1
|
Sengupta S, Azad RK. Leveraging comparative genomics to uncover alien genes in bacterial genomes. Microb Genom 2023; 9:mgen000939. [PMID: 36748570 PMCID: PMC9973850 DOI: 10.1099/mgen.0.000939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A significant challenge in bacterial genomics is to catalogue genes acquired through the evolutionary process of horizontal gene transfer (HGT). Both comparative genomics and sequence composition-based methods have often been invoked to quantify horizontally acquired genes in bacterial genomes. Comparative genomics methods rely on completely sequenced genomes and therefore the confidence in their predictions increases as the databases become more enriched in completely sequenced genomes. Recent developments including in microbial genome sequencing call for reassessment of alien genes based on information-rich resources currently available. We revisited the comparative genomics approach and developed a new algorithm for alien gene detection. Our algorithm compared favourably with the existing comparative genomics-based methods and is capable of detecting both recent and ancient transfers. It can be used as a standalone tool or in concert with other complementary algorithms for comprehensively cataloguing alien genes in bacterial genomes.
Collapse
Affiliation(s)
- Soham Sengupta
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, Texas, 76203, USA
| | - Rajeev K Azad
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, Texas, 76203, USA.,Department of Mathematics, University of North Texas, Denton, Texas, 76203, USA
| |
Collapse
|
2
|
Ajao YO, Rodríguez-Luna IC, Elufisan TO, Sánchez-Varela A, Cortés-Espinosa DV, Camilli A, Guo X. Bdellovibrio reynosensis sp. nov., from a Mexico soil sample. Int J Syst Evol Microbiol 2022; 72:005608. [PMID: 36748470 PMCID: PMC10723194 DOI: 10.1099/ijsem.0.005608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/02/2022] [Indexed: 12/23/2022] Open
Abstract
A novel predatory bacterium, strain LBG001T, has been isolated from Reynosa, Mexico. The 16S rRNA shares approximately 97 % sequence identity with many reported strains in the genus Bdellovibrio including the type strain Bdellovibrio bacteriovorus HD100T. Phylogenetic trees based on the 16S rRNA gene and on 30 concatenated housekeeping genes or core genes showed that LBG001T is on a separate branch from the B. bacteriovorus group. LBG0001T has a genome size of 3 582 323 bp with a G+C content of 43.1 mol %. The average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization values with other members of the genus Bdellovibrio (<79, <72 and <17 %, respectively) qualifies the strain to represent a new species in the genus. Strain LBG001T formed visible plaques on all 10 tested Gram-negative bacterial species. The phenotypic characteristics, phylogenetic analysis and genomic taxonomic studies support the classification of the strain as representing a new species for which the name Bdellovibrio reynosensis sp. nov. is proposed. The type strain is LBG001T(=ATCC TSD-288T =CM-CNRG 0932T).
Collapse
Affiliation(s)
- Yewande Olajumoke Ajao
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Cd Reynosa, Tamaulipas 88710, Mexico
| | | | | | - Alejandro Sánchez-Varela
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Cd Reynosa, Tamaulipas 88710, Mexico
| | | | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, Massachusetts, USA
| | - Xianwu Guo
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Cd Reynosa, Tamaulipas 88710, Mexico
| |
Collapse
|
3
|
Myxobacterial Genomics and Post-Genomics: A Review of Genome Biology, Genome Sequences and Related 'Omics Studies. Microorganisms 2021; 9:microorganisms9102143. [PMID: 34683464 PMCID: PMC8538405 DOI: 10.3390/microorganisms9102143] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/27/2022] Open
Abstract
Myxobacteria are fascinating and complex microbes. They prey upon other members of the soil microbiome by secreting antimicrobial proteins and metabolites, and will undergo multicellular development if starved. The genome sequence of the model myxobacterium Myxococcus xanthus DK1622 was published in 2006 and 15 years later, 163 myxobacterial genome sequences have now been made public. This explosion in genomic data has enabled comparative genomics analyses to be performed across the taxon, providing important insights into myxobacterial gene conservation and evolution. The availability of myxobacterial genome sequences has allowed system-wide functional genomic investigations into entire classes of genes. It has also enabled post-genomic technologies to be applied to myxobacteria, including transcriptome analyses (microarrays and RNA-seq), proteome studies (gel-based and gel-free), investigations into protein–DNA interactions (ChIP-seq) and metabolism. Here, we review myxobacterial genome sequencing, and summarise the insights into myxobacterial biology that have emerged as a result. We also outline the application of functional genomics and post-genomic approaches in myxobacterial research, highlighting important findings to emerge from seminal studies. The review also provides a comprehensive guide to the genomic datasets available in mid-2021 for myxobacteria (including 24 genomes that we have sequenced and which are described here for the first time).
Collapse
|
4
|
Ezzedine JA, Desdevises Y, Jacquet S. Bdellovibrio and like organisms: current understanding and knowledge gaps of the smallest cellular hunters of the microbial world. Crit Rev Microbiol 2021; 48:428-449. [PMID: 34595998 DOI: 10.1080/1040841x.2021.1979464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Almost sixty years ago, Bdellovibrio and like organisms (BALOs) were discovered as the first obligate bacterial predators of other bacteria known to science. Since then, they were shown to be diverse and ubiquitous in the environment, and to bear astonishing ecological, physiological, and metabolic capabilities. The last decade has seen important strides made in understanding the mechanistic basis of their life cycle, the dynamics of their interactions with prey, along with significant developments towards their use in medicine, agriculture, and industry. This review details these achievements, identify current understanding and knowledge gaps to encourage and guide future BALO research.
Collapse
Affiliation(s)
- Jade A Ezzedine
- Université Savoie Mont-Blanc, INRAE, CARRTEL, Thonon-les-Bains, France.,Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, IRIG, Université Grenoble Alpes, Grenoble, France
| | - Yves Desdevises
- CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Stéphan Jacquet
- Université Savoie Mont-Blanc, INRAE, CARRTEL, Thonon-les-Bains, France
| |
Collapse
|
5
|
Fuchsman CA, Stüeken EE. Using modern low-oxygen marine ecosystems to understand the nitrogen cycle of the Paleo- and Mesoproterozoic oceans. Environ Microbiol 2020; 23:2801-2822. [PMID: 32869502 DOI: 10.1111/1462-2920.15220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 11/29/2022]
Abstract
During the productive Paleoproterozoic (2.4-1.8 Ga) and less productive Mesoproterozoic (1.8-1.0 Ga), the ocean was suboxic to anoxic and multicellular organisms had not yet evolved. Here, we link geologic information about the Proterozoic ocean to microbial processes in modern low-oxygen systems. High iron concentrations and rates of Fe cycling in the Proterozoic are the largest differences from modern oxygen-deficient zones. In anoxic waters, which composed most of the Paleoproterozoic and ~40% of the Mesoproterozoic ocean, nitrogen cycling dominated. Rates of N2 production by denitrification and anammox were likely linked to sinking organic matter fluxes and in situ primary productivity under anoxic conditions. Additionally autotrophic denitrifiers could have used reduced iron or methane. 50% of the Mesoproterozoic ocean may have been suboxic, promoting nitrification and metal oxidation in the suboxic water and N2 O and N2 production by partial and complete denitrification in anoxic zones in organic aggregates. Sulfidic conditions may have composed ~10% of the Mesoproterozoic ocean focused along continental margins. Due to low nitrate concentrations in offshore regions, anammox bacteria likely dominated N2 production immediately above sulfidic zones, but in coastal regions, higher nitrate concentrations probably promoted complete S-oxidizing autotrophic denitrification at the sulfide interface.
