1
|
Doan VS, Alshareedah I, Singh A, Banerjee PR, Shin S. Diffusiophoresis promotes phase separation and transport of biomolecular condensates. Nat Commun 2024; 15:7686. [PMID: 39227569 PMCID: PMC11372141 DOI: 10.1038/s41467-024-51840-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
The internal microenvironment of a living cell is heterogeneous and comprises a multitude of organelles with distinct biochemistry. Amongst them are biomolecular condensates, which are membrane-less, phase-separated compartments enriched in system-specific proteins and nucleic acids. The heterogeneity of the cell engenders the presence of multiple spatiotemporal gradients in chemistry, charge, concentration, temperature, and pressure. Such thermodynamic gradients can lead to non-equilibrium driving forces for the formation and transport of biomolecular condensates. Here, we report how ion gradients impact the transport processes of biomolecular condensates on the mesoscale and biomolecules on the microscale. Utilizing a microfluidic platform, we demonstrate that the presence of ion concentration gradients can accelerate the transport of biomolecules, including nucleic acids and proteins, via diffusiophoresis. This hydrodynamic transport process allows localized enrichment of biomolecules, thereby promoting the location-specific formation of biomolecular condensates via phase separation. The ion gradients further impart directional motility of condensates, allowing them to exhibit enhanced diffusion along the gradient. Coupled with a reentrant phase behavior, the gradient-induced enhanced motility leads to a dynamical redistribution of condensates that ultimately extends their lifetime. Together, our results demonstrate diffusiophoresis as a non-equilibrium thermodynamic force that governs the formation and transport of biomolecular condensates.
Collapse
Affiliation(s)
- Viet Sang Doan
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Ibraheem Alshareedah
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Anurag Singh
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Priya R Banerjee
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| | - Sangwoo Shin
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
2
|
Santiago-Collazo G, Brown PJB, Randich AM. The divergent early divisome: is there a functional core? Trends Microbiol 2024; 32:231-240. [PMID: 37741788 DOI: 10.1016/j.tim.2023.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/25/2023]
Abstract
The bacterial divisome is a complex nanomachine that drives cell division and separation. The essentiality of these processes leads to the assumption that proteins with core roles will be strictly conserved across all bacterial genomes. However, recent studies in diverse proteobacteria have revealed considerable variation in the early divisome compared with Escherichia coli. While some proteins are highly conserved, their specific functions and interacting partners vary. Meanwhile, different subphyla use clade-specific proteins with analogous functions. Thus, instead of focusing on gene conservation, we must also explore how key functions are maintained during early division by diverging protein networks. An enhanced awareness of these complex genetic networks will clarify the physical and evolutionary constraints of bacterial division.
Collapse
Affiliation(s)
- Gustavo Santiago-Collazo
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - Pamela J B Brown
- Division of Biological Sciences, College of Arts and Sciences, University of Missouri-Columbia, Columbia, MO, USA
| | - Amelia M Randich
- Department of Biology, College of Arts and Sciences, University of Scranton, Scranton, PA, USA.
| |
Collapse
|
3
|
Doan VS, Alshareedah I, Singh A, Banerjee PR, Shin S. Diffusiophoresis promotes phase separation and transport of biomolecular condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.03.547532. [PMID: 37461689 PMCID: PMC10350024 DOI: 10.1101/2023.07.03.547532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The internal microenvironment of a living cell is heterogeneous and comprises a multitude of organelles with distinct biochemistry. Amongst them are biomolecular condensates, which are membrane-less, phase-separated compartments enriched in system-specific proteins and nucleic acids. The heterogeneity of the cell engenders the presence of multiple spatiotemporal gradients in chemistry, charge, concentration, temperature, and pressure. Such thermodynamic gradients can lead to non-equilibrium driving forces for the formation and transport of biomolecular condensates. Here, we report how ion gradients impact the transport processes of biomolecular condensates on the mesoscale and biomolecules on the microscale. Utilizing a microfluidic platform, we demonstrate that the presence of ion concentration gradients can accelerate the transport of biomolecules, including nucleic acids and proteins, via diffusiophoresis. This hydrodynamic transport process allows localized enrichment of biomolecules, thereby promoting the location-specific formation of biomolecular condensates via phase separation. The ion gradients further impart active motility of condensates, allowing them to exhibit enhanced diffusion along the gradient. Coupled with a reentrant phase behavior, the gradient-induced active motility leads to a dynamical redistribution of condensates that ultimately extends their lifetime. Together, our results demonstrate diffusiophoresis as a non-equilibrium thermodynamic force that governs the formation and transport of biomolecular condensates.
Collapse
Affiliation(s)
- Viet Sang Doan
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Ibraheem Alshareedah
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Anurag Singh
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Priya R. Banerjee
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Sangwoo Shin
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260
| |
Collapse
|
4
|
Gwin CM, Gupta KR, Lu Y, Shao L, Rego EH. Spatial segregation and aging of metabolic processes underlie phenotypic heterogeneity in mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569614. [PMID: 38076906 PMCID: PMC10705497 DOI: 10.1101/2023.12.01.569614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Individual cells within clonal populations of mycobacteria vary in size, growth rate, and antibiotic susceptibility. Heterogeneity is, in part, determined by LamA, a protein found exclusively in mycobacteria. LamA localizes to sites of new cell wall synthesis where it recruits proteins important for polar growth and establishing asymmetry. Here, we report that in addition to this function, LamA interacts with complexes involved in oxidative phosphorylation (OXPHOS) at a subcellular location distinct from cell wall synthesis. Importantly, heterogeneity depends on a unique extension of the mycobacterial ATP synthase, and LamA mediates the coupling between ATP production and cell growth in single cells. Strikingly, as single cells age, concentrations of proteins important for oxidative phosphorylation become less abundant, and older cells rely less on oxidative phosphorylation for growth. Together, our data reveal that central metabolism is spatially organized within a single mycobacterium and varies within a genetically identical population of mycobacteria. Designing therapeutic regimens to account for this heterogeneity may help to treat mycobacterial infections faster and more completely.
