the discrete mechanisms involved in Francisella infections between phagocytic and non-phagocytic cells.
Collapse
Affiliation(s)
- H. T. Law
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Aarati Sriram
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Charlotte Fevang
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Eli B. Nix
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Francis E. Nano
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Julian Andrew Guttman
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
30
|
Brett ME, Respicio-Kingry LB, Yendell S, Ratard R, Hand J, Balsamo G, Scott-Waldron C, O'Neal C, Kidwell D, Yockey B, Singh P, Carpenter J, Hill V, Petersen JM, Mead P. Outbreak of Francisella novicida bacteremia among inmates at a louisiana correctional facility. Clin Infect Dis 2014; 59:826-33. [PMID: 24944231 DOI: 10.1093/cid/ciu430] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Francisella novicida is a rare cause of human illness despite its close genetic relationship to Francisella tularensis, the agent of tularemia. During April-July 2011, 3 inmates at a Louisiana correctional facility developed F. novicida bacteremia; 1 inmate died acutely. METHODS We interviewed surviving inmates; reviewed laboratory, medical, and housing records; and conducted an environmental investigation. Clinical and environmental samples were tested by culture, real-time polymerase chain reaction (PCR), and multigene sequencing. Isolates were typed by pulsed-field gel electrophoresis (PFGE). RESULTS Clinical isolates were identified as F. novicida based on sequence analyses of the 16S ribosomal RNA, pgm, and pdpD genes. PmeI PFGE patterns for the clinical isolates were indistinguishable. Source patients were aged 40-56 years, male, and African American, and all were immunocompromised. Two patients presented with signs of bacterial peritonitis; the third had pyomyositis of the thigh. The 3 inmates had no contact with one another; their only shared exposures were consumption of municipal water and of ice that was mass-produced at the prison in an unenclosed building. Swabs from one set of ice machines and associated ice scoops yielded evidence of F. novicida by PCR and sequencing. All other environmental specimens tested negative. CONCLUSIONS To our knowledge, this is the first reported common-source outbreak of F. novicida infections in humans. Epidemiological and laboratory evidence implicate contaminated ice as the likely vehicle of transmission; liver disease may be a predisposing factor. Clinicians, laboratorians, and public health officials should be aware of the potential for misidentification of F. novicida as F. tularensis.
Collapse
Affiliation(s)
- Meghan E Brett
- Epidemic Intelligence Service, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia Bacterial Diseases Branch
| | | | - Stephanie Yendell
- Epidemic Intelligence Service, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia Arboviral Diseases Branch, Division of Vector-Borne Diseases, CDC, Fort Collins, Colorado
| | | | - Julie Hand
- Louisiana Office of Public Health, New Orleans
| | | | | | - Catherine O'Neal
- Infectious Diseases, Louisiana State University Medical Center, Baton Rouge
| | - Donna Kidwell
- Louisiana Office of Public Health, Shreveport Regional Laboratory, Shreveport
| | | | - Preety Singh
- Louisiana Department of Corrections, Baton Rouge
| | | | - Vincent Hill
- Waterborne Disease Prevention Branch, CDC, Atlanta, Georgia
| | | | | |
Collapse
|
31
|
Jones BD, Faron M, Rasmussen JA, Fletcher JR. Uncovering the components of the Francisella tularensis virulence stealth strategy. Front Cell Infect Microbiol 2014; 4:32. [PMID: 24639953 PMCID: PMC3945745 DOI: 10.3389/fcimb.2014.00032] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/17/2014] [Indexed: 12/21/2022] Open
Abstract
Over the last decade, studies on the virulence of the highly pathogenic intracellular bacterial pathogen Francisella tularensis have increased dramatically. The organism produces an inert LPS, a capsule, escapes the phagosome to grow in the cytosol (FPI genes mediate phagosomal escape) of a variety of host cell types that include epithelial, endothelial, dendritic, macrophage, and neutrophil. This review focuses on the work that has identified and characterized individual virulence factors of this organism and we hope to highlight how these factors collectively function to produce the pathogenic strategy of this pathogen. In addition, several recent studies have been published characterizing F. tularensis mutants that induce host immune responses not observed in wild type F. tularensis strains that can induce protection against challenge with virulent F. tularensis. As more detailed studies with attenuated strains are performed, it will be possible to see how host models develop acquired immunity to Francisella. Collectively, detailed insights into the mechanisms of virulence of this pathogen are emerging that will allow the design of anti-infective strategies.
