1
|
Schilling T, Ferrero-Bordera B, Neef J, Maaβ S, Becher D, van Dijl JM. Let There Be Light: Genome Reduction Enables Bacillus subtilis to Produce Disulfide-Bonded Gaussia Luciferase. ACS Synth Biol 2023; 12:3656-3668. [PMID: 38011677 PMCID: PMC10729301 DOI: 10.1021/acssynbio.3c00444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023]
Abstract
Bacillus subtilis is a major workhorse for enzyme production in industrially relevant quantities. Compared to mammalian-based expression systems, B. subtilis presents intrinsic advantages, such as high growth rates, high space-time yield, unique protein secretion capabilities, and low maintenance costs. However, B. subtilis shows clear limitations in the production of biopharmaceuticals, especially proteins from eukaryotic origin that contain multiple disulfide bonds. In the present study, we deployed genome minimization, signal peptide screening, and coexpression of recombinant thiol oxidases as strategies to improve the ability of B. subtilis to secrete proteins with multiple disulfide bonds. Different genome-reduced strains served as the chassis for expressing the model protein Gaussia Luciferase (GLuc), which contains five disulfide bonds. These chassis lack extracellular proteases, prophages, and key sporulation genes. Importantly, compared to the reference strain with a full-size genome, the best-performing genome-minimized strain achieved over 3000-fold increased secretion of active GLuc while growing to lower cell densities. Our results show that high-level GLuc secretion relates, at least in part, to the absence of major extracellular proteases. In addition, we show that the thiol-disulfide oxidoreductase requirements for disulfide bonding have changed upon genome reduction. Altogether, our results highlight genome-engineered Bacillus strains as promising expression platforms for proteins with multiple disulfide bonds.
Collapse
Affiliation(s)
- Tobias Schilling
- Department
of Medical Microbiology, University of Groningen,
University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700RB Groningen, The Netherlands
| | - Borja Ferrero-Bordera
- Institute
of Microbiology Department of Microbial Proteomics, University of Greifswald, D-17489 Greifswald, Germany
| | - Jolanda Neef
- Department
of Medical Microbiology, University of Groningen,
University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700RB Groningen, The Netherlands
| | - Sandra Maaβ
- Institute
of Microbiology Department of Microbial Proteomics, University of Greifswald, D-17489 Greifswald, Germany
| | - Dörte Becher
- Institute
of Microbiology Department of Microbial Proteomics, University of Greifswald, D-17489 Greifswald, Germany
| | - Jan Maarten van Dijl
- Department
of Medical Microbiology, University of Groningen,
University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700RB Groningen, The Netherlands
| |
Collapse
|
2
|
Ņikitjuka A, Žalubovskis R. Asparagusic Acid - A Unique Approach toward Effective Cellular Uptake of Therapeutics: Application, Biological Targets, and Chemical Properties. ChemMedChem 2023; 18:e202300143. [PMID: 37366073 DOI: 10.1002/cmdc.202300143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
The synthetic approaches towards unique asparagusic acid and its analogues as well as its chemical use, the breadth of its biological properties and their relevant applications have been explored. The significance of the 1,2-dithiolane ring tension in dithiol-mediated uptake and its use for the intracellular transport of molecular cargoes is discussed alongside some of the challenges that arise from the fast thiolate-disulfide interchange. The short overview with the indication of the available literature on natural 1,2-dithiolanes synthesis and biological activities is also included. The general review structure is based on the time-line perspective of the application of asparagusic acid moiety as well as its primitive derivatives (4-amino-1,2-dithiolane-4-carboxylic acid and 4-methyl-1,2-dithiolane-4-carboxilic acid) used in clinics/cosmetics, focusing on the recent research in this area and including international patents applications.