Collapse
Affiliation(s)
- Celena M. Gwin
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - Kuldeepkumar R. Gupta
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - Yao Lu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - Lin Shao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| | - E. Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06519
| |
Collapse
|
5
|
Mortier J, Govers SK, Cambré A, Van Eyken R, Verheul J, den Blaauwen T, Aertsen A. Protein aggregates act as a deterministic disruptor during bacterial cell size homeostasis. Cell Mol Life Sci 2023; 80:360. [PMID: 37971522 PMCID: PMC11072981 DOI: 10.1007/s00018-023-05002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 11/19/2023]
Abstract
Mechanisms underlying deviant cell size fluctuations among clonal bacterial siblings are generally considered to be cryptic and stochastic in nature. However, by scrutinizing heat-stressed populations of the model bacterium Escherichia coli, we uncovered the existence of a deterministic asymmetry in cell division that is caused by the presence of intracellular protein aggregates (PAs). While these structures typically locate at the cell pole and segregate asymmetrically among daughter cells, we now show that the presence of a polar PA consistently causes a more distal off-center positioning of the FtsZ division septum. The resulting increased length of PA-inheriting siblings persists over multiple generations and could be observed in both E. coli and Bacillus subtilis populations. Closer investigation suggests that a PA can physically perturb the nucleoid structure, which subsequently leads to asymmetric septation.
Collapse
Affiliation(s)
- Julien Mortier
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Sander K Govers
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Alexander Cambré
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Ronald Van Eyken
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Jolanda Verheul
- Swammerdam Institute for Life Sciences, Bacterial Cell Biology and Physiology, University of Amsterdam, Amsterdam, The Netherlands
| | - Tanneke den Blaauwen
- Swammerdam Institute for Life Sciences, Bacterial Cell Biology and Physiology, University of Amsterdam, Amsterdam, The Netherlands
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Sallmen JW, Schlimpert S. Cap-tivating findings provide insight into bacterial cell division. Trends Microbiol 2023; 31:219-221. [PMID: 36707350 DOI: 10.1016/j.tim.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
In most bacteria, cell division is orchestrated by the tubulin homolog FtsZ. To ensure the correct placement of the division machinery, FtsZ activity needs to be tightly regulated. Corrales-Guerrero et al. now describe the molecular details of how MipZ, an alphaproteobacterial regulator, interacts with FtsZ to promote proper cell division.
Collapse
Affiliation(s)
- Joseph W Sallmen
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Susan Schlimpert
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK.
| |
Collapse
|
7
|
Pan Y, Luan X, Zeng F, Xu Q, Li Z, Gao Y, Liu X, Li X, Han X, Shen J, Song Y. Hollow covalent organic framework-sheltering CRISPR/Cas12a as an in-vivo nanosensor for ATP imaging. Biosens Bioelectron 2022; 209:114239. [DOI: 10.1016/j.bios.2022.114239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 12/26/2022]
|
8
|
Sugawara T, Kaneko K. Chemophoresis engine: A general mechanism of ATPase-driven cargo transport. PLoS Comput Biol 2022; 18:e1010324. [PMID: 35877681 PMCID: PMC9363008 DOI: 10.1371/journal.pcbi.1010324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 08/09/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Cell polarity regulates the orientation of the cytoskeleton members that directs intracellular transport for cargo-like organelles, using chemical gradients sustained by ATP or GTP hydrolysis. However, how cargo transports are directly mediated by chemical gradients remains unknown. We previously proposed a physical mechanism that enables directed movement of cargos, referred to as chemophoresis. According to the mechanism, a cargo with reaction sites is subjected to a chemophoresis force in the direction of the increased concentration. Based on this, we introduce an extended model, the chemophoresis engine, as a general mechanism of cargo motion, which transforms chemical free energy into directed motion through the catalytic ATP hydrolysis. We applied the engine to plasmid motion in a ParABS system to demonstrate the self-organization system for directed plasmid movement and pattern dynamics of ParA-ATP concentration, thereby explaining plasmid equi-positioning and pole-to-pole oscillation observed in bacterial cells and in vitro experiments. We mathematically show the existence and stability of the plasmid-surfing pattern, which allows the cargo-directed motion through the symmetry-breaking transition of the ParA-ATP spatiotemporal pattern. We also quantitatively demonstrate that the chemophoresis engine can work even under in vivo conditions. Finally, we discuss the chemophoresis engine as one of the general mechanisms of hydrolysis-driven intracellular transport. The formation of organelle/macromolecule patterns depending on chemical concentration under non-equilibrium conditions, first observed during macroscopic morphogenesis, has recently been observed at the intracellular level as well, and its relevance as intracellular morphogen has been demonstrated in the case of bacterial cell division. These studies have discussed how cargos maintain positional information provided by chemical concentration gradients/localization. However, how cargo transports are directly mediated by chemical gradients remains unknown. Based on the previously proposed mechanism of chemotaxis-like behavior of cargos (referred to as chemophoresis), we introduce a chemophoresis engine as a physicochemical mechanism of cargo motion, which transforms chemical free energy to directed motion. The engine is based on the chemophoresis force to make cargoes move in the direction of the increasing ATPase(-ATP) concentration and an enhanced catalytic ATPase hydrolysis at the positions of the cargoes. Applying the engine to ATPase-driven movement of plasmid-DNAs in bacterial cells, we constructed a mathematical model to demonstrate the self-organization for directed plasmid motion and pattern dynamics of ATPase concentration, as is consistent with in vitro and in vivo experiments. We propose that this chemophoresis engine works as a general mechanism of hydrolysis-driven intracellular transport.