Collapse
Affiliation(s)
- Clara A Fuchsman
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, 21613, USA
| | - Eva E Stüeken
- School of Earth & Environmental Sciences, University of St Andrews, St Andrews, KY16 9AL, Scotland, UK
| |
Collapse
|
6
|
Williams LE, Cullen N, DeGiorgis JA, Martinez KJ, Mellone J, Oser M, Wang J, Zhang Y. Variation in genome content and predatory phenotypes between Bdellovibrio sp. NC01 isolated from soil and B. bacteriovorus type strain HD100. MICROBIOLOGY (READING, ENGLAND) 2019; 165:1315-1330. [PMID: 31592759 PMCID: PMC7137782 DOI: 10.1099/mic.0.000861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/20/2019] [Indexed: 12/23/2022]
Abstract
Defining phenotypic and associated genotypic variation among Bdellovibrio may further our understanding of how this genus attacks and kills different Gram-negative bacteria. We isolated Bdellovibrio sp. NC01 from soil. Analysis of 16S rRNA gene sequences and average amino acid identity showed that NC01 belongs to a different species than the type species bacteriovorus. By clustering amino acid sequences from completely sequenced Bdellovibrio and comparing the resulting orthologue groups to a previously published analysis, we defined a 'core genome' of 778 protein-coding genes and identified four protein-coding genes that appeared to be missing only in NC01. To determine how horizontal gene transfer (HGT) may have impacted NC01 genome evolution, we performed genome-wide comparisons of Bdellovibrio nucleotide sequences, which indicated that eight NC01 genomic regions were likely acquired by HGT. To investigate how genome variation may impact predation, we compared protein-coding gene content between NC01 and the B. bacteriovorus type strain HD100, focusing on genes implicated as important in successful killing of prey. Of these, NC01 is missing ten genes that may play roles in lytic activity during predation. Compared to HD100, NC01 kills fewer tested prey strains and kills Escherichia coli ML35 less efficiently. NC01 causes a smaller log reduction in ML35, after which the prey population recovers and the NC01 population decreases. In addition, NC01 forms turbid plaques on lawns of E. coli ML35, in contrast to clear plaques formed by HD100. Linking phenotypic variation in interactions between Bdellovibrio and Gram-negative bacteria with underlying Bdellovibrio genome variation is valuable for understanding the ecological significance of predatory bacteria and evaluating their effectiveness in clinical applications.
Collapse
Affiliation(s)
| | - Nicole Cullen
- Department of Biology, Providence College, Providence, RI, USA
| | - Joseph A. DeGiorgis
- Department of Biology, Providence College, Providence, RI, USA
- Cellular Dynamics Program, Marine Biological Laboratory, Woods Hole, MA, USA
| | | | - Justina Mellone
- Department of Biology, Providence College, Providence, RI, USA
| | - Molly Oser
- Department of Biology, Providence College, Providence, RI, USA
| | - Jing Wang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
7
|
Exaptation at the molecular genetic level. SCIENCE CHINA-LIFE SCIENCES 2018; 62:437-452. [PMID: 30798493 DOI: 10.1007/s11427-018-9447-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 12/01/2018] [Indexed: 12/22/2022]
Abstract
The realization that body parts of animals and plants can be recruited or coopted for novel functions dates back to, or even predates the observations of Darwin. S.J. Gould and E.S. Vrba recognized a mode of evolution of characters that differs from adaptation. The umbrella term aptation was supplemented with the concept of exaptation. Unlike adaptations, which are restricted to features built by selection for their current role, exaptations are features that currently enhance fitness, even though their present role was not a result of natural selection. Exaptations can also arise from nonaptations; these are characters which had previously been evolving neutrally. All nonaptations are potential exaptations. The concept of exaptation was expanded to the molecular genetic level which aided greatly in understanding the enormous potential of neutrally evolving repetitive DNA-including transposed elements, formerly considered junk DNA-for the evolution of genes and genomes. The distinction between adaptations and exaptations is outlined in this review and examples are given. Also elaborated on is the fact that such distinctions are sometimes more difficult to determine; this is a widespread phenomenon in biology, where continua abound and clear borders between states and definitions are rare.
Collapse
|
8
|
Whole-Genome Sequencing and Comparative Genome Analysis Provided Insight into the Predatory Features and Genetic Diversity of Two Bdellovibrio Species Isolated from Soil. Int J Genomics 2018; 2018:9402073. [PMID: 29850478 PMCID: PMC5941755 DOI: 10.1155/2018/9402073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/24/2018] [Accepted: 02/19/2018] [Indexed: 01/07/2023] Open
Abstract
Bdellovibrio spp. are predatory bacteria with great potential as antimicrobial agents. Studies have shown that members of the genus Bdellovibrio exhibit peculiar characteristics that influence their ecological adaptations. In this study, whole genomes of two different Bdellovibrio spp. designated SKB1291214 and SSB218315 isolated from soil were sequenced. The core genes shared by all the Bdellovibrio spp. considered for the pangenome analysis including the epibiotic B. exovorus were 795. The number of unique genes identified in Bdellovibrio spp. SKB1291214, SSB218315, W, and B. exovorus JJS was 1343, 113, 857, and 1572, respectively. These unique genes encode hydrolytic, chemotaxis, and transporter proteins which might be useful for predation in the Bdellovibrio strains. Furthermore, the two Bdellovibrio strains exhibited differences based on the % GC content, amino acid identity, and 16S rRNA gene sequence. The 16S rRNA gene sequence of Bdellovibrio sp. SKB1291214 shared 99% identity with that of an uncultured Bdellovibrio sp. clone 12L 106 (a pairwise distance of 0.008) and 95-97% identity (a pairwise distance of 0.043) with that of other culturable terrestrial Bdellovibrio spp., including strain SSB218315. In Bdellovibrio sp. SKB1291214, 174 bp sequence was inserted at the host interaction (hit) locus region usually attributed to prey attachment, invasion, and development of host independent Bdellovibrio phenotypes. Also, a gene equivalent to Bd0108 in B. bacteriovorus HD100 was not conserved in Bdellovibrio sp. SKB1291214. The results of this study provided information on the genetic characteristics and diversity of the genus Bdellovibrio that can contribute to their successful applications as a biocontrol agent.
Collapse
|
9
|
Gupta S, Lemenze A, Donnelly RJ, Connell ND, Kadouri DE. Keeping it together: absence of genetic variation and DNA incorporation by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus during predation. Res Microbiol 2018; 169:237-243. [PMID: 29751066 DOI: 10.1016/j.resmic.2018.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/13/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022]
Abstract
The use of predatory bacteria as a potential live therapeutic to control human infection is gaining increased attention. Earlier work with Micavibrio spp. and Bdellovibrio spp. has demonstrated the ability of these predators to control drug-resistant Gram-negative pathogens, Tier-1 select agents and biofilms. Additional studies also confirmed that introducing high doses of the predators into animals does not negatively impact animal well-being and might assist in reducing bacterial burden in vivo. The survival of predators requires extreme proximity to the prey cell, which might bring about horizontal transfer of genetic material, such as genes encoding for pathogenic genetic islands that would indirectly facilitate the spread of genetic material to other organisms. In this study, we examined the genetic makeup of several lab isolates of the predators Bdellovibriobacteriovorus and Micavibrioaeruginosavorus that were cultured repeatedly and stored over a course of 13 years. We also conducted controlled experiments in which the predators were sequentially co-cultured on Klebsiella pneumoniae followed by genetic analysis of the predator. In both cases, we saw little genetic variation and no evidence of horizontally transferred chromosomal DNA from the prey during predator-prey interaction. Culturing the predators repeatedly did not cause any change in predation efficacy.
