1
|
Sowmeya VG, Sathiavelu M. Biofilm dynamics in space and their potential for sustainable space exploration - A comprehensive review. LIFE SCIENCES IN SPACE RESEARCH 2025; 44:108-121. [PMID: 39864903 DOI: 10.1016/j.lssr.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/23/2024] [Indexed: 01/28/2025]
Abstract
Microbial biofilms are universal. The intricate tapestry of biofilms has remarkable implications for the environment, health, and industrial processes. The field of space microbiology is actively investigating the effects of microgravity on microbes, and discoveries are constantly being made. Recent evidence suggests that extraterrestrial environments also fuel the biofilm formation. Understanding the biofilm mechanics under microgravitational conditions is crucial at this stage and could have an astounding impact on inter-planetary missions. This review systematically examines the existing understanding of biofilm development in space and provides insight into how molecules, physiology, or environmental factors influence biofilm formation during microgravitational conditions. In addition, biocontrol strategies targeting the formation and dispersal of biofilms in space environments are explored. In particular, the article highlights the potential benefits of using microbial biofilms in space for bioremediation, life support systems, and biomass production applications.
Collapse
Affiliation(s)
- V G Sowmeya
- School of Biosciences and Technology, VIT, Vellore 632014, India
| | | |
Collapse
|
2
|
Silva GG, Vincenzi RA, de Araujo GG, Venceslau SJS, Rodrigues F. Siderite and vivianite as energy sources for the extreme acidophilic bacterium Acidithiobacillus ferrooxidans in the context of mars habitability. Sci Rep 2024; 14:14885. [PMID: 38937525 PMCID: PMC11211326 DOI: 10.1038/s41598-024-64246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
Past and present habitability of Mars have been intensely studied in the context of the search for signals of life. Despite the harsh conditions observed today on the planet, some ancient Mars environments could have harbored specific characteristics able to mitigate several challenges for the development of microbial life. In such environments, Fe2+ minerals like siderite (already identified on Mars), and vivianite (proposed, but not confirmed) could sustain a chemolithoautotrophic community. In this study, we investigate the ability of the acidophilic iron-oxidizing chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans to use these minerals as its sole energy source. A. ferrooxidans was grown in media containing siderite or vivianite under different conditions and compared to abiotic controls. Our experiments demonstrated that this microorganism was able to grow, obtaining its energy from the oxidation of Fe2+ that came from the solubilization of these minerals under low pH. Additionally, in sealed flasks without CO2, A. ferrooxidans was able to fix carbon directly from the carbonate ion released from siderite for biomass production, indicating that it could be able to colonize subsurface environments with little or no contact with an atmosphere. These previously unexplored abilities broaden our knowledge on the variety of minerals able to sustain life. In the context of astrobiology, this expands the list of geomicrobiological processes that should be taken into account when considering the habitability of environments beyond Earth, and opens for investigation the possible biological traces left on these substrates as biosignatures.
Collapse
Affiliation(s)
- Gabriel Gonçalves Silva
- Programa de Pós-Graduação Em Química, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Roberta Almeida Vincenzi
- Programa de Pós-Graduação Em Bioquímica E Biologia Molecular, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Gabriel Guarany de Araujo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Fabio Rodrigues
- Departamento de Química Fundamental, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Vélez Justiniano YA, Goeres DM, Sandvik EL, Kjellerup BV, Sysoeva TA, Harris JS, Warnat S, McGlennen M, Foreman CM, Yang J, Li W, Cassilly CD, Lott K, HerrNeckar LE. Mitigation and use of biofilms in space for the benefit of human space exploration. Biofilm 2023; 5:100102. [PMID: 36660363 PMCID: PMC9843197 DOI: 10.1016/j.bioflm.2022.100102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/08/2023] Open
Abstract
Biofilms are self-organized communities of microorganisms that are encased in an extracellular polymeric matrix and often found attached to surfaces. Biofilms are widely present on Earth, often found in diverse and sometimes extreme environments. These microbial communities have been described as recalcitrant or protective when facing adversity and environmental exposures. On the International Space Station, biofilms were found in human-inhabited environments on a multitude of hardware surfaces. Moreover, studies have identified phenotypic and genetic changes in the microorganisms under microgravity conditions including changes in microbe surface colonization and pathogenicity traits. Lack of consistent research in microgravity-grown biofilms can lead to deficient understanding of altered microbial behavior in space. This could subsequently create problems in engineered systems or negatively impact human health on crewed spaceflights. It is especially relevant to long-term and remote space missions that will lack resupply and service. Conversely, biofilms are also known to benefit plant growth and are essential for human health (i.e., gut microbiome). Eventually, biofilms may be used to supply metabolic pathways that produce organic and inorganic components useful to sustaining life on celestial bodies beyond Earth. This article will explore what is currently known about biofilms in space and will identify gaps in the aerospace industry's knowledge that should be filled in order to mitigate or to leverage biofilms to the advantage of spaceflight.