Collapse
Affiliation(s)
- Bradley D Jones
- Department of Microbiology, The University of Iowa Carver College of Medicine Iowa City, IA, USA ; The Genetics Program, The University of Iowa Carver College of Medicine Iowa City, IA, USA ; The Midwest Regional Center for Excellence in Biodefense and Emerging Infectious Disease Research, Washington University St. Louis, MO, USA
| | - Matthew Faron
- The Genetics Program, The University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Jed A Rasmussen
- Department of Microbiology, The University of Iowa Carver College of Medicine Iowa City, IA, USA
| | - Joshua R Fletcher
- The Genetics Program, The University of Iowa Carver College of Medicine Iowa City, IA, USA
| |
Collapse
|
32
|
Ma Z, Banik S, Rane H, Mora VT, Rabadi SM, Doyle CR, Thanassi DG, Bakshi CS, Malik M. EmrA1 membrane fusion protein of Francisella tularensis LVS is required for resistance to oxidative stress, intramacrophage survival and virulence in mice. Mol Microbiol 2014; 91:976-95. [PMID: 24397487 DOI: 10.1111/mmi.12509] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2014] [Indexed: 01/11/2023]
Abstract
Francisella tularensis is a category A biodefence agent that causes a fatal human disease known as tularaemia. The pathogenicity of F. tularensis depends on its ability to persist inside host immune cells primarily by resisting an attack from host-generated reactive oxygen and nitrogen species (ROS/RNS). Based on the ability of F. tularensis to resist high ROS/RNS levels, we have hypothesized that additional unknown factors act in conjunction with known antioxidant defences to render ROS resistance. By screening a transposon insertion library of F. tularensis LVS in the presence of hydrogen peroxide, we have identified an oxidant-sensitive mutant in putative EmrA1 (FTL_0687) secretion protein. The results demonstrate that the emrA1 mutant is highly sensitive to oxidants and several antimicrobial agents, and exhibits diminished intramacrophage growth that can be restored to wild-type F. tularensis LVS levels by either transcomplementation, inhibition of ROS generation or infection in NADPH oxidase deficient (gp91Phox(-/-)) macrophages. The emrA1 mutant is attenuated for virulence, which is restored by infection in gp91Phox(-/-) mice. Further, EmrA1 contributes to oxidative stress resistance by affecting secretion of Francisella antioxidant enzymes SodB and KatG. This study exposes unique links between transporter activity and the antioxidant defence mechanisms of F. tularensis.
Collapse
Affiliation(s)
- Zhuo Ma
- Department of Basic and Social Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
A wide spectrum of pathogenic bacteria and protozoa has adapted to an intracellular life-style, which presents several advantages, including accessibility to host cell metabolites and protection from the host immune system. Intracellular pathogens have developed strategies to enter and exit their host cells while optimizing survival and replication, progression through the life cycle, and transmission. Over the last decades, research has focused primarily on entry, while the exit process has suffered from neglect. However, pathogen exit is of fundamental importance because of its intimate association with dissemination, transmission, and inflammation. Hence, to fully understand virulence mechanisms of intracellular pathogens at cellular and systemic levels, it is essential to consider exit mechanisms to be a key step in infection. Exit from the host cell was initially viewed as a passive process, driven mainly by physical stress as a consequence of the explosive replication of the pathogen. It is now recognized as a complex, strategic process termed "egress," which is just as well orchestrated and temporally defined as entry into the host and relies on a dynamic interplay between host and pathogen factors. This review compares egress strategies of bacteria, pathogenic yeast, and kinetoplastid and apicomplexan parasites. Emphasis is given to recent advances in the biology of egress in mycobacteria and apicomplexans.