Collapse
Affiliation(s)
- Shilpi Gupta
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07101, USA
| | - Alexander Lemenze
- Department of Medicine and the Center for Emerging Pathogens, Rutgers, New Jersey Medical School, Newark, NJ 07101, USA; Molecular Resource Facility, Rutgers, New Jersey Medical School, Newark, NJ 07101, USA
| | - Robert J Donnelly
- Molecular Resource Facility, Rutgers, New Jersey Medical School, Newark, NJ 07101, USA
| | - Nancy D Connell
- Department of Medicine and the Center for Emerging Pathogens, Rutgers, New Jersey Medical School, Newark, NJ 07101, USA
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07101, USA.
| |
Collapse
|
10
|
Pepori AL, Bettini PP, Comparini C, Sarrocco S, Bonini A, Frascella A, Ghelardini L, Scala A, Vannacci G, Santini A. Geosmithia-Ophiostoma: a New Fungus-Fungus Association. MICROBIAL ECOLOGY 2018; 75:632-646. [PMID: 28875260 PMCID: PMC5856884 DOI: 10.1007/s00248-017-1062-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
In Europe as in North America, elms are devastated by Dutch elm disease (DED), caused by the alien ascomycete Ophiostoma novo-ulmi. Pathogen dispersal and transmission are ensured by local species of bark beetles, which established a novel association with the fungus. Elm bark beetles also transport the Geosmithia fungi genus that is found in scolytids' galleries colonized by O. novo-ulmi. Widespread horizontal gene transfer between O. novo-ulmi and Geosmithia was recently observed. In order to define the relation between these two fungi in the DED pathosystem, O. novo-ulmi and Geosmithia species from elm, including a GFP-tagged strain, were grown in dual culture and mycelial interactions were observed by light and fluorescence microscopy. Growth and sporulation of O. novo-ulmi in the absence or presence of Geosmithia were compared. The impact of Geosmithia on DED severity was tested in vivo by co-inoculating Geosmithia and O. novo-ulmi in elms. A close and stable relation was observed between the two fungi, which may be classified as mycoparasitism by Geosmithia on O. novo-ulmi. These results prove the existence of a new component in the complex of organisms involved in DED, which might be capable of reducing the disease impact.
Collapse
Affiliation(s)
- Alessia L Pepori
- Institute for Sustainable Plant Protection (IPSP-CNR), via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Priscilla P Bettini
- Department of Biology, University of Florence, via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy
| | - Cecilia Comparini
- Institute for Sustainable Plant Protection (IPSP-CNR), via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
- Department of Agri-Food Production and Environmental Science (DiSPAA), University of Florence, Piazzale delle Cascine 28, 50144, Florence, Italy
| | - Sabrina Sarrocco
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, via del Borghetto 80, 56124, Pisa, Italy
| | - Anna Bonini
- Department of Agri-Food Production and Environmental Science (DiSPAA), University of Florence, Piazzale delle Cascine 28, 50144, Florence, Italy
| | - Arcangela Frascella
- Department of Biology, University of Florence, via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy
| | - Luisa Ghelardini
- Institute for Sustainable Plant Protection (IPSP-CNR), via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
- Department of Agri-Food Production and Environmental Science (DiSPAA), University of Florence, Piazzale delle Cascine 28, 50144, Florence, Italy
| | - Aniello Scala
- Department of Agri-Food Production and Environmental Science (DiSPAA), University of Florence, Piazzale delle Cascine 28, 50144, Florence, Italy
| | - Giovanni Vannacci
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, via del Borghetto 80, 56124, Pisa, Italy
| | - Alberto Santini
- Institute for Sustainable Plant Protection (IPSP-CNR), via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
11
|
Prey Range and Genome Evolution of Halobacteriovorax marinus Predatory Bacteria from an Estuary. mSphere 2018; 3:mSphere00508-17. [PMID: 29359184 PMCID: PMC5760749 DOI: 10.1128/msphere.00508-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/05/2017] [Indexed: 02/04/2023] Open
Abstract
Predatory bacteria attack and digest other bacteria and therefore may play a role in shaping microbial communities. To investigate phenotypic and genotypic variation in saltwater-adapted predatory bacteria, we isolated Halobacteriovorax marinus BE01 from an estuary in Rhode Island, assayed whether it could attack different prey bacteria, and sequenced and analyzed its genome. We found that BE01 is a prey generalist, attacking bacteria from different phylogenetic groups and environments. Gene order and amino acid sequences are highly conserved between BE01 and the H. marinus type strain, SJ. By comparative genomics, we detected two regions of gene content difference that likely occurred via horizontal gene transfer events. Acquired genes encode functions such as modification of DNA, membrane synthesis and regulation of gene expression. Understanding genome evolution and variation in predation phenotypes among predatory bacteria will inform their development as biocontrol agents and clarify how they impact microbial communities. Halobacteriovorax strains are saltwater-adapted predatory bacteria that attack Gram-negative bacteria and may play an important role in shaping microbial communities. To understand how Halobacteriovorax strains impact ecosystems and develop them as biocontrol agents, it is important to characterize variation in predation phenotypes and investigate Halobacteriovorax genome evolution. We isolated Halobacteriovorax marinus BE01 from an estuary in Rhode Island using Vibrio from the same site as prey. Small, fast-moving, attack-phase BE01 cells attach to and invade prey cells, consistent with the intraperiplasmic predation strategy of the H. marinus type strain, SJ. BE01 is a prey generalist, forming plaques on Vibrio strains from the estuary, Pseudomonas from soil, and Escherichia coli. Genome analysis revealed extremely high conservation of gene order and amino acid sequences between BE01 and SJ, suggesting strong selective pressure to maintain the genome in this H. marinus lineage. Despite this, we identified two regions of gene content difference that likely resulted from horizontal gene transfer. Analysis of modal codon usage frequencies supports the hypothesis that these regions were acquired from bacteria with different codon usage biases than H. marinus. In one of these regions, BE01 and SJ carry different genes associated with mobile genetic elements. Acquired functions in BE01 include the dnd operon, which encodes a pathway for DNA modification, and a suite of genes involved in membrane synthesis and regulation of gene expression that was likely acquired from another Halobacteriovorax lineage. This analysis provides further evidence that horizontal gene transfer plays an important role in genome evolution in predatory bacteria. IMPORTANCE Predatory bacteria attack and digest other bacteria and therefore may play a role in shaping microbial communities. To investigate phenotypic and genotypic variation in saltwater-adapted predatory bacteria, we isolated Halobacteriovorax marinus BE01 from an estuary in Rhode Island, assayed whether it could attack different prey bacteria, and sequenced and analyzed its genome. We found that BE01 is a prey generalist, attacking bacteria from different phylogenetic groups and environments. Gene order and amino acid sequences are highly conserved between BE01 and the H. marinus type strain, SJ. By comparative genomics, we detected two regions of gene content difference that likely occurred via horizontal gene transfer events. Acquired genes encode functions such as modification of DNA, membrane synthesis and regulation of gene expression. Understanding genome evolution and variation in predation phenotypes among predatory bacteria will inform their development as biocontrol agents and clarify how they impact microbial communities.