Collapse
Affiliation(s)
- Anna Ņikitjuka
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006, Riga, Latvia
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena iela 3, 1048, Riga, Latvia
| |
Collapse
|
3
|
Diversity of Cytochrome c Oxidase Assembly Proteins in Bacteria. Microorganisms 2022; 10:microorganisms10050926. [PMID: 35630371 PMCID: PMC9145763 DOI: 10.3390/microorganisms10050926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022] Open
Abstract
Cytochrome c oxidase in animals, plants and many aerobic bacteria functions as the terminal enzyme of the respiratory chain where it reduces molecular oxygen to form water in a reaction coupled to energy conservation. The three-subunit core of the enzyme is conserved, whereas several proteins identified to function in the biosynthesis of the common family A1 cytochrome c oxidase show diversity in bacteria. Using the model organisms Bacillus subtilis, Corynebacterium glutamicum, Paracoccus denitrificans, and Rhodobacter sphaeroides, the present review focuses on proteins for assembly of the heme a, heme a3, CuB, and CuA metal centers. The known biosynthesis proteins are, in most cases, discovered through the analysis of mutants. All proteins directly involved in cytochrome c oxidase assembly have likely not been identified in any organism. Limitations in the use of mutants to identify and functionally analyze biosynthesis proteins are discussed in the review. Comparative biochemistry helps to determine the role of assembly factors. This information can, for example, explain the cause of some human mitochondrion-based diseases and be used to find targets for new antimicrobial drugs. It also provides information regarding the evolution of aerobic bacteria.
Collapse
|
4
|
Engineering Bacillus subtilis Cells as Factories: Enzyme Secretion and Value-added Chemical Production. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0104-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Zhang K, Su L, Wu J. Recent Advances in Recombinant Protein Production byBacillus subtilis. Annu Rev Food Sci Technol 2020; 11:295-318. [DOI: 10.1146/annurev-food-032519-051750] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacillus subtilis has become a widely used microbial cell factory for the production of recombinant proteins, especially those associated with foods and food processing. Recent advances in genetic manipulation and proteomic analysis have been used to greatly improve protein production in B. subtilis. This review begins with a discussion of genome-editing technologies and application of the CRISPR–Cas9 system to B. subtilis. A summary of the characteristics of crucial legacy strains is followed by suggestions regarding the choice of origin strain for genetic manipulation. Finally, the review analyzes the genes and operons of B. subtilis that are important for the production of secretory proteins and provides suggestions and examples of how they can be altered to improve protein production. This review is intended to promote the engineering of this valuable microbial cell factory for better recombinant protein production.
Collapse
Affiliation(s)
- Kang Zhang
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Lingqia Su
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Key Laboratory of Industrial Biotechnology, Ministry of Education, and International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Gullón S, Marín S, Mellado RP. Four thiol-oxidoreductases involved in the formation of disulphide bonds in the Streptomyces lividans TK21 secretory proteins. Microb Cell Fact 2019; 18:126. [PMID: 31345224 PMCID: PMC6657201 DOI: 10.1186/s12934-019-1175-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/17/2019] [Indexed: 11/13/2022] Open
Abstract
Background Bacterial secretory proteins often require the formation of disulphide bonds outside the cell to acquire an active conformation. Thiol-disulphide oxidoreductases are enzymes that catalyse the formation of disulphide bonds. The bacterium Streptomyces lividans is a well-known host for the efficient secretion of overproduced homologous and heterologous secretory proteins of industrial application. Therefore, the correct conformation of these extracellular proteins is of great importance when engineering that overproduction. Results We have identified four acting thiol-disulphide oxidoreductases (TDORs) in S. lividans TK21, mutants in all TDOR candidates affect the secretion and activity of the Sec-dependent alpha-amylase, which contains several disulphide bonds, but the effect was more drastic in the case of the Sli-DsbA deficient strain. Thus, the four TDOR are required to obtain active alpha-amylase. Additionally, only mutations in Sli-DsbA and Sli-DsbB affect the secretion and activity of the Tat-dependent agarase, which does not form a disulphide bond, when it is overproduced. This suggests a possible role of the oxidised Sli-DsbA as a chaperone in the production of active agarase. Conclusions Enzymes involved in the production of the extracellular mature active proteins are not fully characterised yet in Streptomyces lividans. Our results suggest that the role of thiol-disulphide oxidoreductases must be considered when engineering Streptomyces strains for the overproduction of homologous or heterologous secretory proteins of industrial application, irrespective of their secretion route, in order to obtain active, correctly folded proteins. Electronic supplementary material The online version of this article (10.1186/s12934-019-1175-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sonia Gullón
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049, Madrid, Spain.