Collapse
|
34
|
MAIT cells are critical for optimal mucosal immune responses during in vivo pulmonary bacterial infection. Proc Natl Acad Sci U S A 2013; 110:E3119-28. [PMID: 23898209 DOI: 10.1073/pnas.1302799110] [Citation(s) in RCA: 281] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are "innate" T cells that express an invariant T-cell receptor α-chain restricted by the nonclassical MHC class I molecule MHC-related protein 1 (MR1). A recent discovery that MR1 presents vitamin B metabolites, presumably from pathogenic and/or commensal bacteria, distinguishes MAIT cells from peptide- or lipid-recognizing αβ T cells in the immune system. MAIT cells are activated by a wide variety of bacterial strains in vitro, but their role in defense against infectious assaults in vivo remains largely unknown. To investigate how MAIT cells contribute to mucosal immunity in vivo, we used a murine model of pulmonary infection by using the live vaccine strain (LVS) of Francisella tularensis. In the early acute phase of infection, MAIT cells expanded robustly in the lungs, where they preferentially accumulated after reaching their peak expansion in the late phase of infection. Throughout the course of infection, MAIT cells produced the critical cytokines IFN-γ, TNF-α, and IL-17A. Mechanistic studies showed that MAIT cells required both MR1 and IL-12 40 kDa subunit (IL-12p40) signals from infected antigen presenting cells to control F. tularensis LVS intracellular growth. Importantly, pulmonary F. tularensis LVS infection of MR1-deficient (MR1(-/-)) mice, which lack MAIT cells, revealed defects in early mucosal cytokine production, timely recruitment of IFN-γ-producing CD4(+) and CD8(+) T cells to the infected lungs, and control of pulmonary F. tularensis LVS growth. This study provides in vivo evidence demonstrating that MAIT cells are an important T-cell subset with activities that influence the innate and adaptive phases of mucosal immunity.
Collapse
|
35
|
Dotson RJ, Rabadi SM, Westcott EL, Bradley S, Catlett SV, Banik S, Harton JA, Bakshi CS, Malik M. Repression of inflammasome by Francisella tularensis during early stages of infection. J Biol Chem 2013; 288:23844-57. [PMID: 23821549 DOI: 10.1074/jbc.m113.490086] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Francisella tularensis is an important human pathogen responsible for causing tularemia. F. tularensis has long been developed as a biological weapon and is now classified as a category A agent by the Centers for Disease Control because of its possible use as a bioterror agent. F. tularensis represses inflammasome; a cytosolic multi-protein complex that activates caspase-1 to produce proinflammatory cytokines IL-1β and IL-18. However, the Francisella factors and the mechanisms through which F. tularensis mediates these suppressive effects remain relatively unknown. Utilizing a mutant of F. tularensis in FTL_0325 gene, this study investigated the mechanisms of inflammasome repression by F. tularensis. We demonstrate that muted IL-1β and IL-18 responses generated in macrophages infected with F. tularensis live vaccine strain (LVS) or the virulent SchuS4 strain are due to a predominant suppressive effect on TLR2-dependent signal 1. Our results also demonstrate that FTL_0325 of F. tularensis impacts proIL-1β expression as early as 2 h post-infection and delays activation of AIM2 and NLRP3-inflammasomes in a TLR2-dependent fashion. An enhanced activation of caspase-1 and IL-1β observed in FTL_0325 mutant-infected macrophages at 24 h post-infection was independent of both AIM2 and NLRP3. Furthermore, F. tularensis LVS delayed pyroptotic cell death of the infected macrophages in an FTL_0325-dependent manner during the early stages of infection. In vivo studies in mice revealed that suppression of IL-1β by FTL_0325 early during infection facilitates the establishment of a fulminate infection by F. tularensis. Collectively, this study provides evidence that F. tularensis LVS represses inflammasome activation and that F. tularensis-encoded FTL_0325 mediates this effect.
Collapse
Affiliation(s)
- Rachel J Dotson
- Albany College of Pharmacy and Health Sciences, Albany, New York 12208, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Phagocytosis and phagosome maturation are crucial processes in biology. Phagocytosis and the subsequent digestion of phagocytosed particles occur across a huge diversity of eukaryotes and can be achieved by many different cells within one organism. In parallel, diverse groups of pathogens have evolved mechanisms to avoid killing by phagocytic cells. The present review discusses a key innate immune cell, the macrophage, and highlights the myriad mechanisms microbes have established to escape phagocytic killing.