Collapse
|
12
|
Herencias C, Prieto AM, Martínez V. Determination of the Predatory Capability of Bdellovibrio bacteriovorus HD100. Bio Protoc 2017; 7:e2177. [PMID: 34458487 DOI: 10.21769/bioprotoc.2177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 11/02/2022] Open
Abstract
Bdellovibrio bacteriovorus HD100 is an obligate predator that preys upon a wide variety of Gram negative bacteria. The biphasic growth cycle of Bdellovibrio includes a free-swimming attack phase and an intraperiplasmic growth phase, where the predator replicates its DNA and grows using the prey as a source of nutrients, finally dividing into individual cells (Sockett, 2009). Due to its obligatory predatory lifestyle, manipulation of Bdellovibrio requires two-member culturing techniques using selected prey microorganisms ( Lambert et al., 2003 ). In this protocol, we describe a detailed workflow to grow and quantify B. bacteriovorus HD100 and its predatory ability, to easily carry out these laborious and time-consuming techniques.
Collapse
Affiliation(s)
- Cristina Herencias
- Environmental Biology Department, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Auxiliadora M Prieto
- Environmental Biology Department, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Virginia Martínez
- Environmental Biology Department, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain.,Present address: Evolva Biotech A/S, Copenhagen, Denmark
| |
Collapse
|
13
|
Li N, Wang K, Williams HN, Sun J, Ding C, Leng X, Dong K. Analysis of gene gain and loss in the evolution of predatory bacteria. Gene 2016; 598:63-70. [PMID: 27825775 DOI: 10.1016/j.gene.2016.10.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/11/2016] [Accepted: 10/27/2016] [Indexed: 01/18/2023]
Abstract
Predatory bacteria are ubiquitously distributed in nature in including in aquatic environments, sewage, intestinal tracts of animals and humans, rhizophere and, soils. However, our understanding of their evolutionary history is limited. Results of recent studies have shown that acquiring novel genes is a major force driving bacterial evolution. Therefore, to gain a better understanding of the impact of gene gain and loss in the evolution of bacterial predators, this study employed comparative genomic approaches to identify core-set gene families and species-specific gene families, and model gene gain and loss events among 11 genomes that represented diverse lineages. In total, 1977 gene families were classified. Of these 509 (pattern 11111111111) were present all of the 11 species. Among the non-core set gene families, 52 were present only in saltwater bacteria predators and had no ortholog in the other genomes. Similarly 109 and 44 were present only in the genomes of Micavibrio spp. and Bdellovibrio spp., respectively. In this study, the gain loss mapping engine GLOOME was selected to analyze and estimate the expectations and probabilities of both gain and loss events in the predatory bacteria. In total, 354 gene families were involved in significant gene gain events, and 407 gene families were classified into gene loss events with high supported value. Moreover, 18 families from the core set gene family were identified as putative genes under positive selection. The results of this study suggest that acquisition of particular genes that encode functional proteins in metabolism and cellular processes and signaling, especially ABC systems, may help bacterial predators adapt to surrounding environmental changes and present different predation strategies for survival in their habitats.
Collapse
Affiliation(s)
- Nan Li
- College of Marine Science and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China; School of the Environment, Florida A&M University, Tallahassee, FL, USA.
| | - Kai Wang
- Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Science, Chinese Academy of Science, Shanghai, China
| | - Henry N Williams
- School of the Environment, Florida A&M University, Tallahassee, FL, USA
| | - Jun Sun
- College of Marine Science and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Changling Ding
- College of Marine Science and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoyun Leng
- College of Marine Science and Environmental Sciences, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ke Dong
- Department of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| |
Collapse
|
14
|
Pérez J, Moraleda-Muñoz A, Marcos-Torres FJ, Muñoz-Dorado J. Bacterial predation: 75 years and counting! Environ Microbiol 2016; 18:766-79. [PMID: 26663201 DOI: 10.1111/1462-2920.13171] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 11/30/2022]
Abstract
The first documented study on bacterial predation was carried out using myxobacteria three quarters of a century ago. Since then, many predatory strains, diverse hunting strategies, environmental consequences and potential applications have been reported by groups all over the world. Now we know that predatory bacteria are distributed in a wide variety of environments and that interactions between predatory and non-predatory populations seem to be the most important factor in bacterial selection and mortality in some ecosystems. Bacterial predation has now been proposed as an evolutionary driving force. The structure and diversity of the predatory bacterial community is beginning to be recognized as an important factor in biodiversity due to its potential role in controlling and modelling bacterial populations in the environment. In this paper, we review the current understanding of bacterial predation, going over the strategies used by the main predatory bacteria to kill their prey. We have also reviewed and integrated the accumulated advances of the last 75 years with the interesting new insights that are provided by the analyses of genomes, predatomes, predatosomes and other comparative genomics studies, focusing on potential applications that derive from all of these areas of study.
Collapse
Affiliation(s)
- Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, E-18071, Granada, Spain
| | - Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, E-18071, Granada, Spain
| | - Francisco Javier Marcos-Torres
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, E-18071, Granada, Spain
| | - José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, E-18071, Granada, Spain
| |
Collapse
|
15
|
Lambert C, Cadby IT, Till R, Bui NK, Lerner TR, Hughes WS, Lee DJ, Alderwick LJ, Vollmer W, Sockett ER, Lovering AL. Ankyrin-mediated self-protection during cell invasion by the bacterial predator Bdellovibrio bacteriovorus. Nat Commun 2015; 6:8884. [PMID: 26626559 PMCID: PMC4686830 DOI: 10.1038/ncomms9884] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/12/2015] [Indexed: 11/30/2022] Open
Abstract
Predatory Bdellovibrio bacteriovorus are natural antimicrobial organisms, killing other bacteria by whole-cell invasion. Self-protection against prey-metabolizing enzymes is important for the evolution of predation. Initial prey entry involves the predator's peptidoglycan DD-endopeptidases, which decrosslink cell walls and prevent wasteful entry by a second predator. Here we identify and characterize a self-protection protein from B. bacteriovorus, Bd3460, which displays an ankyrin-based fold common to intracellular pathogens of eukaryotes. Co-crystal structures reveal Bd3460 complexation of dual targets, binding a conserved epitope of each of the Bd3459 and Bd0816 endopeptidases. Complexation inhibits endopeptidase activity and cell wall decrosslinking in vitro. Self-protection is vital - ΔBd3460 Bdellovibrio deleteriously decrosslink self-peptidoglycan upon invasion, adopt a round morphology, and lose predatory capacity and cellular integrity. Our analysis provides the first mechanistic examination of self-protection in Bdellovibrio, documents protection-multiplicity for products of two different genomic loci, and reveals an important evolutionary adaptation to an invasive predatory bacterial lifestyle.
Collapse
Affiliation(s)
- Carey Lambert
- Centre for Genetics and Genomics, School of Biology, Nottingham University, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Ian T. Cadby
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Rob Till
- Centre for Genetics and Genomics, School of Biology, Nottingham University, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Nhat Khai Bui
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Thomas R. Lerner
- Centre for Genetics and Genomics, School of Biology, Nottingham University, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - William S. Hughes
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - David J. Lee
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Luke J. Alderwick
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Elizabeth R. Sockett
- Centre for Genetics and Genomics, School of Biology, Nottingham University, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Andrew L. Lovering
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
16
|
Whitworth DE. Genome-wide analysis of myxobacterial two-component systems: genome relatedness and evolutionary changes. BMC Genomics 2015; 16:780. [PMID: 26463047 PMCID: PMC4603909 DOI: 10.1186/s12864-015-2018-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/08/2015] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Two-component systems (TCSs) are abundant prokaryotic signaling pathways, whose evolution is of particular importance because of their role in bacterial pathogenicity. Comparative genomics can provide important insights into the evolution of these genes, but inferences are dependent on the relatedness of the compared genomes. This study investigated the relationship between evolutionary distance and TCS evolution in myxobacterial genomes, of which there are several sequenced examples, of varying relatedness, and which encode large numbers of TCSs. METHODS Myxobacterial TCS gene sets were compared, orthologues defined, and changes in TCS properties such as gene organisation, domain architecture and size identified. RESULTS Genome relatedness/evolutionary distance was found to have a large effect on the apparent frequency of evolutionary events affecting TCS genes, but not on the relative dominance of different types of mutations. Large (≥1 gene) indels were the most common changes, often giving rise to gene organisation changes. Smaller indels were also common, sometimes changing domain architecture, and/or leading to pseudogene formation. Individuality of myxobacterial TCS gene sets seems primarily due to lineage specific gene loss. However, there is also evidence of extensive acquisition of genes by lateral transfer, with gene duplication also creating new TCS genes. CONCLUSIONS This study provides catalogues of myxobacterial TCS gene sets and their orthology relationships, benchmarked against genome relatedness. It also provides insights into the relationship between evolutionary distance and the inference of TCS estudies of TCS evolution beyond the myxobacteriavolution, which may be important for studies of TCS evolutiThe online version of this articleon beyond the myxobacteria.