| | - Silvia Marín
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049, Madrid, Spain
| | - Rafael P Mellado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049, Madrid, Spain
| |
Collapse
|
7
|
Bukowska-Faniband E, Hederstedt L. Transpeptidase activity of penicillin-binding protein SpoVD in peptidoglycan synthesis conditionally depends on the disulfide reductase StoA. Mol Microbiol 2017; 105:98-114. [PMID: 28383125 DOI: 10.1111/mmi.13689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2017] [Indexed: 11/28/2022]
Abstract
Endospore cortex peptidoglycan synthesis is not required for bacterial growth but essential for endospore heat resistance. It therefore constitutes an amenable system for research on peptidoglycan biogenesis. The Bacillus subtilis sporulation-specific class B penicillin-binding protein (PBP) SpoVD and many homologous PBPs contain two conserved cysteine residues of unknown function in the transpeptidase domain - one as residue x in the SxN catalytic site motif and the other in a flexible loop near the catalytic site. A disulfide bond between these residues blocks the function of SpoVD in cortex synthesis. With a combination of experiments with purified proteins and B. subtilis mutant cells, it was shown that in active SpoVD the two cysteine residues most probably interact by hydrogen bonding and that this is important for peptidoglycan synthesis in vivo. It was furthermore demonstrated that the sporulation-specific thiol-disulfide oxidoreductase StoA reduces SpoVD and that requirement of StoA for cortex synthesis can be suppressed by two completely different types of structural alterations in SpoVD. It is concluded that StoA plays a critical role mainly during maturation of SpoVD in the forespore outer membrane. The findings advance our understanding of essential PBPs and redox control of extra-cytoplasmic protein disulfides in bacterial cells.
Collapse
Affiliation(s)
- Ewa Bukowska-Faniband
- Microbiology Group, Department of Biology, Lund University, Sölvegatan 35, Lund, SE- 223 62, Sweden
| | - Lars Hederstedt
- Microbiology Group, Department of Biology, Lund University, Sölvegatan 35, Lund, SE- 223 62, Sweden
| |
Collapse
|
8
|
Hohmann HP, van Dijl JM, Krishnappa L, Prágai Z. Host Organisms:Bacillus subtilis. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Hans-Peter Hohmann
- Nutrition Innovation Center R&D Biotechnology; DSM Nutritional Products Ltd; Wurmisweg 576 CH-4303 Kaiseraugst Switzerland
| | - Jan M. van Dijl
- University of Groningen, University Medical Center Groningen; Department of Medical Microbiology; Hanzeplein 1 9700 RB Groningen The Netherlands
| | - Laxmi Krishnappa
- University of Groningen, University Medical Center Groningen; Department of Medical Microbiology; Hanzeplein 1 9700 RB Groningen The Netherlands
| | - Zoltán Prágai
- Nutrition Innovation Center R&D Biotechnology; DSM Nutritional Products Ltd; Wurmisweg 576 CH-4303 Kaiseraugst Switzerland
| |
Collapse
|
9
|
Davey L, Halperin SA, Lee SF. Thiol-Disulfide Exchange in Gram-Positive Firmicutes. Trends Microbiol 2016; 24:902-915. [PMID: 27426970 DOI: 10.1016/j.tim.2016.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/08/2016] [Accepted: 06/28/2016] [Indexed: 11/17/2022]
Abstract
Extracytoplasmic thiol-disulfide oxidoreductases (TDORs) catalyze the oxidation, reduction, and isomerization of protein disulfide bonds. Although these processes have been characterized in Gram-negative bacteria, the majority of Gram-positive TDORs have only recently been discovered. Results from recent studies have revealed distinct trends in the types of TDOR used by different groups of Gram-positive bacteria, and in their biological functions. Actinobacteria TDORs can be essential for viability, while Firmicute TDORs influence various physiological processes, including protein stability, oxidative stress resistance, bacteriocin production, and virulence. In this review we discuss the diverse extracytoplasmic TDORs used by Gram-positive bacteria, with a focus on Gram-positive Firmicutes.