Collapse
Affiliation(s)
- Takeshi Sugawara
- Universal Biology Institute, The University of Tokyo, Tokyo, Japan
- * E-mail:
| | - Kunihiko Kaneko
- Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Meguro-ku, Tokyo, Japan
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Beesley S, Sullenberger T, Lee C, Kumar SS. GluN3 Subunit Expression Correlates with Increased Vulnerability of Hippocampus and Entorhinal Cortex to Neurodegeneration in a Model of Temporal Lobe Epilepsy. J Neurophysiol 2022; 127:1496-1510. [PMID: 35475675 DOI: 10.1152/jn.00070.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common type of epilepsy in adults that is often refractory to anti-epileptic medication therapy. Neither the pathology nor the etiology of TLE are fully characterized, although recent studies have established that the two are causally related. TLE pathology entails a stereotypic pattern of neuron loss in hippocampal and parahippocampal regions, predominantly in CA1 subfield of the hippocampus and layer 3 of the medial entorhinal area (MEA), deemed hallmark pathological features of the disease. Through this work, we address the contribution of glutamatergic N-methyl-D-aspartate receptors (NMDARs) to the pathology (vulnerability and pattern of neuronal loss), and by extension to the pathophysiology (Ca2+ induced excitotoxicity), by assaying the spatial expression of their subunit proteins (GluN1, GluN2A, GluN2B and GluN3A) in these regions using ASTA (area specific tissue analysis), a novel methodology for harvesting brain chads from hard-to-reach regions within brain slices for Western blotting. Our data suggest gradient expression of the GluN3A subunit along the mid-lateral extent of layer 3 MEA and along the CA1-subicular axis in the hippocampus, unlike GluN1 or GluN2 subunits which are uniformly distributed. Incorporation of GluN3A in the subunit composition of conventional diheteromeric (d-) NMDARs yield triheteromeric (t-) NMDARs which by virtue of their increased selectivity for Ca2+ render neurons vulnerable to excitotoxic damage. Thus, the expression profile of this subunit sheds light on the spatial extent of the pathology observed in these regions and implicates the GluN3 subunit of NMDARs in hippocampal and entorhinal cortical pathology underlying TLE.
Collapse
Affiliation(s)
- Stephen Beesley
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience Florida State University, Tallahassee, FL, United States
| | - Thomas Sullenberger
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience Florida State University, Tallahassee, FL, United States
| | - Christopher Lee
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience Florida State University, Tallahassee, FL, United States
| | - Sanjay S Kumar
- Department of Biomedical Sciences, College of Medicine and Program in Neuroscience Florida State University, Tallahassee, FL, United States
| |
Collapse
|
10
|
Zheng W, Xie R, Liang X, Liang Q. Fabrication of Biomaterials and Biostructures Based On Microfluidic Manipulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105867. [PMID: 35072338 DOI: 10.1002/smll.202105867] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Biofabrication technologies are of importance for the construction of organ models and functional tissue replacements. Microfluidic manipulation, a promising biofabrication technique with micro-scale resolution, can not only help to realize the fabrication of specific microsized structures but also build biomimetic microenvironments for biofabricated tissues. Therefore, microfluidic manipulation has attracted attention from researchers in the manipulation of particles and cells, biochemical analysis, tissue engineering, disease diagnostics, and drug discovery. Herein, biofabrication based on microfluidic manipulation technology is reviewed. The application of microfluidic manipulation technology in the manufacturing of biomaterials and biostructures with different dimensions and the control of the microenvironment is summarized. Finally, current challenges are discussed and a prospect of microfluidic manipulation technology is given. The authors hope this review can provide an overview of microfluidic manipulation technologies used in biofabrication and thus steer the current efforts in this field.
Collapse
Affiliation(s)
- Wenchen Zheng
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ruoxiao Xie
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaoping Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangdong, 510006, China
| | - Qionglin Liang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
11
|
Cole E, Gaertig J. Anterior-posterior pattern formation in ciliates. J Eukaryot Microbiol 2022; 69:e12890. [PMID: 35075744 PMCID: PMC9309198 DOI: 10.1111/jeu.12890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
As single cells, ciliates build, duplicate, and even regenerate complex cortical patterns by largely unknown mechanisms that precisely position organelles along two cell‐wide axes: anterior–posterior and circumferential (left–right). We review our current understanding of intracellular patterning along the anterior–posterior axis in ciliates, with emphasis on how the new pattern emerges during cell division. We focus on the recent progress at the molecular level that has been driven by the discovery of genes whose mutations cause organelle positioning defects in the model ciliate Tetrahymena thermophila. These investigations have revealed a network of highly conserved kinases that are confined to either anterior or posterior domains in the cell cortex. These pattern‐regulating kinases create zones of cortical inhibition that by exclusion determine the precise placement of organelles. We discuss observations and models derived from classical microsurgical experiments in large ciliates (including Stentor) and interpret them in light of recent molecular findings in Tetrahymena. In particular, we address the involvement of intracellular gradients as vehicles for positioning organelles along the anterior‐posterior axis.
Collapse
Affiliation(s)
- Eric Cole
- Biology Department, St. Olaf College, Northfield, MN, USA
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
12
|
Hakim P, Hoang Y, Vecchiarelli AG. Dissection of the ATPase active site of McdA reveals the sequential steps essential for carboxysome distribution. Mol Biol Cell 2021; 32:ar11. [PMID: 34406783 PMCID: PMC8684754 DOI: 10.1091/mbc.e21-03-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Carboxysomes, the most prevalent and well-studied anabolic bacterial microcompartment, play a central role in efficient carbon fixation by cyanobacteria and proteobacteria. In previous studies, we identified the two-component system called McdAB that spatially distributes carboxysomes across the bacterial nucleoid. Maintenance of carboxysome distribution protein A (McdA), a partition protein A (ParA)-like ATPase, forms a dynamic oscillating gradient on the nucleoid in response to the carboxysome-localized Maintenance of carboxysome distribution protein B (McdB). As McdB stimulates McdA ATPase activity, McdA is removed from the nucleoid in the vicinity of carboxysomes, propelling these proteinaceous cargos toward regions of highest McdA concentration via a Brownian-ratchet mechanism. How the ATPase cycle of McdA governs its in vivo dynamics and carboxysome positioning remains unresolved. Here, by strategically introducing amino acid substitutions in the ATP-binding region of McdA, we sequentially trap McdA at specific steps in its ATP cycle. We map out critical events in the ATPase cycle of McdA that allows the protein to bind ATP, dimerize, change its conformation into a DNA-binding state, interact with McdB-bound carboxysomes, hydrolyze ATP, and release from the nucleoid. We also find that McdA is a member of a previously unstudied subset of ParA family ATPases, harboring unique interactions with ATP and the nucleoid for trafficking their cognate intracellular cargos.
