1
|
Ye N, Hou B, Song J, Dunn DW, Ma ZS, Wang RW. Metabolic byproduct utilization and the evolution of mutually beneficial cooperation in Escherichia coli. Evolution 2025; 79:779-790. [PMID: 39946095 DOI: 10.1093/evolut/qpaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/09/2025] [Accepted: 02/10/2025] [Indexed: 05/17/2025]
Abstract
Understanding how cooperation evolves in microbial populations, particularly under environmental stress such as antibiotic exposure, remains a key topic in evolutionary biology. Here, we investigate cooperative interactions between antibiotic-resistant and antibiotic-sensitive strains of Escherichia coli. Under antibiotic stress, a small number of antibiotic-sensitive strains rapidly evolve into antibiotic-resistant strains. Resistant E. coli produce indole, which induces a protective response in sensitive cells, enabling them to survive in antibiotic stress conditions. In turn, antibiotic-sensitive E. coli could help reduce toxic accumulation of indole, indirectly benefiting the resistant strain. Indole is harmful to the growth of the antibiotic-resistant strain but benefits the antibiotic-sensitive strain by helping turn-on the multi-drug exporter to neutralize the antibiotic. This mutual exchange leads to increased fitness for both strains in cocultures, demonstrating a mechanism by which mutually beneficial cooperation can evolve in bacterial communities. Our findings provide insight into how mutualism can emerge under antibiotic pressure through metabolic byproduct exchange, revealing new dynamics in the evolution of bacterial cooperation.
Collapse
Affiliation(s)
- Nan Ye
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Beibei Hou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Jianxiao Song
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Derek W Dunn
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Zhanshan Sam Ma
- Computational Biology and Medical Ecology Lab, State Key Laboratory for Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Rui-Wu Wang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Cellier G, Gauche MM, Cheron JJ, Pecrix Y. How to Conduct Phylogenetic Endoglucanase ( egl) Inference Using the Reference Ralstonia solanacearum Species Complex Curated Database. PHYTOPATHOLOGY 2025; 115:548-554. [PMID: 39932454 DOI: 10.1094/phyto-10-24-0318-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2025]
Abstract
The phytopathogenic Ralstonia solanacearum species complex (RSSC) was recently divided into three distinct species, after long-standing research. In 2005, phylotype-based classification was introduced to mark the beginning of DNA-based taxonomy within the RSSC. Within each phylotype, the "sequevar" classification further refines subspecies designations, based on variations in the endoglucanase (egl) gene sequence, and these sequevars are unique to each phylotype. Whereas a single-gene approach such as egl is less comprehensive than multi-gene or whole-genome analysis, egl phylogenetic inferences provides a robust and cost-effective RSSC strain typing assessment. Curated and public egl reference sequences are essential for accurate sequevar assignment of unknown RSSC strains and help prevent issues related to incorrect sequevar assignment or trimming errors that could compromise the quality of RSSC diversity research. Our research sought to fill the gap by providing such a database to the RSSC community (https://doi.org/10.18167/DVN1/CUWA5P or https://tinyurl.com/sequevar), along with a proper methodology to perform reproducible and reliable phylogenetic inferences for publishing sequevar assignation.
Collapse
Affiliation(s)
- Gilles Cellier
- Plant Health Laboratory, ANSES, Saint Pierre, Reunion Island
| | - Miharisoa Mirana Gauche
- University of Reunion Island, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
| | - Jean Jacques Cheron
- CIRAD, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
| | - Yann Pecrix
- CIRAD, UMR Peuplements végétaux et bioagresseurs en milieu tropical, Saint Pierre, Reunion Island
| |
Collapse
|
3
|
Wang Z, Jiang Z, Cao Q, Jia C, Zhou H, Huang C, Huang L, Huang Y, Li Y, Yue M. A genomic and phenotypic investigation of pigeon-adaptive Salmonella. PLoS Pathog 2025; 21:e1012992. [PMID: 40096063 PMCID: PMC11957392 DOI: 10.1371/journal.ppat.1012992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/31/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
Salmonella, a significant threat to public safety, inflicts substantial economic losses on the poultry industry. The unique "parental feeding" breeding model of pigeon farms, against the "all-in & all-out" biosecurity strategy, makes them susceptible to Salmonella infections and subsequent outbreaks of pigeon paratyphoid. This study initially studied three pigeon paratyphoid outbreak incidents in Henan, China, in which 53 strains of pigeon-origin Salmonella Typhimurium (STM) were identified. Whole-genome sequencing (WGS) and antimicrobial-resistant profile analysis revealed that the three outbreaks were caused by distinct STM clones (ST128-DT2, ST19-DT99). Global phylogenetic analysis suggested that the United States is a possible origin, indicating a risk of intercontinental transmission via pigeon eggs. Further bacterial virulence and invasion assays, including in vitro and in vivo assays, revealed that pigeon-host-adaptive STM, compared to broad-host-range STM, carried fewer resistance genes, exhibited higher invasion indices and pseudogene levels, displayed a non-rdar (red dry and rough) phenotype, and had strong biofilm formation capability. Additionally, they showed reduced virulence and invasiveness in mice but a pigeon-adaptive feature in cogent models. The collective results support the host adaptation for pigeons among DT2 and DT99 phage-type isolates.
Collapse
Affiliation(s)
- Zining Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering and State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zenghai Jiang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Qianzhe Cao
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chenghao Jia
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Haiyang Zhou
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Chenghu Huang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Linlin Huang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yingying Huang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Yan Li
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Min Yue
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Jian Y, Chen T, Yang Z, Xiang G, Xu K, Wang Y, Zhao N, He L, Liu Q, Li M. Small regulatory RNA RSaX28 promotes virulence by reinforcing the stability of RNAIII in community-associated ST398 clonotype Staphylococcus aureus. Emerg Microbes Infect 2024; 13:2341972. [PMID: 38597192 PMCID: PMC11034457 DOI: 10.1080/22221751.2024.2341972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Staphylococcus aureus (S. aureus) is a notorious pathogen that cause metastatic or complicated infections. Hypervirulent ST398 clonotype strains, remarkably increased in recent years, dominated Community-associated S. aureus (CA-SA) infections in the past decade in China. Small RNAs like RNAIII have been demonstrated to play important roles in regulating the virulence of S. aureus, however, the regulatory roles played by many of these sRNAs in the ST398 clonotype strains are still unclear. Through transcriptome screening and combined with knockout phenotype analysis, we have identified a highly transcribed sRNA, RSaX28, in the ST398 clonotype strains. Sequence analysis revealed that RSaX28 is highly conserved in the most epidemic clonotypes of S. aureus, but its high transcription level is particularly prominent in the ST398 clonotype strains. Characterization of RSaX28 through RACE and Northern blot revealed its length to be 533nt. RSaX28 is capable of promoting the hemolytic ability, reducing biofilm formation capacity, and enhancing virulence of S. aureus in the in vivo murine infection model. Through IntaRNA prediction and EMSA validation, we found that RSaX28 can specifically interact with RNAIII, promoting its stability and positively regulating the translation of downstream alpha-toxin while inhibiting the translation of Sbi, thereby regulating the virulence and biofilm formation capacity of the ST398 clonotype strains. RSaX28 is an important virulence regulatory factor in the ST398 clonotype S. aureus and represents a potential important target for future treatment and immune intervention against S. aureus infections.
Collapse
Affiliation(s)
- Ying Jian
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Tianchi Chen
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Ziyu Yang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Guoxiu Xiang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Kai Xu
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yanan Wang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Na Zhao
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Lei He
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Qian Liu
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Min Li
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Faculty of Medical Laboratory Science, College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Muto Y, Tanaka K. Comparative Evolutionary Genomics Reveals Genetic Diversity and Differentiation in Bacteroides fragilis. Genes (Basel) 2024; 15:1519. [PMID: 39766787 PMCID: PMC11675351 DOI: 10.3390/genes15121519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Bacteroides fragilis is the pathogenic anaerobe most commonly isolated from intra-abdominal infections, abscesses, and blood. Despite its clinical importance, research on its pan-genome-scale evolution is still limited. METHODS Herein, we analyzed the pan-genome architecture of 374 B. fragilis strains to explore their intra-species genomic diversity and evolutionary patterns. RESULTS Our analysis revealed an open pan-genome with a high proportion of accessory genomes, indicating high genetic variability. Accessory genome genes were substantially enriched in the functions of "Replication, Recombination, and Repair" suggesting their roles in gene transfer and divergence. Phylogenomic analysis divided B. fragilis into two distinct clades: divisions I and II, differing in gene content, antimicrobial resistance genes, and mobile genetic elements. Division II revealed higher Tajima's D values, suggesting that it separated after B. fragilis's recent species diversification. The extreme shift in the distribution of gene-wise Hudson's fixation index (Fst) values for each division suggested that several genes are highly differentiated or evolved between the two clades. Average nucleotide identity and 16S rRNA analyses showed that B. fragilis division II represents a distinct species, Bacteroides hominis. Additionally, a considerable depletion of recombination in genes with Fst values > 0.99 was noted, suggesting that the highest Fst genes with little recombination are the basis for differentiation between divisions. CONCLUSIONS Overall, this study enhances the understanding of B. fragilis's genomic diversity, evolutionary dynamics, and potential role in pathogenesis, shedding light on its adaptation and diversification.
Collapse
Affiliation(s)
- Yoshinori Muto
- Division of Anaerobe Research, Life Science Research Center, Gifu University, Gifu City 501-1194, Gifu, Japan;
| | - Kaori Tanaka
- Division of Anaerobe Research, Life Science Research Center, Gifu University, Gifu City 501-1194, Gifu, Japan;
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu City 501-1194, Gifu, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu City 501-1193, Gifu, Japan
| |
Collapse
|
6
|
Parajuli A, Subedi A, Timilsina S, Minsavage GV, Kenyon L, Chen JR, Goss EM, Paret ML, Jones JB. Phenotypic and Genetic Diversity of Xanthomonads Isolated from Pepper ( Capsicum spp.) in Taiwan from 1989 to 2019. PHYTOPATHOLOGY 2024; 114:2033-2044. [PMID: 38809758 DOI: 10.1094/phyto-11-23-0449-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Bacterial spot caused by Xanthomonas spp. is an economically important disease of pepper causing significant yield losses in Taiwan. Monitoring the pathogen population on a continuous basis is necessary for developing disease management strategies. We analyzed a collection of xanthomonad strains isolated from pepper in Taiwan between 1989 and 2019. Among the sequenced genomes, 65 were identified as Xanthomonas euvesicatoria, and 10 were X. perforans. Thirty-five X. euvesicatoria and 10 X. perforans strains were copper tolerant, whereas only four X. euvesicatoria and none of the X. perforans strains were tolerant to streptomycin. Nine X. euvesicatoria strains were amylolytic, which is considered an unusual characteristic for X. euvesicatoria. Bayesian analysis of the population structure based on core gene single-nucleotide polymorphisms clustered the strains into five clusters for X. euvesicatoria and three clusters for X. perforans. One X. perforans cluster, designated as TP-2019, appears to be a novel genetic cluster based on core genes, accessory gene content, and effector profile. This knowledge of pathogen diversity with whole genomic information will be useful in future comparative studies and in improving breeding programs to develop disease-resistant cultivars and other disease management options.