Collapse
Affiliation(s)
- Lauren Davey
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5 Canada; Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada
| | - Scott A Halperin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5 Canada; Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada
| | - Song F Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5 Canada; Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8 Canada; Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, B3H 4R2 Canada.
| |
Collapse
|
10
|
Lewin A, Hederstedt L. Heme A synthase in bacteria depends on one pair of cysteinyls for activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:160-168. [PMID: 26592143 DOI: 10.1016/j.bbabio.2015.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/06/2015] [Accepted: 11/14/2015] [Indexed: 10/22/2022]
Abstract
Heme A is a prosthetic group unique for cytochrome a-type respiratory oxidases in mammals, plants and many microorganisms. The poorly understood integral membrane protein heme A synthase catalyzes the synthesis of heme A from heme O. In bacteria, but not in mitochondria, this enzyme contains one or two pairs of cysteine residues that are present in predicted hydrophilic polypeptide loops on the extracytoplasmic side of the membrane. We used heme A synthase from the eubacterium Bacillus subtilis and the hyperthermophilic archeon Aeropyrum pernix to investigate the functional role of these cysteine residues. Results with B. subtilis amino acid substituted proteins indicated the pair of cysteine residues in the loop connecting transmembrane segments I and II as being essential for catalysis but not required for binding of the enzyme substrate, heme O. Experiments with isolated A. pernix and B. subtilis heme A synthase demonstrated that a disulfide bond can form between the cysteine residues in the same loop and also between loops showing close proximity of the two loops in the folded enzyme protein. Based on the findings, we propose a classification scheme for the four discrete types of heme A synthase found so far in different organisms and propose that essential cysteinyls mediate transfer of reducing equivalents required for the oxygen-dependent catalysis of heme A synthesis from heme O.
Collapse
Affiliation(s)
- Anna Lewin
- The Microbiology Group, Department of Biology, Biology Bld. A, Lund University, Sölvegatan 35, SE-22362 Lund, Sweden
| | - Lars Hederstedt
- The Microbiology Group, Department of Biology, Biology Bld. A, Lund University, Sölvegatan 35, SE-22362 Lund, Sweden.
| |
Collapse
|
11
|
Optimization of the secretion pathway for heterologous proteins in Bacillus subtilis. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0843-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Richter A, Kim W, Kim JH, Schumann W. Disulfide Bonds of Proteins Displayed on Spores of Bacillus subtilis Can Occur Spontaneously. Curr Microbiol 2015; 71:156-61. [PMID: 26024714 DOI: 10.1007/s00284-015-0839-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
Surface display using spores of Bacillus subtilis is widely used to anchor antigens and enzymes of different sources. One open question is whether anchored proteins are able to form disulfide bonds. To answer this important question, we anchored the Escherichia coli alkaline phosphatase PhoA on the spore surface using two different surface proteins, CotB and CotZ. This enzyme needs two disulfide bonds to become active. Subsequently, we purified the spores and assayed for alkaline phosphatase activity. In both cases, we were able to recover enzymatic activity. Next, we asked whether formation of disulfide bonds occurs spontaneous or is catalyzed by thiol-disulfide oxidoreductases upon lysis of the cells. The experiment was repeated in a double-knockout mutant ΔbdbC and ΔbdbD. Since the disulfide bonds are also present on spores prepared from the double knockout, we conclude that oxidative environment after cell lysis is sufficient for disulfide formation of alkaline phosphatase.