Collapse
Affiliation(s)
- David E Whitworth
- Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Ceredigion, SY23 3DD, UK.
| |
Collapse
|
17
|
Abstract
Horizontal or Lateral Gene Transfer (HGT or LGT) is the transmission of portions of genomic DNA between organisms through a process decoupled from vertical inheritance. In the presence of HGT events, different fragments of the genome are the result of different evolutionary histories. This can therefore complicate the investigations of evolutionary relatedness of lineages and species. Also, as HGT can bring into genomes radically different genotypes from distant lineages, or even new genes bearing new functions, it is a major source of phenotypic innovation and a mechanism of niche adaptation. For example, of particular relevance to human health is the lateral transfer of antibiotic resistance and pathogenicity determinants, leading to the emergence of pathogenic lineages. Computational identification of HGT events relies upon the investigation of sequence composition or evolutionary history of genes. Sequence composition-based ("parametric") methods search for deviations from the genomic average, whereas evolutionary history-based ("phylogenetic") approaches identify genes whose evolutionary history significantly differs from that of the host species. The evaluation and benchmarking of HGT inference methods typically rely upon simulated genomes, for which the true history is known. On real data, different methods tend to infer different HGT events, and as a result it can be difficult to ascertain all but simple and clear-cut HGT events.
Collapse
Affiliation(s)
| | - Nives Škunca
- ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Zurich, Switzerland
| | | | - Christophe Dessimoz
- University College London, London, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
18
|
Prieto A, Escapa IF, Martínez V, Dinjaski N, Herencias C, de la Peña F, Tarazona N, Revelles O. A holistic view of polyhydroxyalkanoate metabolism inPseudomonas putida. Environ Microbiol 2015; 18:341-57. [DOI: 10.1111/1462-2920.12760] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 12/12/2014] [Accepted: 12/20/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Auxiliadora Prieto
- Department of Environmental Biology; Centro de Investigaciones Biológicas; CSIC; Madrid 28040 Spain
| | - Isabel F. Escapa
- Department of Environmental Biology; Centro de Investigaciones Biológicas; CSIC; Madrid 28040 Spain
| | - Virginia Martínez
- Department of Environmental Biology; Centro de Investigaciones Biológicas; CSIC; Madrid 28040 Spain
| | - Nina Dinjaski
- Department of Environmental Biology; Centro de Investigaciones Biológicas; CSIC; Madrid 28040 Spain
| | - Cristina Herencias
- Department of Environmental Biology; Centro de Investigaciones Biológicas; CSIC; Madrid 28040 Spain
| | - Fernando de la Peña
- Department of Environmental Biology; Centro de Investigaciones Biológicas; CSIC; Madrid 28040 Spain
| | - Natalia Tarazona
- Department of Environmental Biology; Centro de Investigaciones Biológicas; CSIC; Madrid 28040 Spain
| | - Olga Revelles
- Department of Environmental Biology; Centro de Investigaciones Biológicas; CSIC; Madrid 28040 Spain
| |
Collapse
|
19
|
Zhi XY, Yao JC, Tang SK, Huang Y, Li HW, Li WJ. The futalosine pathway played an important role in menaquinone biosynthesis during early prokaryote evolution. Genome Biol Evol 2014; 6:149-60. [PMID: 24398376 PMCID: PMC3914697 DOI: 10.1093/gbe/evu007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Menaquinone (MK) is an important component of the electron-transfer system in prokaryotes. One of its precursors, 1,4-dihydroxy-2-naphthoate, can be synthesized from chorismate by the classical MK pathway. Interestingly, in some bacteria, chorismate can also be converted to 1,4-dihydroxy-6-naphthoate by four enzymes encoded by mqnABCD in an alternative futalosine pathway. In this study, six crucial enzymes belonging to these two independent nonhomologous pathways were identified in the predicted proteomes of prokaryotes representing a broad phylogenetic distribution. Although the classical MK pathway was found in 32.1% of the proteomes, more than twice the proportion containing the futalosine pathway, the latter was found in a broader taxonomic range of organisms (18 of 31 phyla). The prokaryotes equipped with the classical MK pathway were almost all aerobic or facultatively anaerobic, but those with the futalosine pathway were not only aerobic or facultatively anaerobic but also anaerobic. Phylogenies of enzymes of the classical MK pathway indicated that its genes in archaea were probably acquired by an ancient horizontal gene transfer from bacterial donors. Therefore, the organization of the futalosine pathway likely predated that of the classical MK pathway in the evolutionary history of prokaryotes.
Collapse
Affiliation(s)
- Xiao-Yang Zhi
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and the Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, People's Republic of China
| | | | | | | | | | | |
Collapse
|
20
|
Karunker I, Rotem O, Dori-Bachash M, Jurkevitch E, Sorek R. A global transcriptional switch between the attack and growth forms of Bdellovibrio bacteriovorus. PLoS One 2013; 8:e61850. [PMID: 23613952 PMCID: PMC3627812 DOI: 10.1371/journal.pone.0061850] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/14/2013] [Indexed: 11/18/2022] Open
Abstract
Bdellovibrio bacteriovorus is an obligate predator of bacteria ubiquitously found in the environment. Its life cycle is composed of two essential phases: a free-living, non-replicative, fast swimming attack phase (AP) wherein the predator searches for prey; and a non-motile, actively dividing growth phase (GP) in which it consumes the prey. The molecular regulatory mechanisms governing the switch between AP and GP are largely unknown. We used RNA-seq to generate a single-base-resolution map of the Bdellovibrio transcriptome in AP and GP, revealing a specific "AP" transcriptional program, which is largely mutually exclusive of the GP program. Based on the expression map, most genes in the Bdellovibrio genome are classified as "AP only" or "GP only". We experimentally generated a genome-wide map of 140 AP promoters, controlling the majority of AP-specific genes. This revealed a common sigma-like DNA binding site highly similar to the E. coli flagellar genes regulator sigma28 (FliA). Further analyses suggest that FliA has evolved to become a global AP regulator in Bdellovibrio. Our results also reveal a non-coding RNA that is massively expressed in AP. This ncRNA contains a c-di-GMP riboswitch. We suggest it functions as an intracellular reservoir for c-di-GMP, playing a role in the rapid switch from AP to GP.