Collapse
Affiliation(s)
- Pusparanee Hakim
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Y Hoang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Anthony G Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
13
|
Abstract
Spatial organisation through localisation/compartmentalisation of species is a ubiquitous but poorly understood feature of cellular biomolecular networks. Current technologies in systems and synthetic biology (spatial proteomics, imaging, synthetic compartmentalisation) necessitate a systematic approach to elucidating the interplay of networks and spatial organisation. We develop a systems framework towards this end and focus on the effect of spatial localisation of network components revealing its multiple facets: (i) As a key distinct regulator of network behaviour, and an enabler of new network capabilities (ii) As a potent new regulator of pattern formation and self-organisation (iii) As an often hidden factor impacting inference of temporal networks from data (iv) As an engineering tool for rewiring networks and network/circuit design. These insights, transparently arising from the most basic considerations of networks and spatial organisation, have broad relevance in natural and engineered biology and in related areas such as cell-free systems, systems chemistry and bionanotechnology. Complex biomolecular networks are fundamental to the functioning of living systems, both at the cellular level and beyond. In this paper, the authors develop a systems framework to elucidate the interplay of networks and the spatial localisation of network components.
Collapse
|
14
|
An unexpected puzzle piece links polarity and chromosome segregation. Dev Cell 2021; 56:2135-2136. [PMID: 34375577 DOI: 10.1016/j.devcel.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To ensure successful daughter cell production with one chromosome each, C. crescentus bacteria use an extensively regulated phosphorelay to link all involved cellular processes. In this issue of Developmental Cell, Guzzo et al. (2021) show that the activity of this phosphorelay depends on the translocation of the segregating chromosome.
Collapse
|
15
|
Generating asymmetry in a changing environment: cell cycle regulation in dimorphic alphaproteobacteria. Biol Chem 2020; 401:1349-1363. [DOI: 10.1515/hsz-2020-0235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022]
Abstract
AbstractWhile many bacteria divide by symmetric binary fission, some alphaproteobacteria have strikingly asymmetric cell cycles, producing offspring that differs significantly in their morphology and reproductive state. To establish this asymmetry, these species employ a complex cell cycle regulatory pathway based on two-component signaling cascades. At the center of this network is the essential DNA-binding response regulator CtrA, which acts as a transcription factor controlling numerous genes with cell cycle-relevant functions as well as a regulator of chromosome replication. The DNA-binding activity of CtrA is controlled at the level of both protein phosphorylation and stability, dependent on an intricate network of regulatory proteins, whose function is tightly coordinated in time and space. CtrA is differentially activated in the two (developing) offspring, thereby establishing distinct transcriptional programs that ultimately determine their distinct cell fates. Phase-separated polar microdomains of changing composition sequester proteins involved in the (in-)activation and degradation of CtrA specifically at each pole. In this review, we summarize the current knowledge of the CtrA pathway and discuss how it has evolved to regulate the cell cycle of morphologically distinct alphaproteobacteria.
Collapse
|
16
|
Bhattacharya A, Niederholtmeyer H, Podolsky KA, Bhattacharya R, Song JJ, Brea RJ, Tsai CH, Sinha SK, Devaraj NK. Lipid sponge droplets as programmable synthetic organelles. Proc Natl Acad Sci U S A 2020; 117:18206-18215. [PMID: 32694212 PMCID: PMC7414067 DOI: 10.1073/pnas.2004408117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Living cells segregate molecules and reactions in various subcellular compartments known as organelles. Spatial organization is likely essential for expanding the biochemical functions of synthetic reaction systems, including artificial cells. Many studies have attempted to mimic organelle functions using lamellar membrane-bound vesicles. However, vesicles typically suffer from highly limited transport across the membranes and an inability to mimic the dense membrane networks typically found in organelles such as the endoplasmic reticulum. Here, we describe programmable synthetic organelles based on highly stable nonlamellar sponge phase droplets that spontaneously assemble from a single-chain galactolipid and nonionic detergents. Due to their nanoporous structure, lipid sponge droplets readily exchange materials with the surrounding environment. In addition, the sponge phase contains a dense network of lipid bilayers and nanometric aqueous channels, which allows different classes of molecules to partition based on their size, polarity, and specific binding motifs. The sequestration of biologically relevant macromolecules can be programmed by the addition of suitably functionalized amphiphiles to the droplets. We demonstrate that droplets can harbor functional soluble and transmembrane proteins, allowing for the colocalization and concentration of enzymes and substrates to enhance reaction rates. Droplets protect bound proteins from proteases, and these interactions can be engineered to be reversible and optically controlled. Our results show that lipid sponge droplets permit the facile integration of membrane-rich environments and self-assembling spatial organization with biochemical reaction systems.