Collapse
Affiliation(s)
- Leanne M Smith
- Institute of Microbiology and Infection, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | | |
Collapse
|
37
|
IKKβ in myeloid cells controls the host response to lethal and sublethal Francisella tularensis LVS infection. PLoS One 2013; 8:e54124. [PMID: 23349802 PMCID: PMC3551972 DOI: 10.1371/journal.pone.0054124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 12/10/2012] [Indexed: 11/26/2022] Open
Abstract
Background The NF-κB activating kinases, IKKα and IKKβ, are key regulators of inflammation and immunity in response to infection by a variety of pathogens. Both IKKα and IKKβ have been reported to modulate either pro- or anti- inflammatory programs, which may be specific to the infectious organism or the target tissue. Here, we analyzed the requirements for the IKKs in myeloid cells in vivo in response to Francisella tularensis Live Vaccine Strain (Ft. LVS) infection. Methods and Principal Findings In contrast to prior reports in which conditional deletion of IKKβ in the myeloid lineage promoted survival and conferred resistance to an in vivo group B streptococcus infection, we show that mice with a comparable conditional deletion (IKKβ cKO) succumb more rapidly to lethal Ft. LVS infection and are unable to control bacterial growth at sublethal doses. Flow cytometry analysis of hepatic non-parenchymal cells from infected mice reveals that IKKβ inhibits M1 classical macrophage activation two days post infection, which has the collateral effect of suppressing IFN-γ+ CD8+ T cells. Despite this early enhanced inflammation, IKKβ cKO mice are unable to control infection; and this coincides with a shift toward M2a polarized macrophages. In comparison, we find that myeloid IKKα is dispensable for survival and bacterial control. However, both IKKα and IKKβ have effects on hepatic granuloma development. IKKα cKO mice develop fewer, but well-contained granulomas that accumulate excess necrotic cells after 9 days of infection; while IKKβ cKO mice develop numerous micro-granulomas that are less well contained. Conclusions Taken together our findings reveal that unlike IKKα, IKKβ has multiple, contrasting roles in this bacterial infection model by acting in an anti-inflammatory capacity at early times towards sublethal Ft. LVS infection; but in spite of this, macrophage IKKβ is also a critical effector for host survival and efficient pathogen clearance.
Collapse
|
38
|
Sridhar S, Sharma A, Kongshaug H, Nilsen F, Jonassen I. Whole genome sequencing of the fish pathogen Francisella noatunensis subsp. orientalis Toba04 gives novel insights into Francisella evolution and pathogenecity. BMC Genomics 2012; 13:598. [PMID: 23131096 PMCID: PMC3532336 DOI: 10.1186/1471-2164-13-598] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/31/2012] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Francisella is a genus of gram-negative bacterium highly virulent in fishes and human where F. tularensis is causing the serious disease tularaemia in human. Recently Francisella species have been reported to cause mortality in aquaculture species like Atlantic cod and tilapia. We have completed the sequencing and draft assembly of the Francisella noatunensis subsp. orientalisToba04 strain isolated from farmed Tilapia. Compared to other available Francisella genomes, it is most similar to the genome of Francisella philomiragia subsp. philomiragia, a free-living bacterium not virulent to human. RESULTS The genome is rearranged compared to the available Francisella genomes even though we found no IS-elements in the genome. Nearly 16% percent of the predicted ORFs are pseudogenes. Computational pathway analysis indicates that a number of the metabolic pathways are disrupted due to pseudogenes. Comparing the novel genome with other available Francisella genomes, we found around 2.5% of unique genes present in Francisella noatunensis subsp. orientalis Toba04 and a list of genes uniquely present in the human-pathogenic Francisella subspecies. Most of these genes might have transferred from bacterial species through horizontal gene transfer. Comparative analysis between human and fish pathogen also provide insights into genes responsible for pathogenecity. Our analysis of pseudogenes indicates that the evolution of Francisella subspecies's pseudogenes from Tilapia is old with large number of pseudogenes having more than one inactivating mutation. CONCLUSIONS The fish pathogen has lost non-essential genes some time ago. Evolutionary analysis of the Francisella genomes, strongly suggests that human and fish pathogenic Francisella species have evolved independently from free-living metabolically competent Francisella species. These findings will contribute to understanding the evolution of Francisella species and pathogenesis.