Collapse
Affiliation(s)
- Yo-Ann Vélez Justiniano
- ECLSS Development Branch, NASA Marshall Space Flight Center, Huntsville, AL, USA,Corresponding author.
| | - Darla M. Goeres
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | | | - Birthe Veno Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Tatyana A. Sysoeva
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Jacob S. Harris
- Biomedical and Environmental Science Division, NASA Johnson Space Center, Houston, TX, USA
| | - Stephan Warnat
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Mechanical Engineering, Montana State University, Bozeman, MT, USA
| | - Matthew McGlennen
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Mechanical Engineering, Montana State University, Bozeman, MT, USA
| | - Christine M. Foreman
- The Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA,Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
| | - Wenyan Li
- Laboratory Support Services and Operations (LASSO), NASA Kennedy Space Center, Cape Canaveral, FL, USA
| | | | - Katelynn Lott
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Lauren E. HerrNeckar
- ECLSS Development Branch, NASA Marshall Space Flight Center, Huntsville, AL, USA
| |
Collapse
|
4
|
de la Haba RR, Antunes A, Hedlund BP. Editorial: Extremophiles: Microbial genomics and taxogenomics. Front Microbiol 2022; 13:984632. [PMID: 35983330 PMCID: PMC9379316 DOI: 10.3389/fmicb.2022.984632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
- *Correspondence: Rafael R. de la Haba
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, Macau SAR, China
- China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Macau, Macau SAR, China
- André Antunes
| | - Brian P. Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
- Brian P. Hedlund
| |
Collapse
|
5
|
Mapstone LJ, Leite MN, Purton S, Crawford IA, Dartnell L. Cyanobacteria and microalgae in supporting human habitation on Mars. Biotechnol Adv 2022; 59:107946. [DOI: 10.1016/j.biotechadv.2022.107946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
|
6
|
Santomartino R, Zea L, Cockell CS. The smallest space miners: principles of space biomining. Extremophiles 2022; 26:7. [PMID: 34993644 PMCID: PMC8739323 DOI: 10.1007/s00792-021-01253-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/09/2021] [Indexed: 12/03/2022]
Abstract
As we aim to expand human presence in space, we need to find viable approaches to achieve independence from terrestrial resources. Space biomining of the Moon, Mars and asteroids has been indicated as one of the promising approaches to achieve in-situ resource utilization by the main space agencies. Structural and expensive metals, essential mineral nutrients, water, oxygen and volatiles could be potentially extracted from extraterrestrial regolith and rocks using microbial-based biotechnologies. The use of bioleaching microorganisms could also be applied to space bioremediation, recycling of waste and to reinforce regenerative life support systems. However, the science around space biomining is still young. Relevant differences between terrestrial and extraterrestrial conditions exist, including the rock types and ores available for mining, and a direct application of established terrestrial biomining techniques may not be a possibility. It is, therefore, necessary to invest in terrestrial and space-based research of specific methods for space applications to learn the effects of space conditions on biomining and bioremediation, expand our knowledge on organotrophic and community-based bioleaching mechanisms, as well as on anaerobic biomining, and investigate the use of synthetic biology to overcome limitations posed by the space environments.
Collapse
Affiliation(s)
- Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK.
| | - Luis Zea
- BioServe Space Technologies, University of Colorado Boulder, Boulder, CO, USA
| | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
| |
Collapse
|
7
|
Cockell CS. Bridging the gap between microbial limits and extremes in space: space microbial biotechnology in the next 15 years. Microb Biotechnol 2022; 15:29-41. [PMID: 34534397 PMCID: PMC8719799 DOI: 10.1111/1751-7915.13927] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/05/2021] [Indexed: 12/01/2022] Open
Abstract
The establishment of a permanent human settlement in space is one of humanity's ambitions. To achieve this, microorganisms will be used to carry out many functions such as recycling, food and pharmaceutical production, mining and other processes. However, the physical and chemical extremes in all locations beyond Earth exceed known growth limits of microbial life. Making microbes more tolerant of a greater range of extraterrestrial extremes will not produce organisms that can grow in unmodified extraterrestrial environments since in many of them not even liquid water can exist. However, by narrowing the gap, the engineering demands on bioindustrial processes can be reduced and greater robustness can be incorporated into the biological component. I identify and describe these required microbial biotechnological modifications and speculate on long-term possibilities such as microbial biotechnology on Saturn's moon Titan to support a human presence in the outer Solar System and bioprocessing of asteroids. A challenge for space microbial biotechnology in the coming decades is to narrow the microbial gap by systemically identifying the genes required to do this and incorporating them into microbial systems that can be used to carry out bioindustrial processes of interest.