Collapse
Affiliation(s)
- Apekshya Parajuli
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351, U.S.A
| | - Aastha Subedi
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Sujan Timilsina
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Gerald V Minsavage
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| | - Lawrence Kenyon
- World Vegetable Center, P.O. Box 42, Shanhua, Tainan 74199, Taiwan
| | - Jaw-Rong Chen
- World Vegetable Center, P.O. Box 42, Shanhua, Tainan 74199, Taiwan
| | - Erica M Goss
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, U.S.A
| | - Mathews L Paret
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351, U.S.A
| | - Jeffrey B Jones
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, U.S.A
| |
Collapse
|
7
|
Feng Y, Yang Y, Hu Y, Xiao Y, Xie Y, Wei L, Wen H, Zhang L, McNally A, Zong Z. Population genomics uncovers global distribution, antimicrobial resistance, and virulence genes of the opportunistic pathogen Klebsiella aerogenes. Cell Rep 2024; 43:114602. [PMID: 39137112 PMCID: PMC11372444 DOI: 10.1016/j.celrep.2024.114602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/13/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
Klebsiella aerogenes is an understudied and clinically important pathogen. We therefore investigate its population structure by genome analysis aligned with metadata. We sequence 130 non-duplicated K. aerogenes clinical isolates and identify two inter-patient transmission events. We then retrieve all publicly available K. aerogenes genomes (n = 1,026, accessed by January 1, 2023) and analyze them with our 130 genomes. We develop a core-genome multi-locus sequence-typing scheme. We find that K. aerogenes is a species complex comprising four phylogroups undergoing evolutionary divergence, likely forming three species. We delineate remarkable clonal diversity and identify three worldwide-distributed carbapenemase-encoding clonal clusters, representing high-risk lineages. We uncover that K. aerogenes has an open genome equipped by a large arsenal of antimicrobial resistance genes. We identify two genetic regions specific for K. aerogenes, encoding a type VI secretion system and flagella/chemotaxis for motility, respectively, both contributing to the virulence. These results provide much-needed insights into the population structure and pan-genomes of K. aerogenes.
Collapse
Affiliation(s)
- Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yongqiang Yang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Ya Hu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yuling Xiao
- Laboratory of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Xie
- Laboratory of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Li Wei
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| | - Hongxia Wen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Linwan Zhang
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, China
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Liljegren MM, Gama JA, Johnsen PJ, Harms K. The recombination initiation functions DprA and RecFOR suppress microindel mutations in Acinetobacter baylyi ADP1. Mol Microbiol 2024; 122:1-10. [PMID: 38760330 DOI: 10.1111/mmi.15277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Short-Patch Double Illegitimate Recombination (SPDIR) has been recently identified as a rare mutation mechanism. During SPDIR, ectopic DNA single-strands anneal with genomic DNA at microhomologies and get integrated during DNA replication, presumably acting as primers for Okazaki fragments. The resulting microindel mutations are highly variable in size and sequence. In the soil bacterium Acinetobacter baylyi, SPDIR is tightly controlled by genome maintenance functions including RecA. It is thought that RecA scavenges DNA single-strands and renders them unable to anneal. To further elucidate the role of RecA in this process, we investigate the roles of the upstream functions DprA, RecFOR, and RecBCD, all of which load DNA single-strands with RecA. Here we show that all three functions suppress SPDIR mutations in the wildtype to levels below the detection limit. While SPDIR mutations are slightly elevated in the absence of DprA, they are strongly increased in the absence of both DprA and RecA. This SPDIR-avoiding function of DprA is not related to its role in natural transformation. These results suggest a function for DprA in combination with RecA to avoid potentially harmful microindel mutations, and offer an explanation for the ubiquity of dprA in the genomes of naturally non-transformable bacteria.
Collapse
Affiliation(s)
- Mikkel M Liljegren
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - João A Gama
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Pål J Johnsen
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Klaus Harms
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
9
|
Shah PT, Xing L. Reply to Abrantes et al. Recombination-Based Perspectives on Lagovirus Classification, Phylogenetic Patterns, and Evolutionary Dynamics. Comment on "Shah et al. Genetic Characteristics and Phylogeographic Dynamics of Lagoviruses, 1988-2021. Viruses 2023, 15, 815". Viruses 2024; 16:928. [PMID: 38932220 PMCID: PMC11209430 DOI: 10.3390/v16060928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Recently, Abrantes et al [...].
Collapse
Affiliation(s)
- Pir Tariq Shah
- Faculty of Medicine, School of Biomedical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264000, China
| | - Li Xing
- Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| |
Collapse
|
10
|
Davison C, Tallman S, de Ste-Croix M, Antonio M, Oggioni MR, Kwambana-Adams B, Freund F, Beleza S. Long-term evolution of Streptococcus mitis and Streptococcus pneumoniae leads to higher genetic diversity within rather than between human populations. PLoS Genet 2024; 20:e1011317. [PMID: 38843312 PMCID: PMC11185502 DOI: 10.1371/journal.pgen.1011317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/18/2024] [Accepted: 05/23/2024] [Indexed: 06/19/2024] Open
Abstract
Evaluation of the apportionment of genetic diversity of human bacterial commensals within and between human populations is an important step in the characterization of their evolutionary potential. Recent studies showed a correlation between the genomic diversity of human commensal strains and that of their host, but the strength of this correlation and of the geographic structure among human populations is a matter of debate. Here, we studied the genomic diversity and evolution of the phylogenetically related oro-nasopharyngeal healthy-carriage Streptococcus mitis and Streptococcus pneumoniae, whose lifestyles range from stricter commensalism to high pathogenic potential. A total of 119 S. mitis genomes showed higher within- and among-host variation than 810 S. pneumoniae genomes in European, East Asian and African populations. Summary statistics of the site-frequency spectrum for synonymous and non-synonymous variation and ABC modelling showed this difference to be due to higher ancestral bacterial population effective size (Ne) in S. mitis, whose genomic variation has been maintained close to mutation-drift equilibrium across (at least many) generations, whereas S. pneumoniae has been expanding from a smaller ancestral bacterial population. Strikingly, both species show limited differentiation among human populations. As genetic differentiation is inversely proportional to the product of effective population size and migration rate (Nem), we argue that large Ne have led to similar differentiation patterns, even if m is very low for S. mitis. We conclude that more diversity within than among human populations and limited population differentiation must be common features of the human microbiome due to large Ne.
Collapse
Affiliation(s)
- Charlotte Davison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Sam Tallman
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Megan de Ste-Croix
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Martin Antonio
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
- Centre for Epidemic Preparedness and Response, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Marco R. Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Brenda Kwambana-Adams
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, The Gambia
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Malawi Liverpool Welcome Programme, Blantyre, Malawi
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Fabian Freund
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Sandra Beleza
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
11
|
Avila Cartes J, Bonizzoni P, Ciccolella S, Della Vedova G, Denti L, Didelot X, Monti DC, Pirola Y. RecGraph: recombination-aware alignment of sequences to variation graphs. Bioinformatics 2024; 40:btae292. [PMID: 38676570 PMCID: PMC11256948 DOI: 10.1093/bioinformatics/btae292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024] Open
Abstract
MOTIVATION Bacterial genomes present more variability than human genomes, which requires important adjustments in computational tools that are developed for human data. In particular, bacteria exhibit a mosaic structure due to homologous recombinations, but this fact is not sufficiently captured by standard read mappers that align against linear reference genomes. The recent introduction of pangenomics provides some insights in that context, as a pangenome graph can represent the variability within a species. However, the concept of sequence-to-graph alignment that captures the presence of recombinations has not been previously investigated. RESULTS In this paper, we present the extension of the notion of sequence-to-graph alignment to a variation graph that incorporates a recombination, so that the latter are explicitly represented and evaluated in an alignment. Moreover, we present a dynamic programming approach for the special case where there is at most a recombination-we implement this case as RecGraph. From a modelling point of view, a recombination corresponds to identifying a new path of the variation graph, where the new arc is composed of two halves, each extracted from an original path, possibly joined by a new arc. Our experiments show that RecGraph accurately aligns simulated recombinant bacterial sequences that have at most a recombination, providing evidence for the presence of recombination events. AVAILABILITY AND IMPLEMENTATION Our implementation is open source and available at https://github.com/AlgoLab/RecGraph.
Collapse
Affiliation(s)
- Jorge Avila Cartes
- Department of Informatics, Systems and Communication, University of Milano – Bicocca. Viale Sarca 336, Milano 20126, Italy
| | - Paola Bonizzoni
- Department of Informatics, Systems and Communication, University of Milano – Bicocca. Viale Sarca 336, Milano 20126, Italy
| | - Simone Ciccolella
- Department of Informatics, Systems and Communication, University of Milano – Bicocca. Viale Sarca 336, Milano 20126, Italy
| | - Gianluca Della Vedova
- Department of Informatics, Systems and Communication, University of Milano – Bicocca. Viale Sarca 336, Milano 20126, Italy
| | - Luca Denti
- Department of Informatics, Systems and Communication, University of Milano – Bicocca. Viale Sarca 336, Milano 20126, Italy
| | - Xavier Didelot
- Department of Statistics and School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Davide Cesare Monti
- Department of Informatics, Systems and Communication, University of Milano – Bicocca. Viale Sarca 336, Milano 20126, Italy
| | - Yuri Pirola
- Department of Informatics, Systems and Communication, University of Milano – Bicocca. Viale Sarca 336, Milano 20126, Italy
| |
Collapse
|
12
|
Sterzi L, Nodari R, Di Marco F, Ferrando ML, Saluzzo F, Spitaleri A, Allahverdi H, Papaleo S, Panelli S, Rimoldi SG, Batisti Biffignandi G, Corbella M, Cavallero A, Prati P, Farina C, Cirillo DM, Zuccotti G, Bandi C, Comandatore F. Genetic barriers more than environmental associations explain Serratia marcescens population structure. Commun Biol 2024; 7:468. [PMID: 38632370 PMCID: PMC11023947 DOI: 10.1038/s42003-024-06069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Bacterial species often comprise well-separated lineages, likely emerged and maintained by genetic isolation and/or ecological divergence. How these two evolutionary actors interact in the shaping of bacterial population structure is currently not fully understood. In this study, we investigate the genetic and ecological drivers underlying the evolution of Serratia marcescens, an opportunistic pathogen with high genomic flexibility and able to colonise diverse environments. Comparative genomic analyses reveal a population structure composed of five deeply-demarcated genetic clusters with open pan-genome but limited inter-cluster gene flow, partially explained by Restriction-Modification (R-M) systems incompatibility. Furthermore, a large-scale research on hundred-thousands metagenomic datasets reveals only a partial habitat separation of the clusters. Globally, two clusters only show a separate gene composition coherent with ecological adaptations. These results suggest that genetic isolation has preceded ecological adaptations in the shaping of the species diversity, an evolutionary scenario coherent with the Evolutionary Extended Synthesis.
Collapse
Affiliation(s)
- Lodovico Sterzi
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
| | - Riccardo Nodari
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
| | - Federico Di Marco
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Laura Ferrando
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Saluzzo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Hamed Allahverdi
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
| | - Stella Papaleo
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
| | - Simona Panelli
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
| | - Sara Giordana Rimoldi
- Laboratorio di Microbiologia Clinica, Virologia e Diagnostica delle Bioemergenze, ASST Fatebenefratelli Sacco, Milan, Italy
| | | | - Marta Corbella
- Department of Microbiology & Virology, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, 27100, Pavia, Italy
| | | | - Paola Prati
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Pavia, Italy
| | - Claudio Farina
- Laboratory of Microbiology and Virology, Azienda Socio-Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
- Department of Paediatrics, Children's Hospital "V. Buzzi", Milano, Italy
| | - Claudio Bandi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo Ed Enrica Invernizzi", University of Milan, 20133, Milan, Italy
| | - Francesco Comandatore
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy.
| |
Collapse
|
13
|
Wang H, Zhang Y, Dai D, Fu J, Sung Kim D, Li S, Zhang J, Wang Y, Zhang F. Genomic insight into the insecticidal potential of a new Pseudomonas chlororaphis isolate. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:82-92. [PMID: 38146627 DOI: 10.1093/jee/toad232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 12/27/2023]
Abstract
Pseudomonas fluorescens group, such as Pseudomonas protegens and Pseudomonas chlororaphis, can be utilized as insect-killing agents. Most insecticidal Pseudomonas described so far have high toxicity for insects of the order Lepidoptera. In this study, Pseudomonas strain PcR3-3 was isolated from the willow root. It showed a high mortality for the coleopteran species Plagiodera versicolora (Coleoptera: Chrysomelidae), but not for the lepidopteran Helicoverpa armigera. Strain PcR3-3 displayed high colonization ability in the P. versicolora compared with P. chlororaphis PCL1391, indicating that the insecticidal activities correlated with the colonization ability of Pseudomonas strain in the host. Phylogenetic analysis of the genome revealed that PcR3-3 belonged to P. chlororaphis subsp. aureofaciens. Numerous insecticidal protein-encoding genes, typical biosynthetic gene clusters for some insecticidal metabolite and type VI secretion system, known to be involved in insect pathogenicity, were present in the P. chlororaphis PcR3-3 genome. However, the insecticidal toxin Fit-encoding gene which commonly presents in P. chlororaphis, was not found in the P. chlororaphis PcR3-3 genome. Furthermore, there are some divergent insecticidal genes between P. chlororaphis PcR3-3 and P. chlororaphis PCL1391. This finding implies that P. chlororaphis PcR3-3 is a promising biocontrol agent for pest management applications. The P. chlororaphis-P. versicolora association can be used as a model system to study the interaction between Pseudomonas and coleopteran insects.