Collapse
Affiliation(s)
- Settu Sridhar
- Department of Informatics, University of Bergen, Norway
| | | | | | | | | |
Collapse
|
39
|
Barel M, Meibom K, Dubail I, Botella J, Charbit A. Francisella tularensis regulates the expression of the amino acid transporter SLC1A5 in infected THP-1 human monocytes. Cell Microbiol 2012; 14:1769-83. [PMID: 22804921 DOI: 10.1111/j.1462-5822.2012.01837.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/03/2012] [Accepted: 07/06/2012] [Indexed: 01/14/2023]
Abstract
Francisella tularensis, a Gram-negative bacterium that causes the disease tularemia in a large number of animal species, is thought to reside preferentially within macrophages in vivo. F. tularensis has developed mechanisms to rapidly escape from the phagosome into the cytoplasm of infected cells, a habitat with a rich supply of nutrients, ideal for multiplication. SLC1A5 is a neutral amino acid transporter expressed by human cells, which serves, along with SLC7A5 to equilibrate cytoplasmic amino acid pools. We herein analysed whether SLC1A5 was involved in F. tularensis intracellular multiplication. We demonstrate that expression of SLC1A5 is specifically upregulated by F. tularensis in infected THP-1 human monocytes. Furthermore, we show that SLC1A5 downregulation decreases intracellular bacterial multiplication, supporting the involvement of SLC1A5 in F. tularensis infection. Notably, after entry of F. tularensis into cells and during the whole infection, the highly glycosylated form of SLC1A5 was deglycosylated only by bacteria capable of cytosolic multiplication. These data suggest that intracellular replication of F. tularensis depends on the function of host cell SLC1A5. Our results are the first, which show that Francisella intracellular multiplication in human monocyte cytoplasm is associated with a post-translational modification of a eukaryotic amino acid transporter.
Collapse
Affiliation(s)
- Monique Barel
- INSERM U1002, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | | | | | | | | |
Collapse
|
40
|
Bacterial autophagy: restriction or promotion of bacterial replication? Trends Cell Biol 2012; 22:283-91. [PMID: 22555009 DOI: 10.1016/j.tcb.2012.03.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/29/2012] [Accepted: 03/29/2012] [Indexed: 12/31/2022]
Abstract
In order to survive inside the host cell, bacterial pathogens have evolved a variety of mechanisms to avoid or interfere with innate immune defenses. Several reports have shown that bacterial pathogens are targeted by the autophagy pathway, and autophagy has been increasingly recognized as an important defense mechanism to clear intracellular microbes. However, it now appears that some bacterial pathogens have evolved mechanisms to evade autophagic recognition or even co-opt the autophagy machinery for their own benefit as a replicative niche. A complete understanding of bacterial autophagy in vivo shall be critical to exploit autophagy and its therapeutic potential.
Collapse
|
41
|
Genome-wide RNAi screen in IFN-γ-treated human macrophages identifies genes mediating resistance to the intracellular pathogen Francisella tularensis. PLoS One 2012; 7:e31752. [PMID: 22359626 PMCID: PMC3281001 DOI: 10.1371/journal.pone.0031752] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 01/12/2012] [Indexed: 12/29/2022] Open
Abstract
Interferon-gamma (IFN-γ) inhibits intracellular replication of Francisella tularensis in human monocyte-derived macrophages (HMDM) and in mice, but the mechanisms of this protective effect are poorly characterized. We used genome-wide RNA interference (RNAi) screening in the human macrophage cell line THP-1 to identify genes that mediate the beneficial effects of IFN-γ on F. tularensis infection. A primary screen identified ∼200 replicated candidate genes. These were prioritized according to mRNA expression in IFN-γ-primed and F. tularensis-challenged macrophages. A panel of 20 top hits was further assessed by re-testing using individual shRNAs or siRNAs in THP-1 cells, HMDMs and primary human lung macrophages. Six of eight validated genes tested were also found to confer resistance to Listeria monocytogenes infection, suggesting a broadly shared host gene program for intracellular pathogens. The F. tularensis-validated hits included ‘druggable’ targets such as TNFRSF9, which encodes CD137. Treating HMDM with a blocking antibody to CD137 confirmed a beneficial role of CD137 in macrophage clearance of F. tularensis. These studies reveal a number of important mediators of IFN-γ activated host defense against intracellular pathogens, and implicate CD137 as a potential therapeutic target and regulator of macrophage interactions with Francisella tularensis.