Collapse
Affiliation(s)
- Charles S. Cockell
- UK Centre for AstrobiologySchool of Physics and AstronomyUniversity of EdinburghEdinburghUK
| |
Collapse
|
8
|
Castelein SM, Aarts TF, Schleppi J, Hendrikx R, Böttger AJ, Benz D, Marechal M, Makaya A, Brouns SJJ, Schwentenwein M, Meyer AS, Lehner BAE. Iron can be microbially extracted from Lunar and Martian regolith simulants and 3D printed into tough structural materials. PLoS One 2021; 16:e0249962. [PMID: 33909656 PMCID: PMC8081250 DOI: 10.1371/journal.pone.0249962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/26/2021] [Indexed: 11/23/2022] Open
Abstract
In-situ resource utilization (ISRU) is increasingly acknowledged as an essential requirement for the construction of sustainable extra-terrestrial colonies. Even with decreasing launch costs, the ultimate goal of establishing colonies must be the usage of resources found at the destination of interest. Typical approaches towards ISRU are often constrained by the mass and energy requirements of transporting processing machineries, such as rovers and massive reactors, and the vast amount of consumables needed. Application of self-reproducing bacteria for the extraction of resources is a promising approach to reduce these pitfalls. In this work, the bacterium Shewanella oneidensis was used to reduce three different types of Lunar and Martian regolith simulants, allowing for the magnetic extraction of iron-rich materials. The combination of bacterial treatment and magnetic extraction resulted in a 5.8-times higher quantity of iron and 43.6% higher iron concentration compared to solely magnetic extraction. The materials were 3D printed into cylinders and the mechanical properties were tested, resulting in a 400% improvement in compressive strength in the bacterially treated samples. This work demonstrates a proof of concept for the on-demand production of construction and replacement parts in space exploration.
Collapse
Affiliation(s)
| | - Tom F. Aarts
- Department of Bionanoscience, TU Delft, Delft, Netherlands
| | - Juergen Schleppi
- School of Engineering and Physical Sciences, Institute for Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Ruud Hendrikx
- Department of Materials Science and Engineering, TU Delft, Delft, Netherlands
| | - Amarante J. Böttger
- Department of Materials Science and Engineering, TU Delft, Delft, Netherlands
| | - Dominik Benz
- Department of Chemical Engineering, TU Delft, Delft, Netherlands
| | - Maude Marechal
- European Space Research and Technology Centre (ESTEC), ESA, Noordwijk, Netherlands
| | - Advenit Makaya
- European Space Research and Technology Centre (ESTEC), ESA, Noordwijk, Netherlands
| | | | | | - Anne S. Meyer
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | | |
Collapse
|
9
|
Cockell CS, Santomartino R, Finster K, Waajen AC, Nicholson N, Loudon CM, Eades LJ, Moeller R, Rettberg P, Fuchs FM, Van Houdt R, Leys N, Coninx I, Hatton J, Parmitano L, Krause J, Koehler A, Caplin N, Zuijderduijn L, Mariani A, Pellari S, Carubia F, Luciani G, Balsamo M, Zolesi V, Ochoa J, Sen P, Watt JAJ, Doswald-Winkler J, Herová M, Rattenbacher B, Wadsworth J, Everroad RC, Demets R. Microbially-Enhanced Vanadium Mining and Bioremediation Under Micro- and Mars Gravity on the International Space Station. Front Microbiol 2021; 12:641387. [PMID: 33868198 PMCID: PMC8047202 DOI: 10.3389/fmicb.2021.641387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/04/2021] [Indexed: 11/30/2022] Open
Abstract
As humans explore and settle in space, they will need to mine elements to support industries such as manufacturing and construction. In preparation for the establishment of permanent human settlements across the Solar System, we conducted the ESA BioRock experiment on board the International Space Station to investigate whether biological mining could be accomplished under extraterrestrial gravity conditions. We tested the hypothesis that the gravity (g) level influenced the efficacy with which biomining could be achieved from basalt, an abundant material on the Moon and Mars, by quantifying bioleaching by three different microorganisms under microgravity, simulated Mars and Earth gravitational conditions. One element of interest in mining is vanadium (V), which is added to steel to fabricate high strength, corrosion-resistant structural materials for buildings, transportation, tools and other applications. The results showed that Sphingomonas desiccabilis and Bacillus subtilis enhanced the leaching of vanadium under the three gravity conditions compared to sterile controls by 184.92 to 283.22%, respectively. Gravity did not have a significant effect on mean leaching, thus showing the potential for biomining on Solar System objects with diverse gravitational conditions. Our results demonstrate the potential to use microorganisms to conduct elemental mining and other bioindustrial processes in space locations with non-1 × g gravity. These same principles apply to extraterrestrial bioremediation and elemental recycling beyond Earth.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Kai Finster
- Department of Biology - Microbiology, Aarhus University, Aarhus, Denmark
| | - Annemiek C Waajen
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Natasha Nicholson