Collapse
Affiliation(s)
- Haitao Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yali Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Dadong Dai
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430062, China
| | - Jinqiu Fu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Dae Sung Kim
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Shenzhen 518120, China
| | - Yong Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Fengjuan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
14
|
Yurtseven A, Buyanova S, Agrawal AA, Bochkareva OO, Kalinina OV. Machine learning and phylogenetic analysis allow for predicting antibiotic resistance in M. tuberculosis. BMC Microbiol 2023; 23:404. [PMID: 38124060 PMCID: PMC10731705 DOI: 10.1186/s12866-023-03147-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) poses a significant global health threat, and an accurate prediction of bacterial resistance patterns is critical for effective treatment and control strategies. In recent years, machine learning (ML) approaches have emerged as powerful tools for analyzing large-scale bacterial AMR data. However, ML methods often ignore evolutionary relationships among bacterial strains, which can greatly impact performance of the ML methods, especially if resistance-associated features are attempted to be detected. Genome-wide association studies (GWAS) methods like linear mixed models accounts for the evolutionary relationships in bacteria, but they uncover only highly significant variants which have already been reported in literature. RESULTS In this work, we introduce a novel phylogeny-related parallelism score (PRPS), which measures whether a certain feature is correlated with the population structure of a set of samples. We demonstrate that PRPS can be used, in combination with SVM- and random forest-based models, to reduce the number of features in the analysis, while simultaneously increasing models' performance. We applied our pipeline to publicly available AMR data from PATRIC database for Mycobacterium tuberculosis against six common antibiotics. CONCLUSIONS Using our pipeline, we re-discovered known resistance-associated mutations as well as new candidate mutations which can be related to resistance and not previously reported in the literature. We demonstrated that taking into account phylogenetic relationships not only improves the model performance, but also yields more biologically relevant predicted most contributing resistance markers.
Collapse
Affiliation(s)
- Alper Yurtseven
- Department of Drug Bioinformatics, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, Saarbrücken, 66123, Saarland, Germany.
- Graduate School of Computer Science, Saarland University, Saarbrücken, 66123, Saarland, Germany.
| | - Sofia Buyanova
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg, 3400, Austria
| | - Amay Ajaykumar Agrawal
- Department of Drug Bioinformatics, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, Saarbrücken, 66123, Saarland, Germany
- Graduate School of Computer Science, Saarland University, Saarbrücken, 66123, Saarland, Germany
| | - Olga O Bochkareva
- Institute of Science and Technology Austria (ISTA), Am Campus 1, Klosterneuburg, 3400, Austria
- Centre for Microbiology and Environmental Systems Science, Division of Computational System Biology, University of Vienna, Djerassiplatz 1 A, Wien, 1030, Austria
| | - Olga V Kalinina
- Department of Drug Bioinformatics, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Campus E8.1, Saarbrücken, 66123, Saarland, Germany
- Graduate School of Computer Science, Saarland University, Saarbrücken, 66123, Saarland, Germany
- Faculty of Medicine, Saarland University, Homburg, 66421, Saarland, Germany
| |
Collapse
|
15
|
Abstract
The massive scale of the global SARS-CoV-2 sequencing effort created new opportunities and challenges for understanding SARS-CoV-2 evolution. Rapid detection and assessment of new variants has become one of the principal objectives of genomic surveillance of SARS-CoV-2. Because of the pace and scale of sequencing, new strategies have been developed for characterizing fitness and transmissibility of emerging variants. In this Review, I discuss a wide range of approaches that have been rapidly developed in response to the public health threat posed by emerging variants, ranging from new applications of classic population genetics models to contemporary synthesis of epidemiological models and phylodynamic analysis. Many of these approaches can be adapted to other pathogens and will have increasing relevance as large-scale pathogen sequencing becomes a regular feature of many public health systems.
Collapse
Affiliation(s)
- Erik Volz
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK.
| |
Collapse
|
16
|
Shikov AE, Savina IA, Nizhnikov AA, Antonets KS. Recombination in Bacterial Genomes: Evolutionary Trends. Toxins (Basel) 2023; 15:568. [PMID: 37755994 PMCID: PMC10534446 DOI: 10.3390/toxins15090568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Bacterial organisms have undergone homologous recombination (HR) and horizontal gene transfer (HGT) multiple times during their history. These processes could increase fitness to new environments, cause specialization, the emergence of new species, and changes in virulence. Therefore, comprehensive knowledge of the impact and intensity of genetic exchanges and the location of recombination hotspots on the genome is necessary for understanding the dynamics of adaptation to various conditions. To this end, we aimed to characterize the functional impact and genomic context of computationally detected recombination events by analyzing genomic studies of any bacterial species, for which events have been detected in the last 30 years. Genomic loci where the transfer of DNA was detected pertained to mobile genetic elements (MGEs) housing genes that code for proteins engaged in distinct cellular processes, such as secretion systems, toxins, infection effectors, biosynthesis enzymes, etc. We found that all inferences fall into three main lifestyle categories, namely, ecological diversification, pathogenesis, and symbiosis. The latter primarily exhibits ancestral events, thus, possibly indicating that adaptation appears to be governed by similar recombination-dependent mechanisms.
Collapse
Affiliation(s)
- Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (I.A.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Iuliia A. Savina
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (I.A.S.); (A.A.N.)
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (I.A.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (I.A.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| |
Collapse
|
17
|
Rothstein AP, Jesser KJ, Feistel DJ, Konstantinidis KT, Trueba G, Levy K. Population genomics of diarrheagenic Escherichia coli uncovers high connectivity between urban and rural communities in Ecuador. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105476. [PMID: 37392822 PMCID: PMC10599324 DOI: 10.1016/j.meegid.2023.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/11/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Human movement may be an important driver of transmission dynamics for enteric pathogens but has largely been underappreciated except for international 'travelers' diarrhea or cholera. Phylodynamic methods, which combine genomic and epidemiological data, are used to examine rates and dynamics of disease matching underlying evolutionary history and biogeographic distributions, but these methods often are not applied to enteric bacterial pathogens. We used phylodynamics to explore the phylogeographic and evolutionary patterns of diarrheagenic E. coli in northern Ecuador to investigate the role of human travel in the geographic distribution of strains across the country. Using whole genome sequences of diarrheagenic E. coli isolates, we built a core genome phylogeny, reconstructed discrete ancestral states across urban and rural sites, and estimated migration rates between E. coli populations. We found minimal structuring based on site locations, urban vs. rural locality, pathotype, or clinical status. Ancestral states of phylogenomic nodes and tips were inferred to have 51% urban ancestry and 49% rural ancestry. Lack of structuring by location or pathotype E. coli isolates imply highly connected communities and extensive sharing of genomic characteristics across isolates. Using an approximate structured coalescent model, we estimated rates of migration among circulating isolates were 6.7 times larger for urban towards rural populations compared to rural towards urban populations. This suggests increased inferred migration rates of diarrheagenic E. coli from urban populations towards rural populations. Our results indicate that investments in water and sanitation prevention in urban areas could limit the spread of enteric bacterial pathogens among rural populations.
Collapse
Affiliation(s)
- Andrew P. Rothstein
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Kelsey J. Jesser
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Dorian J. Feistel
- School of a Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Konstantinos T. Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- School of a Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Pichincha, Ecuador
| | - Karen Levy
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
18
|
Yang Z, Guarracino A, Biggs PJ, Black MA, Ismail N, Wold JR, Merriman TR, Prins P, Garrison E, de Ligt J. Pangenome graphs in infectious disease: a comprehensive genetic variation analysis of Neisseria meningitidis leveraging Oxford Nanopore long reads. Front Genet 2023; 14:1225248. [PMID: 37636268 PMCID: PMC10448961 DOI: 10.3389/fgene.2023.1225248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Whole genome sequencing has revolutionized infectious disease surveillance for tracking and monitoring the spread and evolution of pathogens. However, using a linear reference genome for genomic analyses may introduce biases, especially when studies are conducted on highly variable bacterial genomes of the same species. Pangenome graphs provide an efficient model for representing and analyzing multiple genomes and their variants as a graph structure that includes all types of variations. In this study, we present a practical bioinformatics pipeline that employs the PanGenome Graph Builder and the Variation Graph toolkit to build pangenomes from assembled genomes, align whole genome sequencing data and call variants against a graph reference. The pangenome graph enables the identification of structural variants, rearrangements, and small variants (e.g., single nucleotide polymorphisms and insertions/deletions) simultaneously. We demonstrate that using a pangenome graph, instead of a single linear reference genome, improves mapping rates and variant calling for both simulated and real datasets of the pathogen Neisseria meningitidis. Overall, pangenome graphs offer a promising approach for comparative genomics and comprehensive genetic variation analysis in infectious disease. Moreover, this innovative pipeline, leveraging pangenome graphs, can bridge variant analysis, genome assembly, population genetics, and evolutionary biology, expanding the reach of genomic understanding and applications.
Collapse
Affiliation(s)
- Zuyu Yang
- Institute of Environmental Science and Research, Porirua, New Zealand
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
- Genomics Research Centre, Human Technopole, Milan, Italy
| | - Patrick J. Biggs
- Molecular Biosciences Group, School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Michael A. Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Nuzla Ismail
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Jana Renee Wold
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Tony R. Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Joep de Ligt
- Institute of Environmental Science and Research, Porirua, New Zealand
| |
Collapse
|
19
|
Pan-genome analysis of the Burkholderia gladioli PV. Cocovenenans reveal the extent of variation in the toxigenic gene cluster. Food Microbiol 2023; 113:104249. [PMID: 37098416 DOI: 10.1016/j.fm.2023.104249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/04/2022] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Burkholderia gladioli has been reported as the pathogen responsible for cases of foodborne illness in many countries. The poisonous bongkrekic acid (BA) produced by B. gladioli was linked to a gene cluster absent in non-pathogenic strains. The whole genome sequence of eight bacteria strains, which were screened from the collected 175 raw food and environmental samples, were assembled and analyzed to detect a significant association of 19 protein-coding genes with the pathogenic status. Except for the common BA synthesis-related gene, several other genes, including the toxin-antitoxin genes, were also absent in the non-pathogenic strains. The bacteria strains with the BA gene cluster were found to form a single cluster in the analysis of all B. gladioli genome assemblies for the variants in the gene cluster. Divergence of this cluster was detected in the analysis for both the flanking sequences and those of the whole genome level, which indicates its complex origin. Genome recombination was found to cause a precise sequence deletion in the gene cluster region, which was found to be predominant in the non-pathogenic strains indicating the possible effect of horizontal gene transfer. Our study provided new information and resources for understanding the evolution and divergence of the B. gladioli species.