Collapse
Affiliation(s)
- Ahanjit Bhattacharya
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Henrike Niederholtmeyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Kira A Podolsky
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Rupak Bhattacharya
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Jing-Jin Song
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Roberto J Brea
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Chu-Hsien Tsai
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Sunil K Sinha
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|
17
|
Chromosome Segregation in Bacillus subtilis Follows an Overall Pattern of Linear Movement and Is Highly Robust against Cell Cycle Perturbations. mSphere 2020; 5:5/3/e00255-20. [PMID: 32554717 PMCID: PMC7300352 DOI: 10.1128/msphere.00255-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We have followed the segregation of origin regions on the Bacillus subtilis chromosome in the fastest practically achievable temporal manner, for a large fraction of the cell cycle. We show that segregation occurred in highly variable patterns but overall in an almost linear manner throughout the cell cycle. Segregation was slowed down, but not arrested, by treatment of cells that led to transient blocks in DNA replication, showing that segregation is highly robust against cell cycle perturbation. Computer simulations based on entropy-driven separation of newly synthesized DNA polymers can recapitulate sudden bursts of movement and segregation patterns compatible with the observed in vivo patterns, indicating that for Bacillus, segregation patterns may include entropic forces helping to separate chromosomes during the cell cycle. Although several proteins have been identified that facilitate chromosome segregation in bacteria, no clear analogue of the mitotic machinery in eukaryotic cells has been identified. In order to investigate if recognizable patterns of segregation exist during the cell cycle, we tracked the segregation of duplicated origin regions in Bacillus subtilis for 60 min in the fastest practically achievable resolution, achieving 10-s intervals. We found that while separation occurred in random patterns, often including backwards movement, overall, segregation of loci near the origins of replication was linear for the entire cell cycle. Thus, the process of partitioning can be best described as directed motion. Simulations with entropy-driven separation of polymers synthesized by two polymerases show sudden bursts of movement and segregation patterns compatible with the observed in vivo patterns, showing that for Bacillus, segregation patterns can be modeled based on entropic forces. To test if obstacles for replication forks lead to an alteration of the partitioning pattern, we challenged cells with chemicals inducing DNA damage or blocking of topoisomerase activity. Both treatments led to a moderate slowing down of separation, but linear segregation was retained, showing that chromosome segregation is highly robust against cell cycle perturbation. IMPORTANCE We have followed the segregation of origin regions on the Bacillus subtilis chromosome in the fastest practically achievable temporal manner, for a large fraction of the cell cycle. We show that segregation occurred in highly variable patterns but overall in an almost linear manner throughout the cell cycle. Segregation was slowed down, but not arrested, by treatment of cells that led to transient blocks in DNA replication, showing that segregation is highly robust against cell cycle perturbation. Computer simulations based on entropy-driven separation of newly synthesized DNA polymers can recapitulate sudden bursts of movement and segregation patterns compatible with the observed in vivo patterns, indicating that for Bacillus, segregation patterns may include entropic forces helping to separate chromosomes during the cell cycle.
Collapse
|
18
|
Establishment of a Protein Concentration Gradient in the Outer Membrane Requires Two Diffusion-Limiting Mechanisms. J Bacteriol 2019; 201:JB.00177-19. [PMID: 31209077 DOI: 10.1128/jb.00177-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/12/2019] [Indexed: 11/20/2022] Open
Abstract
OmpA-like proteins are involved in the stabilization of the outer membrane, resistance to osmotic stress, and pathogenesis. In Caulobacter crescentus, OmpA2 forms a physiologically relevant concentration gradient that forms by an uncharacterized mechanism, in which the gradient orientation depends on the position of the gene locus. This suggests that OmpA2 is synthesized and translocated to the periplasm close to the position of the gene and that the gradient forms by diffusion of the protein from this point. To further understand how the OmpA2 gradient is established, we determined the localization and mobility of the full protein and of its two structural domains. We show that OmpA2 does not diffuse and that both domains are required for gradient formation. The C-terminal domain binds tightly to the cell wall and the immobility of the full protein depends on the binding of this domain to the peptidoglycan; in contrast, the N-terminal membrane β-barrel diffuses slowly. Our results support a model in which once OmpA2 is translocated to the periplasm, the N-terminal membrane β-barrel is required for an initial fast restriction of diffusion until the position of the protein is stabilized by the binding of the C-terminal domain to the cell wall. The implications of these results on outer membrane protein diffusion and organization are discussed.IMPORTANCE Protein concentration gradients play a relevant role in the organization of the bacterial cell. The Caulobacter crescentus protein OmpA2 forms an outer membrane polar concentration gradient. To understand the molecular mechanism that determines the formation of this gradient, we characterized the mobility and localization of the full protein and of its two structural domains an integral outer membrane β-barrel and a periplasmic peptidoglycan binding domain. Each domain has a different role in the formation of the OmpA2 gradient, which occurs in two steps. We also show that the OmpA2 outer membrane β-barrel can diffuse, which is in contrast to what has been reported previously for several integral outer membrane proteins in Escherichia coli, suggesting a different organization of the outer membrane proteins.
Collapse
|
19
|
Two Antagonistic Hippo Signaling Circuits Set the Division Plane at the Medial Position in the Ciliate Tetrahymena. Genetics 2018; 211:651-663. [PMID: 30593491 DOI: 10.1534/genetics.118.301889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/21/2018] [Indexed: 12/17/2022] Open
Abstract
In a single cell, ciliates maintain a complex pattern of cortical organelles that are arranged along the anteroposterior and circumferential axes. The underlying molecular mechanisms of intracellular pattern formation in ciliates are largely unknown. Ciliates divide by tandem duplication, a process that remodels the parental cell into two daughters aligned head-to-tail. In the elo1-1 mutant of Tetrahymena thermophila, the segmentation boundary/division plane forms too close to the posterior end of the parental cell, producing a large anterior and a small posterior daughter cell, respectively. We show that ELO1 encodes a Lats/NDR kinase that marks the posterior segment of the cell cortex, where the division plane does not form in the wild-type. Elo1 acts independently of CdaI, a Hippo/Mst kinase that marks the anterior half of the parental cell, and whose loss shifts the division plane anteriorly. We propose that, in Tetrahymena, two antagonistic Hippo circuits focus the segmentation boundary/division plane at the equatorial position, by excluding divisional morphogenesis from the cortical areas that are too close to cell ends.