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Claire-Marie Loudon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Lorna J Eades
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Ralf Moeller
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany
| | - Petra Rettberg
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany
| | - Felix M Fuchs
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany.,Institute of Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Sciences, Ruhr University Bochum, Bochum, Germany
| | - Rob Van Houdt
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Natalie Leys
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Ilse Coninx
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jon Ochoa
- ESTEC, Noordwijk, Netherlands.,Space Application Services NV/SA, Noordwijk, Netherlands
| | - Pia Sen
- Earth and Environmental Sciences Department, Rutgers University, Newark, NJ, United States
| | - James A J Watt
- School of Geosciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeannine Doswald-Winkler
- BIOTESC, Hochschule Luzern Technik & Architektur, Lucerne School of Engineering and Architecture, Hergiswil, Switzerland
| | - Magdalena Herová
- BIOTESC, Hochschule Luzern Technik & Architektur, Lucerne School of Engineering and Architecture, Hergiswil, Switzerland
| | - Bernd Rattenbacher
- BIOTESC, Hochschule Luzern Technik & Architektur, Lucerne School of Engineering and Architecture, Hergiswil, Switzerland
| | - Jennifer Wadsworth
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, United States
| | - R Craig Everroad
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, United States
| | | |
Collapse
|
10
|
Cockell CS, Santomartino R, Finster K, Waajen AC, Eades LJ, Moeller R, Rettberg P, Fuchs FM, Van Houdt R, Leys N, Coninx I, Hatton J, Parmitano L, Krause J, Koehler A, Caplin N, Zuijderduijn L, Mariani A, Pellari SS, Carubia F, Luciani G, Balsamo M, Zolesi V, Nicholson N, Loudon CM, Doswald-Winkler J, Herová M, Rattenbacher B, Wadsworth J, Craig Everroad R, Demets R. Space station biomining experiment demonstrates rare earth element extraction in microgravity and Mars gravity. Nat Commun 2020; 11:5523. [PMID: 33173035 PMCID: PMC7656455 DOI: 10.1038/s41467-020-19276-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/07/2020] [Indexed: 11/24/2022] Open
Abstract
Microorganisms are employed to mine economically important elements from rocks, including the rare earth elements (REEs), used in electronic industries and alloy production. We carried out a mining experiment on the International Space Station to test hypotheses on the bioleaching of REEs from basaltic rock in microgravity and simulated Mars and Earth gravities using three microorganisms and a purposely designed biomining reactor. Sphingomonas desiccabilis enhanced mean leached concentrations of REEs compared to non-biological controls in all gravity conditions. No significant difference in final yields was observed between gravity conditions, showing the efficacy of the process under different gravity regimens. Bacillus subtilis exhibited a reduction in bioleaching efficacy and Cupriavidus metallidurans showed no difference compared to non-biological controls, showing the microbial specificity of the process, as on Earth. These data demonstrate the potential for space biomining and the principles of a reactor to advance human industry and mining beyond Earth. Rare earth elements are used in electronics, but increase in demand could lead to low supply. Here the authors conduct experiments on the International Space Station and show microbes can extract rare elements from rocks at low gravity, a finding that could extend mining potential to other planets.
Collapse
Affiliation(s)
- Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK.
| | - Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Kai Finster
- Department of Bioscience-Microbiology, Ny Munkegade 116, Building 1540, 129, 8000, Aarhus C, Denmark
| | - Annemiek C Waajen
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Lorna J Eades
- School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Ralf Moeller
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Linder Hoehe, Köln, Germany
| | - Petra Rettberg
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Linder Hoehe, Köln, Germany
| | - Felix M Fuchs
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Linder Hoehe, Köln, Germany.,Institute of Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Sciences, Ruhr University Bochum, Bochum, Germany
| | - Rob Van Houdt
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Natalie Leys
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Ilse Coninx
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Jason Hatton
- ESTEC, Keplerlaan 1, 2201 AZ, Noordwijk, Netherlands
| | | | - Jutta Krause
- ESTEC, Keplerlaan 1, 2201 AZ, Noordwijk, Netherlands
| | | | - Nicol Caplin
- ESTEC, Keplerlaan 1, 2201 AZ, Noordwijk, Netherlands
| | | | | | | | - Fabrizio Carubia
- Kayser Italia S.r.l., Via di Popogna, 501, 57128, Livorno, Italy
| | - Giacomo Luciani
- Kayser Italia S.r.l., Via di Popogna, 501, 57128, Livorno, Italy
| | - Michele Balsamo
- Kayser Italia S.r.l., Via di Popogna, 501, 57128, Livorno, Italy
| | - Valfredo Zolesi
- Kayser Italia S.r.l., Via di Popogna, 501, 57128, Livorno, Italy
| | - Natasha Nicholson