Collapse
|
20
|
Lauterbur ME, Cavassim MIA, Gladstein AL, Gower G, Pope NS, Tsambos G, Adrion J, Belsare S, Biddanda A, Caudill V, Cury J, Echevarria I, Haller BC, Hasan AR, Huang X, Iasi LNM, Noskova E, Obsteter J, Pavinato VAC, Pearson A, Peede D, Perez MF, Rodrigues MF, Smith CCR, Spence JP, Teterina A, Tittes S, Unneberg P, Vazquez JM, Waples RK, Wohns AW, Wong Y, Baumdicker F, Cartwright RA, Gorjanc G, Gutenkunst RN, Kelleher J, Kern AD, Ragsdale AP, Ralph PL, Schrider DR, Gronau I. Expanding the stdpopsim species catalog, and lessons learned for realistic genome simulations. eLife 2023; 12:RP84874. [PMID: 37342968 DOI: 10.7554/elife.84874] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Simulation is a key tool in population genetics for both methods development and empirical research, but producing simulations that recapitulate the main features of genomic datasets remains a major obstacle. Today, more realistic simulations are possible thanks to large increases in the quantity and quality of available genetic data, and the sophistication of inference and simulation software. However, implementing these simulations still requires substantial time and specialized knowledge. These challenges are especially pronounced for simulating genomes for species that are not well-studied, since it is not always clear what information is required to produce simulations with a level of realism sufficient to confidently answer a given question. The community-developed framework stdpopsim seeks to lower this barrier by facilitating the simulation of complex population genetic models using up-to-date information. The initial version of stdpopsim focused on establishing this framework using six well-characterized model species (Adrion et al., 2020). Here, we report on major improvements made in the new release of stdpopsim (version 0.2), which includes a significant expansion of the species catalog and substantial additions to simulation capabilities. Features added to improve the realism of the simulated genomes include non-crossover recombination and provision of species-specific genomic annotations. Through community-driven efforts, we expanded the number of species in the catalog more than threefold and broadened coverage across the tree of life. During the process of expanding the catalog, we have identified common sticking points and developed the best practices for setting up genome-scale simulations. We describe the input data required for generating a realistic simulation, suggest good practices for obtaining the relevant information from the literature, and discuss common pitfalls and major considerations. These improvements to stdpopsim aim to further promote the use of realistic whole-genome population genetic simulations, especially in non-model organisms, making them available, transparent, and accessible to everyone.
Collapse
Affiliation(s)
- M Elise Lauterbur
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, United States
| | - Maria Izabel A Cavassim
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
| | | | - Graham Gower
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Nathaniel S Pope
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | - Georgia Tsambos
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia
| | - Jeffrey Adrion
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
- Ancestry DNA, San Francisco, United States
| | - Saurabh Belsare
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | | | - Victoria Caudill
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | - Jean Cury
- Universite Paris-Saclay, CNRS, INRIA, Laboratoire Interdisciplinaire des Sciences du Numerique, Orsay, France
| | | | - Benjamin C Haller
- Department of Computational Biology, Cornell University, Ithaca, United States
| | - Ahmed R Hasan
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
| | - Xin Huang
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | | | - Ekaterina Noskova
- Computer Technologies Laboratory, ITMO University, St Petersburg, Russian Federation
| | - Jana Obsteter
- Agricultural Institute of Slovenia, Department of Animal Science, Ljubljana, Slovenia
| | | | - Alice Pearson
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - David Peede
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, United States
- Center for Computational Molecular Biology, Brown University, Providence, United States
| | - Manolo F Perez
- Department of Genetics and Evolution, Federal University of Sao Carlos, Sao Carlos, Brazil
| | - Murillo F Rodrigues
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | - Chris C R Smith
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | - Jeffrey P Spence
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Anastasia Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | - Silas Tittes
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | - Per Unneberg
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Juan Manuel Vazquez
- Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
| | - Ryan K Waples
- Department of Biostatistics, University of Washington, Seattle, United States
| | | | - Yan Wong
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Franz Baumdicker
- Cluster of Excellence - Controlling Microbes to Fight Infections, Eberhard Karls Universit¨at Tubingen, Tubingen, Germany
| | - Reed A Cartwright
- School of Life Sciences and The Biodesign Institute, Arizona State University, Tempe, United States
| | - Gregor Gorjanc
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Ryan N Gutenkunst
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| | - Jerome Kelleher
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Andrew D Kern
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
| | - Aaron P Ragsdale
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, United States
| | - Peter L Ralph
- Institute of Ecology and Evolution, University of Oregon, Eugene, United States
- Department of Mathematics, University of Oregon, Eugene, United States
| | - Daniel R Schrider
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Ilan Gronau
- Efi Arazi School of Computer Science, Reichman University, Herzliya, Israel
| |
Collapse
|
21
|
Castillo AI, Almeida RPP. The Multifaceted Role of Homologous Recombination in a Fastidious Bacterial Plant Pathogen. Appl Environ Microbiol 2023; 89:e0043923. [PMID: 37154680 PMCID: PMC10231230 DOI: 10.1128/aem.00439-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
Homologous recombination plays a key function in the evolution of bacterial genomes. Within Xylella fastidiosa, an emerging plant pathogen with increasing host and geographic ranges, it has been suggested that homologous recombination facilitates host switching, speciation, and the development of virulence. We used 340 whole-genome sequences to study the relationship between inter- and intrasubspecific homologous recombination, random mutation, and natural selection across individual X. fastidiosa genes. Individual gene orthologs were identified and aligned, and a maximum likelihood (ML) gene tree was generated. Each gene alignment and tree pair were then used to calculate gene-wide and branch-specific r/m values (relative effect of recombination to mutation), gene-wide and branch-site nonsynonymous over synonymous substitution rates (dN/dS values; episodic selection), and branch length (as a proxy for mutation rate). The relationships between these variables were evaluated at the global level (i.e., for all genes among and within a subspecies), among specific functional classes (i.e., COGs), and between pangenome components (i.e., accessory versus core genes). Our analysis showed that r/m varied widely among genes as well as across X. fastidiosa subspecies. While r/m and dN/dS values were positively correlated in some instances (e.g., core genes in X. fastidiosa subsp. fastidiosa and both core and accessory genes in X. fastidiosa subsp. multiplex), low correlation coefficients suggested no clear biological significance. Overall, our results indicate that, in addition to its adaptive role in certain genes, homologous recombination acts as a homogenizing and a neutral force across phylogenetic clades, gene functional groups, and pangenome components. IMPORTANCE There is ample evidence that homologous recombination occurs frequently in the economically important plant pathogen Xylella fastidiosa. Homologous recombination has been known to occur among sympatric subspecies and is associated with host-switching events and virulence-linked genes. As a consequence, is it generally assumed that recombinant events in X. fastidiosa are adaptive. This mindset influences expectations of how homologous recombination acts as an evolutionary force as well as how management strategies for X. fastidiosa diseases are determined. Yet, homologous recombination plays roles beyond that of a source for diversification and adaptation. Homologous recombination can act as a DNA repair mechanism, as a means to facilitate nucleotide compositional change, as a homogenization mechanism within populations, or even as a neutral force. Here, we provide a first assessment of long-held beliefs regarding the general role of recombination in adaptation for X. fastidiosa. We evaluate gene-specific variations in homologous recombination rate across three X. fastidiosa subspecies and its relationship to other evolutionary forces (e.g., natural selection, mutation, etc.). These data were used to assess the role of homologous recombination in X. fastidiosa evolution.
Collapse
Affiliation(s)
- Andreina I. Castillo
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
| | - Rodrigo P. P. Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
| |
Collapse
|
22
|
Ikhimiukor OO, Souza SSR, Marcovici MM, Nye GJ, Gibson R, Andam CP. Leaky barriers to gene sharing between locally co-existing coagulase-negative Staphylococcus species. Commun Biol 2023; 6:482. [PMID: 37137974 PMCID: PMC10156822 DOI: 10.1038/s42003-023-04877-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/26/2023] [Indexed: 05/05/2023] Open
Abstract
Coagulase-negative Staphylococcus (CoNS) are opportunistic pathogens implicated in many human and animal infections. The evolutionary history of CoNS remains obscure because of the historical lack of recognition for their clinical importance and poor taxonomic sampling. Here, we sequenced the genomes of 191 CoNS isolates representing 15 species sampled from diseased animals diagnosed in a veterinary diagnostic laboratory. We found that CoNS are important reservoirs of diverse phages, plasmids and mobilizable genes encoding antimicrobial resistance, heavy metal resistance, and virulence. Frequent exchange of DNA between certain donor-recipient partners suggests that specific lineages act as hubs of gene sharing. We also detected frequent recombination between CoNS regardless of their animal host species, indicating that ecological barriers to horizontal gene transfer can be surmounted in co-circulating lineages. Our findings reveal frequent but structured patterns of transfer that exist within and between CoNS species, which are driven by their overlapping ecology and geographical proximity.
Collapse
Affiliation(s)
- Odion O Ikhimiukor
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| | - Stephanie S R Souza
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Michael M Marcovici
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Griffin J Nye
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | - Robert Gibson
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- New Hampshire Veterinary Diagnostic Laboratory, Durham, NH, USA
| | - Cheryl P Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
23
|
Smith WPJ, Wucher BR, Nadell CD, Foster KR. Bacterial defences: mechanisms, evolution and antimicrobial resistance. Nat Rev Microbiol 2023:10.1038/s41579-023-00877-3. [PMID: 37095190 DOI: 10.1038/s41579-023-00877-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/26/2023]
Abstract
Throughout their evolutionary history, bacteria have faced diverse threats from other microorganisms, including competing bacteria, bacteriophages and predators. In response to these threats, they have evolved sophisticated defence mechanisms that today also protect bacteria against antibiotics and other therapies. In this Review, we explore the protective strategies of bacteria, including the mechanisms, evolution and clinical implications of these ancient defences. We also review the countermeasures that attackers have evolved to overcome bacterial defences. We argue that understanding how bacteria defend themselves in nature is important for the development of new therapies and for minimizing resistance evolution.
Collapse
Affiliation(s)
- William P J Smith
- Division of Genomics, Infection and Evolution, University of Manchester, Manchester, UK.
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Benjamin R Wucher
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Carey D Nadell
- Department of Biological sciences, Dartmouth College, Hanover, NH, USA
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
24
|
Sellés Vidal L, Isalan M, Heap JT, Ledesma-Amaro R. A primer to directed evolution: current methodologies and future directions. RSC Chem Biol 2023; 4:271-291. [PMID: 37034405 PMCID: PMC10074555 DOI: 10.1039/d2cb00231k] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/18/2023] [Indexed: 01/30/2023] Open
Abstract
Directed evolution is one of the most powerful tools for protein engineering and functions by harnessing natural evolution, but on a shorter timescale. It enables the rapid selection of variants of biomolecules with properties that make them more suitable for specific applications. Since the first in vitro evolution experiments performed by Sol Spiegelman in 1967, a wide range of techniques have been developed to tackle the main two steps of directed evolution: genetic diversification (library generation), and isolation of the variants of interest. This review covers the main modern methodologies, discussing the advantages and drawbacks of each, and hence the considerations for designing directed evolution experiments. Furthermore, the most recent developments are discussed, showing how advances in the handling of ever larger library sizes are enabling new research questions to be tackled.