Collapse
|
20
|
Single-molecule study reveals the frenetic lives of proteins in gradients. Proc Natl Acad Sci U S A 2018; 115:9336-9338. [PMID: 30181287 DOI: 10.1073/pnas.1812248115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Kondo S, Imura Y, Mizuno A, Homma M, Kojima S. Biochemical analysis of GTPase FlhF which controls the number and position of flagellar formation in marine Vibrio. Sci Rep 2018; 8:12115. [PMID: 30108243 PMCID: PMC6092412 DOI: 10.1038/s41598-018-30531-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/01/2018] [Indexed: 11/18/2022] Open
Abstract
FlhF controls the number and position of the polar flagellar formation of Vibrio species. FlhF, is a paralog of FtsY, a GTPase acting in the Sec membrane transport system of bacteria, and localizes at the cell pole. Mutations in the conserved GTPase motif of FlhF lost polar localization capability and flagellar formation. Vibrio FlhF has not, until now, been purified as soluble protein. Here, we report that addition of MgCl2 and GTP or GDP at the step of cell lysis greatly improved the solubility of FlhF, allowing us to purify it in homogeneity. Purified FlhF showed GTPase activity only in the presence of FlhG. Of twelve FlhF GTPase motif mutants showing reduced function, eleven were recovered as precipitate after the cell disruption. The E440K substitution could be purified and showed no GTPase activity even in the presence of FlhG. Interestingly an FlhF substitution in the putative catalytic residue for GTP hydrolysis, R334A, allowed normal flagellar formation although GTPase activity of FlhF was completely abolished. Furthermore, size exclusion chromatography of purified FlhF revealed that it forms dimers in the presence of GTP but exists as monomer in the presence of GDP. We speculate that the GTP binding allows FlhF to dimerize and localize at the pole where it initiates flagellar formation, and the GDP-bound form diffuses as monomer.
Collapse
Affiliation(s)
- Shota Kondo
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Yoshino Imura
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Akira Mizuno
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan.
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| |
Collapse
|
22
|
Rapid diffusion-state switching underlies stable cytoplasmic gradients in the Caenorhabditis elegans zygote. Proc Natl Acad Sci U S A 2018; 115:E8440-E8449. [PMID: 30042214 DOI: 10.1073/pnas.1722162115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein concentration gradients organize cells and tissues and commonly form through diffusion away from a local source of protein. Interestingly, during the asymmetric division of the Caenorhabditis elegans zygote, the RNA-binding proteins MEX-5 and PIE-1 form opposing concentration gradients in the absence of a local source. In this study, we use near-total internal reflection fluorescence (TIRF) imaging and single-particle tracking to characterize the reaction/diffusion dynamics that maintain the MEX-5 and PIE-1 gradients. Our findings suggest that both proteins interconvert between fast-diffusing and slow-diffusing states on timescales that are much shorter (seconds) than the timescale of gradient formation (minutes). The kinetics of diffusion-state switching are strongly polarized along the anterior/posterior (A/P) axis by the PAR polarity system such that fast-diffusing MEX-5 and PIE-1 particles are approximately symmetrically distributed, whereas slow-diffusing particles are highly enriched in the anterior and posterior cytoplasm, respectively. Using mathematical modeling, we show that local differences in the kinetics of diffusion-state switching can rapidly generate stable concentration gradients over a broad range of spatial and temporal scales.
Collapse
|
23
|
Han B, Antkowiak KR, Fan X, Rutigliano M, Ryder SP, Griffin EE. Polo-like Kinase Couples Cytoplasmic Protein Gradients in the C. elegans Zygote. Curr Biol 2017; 28:60-69.e8. [PMID: 29276126 DOI: 10.1016/j.cub.2017.11.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/16/2017] [Accepted: 11/21/2017] [Indexed: 12/23/2022]
Abstract
Intracellular protein gradients underlie essential cellular and developmental processes, but the mechanisms by which they are established are incompletely understood. During the asymmetric division of the C. elegans zygote, the RNA-binding protein MEX-5 forms an anterior-rich cytoplasmic gradient that causes the RNA-binding protein POS-1 to form an opposing, posterior-rich gradient. We demonstrate that the polo-like kinase PLK-1 mediates the repulsive coupling between MEX-5 and POS-1 by increasing the mobility of POS-1 in the anterior. PLK-1 is enriched in the anterior cytoplasm and phosphorylates POS-1, which is both necessary and sufficient to increase POS-1 mobility. Regulation of POS-1 mobility depends on both the interaction between PLK-1 and MEX-5 and between MEX-5 and RNA, suggesting that MEX-5 may recruit PLK-1 to RNA in the anterior. The low concentration of MEX-5/PLK-1 in the posterior cytoplasm provides a permissive environment for the retention of POS-1, which depends on POS-1 RNA binding. Our findings describe a novel reaction/diffusion mechanism in which the asymmetric distribution of cytoplasmic PLK-1 couples two RNA-binding protein gradients, thereby partitioning the cytoplasm.
Collapse
Affiliation(s)
- Bingjie Han
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Katianna R Antkowiak
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Xintao Fan
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Mallory Rutigliano
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Sean P Ryder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Erik E Griffin
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
24
|
Schneider JP, Basler M. Shedding light on biology of bacterial cells. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0499. [PMID: 27672150 PMCID: PMC5052743 DOI: 10.1098/rstb.2015.0499] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2016] [Indexed: 12/11/2022] Open
Abstract
To understand basic principles of living organisms one has to know many different properties of all cellular components, their mutual interactions but also their amounts and spatial organization. Live-cell imaging is one possible approach to obtain such data. To get multiple snapshots of a cellular process, the imaging approach has to be gentle enough to not disrupt basic functions of the cell but also have high temporal and spatial resolution to detect and describe the changes. Light microscopy has become a method of choice and since its early development over 300 years ago revolutionized our understanding of living organisms. As most cellular components are indistinguishable from the rest of the cellular contents, the second revolution came from a discovery of specific labelling techniques, such as fusions to fluorescent proteins that allowed specific tracking of a component of interest. Currently, several different tags can be tracked independently and this allows us to simultaneously monitor the dynamics of several cellular components and from the correlation of their dynamics to infer their respective functions. It is, therefore, not surprising that live-cell fluorescence microscopy significantly advanced our understanding of basic cellular processes. Current cameras are fast enough to detect changes with millisecond time resolution and are sensitive enough to detect even a few photons per pixel. Together with constant improvement of properties of fluorescent tags, it is now possible to track single molecules in living cells over an extended period of time with a great temporal resolution. The parallel development of new illumination and detection techniques allowed breaking the diffraction barrier and thus further pushed the resolution limit of light microscopy. In this review, we would like to cover recent advances in live-cell imaging technology relevant to bacterial cells and provide a few examples of research that has been possible due to imaging. This article is part of the themed issue ‘The new bacteriology’.