Collapse
Affiliation(s)
- Anne Richter
- Institute of Genetics, University of Bayreuth, 95440, Bayreuth, Germany
| | | | | | | |
Collapse
|
13
|
FipB, an essential virulence factor of Francisella tularensis subsp. tularensis, has dual roles in disulfide bond formation. J Bacteriol 2014; 196:3571-81. [PMID: 25092026 DOI: 10.1128/jb.01359-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
FipB, an essential virulence factor of Francisella tularensis, is a lipoprotein with two conserved domains that have similarity to disulfide bond formation A (DsbA) proteins and the amino-terminal dimerization domain of macrophage infectivity potentiator (Mip) proteins, which are proteins with peptidyl-prolyl cis/trans isomerase activity. This combination of conserved domains is unusual, so we further characterized the enzymatic activity and the importance of the Mip domain and lipid modification in virulence. Unlike typical DsbA proteins, which are oxidases, FipB exhibited both oxidase and isomerase activities. FipA, which also shares similarity with Mip proteins, potentiated the isomerase activity of FipB in an in vitro assay and within the bacteria, as measured by increased copper sensitivity. To determine the importance of the Mip domain and lipid modification of FipB, mutants producing FipB proteins that lacked either the Mip domain or the critical cysteine necessary for lipid modification were constructed. Both strains replicated within host cells and retained virulence in mice, though there was some attenuation. FipB formed surface-exposed dimers that were sensitive to dithiothreitol (DTT), dependent on the Mip domain and on at least one cysteine in the active site of the DsbA-like domain. However, these dimers were not essential for virulence, because the Mip deletion mutant, which failed to form dimers, was still able to replicate intracellularly and retained virulence in mice. Thus, the Mip domains of FipB and FipA impart additional isomerase functionality to FipB, but only the DsbA-like domain and oxidase activity are essential for its critical virulence functions.
Collapse
|
14
|
Degradation of extracytoplasmic catalysts for protein folding in Bacillus subtilis. Appl Environ Microbiol 2013; 80:1463-8. [PMID: 24362423 DOI: 10.1128/aem.02799-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The general protein secretion pathway of Bacillus subtilis has a high capacity for protein export from the cytoplasm, which is exploited in the biotechnological production of a wide range of enzymes. These exported proteins pass the membrane in an unfolded state, and accordingly, they have to fold into their active and protease-resistant conformations once membrane passage is completed. The lipoprotein PrsA and the membrane proteins HtrA and HtrB facilitate the extracytoplasmic folding and quality control of exported proteins. Among the native exported proteins of B. subtilis are at least 10 proteases that have previously been implicated in the degradation of heterologous secreted proteins. Recently, we have shown that these proteases also degrade many native membrane proteins, lipoproteins, and secreted proteins. The present studies were therefore aimed at assessing to what extent these proteases also degrade extracytoplasmic catalysts for protein folding. To this end, we employed a collection of markerless protease mutant strains that lack up to 10 different extracytoplasmic proteases. The results show that PrsA, HtrA, and HtrB are indeed substrates of multiple extracytoplasmic proteases. Thus, improved protein secretion by multiple-protease-mutant strains may be related to both reduced proteolysis and improved posttranslocational protein folding and quality control.
Collapse
|
15
|
Krishnappa L, Dreisbach A, Otto A, Goosens VJ, Cranenburgh RM, Harwood CR, Becher D, van Dijl JM. Extracytoplasmic proteases determining the cleavage and release of secreted proteins, lipoproteins, and membrane proteins in Bacillus subtilis. J Proteome Res 2013; 12:4101-10. [PMID: 23937099 DOI: 10.1021/pr400433h] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gram-positive bacteria are known to export many proteins to the cell wall and growth medium, and accordingly, many studies have addressed the respective protein export mechanisms. In contrast, very little is known about the subsequent fate of these proteins. The present studies were therefore aimed at determining the fate of native exported proteins in the model organism Bacillus subtilis. Specifically, we employed a gel electrophoresis-based liquid chromatography-mass spectrometry approach to distinguish the roles of the membrane-associated quality control proteases HtrA and HtrB from those of eight other proteases that are present in the cell wall and/or growth medium of B. subtilis. Notably, HtrA and HtrB were previously shown to counteract potentially detrimental "protein export stresses" upon overproduction of membrane or secreted proteins. Our results show that many secreted proteins, lipoproteins, and membrane proteins of B. subtilis are potential substrates of extracytoplasmic proteases. Moreover, potentially important roles of HtrA and HtrB in the folding of native secreted proteins into a protease-resistant conformation, the liberation of lipoproteins from the membrane-cell wall interface, and the degradation of membrane proteins are uncovered. Altogether, our observations show that HtrA and HtrB are crucial for maintaining the integrity of the B. subtilis cell even under nonstress conditions.