Collapse
Affiliation(s)
- Lara Sellés Vidal
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Bioengineering, Imperial College London London SW7 2AZ UK
| | - Mark Isalan
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Life Sciences, Imperial College London London SW7 2AZ UK
| | - John T Heap
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Life Sciences, Imperial College London London SW7 2AZ UK
- School of Life Sciences, The University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Bioengineering, Imperial College London London SW7 2AZ UK
| |
Collapse
|
25
|
Krishnan S, DeMaere MZ, Beck D, Ostrowski M, Seymour JR, Darling AE. Rhometa: Population recombination rate estimation from metagenomic read datasets. PLoS Genet 2023; 19:e1010683. [PMID: 36972309 PMCID: PMC10079220 DOI: 10.1371/journal.pgen.1010683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/06/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Prokaryotic evolution is influenced by the exchange of genetic information between species through a process referred to as recombination. The rate of recombination is a useful measure for the adaptive capacity of a prokaryotic population. We introduce Rhometa (https://github.com/sid-krish/Rhometa), a new software package to determine recombination rates from shotgun sequencing reads of metagenomes. It extends the composite likelihood approach for population recombination rate estimation and enables the analysis of modern short-read datasets. We evaluated Rhometa over a broad range of sequencing depths and complexities, using simulated and real experimental short-read data aligned to external reference genomes. Rhometa offers a comprehensive solution for determining population recombination rates from contemporary metagenomic read datasets. Rhometa extends the capabilities of conventional sequence-based composite likelihood population recombination rate estimators to include modern aligned metagenomic read datasets with diverse sequencing depths, thereby enabling the effective application of these techniques and their high accuracy rates to the field of metagenomics. Using simulated datasets, we show that our method performs well, with its accuracy improving with increasing numbers of genomes. Rhometa was validated on a real S. pneumoniae transformation experiment, where we show that it obtains plausible estimates of the rate of recombination. Finally, the program was also run on ocean surface water metagenomic datasets, through which we demonstrate that the program works on uncultured metagenomic datasets.
Collapse
Affiliation(s)
- Sidaswar Krishnan
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Matthew Z. DeMaere
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Sydney, NSW, Australia
- * E-mail:
| | - Dominik Beck
- Centre for Health Technologies and the School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Martin Ostrowski
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Justin R. Seymour
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Aaron E. Darling
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Sydney, NSW, Australia
- Illumina Australia Pty Ltd, Ultimo, NSW, Australia
| |
Collapse
|
26
|
Novelty Search Promotes Antigenic Diversity in Microbial Pathogens. Pathogens 2023; 12:pathogens12030388. [PMID: 36986310 PMCID: PMC10053453 DOI: 10.3390/pathogens12030388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Driven by host–pathogen coevolution, cell surface antigens are often the fastest evolving parts of a microbial pathogen. The persistent evolutionary impetus for novel antigen variants suggests the utility of novelty-seeking algorithms in predicting antigen diversification in microbial pathogens. In contrast to traditional genetic algorithms maximizing variant fitness, novelty-seeking algorithms optimize variant novelty. Here, we designed and implemented three evolutionary algorithms (fitness-seeking, novelty-seeking, and hybrid) and evaluated their performances in 10 simulated and 2 empirically derived antigen fitness landscapes. The hybrid walks combining fitness- and novelty-seeking strategies overcame the limitations of each algorithm alone, and consistently reached global fitness peaks. Thus, hybrid walks provide a model for microbial pathogens escaping host immunity without compromising variant fitness. Biological processes facilitating novelty-seeking evolution in natural pathogen populations include hypermutability, recombination, wide dispersal, and immune-compromised hosts. The high efficiency of the hybrid algorithm improves the evolutionary predictability of novel antigen variants. We propose the design of escape-proof vaccines based on high-fitness variants covering a majority of the basins of attraction on the fitness landscape representing all potential variants of a microbial antigen.
Collapse
|
27
|
Liu Z, Michalet R, Wang C, Wang Y, Chen J, Cui H, Song H, Wang J, Yang Z, An L, Xiao S, Chen S. Contrasting effects of two phenotypes of an alpine cushion plant on understory species drive community assembly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160154. [PMID: 36375548 DOI: 10.1016/j.scitotenv.2022.160154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
In alpine systems, cushion plants act as foundation species by ameliorating local environmental conditions. Empirical studies indicate that contrasting phenotypes of alpine cushion species have different effects on understory plant species, either facilitative or competitive. Furthermore, dependent species within each community type might also exhibit different responses to each cushion phenotype, which can be clustered into several "response groups". Additionally, these species-groups specific responses to alpine cushion species phenotypes could alter community assembly. However, very few studies have assessed responses of dependent communities at species-group levels, in particular for both above- and below-ground communities. Here, we selected a loose and a tight phenotype of the alpine cushion species Thylacospermum caespitosum in two sites of northwest China, and use the relative intensity of interactions index to quantify cushion plant effects on subordinate communities of plants and soil fungi and bacteria. We assessed variations in responses of both above- and below-ground organisms to cushion plant effects at species-group level. Species-group level analyses showed that the effects of the phenotype varied among groups of each of the three community types, and different species-groups were composed by unique taxa. Additionally, we found that loose cushions enhanced stochastic processes in community assembly, for plants and soil fungi but not for soil bacteria. These variations of phenotypic effects on different species-group induced contrasting taxonomic composition between groups, and alter community assembly thereby. Our study highlights the occurrence of contrasting effects of two phenotypes of a foundation cushion plant on understory plants, soil fungi and bacteria community composition, but not necessarily on their richness. We also showed that assessing responses of understory species at the species-group level allows a more realistic and mechanistic understanding of biotic interactions both for above- and below-ground communities.
Collapse
Affiliation(s)
- Ziyang Liu
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu, People's Republic of China
| | - Richard Michalet
- Environnements et Paléoenvironnements Océaniques et Continentaux, University of Bordeaux, Bordeaux, France
| | - Chenyue Wang
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu, People's Republic of China
| | - Yajun Wang
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu, People's Republic of China
| | - Jingwei Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu, People's Republic of China
| | - Hanwen Cui
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu, People's Republic of China
| | - Hongxian Song
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu, People's Republic of China
| | - Jiajia Wang
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu, People's Republic of China
| | - Zi Yang
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu, People's Republic of China
| | - Lizhe An
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu, People's Republic of China
| | - Sa Xiao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu, People's Republic of China
| | - Shuyan Chen
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
28
|
Romeo L, Esposito A, Bernacchi A, Colazzo D, Vassallo A, Zaccaroni M, Fani R, Del Duca S. Application of Cloning-Free Genome Engineering to Escherichia coli. Microorganisms 2023; 11:microorganisms11010215. [PMID: 36677507 PMCID: PMC9866961 DOI: 10.3390/microorganisms11010215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The propagation of foreign DNA in Escherichia coli is central to molecular biology. Recent advances have dramatically expanded the ability to engineer (bacterial) cells; however, most of these techniques remain time-consuming. The aim of the present work was to explore the possibility to use the cloning-free genome editing (CFGE) approach, proposed by Döhlemann and coworkers (2016), for E. coli genetics, and to deepen the knowledge about the homologous recombination mechanism. The E. coli auxotrophic mutant strains FB182 (hisF892) and FB181 (hisI903) were transformed with the circularized wild-type E. coli (i) hisF gene and hisF gene fragments of decreasing length, and (ii) hisIE gene, respectively. His+ clones were selected based on their ability to grow in the absence of histidine, and their hisF/hisIE gene sequences were characterized. CFGE method allowed the recombination of wild-type his genes (or fragments of them) within the mutated chromosomal copy, with a different recombination frequency based on the fragment length, and the generation of clones with a variable number of in tandem his genes copies. Data obtained pave the way to further evolutionary studies concerning the homologous recombination mechanism and the fate of in tandem duplicated genes.
Collapse
Affiliation(s)
- Lucia Romeo
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Antonia Esposito
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Alberto Bernacchi
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Daniele Colazzo
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Alberto Vassallo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Marco Zaccaroni
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Renato Fani
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
- Correspondence: (R.F.); (S.D.D.)
| | - Sara Del Duca
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
- Correspondence: (R.F.); (S.D.D.)
| |
Collapse
|
29
|
Didelot X. Phylogenetic Analysis of Bacterial Pathogen Genomes. Methods Mol Biol 2023; 2674:87-99. [PMID: 37258962 DOI: 10.1007/978-1-0716-3243-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The development of high-throughput sequencing technology has led to a significant reduction in the time and cost of sequencing whole genomes of bacterial pathogens. Studies can sequence and compare hundreds or even thousands of genomes within a given bacterial population. A phylogenetic tree is the most frequently used method of depicting the relationships between these bacterial pathogen genomes. However, the presence of homologous recombination in most bacterial pathogen species can invalidate the application of standard phylogenetic tools. Here we describe a method to produce phylogenetic analyses that accounts for the disruptive effect of recombination. This allows users to investigate the recombination events that have occurred, as well as to produce more meaningful phylogenetic analyses which recover the clonal genealogy representing the clonal relationships between genomes.
Collapse
Affiliation(s)
- Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, UK.
| |
Collapse
|
30
|
Gunasekara CWR, Rajapaksha LGTG, Wimalasena SHMP. Comparative analysis unravels genetic recombination events of Vibrio parahaemolyticus recA gene. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 107:105396. [PMID: 36549419 DOI: 10.1016/j.meegid.2022.105396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/03/2022] [Accepted: 12/18/2022] [Indexed: 12/23/2022]
Abstract
Vibrio parahaemolyticus is a gram-negative bacterium capable of causing diseases in humans and aquatic animals. The global relationships among V. parahaemolyticus genomes have been studied using multilocus sequence typing (MLST). Recently, the MLST gene recA has shown difficulties in amplification and/or a larger PCR fragment for some V. parahaemolyticus genomes due to genetic recombination. We aimed to investigate these recombination events of recA gene by analyzing 500 publicly available whole genomes from the NCBI database. The genomes with untypable recA genes were separated using BIGSdb and CGEMLST 2.0 servers, followed by annotation with RAST and NCBI pipelines. Moreover, the variable nature of V. parahaemolyticus was investigated by wgMLST analysis. The hypothetical proteins in recombinant regions were analyzed with VCIMPred tool. In the results, 3 genomes were detected with recA gene recombination, in which 2 were associated with phages and 1 to an AHPND causing strain. All 3 recombinant regions had a G + C content of 39%-40% with 15-30 ORFs, including a newly incorporated recA gene. These acquired recA genes were closely related to 3 different genera namely Aliivibrio, Photobacterium, and Vibrio. The wgMLST analysis indicated genetic recombination events occur independently among V. parahaemolyticus on a global scale. The in silico analysis revealed 4 hypothetical proteins associated with virulence factors in recombinant regions. The present study confirms, recombination events of V. parahaemolyticus recA gene, are diverse and may have an impact on the evolutionary process. Moreover, understanding these genetic recombination events of the recA gene is necessary to determine their STs and, therefore assessing epidemiological relationships.
Collapse
Affiliation(s)
- C W R Gunasekara
- Division of Fisheries Life Sciences, College of Fisheries Sciences, Pukyong National University, Busan 48513, South Korea.
| | - L G T G Rajapaksha
- Veterinary Medical Center and College of Veterinary Medicine, Jeonbuk National University, 54596 Jeonju, South Korea
| | - S H M P Wimalasena
- Veterinary Medical Center and College of Veterinary Medicine, Jeonbuk National University, 54596 Jeonju, South Korea
| |
Collapse
|
31
|
Conflicting effects of recombination on the evolvability and robustness in neutrally evolving populations. PLoS Comput Biol 2022; 18:e1010710. [DOI: 10.1371/journal.pcbi.1010710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/05/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Understanding the benefits and costs of recombination under different scenarios of evolutionary adaptation remains an open problem for theoretical and experimental research. In this study, we focus on finite populations evolving on neutral networks comprising viable and unfit genotypes. We provide a comprehensive overview of the effects of recombination by jointly considering different measures of evolvability and mutational robustness over a broad parameter range, such that many evolutionary regimes are covered. We find that several of these measures vary non-monotonically with the rates of mutation and recombination. Moreover, the presence of unfit genotypes that introduce inhomogeneities in the network of viable states qualitatively alters the effects of recombination. We conclude that conflicting trends induced by recombination can be explained by an emerging trade-off between evolvability on the one hand, and mutational robustness on the other. Finally, we discuss how different implementations of the recombination scheme in theoretical models can affect the observed dependence on recombination rate through a coupling between recombination and genetic drift.