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Claire-Marie Loudon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Jeannine Doswald-Winkler
- BIOTESC, Hochschule Luzern Technik & Architektur, Lucerne School of Engineering and Architecture, Obermattweg 9, 6052, Hergiswil, Switzerland
| | - Magdalena Herová
- BIOTESC, Hochschule Luzern Technik & Architektur, Lucerne School of Engineering and Architecture, Obermattweg 9, 6052, Hergiswil, Switzerland
| | - Bernd Rattenbacher
- BIOTESC, Hochschule Luzern Technik & Architektur, Lucerne School of Engineering and Architecture, Obermattweg 9, 6052, Hergiswil, Switzerland
| | | | - R Craig Everroad
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
| | - René Demets
- ESTEC, Keplerlaan 1, 2201 AZ, Noordwijk, Netherlands
| |
Collapse
|
11
|
Santomartino R, Waajen AC, de Wit W, Nicholson N, Parmitano L, Loudon CM, Moeller R, Rettberg P, Fuchs FM, Van Houdt R, Finster K, Coninx I, Krause J, Koehler A, Caplin N, Zuijderduijn L, Zolesi V, Balsamo M, Mariani A, Pellari SS, Carubia F, Luciani G, Leys N, Doswald-Winkler J, Herová M, Wadsworth J, Everroad RC, Rattenbacher B, Demets R, Cockell CS. No Effect of Microgravity and Simulated Mars Gravity on Final Bacterial Cell Concentrations on the International Space Station: Applications to Space Bioproduction. Front Microbiol 2020; 11:579156. [PMID: 33154740 PMCID: PMC7591705 DOI: 10.3389/fmicb.2020.579156] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022] Open
Abstract
Microorganisms perform countless tasks on Earth and they are expected to be essential for human space exploration. Despite the interest in the responses of bacteria to space conditions, the findings on the effects of microgravity have been contradictory, while the effects of Martian gravity are nearly unknown. We performed the ESA BioRock experiment on the International Space Station to study microbe-mineral interactions in microgravity, simulated Mars gravity and simulated Earth gravity, as well as in ground gravity controls, with three bacterial species: Sphingomonas desiccabilis, Bacillus subtilis, and Cupriavidus metallidurans. To our knowledge, this was the first experiment to study simulated Martian gravity on bacteria using a space platform. Here, we tested the hypothesis that different gravity regimens can influence the final cell concentrations achieved after a multi-week period in space. Despite the different sedimentation rates predicted, we found no significant differences in final cell counts and optical densities between the three gravity regimens on the ISS. This suggests that possible gravity-related effects on bacterial growth were overcome by the end of the experiment. The results indicate that microbial-supported bioproduction and life support systems can be effectively performed in space (e.g., Mars), as on Earth.
Collapse
Affiliation(s)
- Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Annemiek C Waajen
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Wessel de Wit
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Natasha Nicholson
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Luca Parmitano
- European Space Research and Technology Centre (ESTEC), Noordwijk, Netherlands
| | - Claire-Marie Loudon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Ralf Moeller
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne (Köln), Germany
| | - Petra Rettberg
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne (Köln), Germany
| | - Felix M Fuchs
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Cologne (Köln), Germany
| | - Rob Van Houdt
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Kai Finster
- Department of Biology - Microbiology, Aarhus University, Aarhus C, Denmark
| | - Ilse Coninx
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Jutta Krause
- European Space Research and Technology Centre (ESTEC), Noordwijk, Netherlands
| | - Andrea Koehler
- European Space Research and Technology Centre (ESTEC), Noordwijk, Netherlands
| | - Nicol Caplin
- European Space Research and Technology Centre (ESTEC), Noordwijk, Netherlands
| | - Lobke Zuijderduijn
- European Space Research and Technology Centre (ESTEC), Noordwijk, Netherlands
| | | | | | | | | | | | | | - Natalie Leys
- Microbiology Unit, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | | | - Magdalena Herová
- BIOTESC, Hochschule Luzern Technik und Architektur, Hergiswil, Switzerland
| | - Jennifer Wadsworth
- Exobiology Branch, NASA Ames Research Center, Moffet Field, CA, United States
| | - R Craig Everroad
- Exobiology Branch, NASA Ames Research Center, Moffet Field, CA, United States
| | - Bernd Rattenbacher
- BIOTESC, Hochschule Luzern Technik und Architektur, Hergiswil, Switzerland
| | - René Demets
- European Space Research and Technology Centre (ESTEC), Noordwijk, Netherlands
| | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Kosina SM, Greiner AM, Lau RK, Jenkins S, Baran R, Bowen BP, Northen TR. Web of microbes (WoM): a curated microbial exometabolomics database for linking chemistry and microbes. BMC Microbiol 2018; 18:115. [PMID: 30208844 PMCID: PMC6134592 DOI: 10.1186/s12866-018-1256-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Background As microbiome research becomes increasingly prevalent in the fields of human health, agriculture and biotechnology, there exists a need for a resource to better link organisms and environmental chemistries. Exometabolomics experiments now provide assertions of the metabolites present within specific environments and how the production and depletion of metabolites is linked to specific microbes. This information could be broadly useful, from comparing metabolites across environments, to predicting competition and exchange of metabolites between microbes, and to designing stable microbial consortia. Here, we introduce Web of Microbes (WoM; freely available at: http://webofmicrobes.org), the first exometabolomics data repository and visualization tool. Description WoM provides manually curated, direct biochemical observations on the changes to metabolites in an environment after exposure to microorganisms. The web interface displays a number of key features: (1) the metabolites present in a control environment prior to inoculation or microbial activation, (2) heatmap-like displays showing metabolite increases or decreases resulting from microbial activities, (3) a metabolic web displaying the actions of multiple organisms on a specified metabolite pool, (4) metabolite interaction scores indicating an organism’s interaction level with its environment, potential for metabolite exchange with other organisms and potential for competition with other organisms, and (5) downloadable datasets for integration with other types of -omics datasets. Conclusion We anticipate that Web of Microbes will be a useful tool for the greater research community by making available manually curated exometabolomics results that can be used to improve genome annotations and aid in the interpretation and construction of microbial communities. Electronic supplementary material The online version of this article (10.1186/s12866-018-1256-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suzanne M Kosina
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, M/S 100PFG100, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Joint Genome Institute, Lawrence Berkeley National Laboratory, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Annette M Greiner
- National Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Rebecca K Lau
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, M/S 100PFG100, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Joint Genome Institute, Lawrence Berkeley National Laboratory, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA.,Current Address: UC San Diego Health Sciences, University of California San Diego, La Jolla, CA, USA
| | - Stefan Jenkins
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, M/S 100PFG100, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Current Address: Intrexon Corporation, 1750 Kraft Drive, Blacksburg, VA, 24060, USA
| | - Richard Baran
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, M/S 100PFG100, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Current Address: Baran Bioscience, LLC, 2150 Allston Way Suite 400, Berkeley, CA, 94704, USA
| | - Benjamin P Bowen
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, M/S 100PFG100, 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Joint Genome Institute, Lawrence Berkeley National Laboratory, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Trent R Northen
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, M/S 100PFG100, 1 Cyclotron Road, Berkeley, CA, 94720, USA. .,Joint Genome Institute, Lawrence Berkeley National Laboratory, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA.
| |
Collapse
|
13
|
Cockell CS, Biller B, Bryce C, Cousins C, Direito S, Forgan D, Fox-Powell M, Harrison J, Landenmark H, Nixon S, Payler SJ, Rice K, Samuels T, Schwendner P, Stevens A, Nicholson N, Wadsworth J. The UK Centre for Astrobiology: A Virtual Astrobiology Centre. Accomplishments and Lessons Learned, 2011-2016. ASTROBIOLOGY 2018; 18:224-243. [PMID: 29377716 PMCID: PMC5820684 DOI: 10.1089/ast.2017.1713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/16/2017] [Indexed: 05/17/2023]
Abstract
The UK Centre for Astrobiology (UKCA) was set up in 2011 as a virtual center to contribute to astrobiology research, education, and outreach. After 5 years, we describe this center and its work in each of these areas. Its research has focused on studying life in extreme environments, the limits of life on Earth, and implications for habitability elsewhere. Among its research infrastructure projects, UKCA has assembled an underground astrobiology laboratory that has hosted a deep subsurface planetary analog program, and it has developed new flow-through systems to study extraterrestrial aqueous environments. UKCA has used this research backdrop to develop education programs in astrobiology, including a massive open online course in astrobiology that has attracted over 120,000 students, a teacher training program, and an initiative to take astrobiology into prisons. In this paper, we review these activities and others with a particular focus on providing lessons to others who may consider setting up an astrobiology center, institute, or science facility. We discuss experience in integrating astrobiology research into teaching and education activities. Key Words: Astrobiology-Centre-Education-Subsurface-Analog research. Astrobiology 18, 224-243.