Collapse
Affiliation(s)
- Laxmi Krishnappa
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Goosens VJ, Mars RAT, Akeroyd M, Vente A, Dreisbach A, Denham EL, Kouwen TRHM, van Rij T, Olsthoorn M, van Dijl JM. Is proteomics a reliable tool to probe the oxidative folding of bacterial membrane proteins? Antioxid Redox Signal 2013; 18:1159-64. [PMID: 22540663 DOI: 10.1089/ars.2012.4664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The oxidative folding of proteins involves disulfide bond formation, which is usually catalyzed by thiol-disulfide oxidoreductases (TDORs). In bacteria, this process takes place in the cytoplasmic membrane and other extracytoplasmic compartments. While it is relatively easy to study oxidative folding of water-soluble proteins on a proteome-wide scale, this has remained a major challenge for membrane proteins due to their high hydrophobicity. Here, we have assessed whether proteomic techniques can be applied to probe the oxidative folding of membrane proteins using the Gram-positive bacterium Bacillus subtilis as a model organism. Specifically, we investigated the membrane proteome of a B. subtilis bdbCD mutant strain, which lacks the primary TDOR pair BdbC and BdbD, by gel-free mass spectrometry. In total, 18 membrane-associated proteins showed differing behavior in the bdbCD mutant and the parental strain. These included the ProA protein involved in osmoprotection. Consistent with the absence of ProA, the bdbCD mutant was found to be sensitive to osmotic shock. We hypothesize that membrane proteomics is a potentially effective approach to profile oxidative folding of bacterial membrane proteins.
Collapse
Affiliation(s)
- Vivianne J Goosens
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
van Dijl JM, Hecker M. Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microb Cell Fact 2013; 12:3. [PMID: 23311580 PMCID: PMC3564730 DOI: 10.1186/1475-2859-12-3] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 01/11/2013] [Indexed: 12/17/2022] Open
Abstract
The biotechnology industry has become a key element in modern societies. Within this industry, the production of recombinant enzymes and biopharmaceutical proteins is of major importance. The global markets for such recombinant proteins are growing rapidly and, accordingly, there is a continuous need for new production platforms that can deliver protein products in greater yields, with higher quality and at lower costs. This calls for the development of next-generation super-secreting cell factories. One of the microbial cell factories that can meet these challenges is the Gram-positive bacterium Bacillus subtilis, an inhabitant of the upper layers of the soil that has the capacity to secrete proteins in the gram per litre range. The engineering of B. subtilis into a next-generation super-secreting cell factory requires combined Systems and Synthetic Biology approaches. In this way, the bacterial protein secretion machinery can be optimized from the single molecule to the network level while, at the same time, taking into account the balanced use of cellular resources. Although highly ambitious, this is an achievable objective due to recent advances in functional genomics and Systems- and Synthetic Biological analyses of B. subtilis cells.
Collapse
Affiliation(s)
- Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P,O, box 30001, Groningen, 9700 RB, the Netherlands.
| | | |
Collapse
|
18
|
Travaglini-Allocatelli C. Protein Machineries Involved in the Attachment of Heme to Cytochrome c: Protein Structures and Molecular Mechanisms. SCIENTIFICA 2013; 2013:505714. [PMID: 24455431 PMCID: PMC3884852 DOI: 10.1155/2013/505714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/24/2013] [Indexed: 05/09/2023]
Abstract
Cytochromes c (Cyt c) are ubiquitous heme-containing proteins, mainly involved in electron transfer processes, whose structure and functions have been and still are intensely studied. Surprisingly, our understanding of the molecular mechanism whereby the heme group is covalently attached to the apoprotein (apoCyt) in the cell is still largely unknown. This posttranslational process, known as Cyt c biogenesis or Cyt c maturation, ensures the stereospecific formation of the thioether bonds between the heme vinyl groups and the cysteine thiols of the apoCyt heme binding motif. To accomplish this task, prokaryotic and eukaryotic cells have evolved distinctive protein machineries composed of different proteins. In this review, the structural and functional properties of the main maturation apparatuses found in gram-negative and gram-positive bacteria and in the mitochondria of eukaryotic cells will be presented, dissecting the Cyt c maturation process into three functional steps: (i) heme translocation and delivery, (ii) apoCyt thioreductive pathway, and (iii) apoCyt chaperoning and heme ligation. Moreover, current hypotheses and open questions about the molecular mechanisms of each of the three steps will be discussed, with special attention to System I, the maturation apparatus found in gram-negative bacteria.