Collapse
|
42
|
Straskova A, Cerveny L, Spidlova P, Dankova V, Belcic D, Santic M, Stulik J. Deletion of IglH in virulent Francisella tularensis subsp. holarctica FSC200 strain results in attenuation and provides protection against the challenge with the parental strain. Microbes Infect 2012; 14:177-87. [DOI: 10.1016/j.micinf.2011.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/18/2011] [Accepted: 08/30/2011] [Indexed: 12/24/2022]
|
43
|
The acid phosphatase AcpA is secreted in vitro and in macrophages by Francisella spp. Infect Immun 2011; 80:1088-97. [PMID: 22184418 DOI: 10.1128/iai.06245-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis is a remarkably infectious facultative intracellular pathogen that causes the zoonotic disease tularemia. Essential to the pathogenesis of F. tularensis is its ability to escape the destructive phagosomal environment and inhibit the host cell respiratory burst. F. tularensis subspecies encode a series of acid phosphatases, which have been reported to play important roles in Francisella phagosomal escape, inhibition of the respiratory burst, and intracellular survival. However, rigorous demonstration of acid phosphatase secretion by intracellular Francisella has not been shown. Here, we demonstrate that AcpA, which contributes most of the F. tularensis acid phosphatase activity, is secreted into the culture supernatant in vitro by F. novicida and F. tularensis subsp. holarctica LVS. In addition, both F. novicida and the highly virulent F. tularensis subsp. tularensis Schu S4 strain are able to secrete and also translocate AcpA into the host macrophage cytosol. This is the first evidence of acid phosphatase translocation during macrophage infection, and this knowledge will greatly enhance our understanding of the functions of these enzymes in Francisella pathogenesis.
Collapse
|
44
|
Law HT, Lin AEJ, Kim Y, Quach B, Nano FE, Guttman JA. Francisella tularensis uses cholesterol and clathrin-based endocytic mechanisms to invade hepatocytes. Sci Rep 2011; 1:192. [PMID: 22355707 PMCID: PMC3240981 DOI: 10.1038/srep00192] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 11/28/2011] [Indexed: 12/16/2022] Open
Abstract
Francisella tularensis are highly infectious microbes that cause the disease tularemia. Although much of the bacterial burden is carried in non-phagocytic cells, the strategies these pathogens use to invade these cells remains elusive. To examine these mechanisms we developed two in vitro Francisella-based infection models that recapitulate the non-phagocytic cell infections seen in livers of infected mice. Using these models we found that Francisella novicida exploit clathrin and cholesterol dependent mechanisms to gain entry into hepatocytes. We also found that the clathrin accessory proteins AP-2 and Eps15 co-localized with invading Francisella novicida as well as the Francisella Live Vaccine Strain (LVS) during hepatocyte infections. Interestingly, caveolin, a protein involved in the invasion of Francisella in phagocytic cells, was not required for non-phagocytic cell infections. These results demonstrate a novel endocytic mechanism adopted by Francisella and highlight the divergence in strategies these pathogens utilize between non-phagocytic and phagocytic cell invasion.