Collapse
Affiliation(s)
- Iris Karunker
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Or Rotem
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mally Dori-Bachash
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
21
|
Eveleigh RJ, Meehan CJ, Archibald JM, Beiko RG. Being Aquifex aeolicus: Untangling a hyperthermophile's checkered past. Genome Biol Evol 2013; 5:2478-97. [PMID: 24281050 PMCID: PMC3879981 DOI: 10.1093/gbe/evt195] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2013] [Indexed: 12/20/2022] Open
Abstract
Lateral gene transfer (LGT) is an important factor contributing to the evolution of prokaryotic genomes. The Aquificae are a hyperthermophilic bacterial group whose genes show affiliations to many other lineages, including the hyperthermophilic Thermotogae, the Proteobacteria, and the Archaea. Previous phylogenomic analyses focused on Aquifex aeolicus identified Thermotogae and Aquificae either as successive early branches or sisters in a rooted bacterial phylogeny, but many phylogenies and cellular traits have suggested a stronger affiliation with the Epsilonproteobacteria. Different scenarios for the evolution of the Aquificae yield different phylogenetic predictions. Here, we outline these scenarios and consider the fit of the available data, including three sequenced Aquificae genomes, to different sets of predictions. Evidence from phylogenetic profiles and trees suggests that the Epsilonproteobacteria have the strongest affinities with the three Aquificae analyzed. However, this pattern is shown by only a minority of encoded proteins, and the Archaea, many lineages of thermophilic bacteria, and members of genus Clostridium and class Deltaproteobacteria also show strong connections to the Aquificae. The phylogenetic affiliations of different functional subsystems showed strong biases: Most but not all genes implicated in the core translational apparatus tended to group Aquificae with Thermotogae, whereas a wide range of metabolic and cellular processes strongly supported the link between Aquificae and Epsilonproteobacteria. Depending on which sets of genes are privileged, either Thermotogae or Epsilonproteobacteria is the most plausible adjacent lineage to the Aquificae. Both scenarios require massive sharing of genes to explain the history of this enigmatic group, whose history is further complicated by specific affinities of different members of Aquificae to different partner lineages.
Collapse
Affiliation(s)
- Robert J.M. Eveleigh
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Conor J. Meehan
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John M. Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert G. Beiko
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
22
|
Pasternak Z, Pietrokovski S, Rotem O, Gophna U, Lurie-Weinberger MN, Jurkevitch E. By their genes ye shall know them: genomic signatures of predatory bacteria. ISME JOURNAL 2012. [PMID: 23190728 DOI: 10.1038/ismej.2012.149] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Predatory bacteria are taxonomically disparate, exhibit diverse predatory strategies and are widely distributed in varied environments. To date, their predatory phenotypes cannot be discerned in genome sequence data thereby limiting our understanding of bacterial predation, and of its impact in nature. Here, we define the 'predatome,' that is, sets of protein families that reflect the phenotypes of predatory bacteria. The proteomes of all sequenced 11 predatory bacteria, including two de novo sequenced genomes, and 19 non-predatory bacteria from across the phylogenetic and ecological landscapes were compared. Protein families discriminating between the two groups were identified and quantified, demonstrating that differences in the proteomes of predatory and non-predatory bacteria are large and significant. This analysis allows predictions to be made, as we show by confirming from genome data an over-looked bacterial predator. The predatome exhibits deficiencies in riboflavin and amino acids biosynthesis, suggesting that predators obtain them from their prey. In contrast, these genomes are highly enriched in adhesins, proteases and particular metabolic proteins, used for binding to, processing and consuming prey, respectively. Strikingly, predators and non-predators differ in isoprenoid biosynthesis: predators use the mevalonate pathway, whereas non-predators, like almost all bacteria, use the DOXP pathway. By defining predatory signatures in bacterial genomes, the predatory potential they encode can be uncovered, filling an essential gap for measuring bacterial predation in nature. Moreover, we suggest that full-genome proteomic comparisons are applicable to other ecological interactions between microbes, and provide a convenient and rational tool for the functional classification of bacteria.
Collapse
Affiliation(s)
- Zohar Pasternak
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot, Israel.
| | | | | | | | | | | |
Collapse
|
23
|
Genome analysis of a simultaneously predatory and prey-independent, novel Bdellovibrio bacteriovorus from the River Tiber, supports in silico predictions of both ancient and recent lateral gene transfer from diverse bacteria. BMC Genomics 2012. [PMID: 23181807 PMCID: PMC3539863 DOI: 10.1186/1471-2164-13-670] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Evolution equipped Bdellovibrio bacteriovorus predatory bacteria to invade other bacteria, digesting and replicating, sealed within them thus preventing nutrient-sharing with organisms in the surrounding environment. Bdellovibrio were previously described as “obligate predators” because only by mutations, often in gene bd0108, are 1 in ~1x107 of predatory lab strains of Bdellovibrio converted to prey-independent growth. A previous genomic analysis of B. bacteriovorus strain HD100 suggested that predatory consumption of prey DNA by lytic enzymes made Bdellovibrio less likely than other bacteria to acquire DNA by lateral gene transfer (LGT). However the Doolittle and Pan groups predicted, in silico, both ancient and recent lateral gene transfer into the B. bacteriovorus HD100 genome. Results To test these predictions, we isolated a predatory bacterium from the River Tiber- a good potential source of LGT as it is rich in diverse bacteria and organic pollutants- by enrichment culturing with E. coli prey cells. The isolate was identified as B. bacteriovorus and named as strain Tiberius. Unusually, this Tiberius strain showed simultaneous prey-independent growth on organic nutrients and predatory growth on live prey. Despite the prey-independent growth, the homolog of bd0108 did not have typical prey-independent-type mutations. The dual growth mode may reflect the high carbon content of the river, and gives B. bacteriovorus Tiberius extended non-predatory contact with the other bacteria present. The HD100 and Tiberius genomes were extensively syntenic despite their different cultured-terrestrial/freshly-isolated aquatic histories; but there were significant differences in gene content indicative of genomic flux and LGT. Gene content comparisons support previously published in silico predictions for LGT in strain HD100 with substantial conservation of genes predicted to have ancient LGT origins but little conservation of AT-rich genes predicted to be recently acquired. Conclusions The natural niche and dual predatory, and prey-independent growth of the B. bacteriovorus Tiberius strain afforded it extensive non-predatory contact with other marine and freshwater bacteria from which LGT is evident in its genome. Thus despite their arsenal of DNA-lytic enzymes; Bdellovibrio are not always predatory in natural niches and their genomes are shaped by acquiring whole genes from other bacteria.
Collapse
|
24
|
Identification and biochemical evidence of a medium-chain-length polyhydroxyalkanoate depolymerase in the Bdellovibrio bacteriovorus predatory hydrolytic arsenal. Appl Environ Microbiol 2012; 78:6017-26. [PMID: 22706067 DOI: 10.1128/aem.01099-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The obligate predator Bdellovibrio bacteriovorus HD100 shows a large set of proteases and other hydrolases as part of its hydrolytic arsenal needed for its predatory life cycle. We present genetic and biochemical evidence that open reading frame (ORF) Bd3709 of B. bacteriovorus HD100 encodes a novel medium-chain-length polyhydroxyalkanoate (mcl-PHA) depolymerase (PhaZ(Bd)). The primary structure of PhaZ(Bd) suggests that this enzyme belongs to the α/β-hydrolase fold family and has a typical serine hydrolase catalytic triad (serine-histidine-aspartic acid) in agreement with other PHA depolymerases and lipases. PhaZ(Bd) has been extracellularly produced using different hypersecretor Tol-pal mutants of Escherichia coli and Pseudomonas putida as recombinant hosts. The recombinant PhaZ(Bd) has been characterized, and its biochemical properties have been compared to those of other PHA depolymerases. The enzyme behaves as a serine hydrolase that is inhibited by phenylmethylsulfonyl fluoride. It is also affected by the reducing agent dithiothreitol and nonionic detergents like Tween 80. PhaZ(Bd) is an endoexohydrolase that cleaves both large and small PHA molecules, producing mainly dimers but also monomers and trimers. The enzyme specifically degrades mcl-PHA and is inactive toward short-chain-length polyhydroxyalkanoates (scl-PHA) like polyhydroxybutyrate (PHB). These studies shed light on the potentiality of these predators as sources of new biocatalysts, such as an mcl-PHA depolymerase, for the production of enantiopure hydroxyalkanoic acids and oligomers as building blocks for the synthesis of biobased polymers.