Collapse
|
32
|
Didelot X, Parkhill J. A scalable analytical approach from bacterial genomes to epidemiology. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210246. [PMID: 35989600 PMCID: PMC9393561 DOI: 10.1098/rstb.2021.0246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
Recent years have seen a remarkable increase in the practicality of sequencing whole genomes from large numbers of bacterial isolates. The availability of this data has huge potential to deliver new insights into the evolution and epidemiology of bacterial pathogens, but the scalability of the analytical methodology has been lagging behind that of the sequencing technology. Here we present a step-by-step approach for such large-scale genomic epidemiology analyses, from bacterial genomes to epidemiological interpretations. A central component of this approach is the dated phylogeny, which is a phylogenetic tree with branch lengths measured in units of time. The construction of dated phylogenies from bacterial genomic data needs to account for the disruptive effect of recombination on phylogenetic relationships, and we describe how this can be achieved. Dated phylogenies can then be used to perform fine-scale or large-scale epidemiological analyses, depending on the proportion of cases for which genomes are available. A key feature of this approach is computational scalability and in particular the ability to process hundreds or thousands of genomes within a matter of hours. This is a clear advantage of the step-by-step approach described here. We discuss other advantages and disadvantages of the approach, as well as potential improvements and avenues for future research. This article is part of a discussion meeting issue 'Genomic population structures of microbial pathogens'.
Collapse
Affiliation(s)
- Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| |
Collapse
|
33
|
Turakhia Y, Thornlow B, Hinrichs A, McBroome J, Ayala N, Ye C, Smith K, De Maio N, Haussler D, Lanfear R, Corbett-Detig R. Pandemic-scale phylogenomics reveals the SARS-CoV-2 recombination landscape. Nature 2022; 609:994-997. [PMID: 35952714 PMCID: PMC9519458 DOI: 10.1038/s41586-022-05189-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
Accurate and timely detection of recombinant lineages is crucial for interpreting genetic variation, reconstructing epidemic spread, identifying selection and variants of interest, and accurately performing phylogenetic analyses1-4. During the SARS-CoV-2 pandemic, genomic data generation has exceeded the capacities of existing analysis platforms, thereby crippling real-time analysis of viral evolution5. Here, we use a new phylogenomic method to search a nearly comprehensive SARS-CoV-2 phylogeny for recombinant lineages. In a 1.6 million sample tree from May 2021, we identify 589 recombination events, which indicate that around 2.7% of sequenced SARS-CoV-2 genomes have detectable recombinant ancestry. Recombination breakpoints are inferred to occur disproportionately in the 3' portion of the genome that contains the spike protein. Our results highlight the need for timely analyses of recombination for pinpointing the emergence of recombinant lineages with the potential to increase transmissibility or virulence of the virus. We anticipate that this approach will empower comprehensive real-time tracking of viral recombination during the SARS-CoV-2 pandemic and beyond.
Collapse
Affiliation(s)
- Yatish Turakhia
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA.
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA.
- Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, CA, USA.
| | - Bryan Thornlow
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Angie Hinrichs
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Jakob McBroome
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Nicolas Ayala
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Cheng Ye
- Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, CA, USA
| | - Kyle Smith
- Department of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | - Nicola De Maio
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - David Haussler
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
- Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Robert Lanfear
- Department of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA.
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
34
|
Palma F, Radomski N, Guérin A, Sévellec Y, Félix B, Bridier A, Soumet C, Roussel S, Guillier L. Genomic elements located in the accessory repertoire drive the adaptation to biocides in Listeria monocytogenes strains from different ecological niches. Food Microbiol 2022; 106:103757. [PMID: 35690455 DOI: 10.1016/j.fm.2021.103757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/04/2021] [Accepted: 01/29/2021] [Indexed: 11/25/2022]
Abstract
In response to the massive use of biocides for controlling Listeria monocytogenes (hereafter Lm) contaminations along the food chain, strains showing biocide tolerance emerged. Here, accessory genomic elements were associated with biocide tolerance through pangenome-wide associations performed on 197 Lm strains from different lineages, ecological, geographical and temporal origins. Mobile elements, including prophage-related loci, the Tn6188_qacH transposon and pLMST6_emrC plasmid, were widespread across lineage I and II food strains and associated with tolerance to benzalkonium-chloride (BC), a quaternary ammonium compound (QAC) widely used in food processing. The pLMST6_emrC was also associated with tolerance to another QAC, the didecyldimethylammonium-chloride, displaying a pleiotropic effect. While no associations were detected for chemically reactive biocides (alcohols and chlorines), genes encoding for cell-surface proteins were associated with BC or polymeric biguanide tolerance. The latter was restricted to lineage I strains from animal and the environment. In conclusion, different genetic markers, with polygenic nature or not, appear to have driven the Lm adaptation to biocide, especially in food strains but also from animal and the environment. These markers could aid to monitor and predict the spread of biocide tolerant Lm genotypes across different ecological niches, finally reducing the risk of such strains in food industrial settings.
Collapse
Affiliation(s)
- Federica Palma
- Maisons-Alfort Laboratory of food safety, University Paris-Est, ANSES, Maisons-Alfort, France.
| | - Nicolas Radomski
- Maisons-Alfort Laboratory of food safety, University Paris-Est, ANSES, Maisons-Alfort, France
| | - Alizée Guérin
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, ANSES, Fougères, France
| | - Yann Sévellec
- Maisons-Alfort Laboratory of food safety, University Paris-Est, ANSES, Maisons-Alfort, France
| | - Benjamin Félix
- Maisons-Alfort Laboratory of food safety, University Paris-Est, ANSES, Maisons-Alfort, France
| | - Arnaud Bridier
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, ANSES, Fougères, France
| | - Christophe Soumet
- Fougères Laboratory, Antibiotics, Biocides, Residues and Resistance Unit, ANSES, Fougères, France
| | - Sophie Roussel
- Maisons-Alfort Laboratory of food safety, University Paris-Est, ANSES, Maisons-Alfort, France
| | - Laurent Guillier
- Maisons-Alfort Laboratory of food safety, University Paris-Est, ANSES, Maisons-Alfort, France; Maisons-Alfort Risk Assessment Department, University Paris-Est, ANSES, Maisons-Alfort, France
| |
Collapse
|
35
|
Crystal Structure of the Recombination Mediator Protein RecO from Campylobacter jejuni and Its Interaction with DNA and a Zinc Ion. Int J Mol Sci 2022; 23:ijms23179667. [PMID: 36077065 PMCID: PMC9456098 DOI: 10.3390/ijms23179667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Homologous recombination is involved in repairing DNA damage, contributing to maintaining the integrity and stability of viral and cellular genomes. In bacteria, the recombination mediator proteins RecO and RecR are required to load the RecA recombinase on ssDNA for homologous recombination. To structurally and functionally characterize RecO, we determined the crystal structure of RecO from Campylobacter jejuni (cjRecO) at a 1.8 Å resolution and biochemically assessed its capacity to interact with DNA and a metal ion. cjRecO folds into a curved rod-like structure that consists of an N-terminal domain (NTD), C-terminal domain (CTD), and Zn2+-binding domain (ZnD). The ZnD at the end of the rod-like structure coordinates three cysteine residues and one histidine residue to accommodate a Zn2+ ion. Based on an extensive comparative analysis of RecO structures and sequences, we propose that the Zn2+-binding consensus sequence of RecO is CxxC…C/HxxC/H/D. The interaction with Zn2+ is indispensable for the protein stability of cjRecO but does not seem to be required for the recombination mediator function. cjRecO also interacts with ssDNA as part of its biological function, potentially using the positively charged patch in the NTD and CTD. However, cjRecO displays a low ssDNA-binding affinity, suggesting that cjRecO requires RecR to efficiently recognize ssDNA for homologous recombination.
Collapse
|
36
|
Jia Y, Lu H, Zhu L. Molecular mechanism of antibiotic resistance induced by mono- and twin-chained quaternary ammonium compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155090. [PMID: 35398118 PMCID: PMC8985400 DOI: 10.1016/j.scitotenv.2022.155090] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/17/2022] [Accepted: 04/03/2022] [Indexed: 05/08/2023]
Abstract
The usage of quaternary ammonium compounds (QACs) as disinfectants has increased dramatically since the outbreak of COVID-19 pandemic, leading to potentially accelerated emergence of antibiotic resistance. Long-term exposure to subinhibitory level QACs can lead to multidrug resistance, but the contribution of mutagenesis to resistance evolution is obscure. In this study, we subcultured E. coli K-12 under subinhibitory (0.25 × and 0.5 × Minimum Inhibitory Concentration, MIC) or inhibitory (1 × and 2 × MIC) concentrations of benzalkonium chloride (BAC, mono-chained) or didecyldimethylammonium chloride (DDAC, twin-chained) for 60 days. The sensitivity of QAC-adapted cells to five typical antibiotics decreased significantly, and in particular, the MIC of rifampicin increased by 85 times. E. coli adapted faster to BAC but developed 20-167% higher antibiotic resistance with 56% more mutations under DDAC exposure. The broader mutations induced by QACs, including negative regulators (acrR, marR, soxR, and crp), outer membrane proteins and transporters (mipA and sbmA), and RNA polymerase (rpoB and rpoC), potentially contributed to the high multi-drug resistance. After QACs stresses were removed, the phenotypic resistance induced by subinhibitory concentrations of QACs was reversible, whereas that induced by inhibitory concentrations of QACs was irreversible. The different patterns and molecular mechanism of antibiotic resistance induced by BAC and DDAC is informative to estimating the risks of broader QACs present at varied concentrations in the environment.
Collapse
Affiliation(s)
- Yin Jia
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Huijie Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
37
|
Mejía L, Prado B, Cárdenas P, Trueba G, González-Candelas F. The impact of genetic recombination on pathogenic Leptospira. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 102:105313. [PMID: 35688386 DOI: 10.1016/j.meegid.2022.105313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Leptospirosis is the most common zoonosis worldwide, and is increasingly common in poor urban communities, where there is inadequate sewage disposal and abundance of domestic and peridomestic animals. There are many risk factors associated with the disease, such as contaminated water exposure, close contact with animals, floods, recreational activities related to water, wet agriculture. The symptoms of leptospirosis are common to other infectious diseases and, if not treated, it can lead to meningitis, liver failure, kidney damage and death. Leptospirosis is caused by 38 pathogenic species of Leptospira, which are divided in almost 30 serogroups and more than 300 serovars. The serological classification (serogroups and serovars) is based on the expression of distinct lipopolysaccharide (LPS) antigens. These antigens are also associated to protective immunity; antibodies against a serovar protect from any member of the same serovar. Serologic and phylogenetic analyses are not congruent probably due to genetic recombination of LPS genes among different leptospiral species. To analyze the importance of recombination in leptospiral evolution, we performed a gene-by-gene tree topology comparison on closed genomes available in public databases at two levels: among core genomes of pathogenic species (34 recombinant among 1213 core genes), and among core genomes of L. interrogans isolates (178/798). We found that most recombinant genes code for proteins involved in translation, ribosomal structure and biogenesis, but also for cell wall, membrane and envelope biogenesis. Besides, our final results showed that half of LPS genes are recombinant (18/36). This is relevant because serovar classification and vaccine development are based on these epitopes. The frequent recombination of LPS-associated genes suggests that natural selection is promoting the survival of recombinant lineages. These results may help understanding the factors that make Leptospira a successful pathogen.