Collapse
Affiliation(s)
- Charles S. Cockell
- UK Centre for Astrobiology, Scottish Universities Physics Alliance, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Beth Biller
- UK Centre for Astrobiology, Scottish Universities Physics Alliance, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Casey Bryce
- Eberhard Karls Universitaet Tuebingen, Center for Applied Geoscience (ZAG), Geomicrobiology, Tuebingen, Germany
| | - Claire Cousins
- Centre for Exoplanet Science, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | - Susana Direito
- UK Centre for Astrobiology, Scottish Universities Physics Alliance, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Duncan Forgan
- Centre for Exoplanet Science, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | - Mark Fox-Powell
- UK Centre for Astrobiology, Scottish Universities Physics Alliance, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Jesse Harrison
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”, University of Vienna, Vienna, Austria
| | - Hanna Landenmark
- UK Centre for Astrobiology, Scottish Universities Physics Alliance, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Sophie Nixon
- Geomicrobiology Research Group, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, UK
| | - Samuel J. Payler
- UK Centre for Astrobiology, Scottish Universities Physics Alliance, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Ken Rice
- UK Centre for Astrobiology, Scottish Universities Physics Alliance, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Toby Samuels
- UK Centre for Astrobiology, Scottish Universities Physics Alliance, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Petra Schwendner
- UK Centre for Astrobiology, Scottish Universities Physics Alliance, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Adam Stevens
- UK Centre for Astrobiology, Scottish Universities Physics Alliance, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Natasha Nicholson
- UK Centre for Astrobiology, Scottish Universities Physics Alliance, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Jennifer Wadsworth
- UK Centre for Astrobiology, Scottish Universities Physics Alliance, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
14
|
Cabrol NA. The Coevolution of Life and Environment on Mars: An Ecosystem Perspective on the Robotic Exploration of Biosignatures. ASTROBIOLOGY 2018; 18:1-27. [PMID: 29252008 PMCID: PMC5779243 DOI: 10.1089/ast.2017.1756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/27/2017] [Indexed: 05/09/2023]
Abstract
Earth's biological and environmental evolution are intertwined and inseparable. This coevolution has become a fundamental concept in astrobiology and is key to the search for life beyond our planet. In the case of Mars, whether a coevolution took place is unknown, but analyzing the factors at play shows the uniqueness of each planetary experiment regardless of similarities. Early Earth and early Mars shared traits. However, biological processes on Mars, if any, would have had to proceed within the distinctive context of an irreversible atmospheric collapse, greater climate variability, and specific planetary characteristics. In that, Mars is an important test bed for comparing the effects of a unique set of spatiotemporal changes on an Earth-like, yet different, planet. Many questions remain unanswered about Mars' early environment. Nevertheless, existing data sets provide a foundation for an intellectual framework where notional coevolution models can be explored. In this framework, the focus is shifted from planetary-scale habitability to the prospect of habitats, microbial ecotones, pathways to biological dispersal, biomass repositories, and their meaning for exploration. Critically, as we search for biosignatures, this focus demonstrates the importance of starting to think of early Mars as a biosphere and vigorously integrating an ecosystem approach to landing site selection and exploration. Key Words: Astrobiology-Biosignatures-Coevolution of Earth and life-Mars. Astrobiology 18, 1-27.
Collapse
|
15
|
Byloos B, Coninx I, Van Hoey O, Cockell C, Nicholson N, Ilyin V, Van Houdt R, Boon N, Leys N. The Impact of Space Flight on Survival and Interaction of Cupriavidus metallidurans CH34 with Basalt, a Volcanic Moon Analog Rock. Front Microbiol 2017; 8:671. [PMID: 28503167 PMCID: PMC5408026 DOI: 10.3389/fmicb.2017.00671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/31/2017] [Indexed: 11/13/2022] Open
Abstract
Microbe-mineral interactions have become of interest for space exploration as microorganisms could be used to biomine from extra-terrestrial material and extract elements useful as micronutrients in life support systems. This research aimed to identify the impact of space flight on the long-term survival of Cupriavidus metallidurans CH34 in mineral water and the interaction with basalt, a lunar-type rock in preparation for the ESA spaceflight experiment, BIOROCK. Therefore, C. metallidurans CH34 cells were suspended in mineral water supplemented with or without crushed basalt and send for 3 months on board the Russian FOTON-M4 capsule. Long-term storage had a significant impact on cell physiology and energy status (by flow cytometry analysis, plate count and intracellular ATP measurements) as 60% of cells stored on ground lost their cell membrane potential, only 17% were still active, average ATP levels per cell were significantly lower and cultivability dropped to 1%. The cells stored in the presence of basalt and exposed to space flight conditions during storage however showed less dramatic changes in physiology, with only 16% of the cells lost their cell membrane potential and 24% were still active, leading to a higher cultivability (50%) and indicating a general positive effect of basalt and space flight on survival. Microbe-mineral interactions and biofilm formation was altered by spaceflight as less biofilm was formed on the basalt during flight conditions. Leaching from basalt also changed (measured with ICP-OES), showing that cells release more copper from basalt and the presence of cells also impacted iron and magnesium concentration irrespective of the presence of basalt. The flight conditions thus could counteract some of the detrimental effects observed after the 3 month storage conditions.