Collapse
Affiliation(s)
- H T Law
- Simon Fraser University Department of Biological Sciences Shrum Science Centre Room B8276 Burnaby, BC, V5A 1S6
| | | | | | | | | | | |
Collapse
|
45
|
Dresler J, Klimentova J, Stulik J. Francisella tularensis membrane complexome by blue native/SDS-PAGE. J Proteomics 2011; 75:257-69. [DOI: 10.1016/j.jprot.2011.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/09/2011] [Accepted: 05/03/2011] [Indexed: 12/11/2022]
|
46
|
Macrophage replication screen identifies a novel Francisella hydroperoxide resistance protein involved in virulence. PLoS One 2011; 6:e24201. [PMID: 21915295 PMCID: PMC3167825 DOI: 10.1371/journal.pone.0024201] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 08/02/2011] [Indexed: 11/25/2022] Open
Abstract
Francisella tularensis is a Gram-negative facultative intracellular pathogen and the causative agent of tularemia. Recently, genome-wide screens have identified Francisella genes required for virulence in mice. However, the mechanisms by which most of the corresponding proteins contribute to pathogenesis are still largely unknown. To further elucidate the roles of these virulence determinants in Francisella pathogenesis, we tested whether each gene was required for replication of the model pathogen F. novicida within macrophages, an important virulence trait. Fifty-three of the 224 genes tested were involved in intracellular replication, including many of those within the Francisella pathogenicity island (FPI), validating our results. Interestingly, over one third of the genes identified are annotated as hypothetical, indicating that F. novicida likely utilizes novel virulence factors for intracellular replication. To further characterize these virulence determinants, we selected two hypothetical genes to study in more detail. As predicted by our screen, deletion mutants of FTN_0096 and FTN_1133 were attenuated for replication in macrophages. The mutants displayed differing levels of attenuation in vivo, with the FTN_1133 mutant being the most attenuated. FTN_1133 has sequence similarity to the organic hydroperoxide resistance protein Ohr, an enzyme involved in the bacterial response to oxidative stress. We show that FTN_1133 is required for F. novicida resistance to, and degradation of, organic hydroperoxides as well as resistance to the action of the NADPH oxidase both in macrophages and mice. Furthermore, we demonstrate that F. holarctica LVS, a strain derived from a highly virulent human pathogenic species of Francisella, also requires this protein for organic hydroperoxide resistance as well as replication in macrophages and mice. This study expands our knowledge of Francisella's largely uncharacterized intracellular lifecycle and demonstrates that FTN_1133 is an important novel mediator of oxidative stress resistance.
Collapse
|
47
|
A Francisella tularensis locus required for spermine responsiveness is necessary for virulence. Infect Immun 2011; 79:3665-76. [PMID: 21670171 DOI: 10.1128/iai.00135-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tularemia is a debilitating febrile illness caused by the category A biodefense agent Francisella tularensis. This pathogen infects over 250 different hosts, has a low infectious dose, and causes high morbidity and mortality. Our understanding of the mechanisms by which F. tularensis senses and adapts to host environments is incomplete. Polyamines, including spermine, regulate the interactions of F. tularensis with host cells. However, it is not known whether responsiveness to polyamines is necessary for the virulence of the organism. Through transposon mutagenesis of F. tularensis subsp. holarctica live vaccine strain (LVS), we identified FTL_0883 as a gene important for spermine responsiveness. In-frame deletion mutants of FTL_0883 and FTT_0615c, the homologue of FTL_0883 in F. tularensis subsp. tularensis Schu S4 (Schu S4), elicited higher levels of cytokines from human and murine macrophages compared to wild-type strains. Although deletion of FTL_0883 attenuated LVS replication within macrophages in vitro, the Schu S4 mutant with a deletion in FTT_0615c replicated similarly to wild-type Schu S4. Nevertheless, both the LVS and the Schu S4 mutants were significantly attenuated in vivo. Growth and dissemination of the Schu S4 mutant was severely reduced in the murine model of pneumonic tularemia. This attenuation depended on host responses to elevated levels of proinflammatory cytokines. These data associate responsiveness to polyamines with tularemia pathogenesis and define FTL_0883/FTT_0615c as an F. tularensis gene important for virulence and evasion of the host immune response.