Collapse
Affiliation(s)
- Lorena Mejía
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain
| | - Belén Prado
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Paúl Cárdenas
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador.
| | - Fernando González-Candelas
- Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; CIBER (Centro de Investigación Biomédica en Red) in Epidemiology and Public Health, Valencia, Spain.
| |
Collapse
|
38
|
Otieno JR, Cherry JL, Spiro DJ, Nelson MI, Trovão NS. Origins and Evolution of Seasonal Human Coronaviruses. Viruses 2022; 14:1551. [PMID: 35891531 PMCID: PMC9320361 DOI: 10.3390/v14071551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Four seasonal human coronaviruses (sHCoVs) are endemic globally (229E, NL63, OC43, and HKU1), accounting for 5-30% of human respiratory infections. However, the epidemiology and evolution of these CoVs remain understudied due to their association with mild symptomatology. Using a multigene and complete genome analysis approach, we find the evolutionary histories of sHCoVs to be highly complex, owing to frequent recombination of CoVs including within and between sHCoVs, and uncertain, due to the under sampling of non-human viruses. The recombination rate was highest for 229E and OC43 whereas substitutions per recombination event were highest in NL63 and HKU1. Depending on the gene studied, OC43 may have ungulate, canine, or rabbit CoV ancestors. 229E may have origins in a bat, camel, or an unsampled intermediate host. HKU1 had the earliest common ancestor (1809-1899) but fell into two distinct clades (genotypes A and B), possibly representing two independent transmission events from murine-origin CoVs that appear to be a single introduction due to large gaps in the sampling of CoVs in animals. In fact, genotype B was genetically more diverse than all the other sHCoVs. Finally, we found shared amino acid substitutions in multiple proteins along the non-human to sHCoV host-jump branches. The complex evolution of CoVs and their frequent host switches could benefit from continued surveillance of CoVs across non-human hosts.
Collapse
Affiliation(s)
- James R. Otieno
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.C.); (D.J.S.); (M.I.N.)
| | - Joshua L. Cherry
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.C.); (D.J.S.); (M.I.N.)
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - David J. Spiro
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.C.); (D.J.S.); (M.I.N.)
| | - Martha I. Nelson
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.C.); (D.J.S.); (M.I.N.)
| | - Nídia S. Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.C.); (D.J.S.); (M.I.N.)
| |
Collapse
|
39
|
Zhang Z, Dong Y, Xiang F, Wang Y, Hou Q, Ni H, Cai W, Liu W, Yang S, Guo Z. Analysis of bacterial diversity and genetic evolution of Lacticaseibacillus paracasei isolates in fermentation pit mud. J Appl Microbiol 2022; 133:1821-1831. [PMID: 35802775 DOI: 10.1111/jam.15672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/13/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Abstract
AIMS Since little is known about the genetic diversity of lactic acid bacteria (LAB) isolates from the fermentation pit mud (FPM), we sought to evaluate the bacterial structure, identify the LAB isolates and investigate the genotype and genetic diversity of the LAB isolates. METHODS AND RESULTS Using high-throughput MiSeq sequencing, we identified seven dominant bacterial genera in FPM. Lactobacillus had the highest abundance. We isolated 55 LAB strains. These isolates were all identified as Lacticaseibacillus paracasei. Using an extant multilocus sequence typing (MLST) scheme, isolates were assigned to 18 sequence types (STs) and three clonal complexes. ST1, the largest group, mainly comprised FPM isolates. Niche-specific ST2 to ST18 only contained FPM isolates. Isolates could be divided into four lineages, with most assigned to Lineage 1. Only one FPM isolate was classified as L. paracasei subsp. paracasei. Other isolates could not be classified at the subspecies level using the seven MLST loci. CONCLUSIONS Lactobacilli account for a high proportion of bacteria in pit mud. Based on the traditional culture method, L. paracasei was the dominant species, and these isolates exhibit a high ethanol tolerance, high intraspecific diversity and specific genetic profiles. SIGNIFICANCE AND IMPACT OF THE STUDY The study described the characterization of FPM bacterial diversity, giving an insight into the genetic diversity of L. paracasei strains present in FPM.
Collapse
Affiliation(s)
- Zhendong Zhang
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, People's Republic of China
| | - Yun Dong
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, People's Republic of China
| | - Fanshu Xiang
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, People's Republic of China
| | - Yurong Wang
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, People's Republic of China
| | - Qiangchuan Hou
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, People's Republic of China
| | - Hui Ni
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, People's Republic of China.,School of Food Science, Shihezi University, Shihezi, Xinjiang Autonomous Region, People's Republic of China
| | - Wenchao Cai
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, People's Republic of China.,School of Food Science, Shihezi University, Shihezi, Xinjiang Autonomous Region, People's Republic of China
| | - Wenhui Liu
- Hubei Guxiangyang Liquor Industry Co., Ltd., Xiangyang, People's Republic of China
| | - Shaoyong Yang
- Hubei Guxiangyang Liquor Industry Co., Ltd., Xiangyang, People's Republic of China
| | - Zhuang Guo
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, People's Republic of China
| |
Collapse
|
40
|
Shikov AE, Malovichko YV, Nizhnikov AA, Antonets KS. Current Methods for Recombination Detection in Bacteria. Int J Mol Sci 2022; 23:ijms23116257. [PMID: 35682936 PMCID: PMC9181119 DOI: 10.3390/ijms23116257] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
The role of genetic exchanges, i.e., homologous recombination (HR) and horizontal gene transfer (HGT), in bacteria cannot be overestimated for it is a pivotal mechanism leading to their evolution and adaptation, thus, tracking the signs of recombination and HGT events is importance both for fundamental and applied science. To date, dozens of bioinformatics tools for revealing recombination signals are available, however, their pros and cons as well as the spectra of solvable tasks have not yet been systematically reviewed. Moreover, there are two major groups of software. One aims to infer evidence of HR, while the other only deals with horizontal gene transfer (HGT). However, despite seemingly different goals, all the methods use similar algorithmic approaches, and the processes are interconnected in terms of genomic evolution influencing each other. In this review, we propose a classification of novel instruments for both HR and HGT detection based on the genomic consequences of recombination. In this context, we summarize available methodologies paying particular attention to the type of traceable events for which a certain program has been designed.
Collapse
Affiliation(s)
- Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Yury V. Malovichko
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (Y.V.M.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
41
|
Mosaic Evolution of Beta-Barrel-Porin-Encoding Genes in Escherichia coli. Appl Environ Microbiol 2022; 88:e0006022. [PMID: 35285711 DOI: 10.1128/aem.00060-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial porin-encoding genes are often found under positive selection. Local recombination has also been identified in a few of them to facilitate bacterial rapid adaptation, although it remains unknown whether it is a common evolutionary mechanism for the porins or outer membrane proteins in Gram-negative bacteria. In this study, we investigated the beta-barrel (β-barrel) porin-encoding genes in Escherichia coli that were reported under positive Darwinian selection. Besides fhuA that was found with ingenic local recombination previously, we identified four other genes, i.e., lamB, ompA, ompC, and ompF, all showing the similar mosaic evolution patterns. Comparative analysis of the protein sequences disclosed a list of highly variable regions in each family, which are mostly located in the convex of extracellular loops and coinciding with the binding sites of bacteriophages. For each of the porin families, mosaic recombination leads to unique combinations of the variable regions with different sequence patterns, generating diverse protein groups. Structural modeling indicated a conserved global topology among the different porins, with the extracellular surface varying a lot due to individual or combinatorial variable regions. The conservation of global tertiary structure would ensure the channel activity, while the wide diversity of variable regions may represent selection to avoid the invasion of phages, antibiotics or immune surveillance factors. Our study identified multiple bacterial porin genes with mosaic evolution. We hypothesize that this could be generalized strategy for outer membrane proteins to both maintain normal life processes and evade the attack of unfavored factors rapidly. IMPORTANCE Microevolution studies can disclose more elaborate evolutionary mechanisms of genes, appearing especially important for genes with multifaceted function such as those encoding outer membrane proteins. However, in most cases, the gene is considered as a whole unit, and the evolutionary patterns are disclosed. Here, we report that multiple bacterial porin proteins follow mosaic evolution, with local ingenic recombination combined with spontaneous mutations based on positive Darwinian selection, and conservation for most structural regions. This could represent a common mechanism for bacterial outer membrane proteins. The variable regions within each porin family showed large coincidence with the binding sites of bacteriophages, antibiotics, and immune factors and therefore would represent effective targets for the development of new antibacterial agents or vaccines.
Collapse
|
42
|
Choudoir MJ, DeAngelis KM. A framework for integrating microbial dispersal modes into soil ecosystem ecology. iScience 2022; 25:103887. [PMID: 35243247 PMCID: PMC8866892 DOI: 10.1016/j.isci.2022.103887] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Dispersal is a fundamental community assembly process that maintains soil microbial biodiversity across spatial and temporal scales, yet the impact of dispersal on ecosystem function is largely unpredictable. Dispersal is unique in that it contributes to both ecological and evolutionary processes and is shaped by both deterministic and stochastic forces. The ecosystem-level ramifications of dispersal outcomes are further compounded by microbial dormancy dynamics and environmental selection. Here we review the knowledge gaps and challenges that remain in defining how dispersal, environmental filtering, and microbial dormancy interact to influence the relationship between microbial community structure and function in soils. We propose the classification of microbial dispersal into three categories, through vegetative or active cells, through dormant cells, and through acellular dispersal, each with unique spatiotemporal dynamics and microbial trait associations. This conceptual framework should improve the integration of dispersal in defining soil microbial community structure-function relationships.
Collapse
|
43
|
Integrative Reverse Genetic Analysis Identifies Polymorphisms Contributing to Decreased Antimicrobial Agent Susceptibility in Streptococcus pyogenes. mBio 2022; 13:e0361821. [PMID: 35038921 PMCID: PMC8764543 DOI: 10.1128/mbio.03618-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Identification of genetic polymorphisms causing increased antibiotic resistance in bacterial pathogens traditionally has proceeded from observed phenotype to defined mutant genotype. The availability of large collections of microbial genome sequences that lack antibiotic susceptibility metadata provides an important resource and opportunity to obtain new information about increased antimicrobial resistance by a reverse genotype-to-phenotype bioinformatic and experimental workflow. We analyzed 26,465 genome sequences of Streptococcus pyogenes, a human pathogen causing 700 million infections annually. The population genomic data identified amino acid changes in penicillin-binding proteins 1A, 1B, 2A, and 2X with signatures of evolution under positive selection as potential candidates for causing decreased susceptibility to β-lactam antibiotics. Construction and analysis of isogenic mutant strains containing individual amino acid replacements in penicillin-binding protein 2X (PBP2X) confirmed that the identified residues produced decreased susceptibility to penicillin. We also discovered the first chimeric PBP2X in S. pyogenes and show that strains containing it have significantly decreased β-lactam susceptibility. The novel integrative reverse genotype-to-phenotype strategy presented is broadly applicable to other pathogens and likely will lead to new knowledge about antimicrobial agent resistance, a massive public health problem worldwide. IMPORTANCE The recent demonstration that naturally occurring amino acid substitutions in Streptococcus pyogenes PBP2X are sufficient to cause severalfold reduced susceptibility to multiple β-lactam antibiotics in vitro raises the concern that these therapeutic agents may become compromised. Substitutions in PBP2X are common first-step mutations that, with the incremental accumulation of additional adaptive mutations within the PBPs, can result in high-level resistance. Because β-lactam susceptibility testing is not routinely performed, the nature and extent of such substitutions within the PBPs of S. pyogenes are poorly characterized. To address this knowledge deficit, polymorphisms in the PBPs were identified among the most comprehensive cohort of S. pyogenes genome sequences investigated to date. The mutational processes and selective forces acting on the PBPs were assessed to identify specific substitutions likely to influence β-lactam susceptibility and to evaluate factors posited to be impediments to resistance emergence.