Collapse
Affiliation(s)
- Bo Byloos
- Microbiology Unit, Belgian Nuclear Research Centre, SCK•CENMol, Belgium.,Center for Microbial Ecology and Technology, Ghent UniversityGhent, Belgium
| | - Ilse Coninx
- Microbiology Unit, Belgian Nuclear Research Centre, SCK•CENMol, Belgium
| | - Olivier Van Hoey
- Research in Dosimetric Applications, Belgian Nuclear Research Centre, SCK•CENMol, Belgium
| | - Charles Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of EdinburghEdinburgh, UK
| | - Natasha Nicholson
- UK Centre for Astrobiology, School of Physics and Astronomy, University of EdinburghEdinburgh, UK
| | - Vyacheslav Ilyin
- Institute of Medical and Biological Problems of Russian Academy of SciencesMoscow, Russia
| | - Rob Van Houdt
- Microbiology Unit, Belgian Nuclear Research Centre, SCK•CENMol, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology, Ghent UniversityGhent, Belgium
| | - Natalie Leys
- Microbiology Unit, Belgian Nuclear Research Centre, SCK•CENMol, Belgium
| |
Collapse
|
16
|
Horneck G, Walter N, Westall F, Grenfell JL, Martin WF, Gomez F, Leuko S, Lee N, Onofri S, Tsiganis K, Saladino R, Pilat-Lohinger E, Palomba E, Harrison J, Rull F, Muller C, Strazzulla G, Brucato JR, Rettberg P, Capria MT. AstRoMap European Astrobiology Roadmap. ASTROBIOLOGY 2016; 16:201-43. [PMID: 27003862 PMCID: PMC4834528 DOI: 10.1089/ast.2015.1441] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/27/2016] [Indexed: 05/07/2023]
Abstract
The European AstRoMap project (supported by the European Commission Seventh Framework Programme) surveyed the state of the art of astrobiology in Europe and beyond and produced the first European roadmap for astrobiology research. In the context of this roadmap, astrobiology is understood as the study of the origin, evolution, and distribution of life in the context of cosmic evolution; this includes habitability in the Solar System and beyond. The AstRoMap Roadmap identifies five research topics, specifies several key scientific objectives for each topic, and suggests ways to achieve all the objectives. The five AstRoMap Research Topics are • Research Topic 1: Origin and Evolution of Planetary Systems • Research Topic 2: Origins of Organic Compounds in Space • Research Topic 3: Rock-Water-Carbon Interactions, Organic Synthesis on Earth, and Steps to Life • Research Topic 4: Life and Habitability • Research Topic 5: Biosignatures as Facilitating Life Detection It is strongly recommended that steps be taken towards the definition and implementation of a European Astrobiology Platform (or Institute) to streamline and optimize the scientific return by using a coordinated infrastructure and funding system.
Collapse
Affiliation(s)
- Gerda Horneck
- European Astrobiology Network Association
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Köln, Germany
| | | | - Frances Westall
- Centre National de la Recherche Scientifique–Centre de Biophysique Moléculaire, Orleans, France
| | - John Lee Grenfell
- Institute for Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - William F. Martin
- Institute of Molecular Evolution, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Felipe Gomez
- INTA Centre for Astrobiology, Torrejón de Ardoz, Madrid, Spain
| | - Stefan Leuko
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Köln, Germany
| | - Natuschka Lee
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Department of Microbiology, Technical University München, München, Germany
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Kleomenis Tsiganis
- Department of Physics, Section of Astrophysics, Astronomy and Mechanics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Raffaele Saladino
- Department of Agrobiology and Agrochemistry, University of Tuscia, Viterbo, Italy
| | | | - Ernesto Palomba
- INAF–Institute for Space Astrophysics and Planetology, Rome, Italy
| | - Jesse Harrison
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Fernando Rull
- Department of Condensed Matter Physics, Crystallography and Mineralogy, Valladolid University, Valladolid, Spain
| | | | | | | | - Petra Rettberg
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Köln, Germany
| | | |
Collapse
|
17
|
Verseux CN, Paulino-Lima IG, Baqué M, Billi D, Rothschild LJ. Synthetic Biology for Space Exploration: Promises and Societal Implications. ETHICS OF SCIENCE AND TECHNOLOGY ASSESSMENT 2016. [DOI: 10.1007/978-3-319-21088-9_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
|
19
|
Cockell CS, Rettberg P, Rabbow E, Olsson-Francis K. Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth. ISME JOURNAL 2011; 5:1671-82. [PMID: 21593797 DOI: 10.1038/ismej.2011.46] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An epilithic microbial community was launched into low Earth orbit, and exposed to conditions in outer space for 548 days on the European Space Agency EXPOSE-E facility outside the International Space Station. The natural phototroph biofilm was augmented with akinetes of Anabaena cylindrica and vegetative cells of Nostoc commune and Chroococcidiopsis. In space-exposed dark controls, two algae (Chlorella and Rosenvingiella spp.), a cyanobacterium (Gloeocapsa sp.) and two bacteria associated with the natural community survived. Of the augmented organisms, cells of A. cylindrica and Chroococcidiopsis survived, but no cells of N. commune. Only cells of Chroococcidiopsis were cultured from samples exposed to the unattenuated extraterrestrial ultraviolet (UV) spectrum (>110 nm or 200 nm). Raman spectroscopy and bright-field microscopy showed that under these conditions the surface cells were bleached and their carotenoids were destroyed, although cell morphology was preserved. These experiments demonstrate that outer space can act as a selection pressure on the composition of microbial communities. The results obtained from samples exposed to >200 nm UV (simulating the putative worst-case UV exposure on the early Earth) demonstrate the potential for epilithic colonization of land masses during that time, but that UV radiation on anoxic planets can act as a strong selection pressure on surface-dwelling organisms. Finally, these experiments have yielded new phototrophic organisms of potential use in biomass and oxygen production in space exploration.
Collapse
|