Collapse
Affiliation(s)
- Carlo Travaglini-Allocatelli
- Department of Biochemical Sciences, University of Rome “Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
- *Carlo Travaglini-Allocatelli:
| |
Collapse
|
19
|
Abstract
Organisms employ one of several different enzyme systems to mature cytochromes c. The biosynthetic process involves the periplasmic reduction of cysteine residues in the heme c attachment motif of the apocytochrome, transmembrane transport of heme b and stereospecific covalent heme attachment via thioether bonds. The biogenesis System II (or Ccs system) is employed by β-, δ- and ε-proteobacteria, Gram-positive bacteria, Aquificales and cyanobacteria, as well as by algal and plant chloroplasts. System II comprises four (sometimes only three) membrane-bound proteins: CcsA (or ResC) and CcsB (ResB) are the components of the cytochrome c synthase, whereas CcdA and CcsX (ResA) function in the generation of a reduced heme c attachment motif. Some ε-proteobacteria contain CcsBA fusion proteins constituting single polypeptide cytochrome c synthases especially amenable for functional studies. This minireview highlights the recent findings on the structure, function and specificity of individual System II components and outlines the future challenges that remain to our understanding of the fascinating post-translational protein maturation process in more detail.
Collapse
Affiliation(s)
- Jörg Simon
- Institute of Microbiology and Genetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany.
| | | |
Collapse
|
20
|
Bonnard G, Corvest V, Meyer EH, Hamel PP. Redox processes controlling the biogenesis of c-type cytochromes. Antioxid Redox Signal 2010; 13:1385-401. [PMID: 20214494 DOI: 10.1089/ars.2010.3161] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In mitochondria, two mono heme c-type cytochromes are essential electron shuttles of the respiratory chain. They are characterized by the covalent attachment of their heme C to a CXXCH motif in the apoproteins. This post-translational modification occurs in the intermembrane space compartment. Dedicated assembly pathways have evolved to achieve this chemical reaction that requires a strict reducing environment. In mitochondria, two unrelated machineries operate, the rather simple System III in yeast and animals and System I in plants and some protozoans. System I is also found in bacteria and shares some common features with System II that operates in bacteria and plastids. This review aims at presenting how different systems control the chemical requirements for the heme ligation in the compartments where cytochrome c maturation takes place. A special emphasis will be given on the redox processes that are required for the heme attachment reaction onto apocytochromes c.
Collapse
Affiliation(s)
- Géraldine Bonnard
- Institut de Biologie Moléculaire des Plantes, CNRS UPR-Université de Strasbourg, France.
| | | | | | | |
Collapse
|
21
|
Kouwen TRHM, van Dijl JM. Applications of thiol-disulfide oxidoreductases for optimized in vivo production of functionally active proteins in Bacillus. Appl Microbiol Biotechnol 2009; 85:45-52. [PMID: 19727703 PMCID: PMC2765640 DOI: 10.1007/s00253-009-2212-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/17/2009] [Accepted: 08/18/2009] [Indexed: 02/01/2023]
Abstract
Bacillus subtilis is a well-established cellular factory for proteins and fine chemicals. In particular, the direct secretion of proteinaceous products into the growth medium greatly facilitates their downstream processing, which is an important advantage of B. subtilis over other biotechnological production hosts, such as Escherichia coli. The application spectrum of B. subtilis is, however, often confined to proteins from Bacillus or closely related species. One of the major reasons for this (current) limitation is the inefficient formation of disulfide bonds, which are found in many, especially eukaryotic, proteins. Future exploitation of B. subtilis to fulfill the ever-growing demand for pharmaceutical and other high-value proteins will therefore depend on overcoming this particular hurdle. Recently, promising advances in this area have been achieved, which focus attention on the need to modulate the cellular levels and activity of thiol-disulfide oxidoreductases (TDORs). These TDORs are enzymes that control the cleavage or formation of disulfide bonds. This review will discuss readily applicable approaches for TDOR modulation and aims to provide leads for further improvement of the Bacillus cell factory for production of disulfide bond-containing proteins.