Collapse
Affiliation(s)
- Johannes P Schneider
- Focal Area Infection Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Marek Basler
- Focal Area Infection Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
25
|
Bactofilin-mediated organization of the ParABS chromosome segregation system in Myxococcus xanthus. Nat Commun 2017; 8:1817. [PMID: 29180656 PMCID: PMC5703909 DOI: 10.1038/s41467-017-02015-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/01/2017] [Indexed: 12/02/2022] Open
Abstract
In bacteria, homologs of actin, tubulin, and intermediate filament proteins often act in concert with bacteria-specific scaffolding proteins to ensure the proper arrangement of cellular components. Among the bacteria-specific factors are the bactofilins, a widespread family of polymer-forming proteins whose biology is poorly investigated. Here, we study the three bactofilins BacNOP in the rod-shaped bacterium Myxococcus xanthus. We show that BacNOP co-assemble into elongated scaffolds that restrain the ParABS chromosome segregation machinery to the subpolar regions of the cell. The centromere (parS)-binding protein ParB associates with the pole-distal ends of these structures, whereas the DNA partitioning ATPase ParA binds along their entire length, using the newly identified protein PadC (MXAN_4634) as an adapter. The integrity of these complexes is critical for proper nucleoid morphology and chromosome segregation. BacNOP thus mediate a previously unknown mechanism of subcellular organization that recruits proteins to defined sites within the cytoplasm, far off the cell poles. The roles played by bactofilins, a widespread type of bacterial cytoskeletal elements, are unclear. Here, the authors show that the bactofilins BacNOP facilitate proper subcellular localization of the ParABS chromosome segregation system in the model organism Myxococcus xanthus.
Collapse
|
26
|
Shtylla B. Mathematical modeling of spatiotemporal protein localization patterns in C. crescentus bacteria: A mechanism for asymmetric FtsZ ring positioning. J Theor Biol 2017; 433:8-20. [PMID: 28826971 DOI: 10.1016/j.jtbi.2017.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 10/19/2022]
Abstract
We examine the localization patterns of ParA, ParB, PopZ, and MipZ, which are key division proteins in C. crescentus bacteria. While Par and PopZ proteins have been implicated in the physical segregation of the replicated chromosome, MipZ dimers control the placement of the cell division plane by preventing FtsZ proteins from assembling into a Z-ring. MipZ proteins generate bipolar gradients that are sensitive to Par protein localization, however, it is not understood how the MipZ gradient is shaped so as to allow for the correct Z-ring placement during asymmetric cell division in C. crescentus. In this paper, we develop and analyze a mathematical model that incorporates the known interactions between Par, PopZ, and MipZ proteins and use it to test mechanisms for MipZ gradient formation. Using our model, we show that gradient-dependent ParB advection velocities in conjunction with a ParA polar recycling mechanism are sufficient to maintain a robust new pole-directed ParA dimer gradient during segregation. A "saturation of binding site" hypothesis limiting access of ParA and MipZ to the ParB complex is then necessary and sufficient to generate time-averaged bipolar MipZ protein gradients with minima that are skewed toward ParA gradient peaks at the new pole, in agreement with data. By analyzing reduced versions of the model, we show the existence of oscillatory ParA localization regimes provided that cytoplasmic PopZ oligomers interact with ParA and ParA is over-expressed. We use our model to study mechanisms by which these protein patterns may simultaneously direct proper chromosome segregation and division site placement in C. crescentus.
Collapse
Affiliation(s)
- Blerta Shtylla
- Department of Mathematics, Pomona College, Claremont CA 91711, United States.
| |
Collapse
|
27
|
Modelling compartmentalization towards elucidation and engineering of spatial organization in biochemical pathways. Sci Rep 2017; 7:12057. [PMID: 28935941 PMCID: PMC5608717 DOI: 10.1038/s41598-017-11081-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/08/2017] [Indexed: 01/21/2023] Open
Abstract
Compartmentalization is a fundamental ingredient, central to the functioning of biological systems at multiple levels. At the cellular level, compartmentalization is a key aspect of the functioning of biochemical pathways and an important element used in evolution. It is also being exploited in multiple contexts in synthetic biology. Accurate understanding of the role of compartments and designing compartmentalized systems needs reliable modelling/systems frameworks. We examine a series of building blocks of signalling and metabolic pathways with compartmental organization. We systematically analyze when compartmental ODE models can be used in these contexts, by comparing these models with detailed reaction-transport models, and establishing a correspondence between the two. We build on this to examine additional complexities associated with these pathways, and also examine sample problems in the engineering of these pathways. Our results indicate under which conditions compartmental models can and cannot be used, why this is the case, and what augmentations are needed to make them reliable and predictive. We also uncover other hidden consequences of employing compartmental models in these contexts. Or results contribute a number of insights relevant to the modelling, elucidation, and engineering of biochemical pathways with compartmentalization, at the core of systems and synthetic biology.
Collapse
|
28
|
Abstract
Based on the Shannon's information communication theory, information amount of the entire length of a polymeric macromolecule can be calculated in bits through adding the entropies of each building block. Proteins, DNA and RNA are such macromolecules. When only the building blocks' variation is considered as the source of entropy, there is seemingly lower information in case of the protein if this approach is applied directly on a protein of specific size and the coding sequence size of the mRNA corresponding to the particular length of the protein. This decrease in the information amount seems contradictory but this apparent conflict is resolved by considering the conformational variations in proteins as a new variable in the calculation and balancing the approximated entropy of the coding part of the mRNA and the protein. Probabilities can change therefore we also assigned hypothetical probabilities to the conformational states, which represent the uneven distribution as the time spent in one conformation, providing the probability of the presence in either or one of the possible conformations. Results that are obtained by using hypothetical probabilities are in line with the experimental values of variations in the conformational-state of protein populations. This equalization approach has further biological relevance that it compensates for the degeneracy in the codon usage during protein translation and it leads to the conclusion that the alphabet size for the protein is rather optimal for the proper protein functioning within the thermodynamic milieu of the cell. The findings were also discussed in relation to the codon bias and have implications in relation to the codon evolution concept. Eventually, this work brings the fields of protein structural studies and molecular protein translation processes together with a novel approach.