Collapse
|
25
|
De Cruz P, Prideaux L, Wagner J, Ng SC, McSweeney C, Kirkwood C, Morrison M, Kamm MA. Characterization of the gastrointestinal microbiota in health and inflammatory bowel disease. Inflamm Bowel Dis 2012; 18:372-90. [PMID: 21604329 DOI: 10.1002/ibd.21751] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 03/31/2011] [Indexed: 02/06/2023]
Abstract
The enteric bacterial flora play a key role in maintaining health. Inflammatory bowel disease is associated with quantitative and qualitative alterations in the microbiota. Early characterization of the microbiota involved culture-dependent techniques. The advent of metagenomic techniques, however, allows for structural and functional characterization using culture-independent methods. Changes in diversity, together with quantitative alterations in specific bacterial species, have been identified. The functional significance of these changes, and their pathogenic role, remain to be elucidated.
Collapse
|
26
|
Pan A, Chanda I, Chakrabarti J. Analysis of the genome and proteome composition of Bdellovibrio bacteriovorus: indication for recent prey-derived horizontal gene transfer. Genomics 2011; 98:213-22. [PMID: 21722725 DOI: 10.1016/j.ygeno.2011.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 05/18/2011] [Accepted: 06/14/2011] [Indexed: 10/18/2022]
Abstract
The genome/proteome composition of Bdellovibrio bacteriovorus, the predatory microorganism that preys on other Gram-negative bacteria, has been analyzed. The study elucidates that translational selection plays a major role in genome compositional variation with higher intensity compared to other deltaproteobacteria. Other sources of variations having relatively minor contributions are local GC-bias, horizontal gene transfer and strand-specific mutational bias. The study identifies a group of AT-rich genes with distinct codon composition that is presumably acquired by Bdellovibrio recently from Gram-negative prey-bacteria other than deltaproteobacteria. The proteome composition of this species is influenced by various physico-chemical factors, viz, alcoholicity, residue-charge, aromaticity and hydropathy. Cell-wall-surface-anchor-family (CSAPs) and transporter proteins with distinct amino acid composition and specific secondary-structure also contribute notably to proteome compositional variation. CSAPs, which are low molecular-weight, outer-membrane proteins with highly disordered secondary-structure, have preference toward polar-uncharged residues and cysteine that presumably help in prey-predator interaction by providing particular bonds of attachment.
Collapse
Affiliation(s)
- Archana Pan
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry-605014, India.
| | | | | |
Collapse
|
27
|
Holloway C, Beiko RG. Assembling networks of microbial genomes using linear programming. BMC Evol Biol 2010; 10:360. [PMID: 21092133 PMCID: PMC3224671 DOI: 10.1186/1471-2148-10-360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 11/20/2010] [Indexed: 01/04/2023] Open
Abstract
Background Microbial genomes exhibit complex sets of genetic affinities due to lateral genetic transfer. Assessing the relative contributions of parent-to-offspring inheritance and gene sharing is a vital step in understanding the evolutionary origins and modern-day function of an organism, but recovering and showing these relationships is a challenging problem. Results We have developed a new approach that uses linear programming to find between-genome relationships, by treating tables of genetic affinities (here, represented by transformed BLAST e-values) as an optimization problem. Validation trials on simulated data demonstrate the effectiveness of the approach in recovering and representing vertical and lateral relationships among genomes. Application of the technique to a set comprising Aquifex aeolicus and 75 other thermophiles showed an important role for large genomes as 'hubs' in the gene sharing network, and suggested that genes are preferentially shared between organisms with similar optimal growth temperatures. We were also able to discover distinct and common genetic contributors to each sequenced representative of genus Pseudomonas. Conclusions The linear programming approach we have developed can serve as an effective inference tool in its own right, and can be an efficient first step in a more-intensive phylogenomic analysis.
Collapse
Affiliation(s)
- Catherine Holloway
- Faculty of Computer Science, Dalhousie University, 6050 University Avenue, Halifax, Nova Scotia B3 H 1W5, Canada
| | | |
Collapse
|
28
|
Affiliation(s)
- Renee Elizabeth Sockett
- Institute of Genetics, School of Biology, University of Nottingham, Medical School, Nottingham NG7 2UH, United Kingdom;
| |
Collapse
|
29
|
Podell S, Gaasterland T, Allen EE. A database of phylogenetically atypical genes in archaeal and bacterial genomes, identified using the DarkHorse algorithm. BMC Bioinformatics 2008; 9:419. [PMID: 18840280 PMCID: PMC2573894 DOI: 10.1186/1471-2105-9-419] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 10/07/2008] [Indexed: 01/30/2023] Open
Abstract
Background The process of horizontal gene transfer (HGT) is believed to be widespread in Bacteria and Archaea, but little comparative data is available addressing its occurrence in complete microbial genomes. Collection of high-quality, automated HGT prediction data based on phylogenetic evidence has previously been impractical for large numbers of genomes at once, due to prohibitive computational demands. DarkHorse, a recently described statistical method for discovering phylogenetically atypical genes on a genome-wide basis, provides a means to solve this problem through lineage probability index (LPI) ranking scores. LPI scores inversely reflect phylogenetic distance between a test amino acid sequence and its closest available database matches. Proteins with low LPI scores are good horizontal gene transfer candidates; those with high scores are not. Description The DarkHorse algorithm has been applied to 955 microbial genome sequences, and the results organized into a web-searchable relational database, called the DarkHorse HGT Candidate Resource . Users can select individual genomes or groups of genomes to screen by LPI score, search for protein functions by descriptive annotation or amino acid sequence similarity, or select proteins with unusual G+C composition in their underlying coding sequences. The search engine reports LPI scores for match partners as well as query sequences, providing the opportunity to explore whether potential HGT donor sequences are phylogenetically typical or atypical within their own genomes. This information can be used to predict whether or not sufficient information is available to build a well-supported phylogenetic tree using the potential donor sequence. Conclusion The DarkHorse HGT Candidate database provides a powerful, flexible set of tools for identifying phylogenetically atypical proteins, allowing researchers to explore both individual HGT events in single genomes, and large-scale HGT patterns among protein families and genome groups. Although the DarkHorse algorithm cannot, by itself, provide definitive proof of horizontal gene transfer, it is a flexible, powerful tool that can be combined with slower, more rigorous methods in situations where these other methods could not otherwise be applied.