Collapse
|
48
|
Akimana C, Kwaik YA. Francisella-arthropod vector interaction and its role in patho-adaptation to infect mammals. Front Microbiol 2011; 2:34. [PMID: 21687425 PMCID: PMC3109307 DOI: 10.3389/fmicb.2011.00034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 02/07/2011] [Indexed: 11/13/2022] Open
Abstract
Francisella tularensis is a Gram-negative, intracellular, zoonotic bacterium, and is the causative agent of tularemia with a broad host range. Arthropods such as ticks, mosquitoes, and flies maintain F. tularensis in nature by transmitting the bacteria among small mammals. While the tick is largely believed to be a biological vector of F. tularensis, transmission by mosquitoes and flies is largely believed to be mechanical on the mouthpart through interrupted feedings. However, the mechanism of infection of the vectors by F. tularensis is not well understood. Since F. tularensis has not been localized in the salivary gland of the primary human biting ticks, it is thought that bacterial transmission by ticks is through mechanical inoculation of tick feces containing F. tularensis into the skin wound. Drosophila melanogaster is an established good arthropod model for arthropod vectors of tularemia, where F. tularensis infects hemocytes, and is found in hemolymph, as seen in ticks. In addition, phagosome biogenesis and robust intracellular proliferation of F. tularensis in arthropod-derived cells are similar to that in mammalian macrophages. Furthermore, bacterial factors required for infectivity of mammals are often required for infectivity of the fly by F. tularensis. Several host factors that contribute to F. tularensis intracellular pathogenesis in D. melanogaster have been identified, and F. tularensis targets some of the evolutionarily conserved eukaryotic processes to enable intracellular survival and proliferation in evolutionarily distant hosts.
Collapse
Affiliation(s)
- Christine Akimana
- Department of Microbiology and Immunology, College of Medicine, University of Louisville Louisville, KY, USA
| | | |
Collapse
|
49
|
Skeldon A, Saleh M. The inflammasomes: molecular effectors of host resistance against bacterial, viral, parasitic, and fungal infections. Front Microbiol 2011; 2:15. [PMID: 21716947 PMCID: PMC3109312 DOI: 10.3389/fmicb.2011.00015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/20/2011] [Indexed: 01/01/2023] Open
Abstract
The inflammasomes are large multi-protein complexes scaffolded by cytosolic pattern recognition receptors (PRRs) that form an important part of the innate immune system. They are activated following the recognition of microbial-associated molecular patterns or host-derived danger signals (danger-associated molecular patterns) by PRRs. This recognition results in the recruitment and activation of the pro-inflammatory protease caspase-1, which cleaves its preferred substrates pro-interleukin-1β (IL-1β) and pro-IL-18 into their mature biologically active cytokine forms. Through processing of a number of other cellular substrates, caspase-1 is also required for the release of “alarmins” and the induction and execution of an inflammatory form of cell death termed pyroptosis. A growing spectrum of inflammasomes have been identified in the host defense against a variety of pathogens. Reciprocally, pathogens have evolved effector strategies to antagonize the inflammasome pathway. In this review we discuss recent developments in the understanding of inflammasome-mediated recognition of bacterial, viral, parasitic, and fungal infections and the beneficial or detrimental effects of inflammasome signaling in host resistance.
Collapse
|
50
|
Schrallhammer M, Schweikert M, Vallesi A, Verni F, Petroni G. Detection of a novel subspecies of Francisella noatunensis as endosymbiont of the ciliate Euplotes raikovi. MICROBIAL ECOLOGY 2011; 61:455-464. [PMID: 21110016 DOI: 10.1007/s00248-010-9772-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 11/04/2010] [Indexed: 05/30/2023]
Abstract
Francisella are facultative intracellular bacteria causing severe disease in a broad range of animals. Two species are notable: Francisella tularensis, the causative organism of tularemia and a putative warfare agent, and Francisella noatunensis, an emerging fish pathogen causing significant losses in wild and farmed fish. Although various aspects of Francisella biology have been intensively studied, their natural reservoir in periods between massive outbreaks remains mysterious. Protists have been suspected to serve as a disguised vector of Francisella and co-culturing attempts demonstrate that some species are able to survive and multiply within protozoan cells. Here, we report the first finding of a natural occurrence of Francisella sp. as a protist endosymbiont. By molecular and morphological approaches, we identified intracellular bacteria localized in a strain of the marine ciliate Euplotes raikovi, isolated from the coast of Adriatic Sea. Phylogenetic analysis placed these endosymbionts within the genus Francisella, in close but distinct association with F. noatunensis. We suggest the establishment of a novel subspecies within F. noatunensis and propose the cytoplasmatic endosymbiont of E. raikovi as "Candidatus F. noatunensis subsp. endociliophora" subsp. nov.
Collapse
Affiliation(s)
- Martina Schrallhammer
- Dipartimento di Biologia, Università di Pisa, Via A Volta 4/6, IT-56126 Pisa, Italy.
| | | | | | | | | |
Collapse
|