Collapse
Affiliation(s)
- Thijs R H M Kouwen
- Department of Medical Microbiology, University Medical Microbiology, University Medical Center Groningen, Groningen, The Netherlands
| | | |
Collapse
|
22
|
Daniels R, Mellroth P, Bernsel A, Neiers F, Normark S, von Heijne G, Henriques-Normark B. Disulfide bond formation and cysteine exclusion in gram-positive bacteria. J Biol Chem 2009; 285:3300-9. [PMID: 19940132 PMCID: PMC2823432 DOI: 10.1074/jbc.m109.081398] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Most secretion pathways in bacteria and eukaryotic cells are challenged by the requirement for their substrate proteins to mature after they traverse a membrane barrier and enter a reactive oxidizing environment. For Gram-positive bacteria, the mechanisms that protect their exported proteins from misoxidation during their post-translocation maturation are poorly understood. To address this, we separated numerous bacterial species according to their tolerance for oxygen and divided their proteomes based on the predicted subcellular localization of their proteins. We then applied a previously established computational approach that utilizes cysteine incorporation patterns in proteins as an indicator of enzymatic systems that may exist in each species. The Sec-dependent exported proteins from aerobic Gram-positive Actinobacteria were found to encode cysteines in an even-biased pattern indicative of a functional disulfide bond formation system. In contrast, aerobic Gram-positive Firmicutes favor the exclusion of cysteines from both their cytoplasmic proteins and their substantially longer exported proteins. Supporting these findings, we show that Firmicutes, but not Actinobacteria, tolerate growth in reductant. We further demonstrate that the actinobacterium Corynebacterium glutamicum possesses disulfide-bonded proteins and two dimeric Dsb-like enzymes that can efficiently catalyze the formation of disulfide bonds. Our results suggest that cysteine exclusion is an important adaptive strategy against the challenges presented by oxidative environments.
Collapse
Affiliation(s)
- Robert Daniels
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
23
|
Liu Y, Carlsson Möller M, Petersen L, Söderberg CAG, Hederstedt L. Penicillin-binding protein SpoVD disulphide is a target for StoA in Bacillus subtilis forespores. Mol Microbiol 2009; 75:46-60. [PMID: 19919673 DOI: 10.1111/j.1365-2958.2009.06964.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacterial endospore is a dormant and heat-resistant form of life. StoA (SpoIVH) in Bacillus subtilis is a membrane-bound thioredoxin-like protein involved in endospore cortex synthesis. It is proposed to reduce disulphide bonds in hitherto unknown proteins in the intermembrane compartment of developing forespores. Starting with a bioinformatic analysis combined with mutant studies we identified the sporulation-specific, high-molecular-weight, class B penicillin-binding protein SpoVD as a putative target for StoA. We then demonstrate that SpoVD is a membrane-bound protein with two exposed redox-active cysteine residues. Structural modelling of SpoVD, based on the well characterized orthologue PBP2x of Streptococcus pneumoniae, confirmed that a disulphide bond can form close to the active site of the penicillin-binding domain restricting access of enzyme substrate or functional association with other cortex biogenic proteins. Finally, by exploiting combinations of mutations in the spoVD, stoA and ccdA genes in B. subtilis cells, we present strong in vivo evidence that supports the conclusion that StoA functions to specifically break the disulphide bond in the SpoVD protein in the forespore envelope. The findings contribute to our understanding of endospore biogenesis and open a new angle to regulation of cell wall synthesis and penicillin-binding protein activity.
Collapse
Affiliation(s)
- Yiming Liu
- Department of Cell & Organism Biology, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|