Collapse
|
44
|
Palomo A, Dechesne A, Cordero OX, Smets BF. Evolutionary Ecology of Natural Comammox Nitrospira Populations. mSystems 2022; 7:e0113921. [PMID: 35014874 PMCID: PMC8751384 DOI: 10.1128/msystems.01139-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
Microbes commonly exist in diverse and complex communities where species interact, and their genomic repertoires evolve over time. Our understanding of species interaction and evolution has increased during the last decades, but most studies of evolutionary dynamics are based on single species in isolation or in experimental systems composed of few interacting species. Here, we use the microbial ecosystem found in groundwater-fed sand filter as a model to avoid this limitation. In these open systems, diverse microbial communities experience relatively stable conditions, and the coupling between chemical and biological processes is generally well defined. Metagenomic analysis of 12 sand filters communities revealed systematic co-occurrence of at least five comammox Nitrospira species, likely promoted by low ammonium concentrations. These Nitrospira species showed intrapopulation sequence diversity, although possible clonal expansion was detected in a few abundant local comammox populations. Nitrospira species showed low homologous recombination and strong purifying selection, the latter process being especially strong in genes essential in energy metabolism. Positive selection was detected for genes related to resistance to foreign DNA and phages. We found that, compared to other habitats, groundwater-fed sand filters impose strong purifying selection and low recombination on comammox Nitrospira populations. These results suggest that evolutionary processes are more affected by habitat type than by species identity. Together, this study improves our understanding of species interaction and evolution in complex microbial communities and sheds light on the environmental dependency of evolutionary processes. IMPORTANCE Microbial species interact with each other and their environment (ecological processes) and undergo changes in their genomic repertoire over time (evolutionary processes). How these two classes of processes interact is largely unknown, especially for complex communities, as most studies of microbial evolutionary dynamics consider single species in isolation or a few interacting species in simplified experimental systems. In this study, these limitations are circumvented by examining the microbial communities found in stable and well-described groundwater-fed sand filters. Combining metagenomics and strain-level analyses, we identified the microbial interactions and evolutionary processes affecting comammox Nitrospira, a recently discovered bacterial type capable of performing the whole nitrification process. We found that abundant and co-occurrent Nitrospira populations in groundwater-fed sand filters are characterized by low recombination and strong purifying selection. In addition, by comparing these observations with those obtained from Nitrospira species inhabiting other environments, we revealed that evolutionary processes are more affected by habitat type than by species identity.
Collapse
Affiliation(s)
- Alejandro Palomo
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Arnaud Dechesne
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Otto X. Cordero
- Ralph M. Parsons Laboratory for Environmental Science and Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Barth F. Smets
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
45
|
Lee IPA, Andam CP. Frequencies and characteristics of genome-wide recombination in Streptococcus agalactiae, Streptococcus pyogenes, and Streptococcus suis. Sci Rep 2022; 12:1515. [PMID: 35087075 PMCID: PMC8795270 DOI: 10.1038/s41598-022-04995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/05/2022] [Indexed: 11/08/2022] Open
Abstract
Streptococcus consists of ecologically diverse species, some of which are important pathogens of humans and animals. We sought to quantify and compare the frequencies and characteristics of within-species recombination in the pan-genomes of Streptococcus agalactiae, Streptococcus pyogenes and Streptococcus suis. We used 1081, 1813 and 1204 publicly available genome sequences of each species, respectively. Based on their core genomes, S. agalactiae had the highest relative rate of recombination to mutation (11.5743) compared to S. pyogenes (1.03) and S. suis (0.57). The proportion of the species pan-genome that have had a history of recombination was 12.85%, 24.18% and 20.50% of the pan-genomes of each species, respectively. The composition of recombining genes varied among the three species, and some of the most frequently recombining genes are implicated in adhesion, colonization, oxidative stress response and biofilm formation. For each species, a total of 22.75%, 29.28% and 18.75% of the recombining genes were associated with prophages. The cargo genes of integrative conjugative elements and integrative and mobilizable elements contained genes associated with antimicrobial resistance and virulence. Homologous recombination and mobilizable pan-genomes enable the creation of novel combinations of genes and sequence variants, and the potential for high-risk clones to emerge.
Collapse
Affiliation(s)
| | - Cheryl P Andam
- University at Albany, State University of New York, New York, 12222, USA.
| |
Collapse
|
46
|
Vasileva D, Streich J, Burdick L, Klingeman D, Chhetri HB, Brelsford C, Ellis JC, Close DM, Jacobson D, Michener J. Protoplast fusion in Bacillus species produces frequent, unbiased, genome-wide homologous recombination. Nucleic Acids Res 2022; 50:6211-6223. [PMID: 35061904 PMCID: PMC9226520 DOI: 10.1093/nar/gkac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 01/09/2023] Open
Abstract
In eukaryotes, fine-scale maps of meiotic recombination events have greatly advanced our understanding of the factors that affect genomic variation patterns and evolution of traits. However, in bacteria that lack natural systems for sexual reproduction, unbiased characterization of recombination landscapes has remained challenging due to variable rates of genetic exchange and influence of natural selection. Here, to overcome these limitations and to gain a genome-wide view on recombination, we crossed Bacillus strains with different genetic distances using protoplast fusion. The offspring displayed complex inheritance patterns with one of the parents consistently contributing the major part of the chromosome backbone and multiple unselected fragments originating from the second parent. Our results demonstrate that this bias was in part due to the action of restriction-modification systems, whereas genome features like GC content and local nucleotide identity did not affect distribution of recombination events around the chromosome. Furthermore, we found that recombination occurred uniformly across the genome without concentration into hotspots. Notably, our results show that species-level genetic distance did not affect genome-wide recombination. This study provides a new insight into the dynamics of recombination in bacteria and a platform for studying recombination patterns in diverse bacterial species.
Collapse
Affiliation(s)
| | | | | | - Dawn M Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Hari B Chhetri
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Christa M Brelsford
- Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - J Christopher Ellis
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Dan M Close
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Daniel A Jacobson
- Correspondence may also be addressed to Daniel A. Jacobson. Tel: +1 865 574 6134; Fax: +1 865 241 2869;
| | - Joshua K Michener
- To whom correspondence should be addressed. Tel: +1 865 576 7957; Fax: +1 865 576 8646;
| |
Collapse
|
47
|
Evaluation of Bacterial Diversity and Evolutionary Dynamics of Gut Bifidobacterium longum Isolates Obtained from Older Individuals in Hubei Province, China. Microbiol Spectr 2022; 10:e0144221. [PMID: 35044201 PMCID: PMC8768838 DOI: 10.1128/spectrum.01442-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bifidobacterium longum predominates in the human gut throughout the life span, from birth to old age, and could alter the intestinal microbial population and immune function in the elderly. We investigated the intestinal bacterial diversity in the elderly, and further evaluated the genetic diversity and population structure of B. longum. The results revealed a distinct difference in gut bacterial populations between the elderly from Xiangyang and its neighboring region, Enshi city. A total of 62 bifidobacterial strains were isolated, 30 of which were found to be B. longum. The multilocus sequence typing (MLST) analysis also revealed that 437 B. longum isolates from diverse regions worldwide, including the 30 isolated in this study, could be classified into 341 sequence types (STs). They could be further clustered into 10 clonal complexes and 127 singleton STs, indicating a highly genetic diversity among B. longum isolates. Two putative clone complexes (CCs) containing the isolates from Xiangyang were found to be geographically specific, and a 213-bp recombination fragment was detected. Phylogenetic trees divided these 437 isolates into three lineages, corresponding to the three subspecies of B. longum. It is noteworthy that two isolates from the elderly were identified to be B. longum subsp. suis, while the others were B. longum subsp. longum. Together, our study characterized the intestinal bacterial diversity and evolution of B. longum in the elderly, and it could contribute to further studies on the genotyping and discrimination of B. longum. IMPORTANCEBifidobacterium longum are common inhabitants of the human gut throughout the life span, and have been associated with health-promoting effects, yet little is known about the genotype profile and evolution of these isolates. Our study showed that there was significant difference in gut bacterial community and abundance of B. longum between the elderly from two neighboring cities. Furthermore, the possible geographically specific STs, CCs, and intraspecies recombination fragment were found among the B. longum isolates from elderly.
Collapse
|
48
|
Abstract
The reconstruction of genetic material of ancestral organisms constitutes a powerful application of evolutionary biology. A fundamental step in this inference is the ancestral sequence reconstruction (ASR), which can be performed with diverse methodologies implemented in computer frameworks. However, most of these methodologies ignore evolutionary properties frequently observed in microbes, such as genetic recombination and complex selection processes, that can bias the traditional ASR. From a practical perspective, here I review methodologies for the reconstruction of ancestral DNA and protein sequences, with particular focus on microbes, and including biases, recommendations, and software implementations. I conclude that microbial ASR is a complex analysis that should be carefully performed and that there is a need for methods to infer more realistic ancestral microbial sequences.
Collapse
Affiliation(s)
- Miguel Arenas
- Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain.
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain.
- Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain.
| |
Collapse
|
49
|
Evolutionary Processes Driving the Rise and Fall of Staphylococcus aureus ST239, a Dominant Hybrid Pathogen. mBio 2021; 12:e0216821. [PMID: 34903061 PMCID: PMC8669471 DOI: 10.1128/mbio.02168-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Selection plays a key role in the spread of antibiotic resistance, but the evolutionary drivers of clinically important resistant strains remain poorly understood. Here, we use genomic analyses and competition experiments to study Staphylococcus aureus ST239, a prominent MRSA strain that is thought to have been formed by large-scale recombination between ST8 and ST30. Genomic analyses allowed us to refine the hybrid model for the origin of ST239 and to date the origin of ST239 to 1920 to 1945, which predates the clinical introduction of methicillin in 1959. Although purifying selection has dominated the evolution of ST239, parallel evolution has occurred in genes involved in antibiotic resistance and virulence, suggesting that ST239 has evolved toward an increasingly pathogenic lifestyle. Crucially, ST239 isolates have low competitive fitness relative to both ST8 and ST30 isolates, supporting the idea that fitness costs have driven the demise of this once-dominant pathogen strain.
Collapse
|
50
|
Helekal D, Ledda A, Volz E, Wyllie D, Didelot X. Bayesian inference of clonal expansions in a dated phylogeny. Syst Biol 2021; 71:1073-1087. [PMID: 34893904 PMCID: PMC9366454 DOI: 10.1093/sysbio/syab095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Microbial population genetics models often assume that all lineages are constrained by the same population size dynamics over time. However, many neutral and selective events can invalidate this assumption and can contribute to the clonal expansion of a specific lineage relative to the rest of the population. Such differential phylodynamic properties between lineages result in asymmetries and imbalances in phylogenetic trees that are sometimes described informally but which are difficult to analyze formally. To this end, we developed a model of how clonal expansions occur and affect the branching patterns of a phylogeny. We show how the parameters of this model can be inferred from a given dated phylogeny using Bayesian statistics, which allows us to assess the probability that one or more clonal expansion events occurred. For each putative clonal expansion event, we estimate its date of emergence and subsequent phylodynamic trajectory, including its long-term evolutionary potential which is important to determine how much effort should be placed on specific control measures. We demonstrate the applicability of our methodology on simulated and real data sets. Inference under our clonal expansion model can reveal important features in the evolution and epidemiology of infectious disease pathogens. [Clonal expansion; genomic epidemiology; microbial population genomics; phylodynamics.]
Collapse
Affiliation(s)
- David Helekal
- Centre for Doctoral Training in Mathematics for Real-World Systems, University of Warwick, United Kingdom
| | - Alice Ledda
- Healthcare Associated Infections and Antimicrobial Resistance Division, National Infection Service, Public Health England, United Kingdom
| | - Erik Volz
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, United Kingdom
| | - David Wyllie
- Field Service, East of England, National Infection Service, Public Health England, Cambridge, United Kingdom
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, United Kingdom
| |
Collapse
|