Collapse
Affiliation(s)
- Sheila Podell
- Marine Biology Research Division, Scripps Institution of Oceanography University of California at San Diego, La Jolla, CA 92093 USA.
| | | | | |
Collapse
|
30
|
Ducluzeau AL, Ouchane S, Nitschke W. The cbb3 Oxidases Are an Ancient Innovation of the Domain Bacteria. Mol Biol Evol 2008; 25:1158-66. [DOI: 10.1093/molbev/msn062] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Goldman B, Bhat S, Shimkets LJ. Genome evolution and the emergence of fruiting body development in Myxococcus xanthus. PLoS One 2007; 2:e1329. [PMID: 18159227 PMCID: PMC2129111 DOI: 10.1371/journal.pone.0001329] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 11/13/2007] [Indexed: 11/24/2022] Open
Abstract
Background Lateral gene transfer (LGT) is thought to promote speciation in bacteria, though well-defined examples have not been put forward. Methodology/Principle Findings We examined the evolutionary history of the genes essential for a trait that defines a phylogenetic order, namely fruiting body development of the Myxococcales. Seventy-eight genes that are essential for Myxococcus xanthus development were examined for LGT. About 73% of the genes exhibit a phylogeny similar to that of the 16S rDNA gene and a codon bias consistent with other M. xanthus genes suggesting vertical transmission. About 22% have an altered codon bias and/or phylogeny suggestive of LGT. The remaining 5% are unique. Genes encoding signal production and sensory transduction were more likely to be transmitted vertically with clear examples of duplication and divergence into multigene families. Genes encoding metabolic enzymes were frequently acquired by LGT. Myxobacteria exhibit aerobic respiration unlike most of the δ Proteobacteria. M. xanthus contains a unique electron transport pathway shaped by LGT of genes for succinate dehydrogenase and three cytochrome oxidase complexes. Conclusions/Significance Fruiting body development depends on genes acquired by LGT, particularly those involved in polysaccharide production. We suggest that aerobic growth fostered innovation necessary for development by allowing myxobacteria access to a different gene pool from anaerobic members of the δ Proteobacteria. Habitat destruction and loss of species diversity could restrict the evolution of new bacterial groups by limiting the size of the prospective gene pool.
Collapse
Affiliation(s)
- Barry Goldman
- Applied Bioinformatics, Monsanto Company, St. Louis, Missouri, United States of America
| | - Swapna Bhat
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Lawrence J. Shimkets
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
32
|
Strauch E, Schwudke D, Linscheid M. Predatory mechanisms of Bdellovibrio and like organisms. Future Microbiol 2007; 2:63-73. [PMID: 17661676 DOI: 10.2217/17460913.2.1.63] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bdellovibrio and like organisms (BALOs) are predatory, Gram-negative delta-proteobacteria with a complex developmental lifecycle. In the free-living attack phase they are highly motile and seek out prey bacteria that they invade. The ensuing intracellular growth and replication is characterized by the development of a long filament that septates into individual cells that differentiate further into the flagellated attack-phase bacterium. The prey bacterium is lysed and motile predators are released. BALOs have recently been considered to have potential as living antibiotics. The idea of using predatory bacteria as therapeutic agents to combat pathogenic Gram-negative bacteria is intriguing, as they can prey upon human pathogenic bacteria including Salmonella, Pseudomonas and Escherichia coli. However, our current knowledge of the amazing biology of these prokaryotes that cause the systematic destruction of Gram-negative bacteria is still rather limited. More has to be learned about their predatory lifestyle before their application as therapeutic agents will become feasible.
Collapse
Affiliation(s)
- Eckhard Strauch
- Bundesinstitut für Risikobewertung, Federal Institute for Risk Assessment, Berlin, Germany.
| | | | | |
Collapse
|
33
|
Podell S, Gaasterland T. DarkHorse: a method for genome-wide prediction of horizontal gene transfer. Genome Biol 2007; 8:R16. [PMID: 17274820 PMCID: PMC1852411 DOI: 10.1186/gb-2007-8-2-r16] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 11/09/2006] [Accepted: 02/02/2007] [Indexed: 12/14/2022] Open
Abstract
DarkHorse is a new approach to rapid, genome-wide identification and ranking of horizontal transfer candidate proteins. A new approach to rapid, genome-wide identification and ranking of horizontal transfer candidate proteins is presented. The method is quantitative, reproducible, and computationally undemanding. It can be combined with genomic signature and/or phylogenetic tree-building procedures to improve accuracy and efficiency. The method is also useful for retrospective assessments of horizontal transfer prediction reliability, recognizing orthologous sequences that may have been previously overlooked or unavailable. These features are demonstrated in bacterial, archaeal, and eukaryotic examples.
Collapse
Affiliation(s)
- Sheila Podell
- Scripps Genome Center, Scripps Institution of Oceanography, University of California at San Diego, Gilman Drive, La Jolla, CA 92093-0202, USA
| | - Terry Gaasterland
- Scripps Genome Center, Scripps Institution of Oceanography, University of California at San Diego, Gilman Drive, La Jolla, CA 92093-0202, USA
| |
Collapse
|
34
|
|
35
|
Goldman BS, Nierman WC, Kaiser D, Slater SC, Durkin AS, Eisen JA, Ronning CM, Barbazuk WB, Blanchard M, Field C, Halling C, Hinkle G, Iartchuk O, Kim HS, Mackenzie C, Madupu R, Miller N, Shvartsbeyn A, Sullivan SA, Vaudin M, Wiegand R, Kaplan HB. Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Acad Sci U S A 2006; 103:15200-5. [PMID: 17015832 PMCID: PMC1622800 DOI: 10.1073/pnas.0607335103] [Citation(s) in RCA: 346] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myxobacteria are single-celled, but social, eubacterial predators. Upon starvation they build multicellular fruiting bodies using a developmental program that progressively changes the pattern of cell movement and the repertoire of genes expressed. Development terminates with spore differentiation and is coordinated by both diffusible and cell-bound signals. The growth and development of Myxococcus xanthus is regulated by the integration of multiple signals from outside the cells with physiological signals from within. A collection of M. xanthus cells behaves, in many respects, like a multicellular organism. For these reasons M. xanthus offers unparalleled access to a regulatory network that controls development and that organizes cell movement on surfaces. The genome of M. xanthus is large (9.14 Mb), considerably larger than the other sequenced delta-proteobacteria. We suggest that gene duplication and divergence were major contributors to genomic expansion from its progenitor. More than 1,500 duplications specific to the myxobacterial lineage were identified, representing >15% of the total genes. Genes were not duplicated at random; rather, genes for cell-cell signaling, small molecule sensing, and integrative transcription control were amplified selectively. Families of genes encoding the production of secondary metabolites are overrepresented in the genome but may have been received by horizontal gene transfer and are likely to be important for predation.
Collapse
Affiliation(s)
- B. S. Goldman
- *Monsanto Company, St. Louis, MO 63167
- To whom correspondence may be addressed. E-mail:
| | - W. C. Nierman
- The Institute for Genomic Research, Rockville, MD 20850
- Department of Biochemistry and Molecular Biology, George Washington University, Washington, DC 20052
| | - D. Kaiser
- Departments of Biochemistry and Developmental Biology, Stanford University, Stanford, CA 94305
- To whom correspondence may be addressed at:
Department of Developmental Biology, B300 Beckman Center, 279 Campus Drive, Stanford, CA 94305. E-mail:
| | - S. C. Slater
- *Monsanto Company, St. Louis, MO 63167
- **Biodesign Institute, Arizona State University, Tempe, AZ 85287-5001; and
| | - A. S. Durkin
- The Institute for Genomic Research, Rockville, MD 20850
| | - J. A. Eisen
- The Institute for Genomic Research, Rockville, MD 20850
| | - C. M. Ronning
- The Institute for Genomic Research, Rockville, MD 20850
| | | | | | - C. Field
- *Monsanto Company, St. Louis, MO 63167
| | | | - G. Hinkle
- *Monsanto Company, St. Louis, MO 63167
| | | | - H. S. Kim
- The Institute for Genomic Research, Rockville, MD 20850
| | - C. Mackenzie
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, TX 77030
| | - R. Madupu
- The Institute for Genomic Research, Rockville, MD 20850
| | - N. Miller
- *Monsanto Company, St. Louis, MO 63167
| | | | | | - M. Vaudin
- *Monsanto Company, St. Louis, MO 63167
| | | | - H. B. Kaplan
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, TX 77030
| |
Collapse
|