Collapse
Affiliation(s)
- Y Adiguzel
- Biophysics Department, School of Medicine, Istanbul Kemerburgaz University, Istanbul, Turkey.
| |
Collapse
|
29
|
The Slow Mobility of the ParA Partitioning Protein Underlies Its Steady-State Patterning in Caulobacter. Biophys J 2017; 110:2790-2799. [PMID: 27332137 DOI: 10.1016/j.bpj.2016.05.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/29/2016] [Accepted: 05/06/2016] [Indexed: 01/04/2023] Open
Abstract
In bacteria, ParABS systems mediate intracellular transport of various cargos, including chromosomal regions in Caulobacter crescentus. Transport of the ParB/parS partition complex requires the DNA-binding activity of ParA, which transiently tethers the partition complex during translocation. In C. crescentus, the directionality of the transport is set up by a gradient of ParA whose concentration gradually increases from one end of the cell (old pole) to the other (new pole). Importantly, this ParA gradient is already observed before DNA replication and segregation are initiated when the partition complex is anchored at the old pole. How such micron-scale ParA pattern is established and maintained before the initiation of chromosome segregation has not been experimentally established. Although the stimulation of ParA ATPase activity by the localized ParB/parS partition complex is thought to be involved, this activity alone cannot quantitatively describe the ParA pattern observed inside cells. Instead, our experimental and theoretical study shows that the missing key component for achieving the experimentally observed steady-state ParA patterning is the slow mobility of ParA dimers (D ∼10(-3)μm(2)/s) due to intermittent DNA binding. Our model recapitulates the entire steady-state ParA distribution observed experimentally, including the shape of the gradient as well as ParA accumulation at the location of the partition complex. Stochastic simulations suggest that cell-to-cell variability in ParA pattern is due to the low ParA copy number in C. crescentus cells. The model also accounts for an apparent exclusion of ParA from regions with small spacing between partition complexes observed in filamentous cells. Collectively, our work demonstrates that in addition to its function in mediating transport, the conserved DNA-binding property of ParA has a critical function before DNA segregation by setting up a ParA pattern required for transport directionality.
Collapse
|
30
|
Schumacher D, Søgaard-Andersen L. Regulation of Cell Polarity in Motility and Cell Division in Myxococcus xanthus. Annu Rev Microbiol 2017; 71:61-78. [PMID: 28525300 DOI: 10.1146/annurev-micro-102215-095415] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rod-shaped Myxococcus xanthus cells are polarized with proteins asymmetrically localizing to specific positions. This spatial organization is important for regulation of motility and cell division and changes over time. Dedicated protein modules regulate motility independent of the cell cycle, and cell division dependent on the cell cycle. For motility, a leading-lagging cell polarity is established that is inverted during cellular reversals. Establishment and inversion of this polarity are regulated hierarchically by interfacing protein modules that sort polarized motility proteins to the correct cell poles or cause their relocation between cell poles during reversals akin to a spatial toggle switch. For division, a novel self-organizing protein module that incorporates a ParA ATPase positions the FtsZ-ring at midcell. This review covers recent findings concerning the spatiotemporal regulation of motility and cell division in M. xanthus and illustrates how the study of diverse bacteria may uncover novel mechanisms involved in regulating bacterial cell polarity.
Collapse
Affiliation(s)
- Dominik Schumacher
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany;
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany;
| |
Collapse
|
31
|
Abstract
As discovered over the past 25 years, the cytoskeletons of bacteria and archaea are complex systems of proteins whose central components are dynamic cytomotive filaments. They perform roles in cell division, DNA partitioning, cell shape determination and the organisation of intracellular components. The protofilament structures and polymerisation activities of various actin-like, tubulin-like and ESCRT-like proteins of prokaryotes closely resemble their eukaryotic counterparts but show greater diversity. Their activities are modulated by a wide range of accessory proteins but these do not include homologues of the motor proteins that supplement filament dynamics to aid eukaryotic cell motility. Numerous other filamentous proteins, some related to eukaryotic IF-proteins/lamins and dynamins etc, seem to perform structural roles similar to those in eukaryotes.
Collapse
Affiliation(s)
- Linda A Amos
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
32
|
Dudka D, Meraldi P. Symmetry Does not Come for Free: Cellular Mechanisms to Achieve a Symmetric Cell Division. Results Probl Cell Differ 2017; 61:301-321. [PMID: 28409311 DOI: 10.1007/978-3-319-53150-2_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During mitosis cells can divide symmetrically to proliferate or asymmetrically to generate tissue diversity. While the mechanisms that ensure asymmetric cell division have been extensively studied, it is often assumed that a symmetric cell division is the default outcome of mitosis. Recent studies, however, imply that the symmetric nature of cell division is actively controlled, as they reveal numerous mechanisms that ensure the formation of equal-sized daughter cells as cells progress through cell division. Here we review our current knowledge of these mechanisms and highlight possible key questions in the field.
Collapse
Affiliation(s)
- Damian Dudka
- Medical Faculty, Department of Physiology and Metabolism, University of Geneva, 1211, Geneva 4, Switzerland
| | - Patrick Meraldi
- Medical Faculty, Department of Physiology and Metabolism, University of Geneva, 1211, Geneva 4, Switzerland.
| |
Collapse
|
33
|
|
34
|
Membrane-bound MinDE complex acts as a toggle switch that drives Min oscillation coupled to cytoplasmic depletion of MinD. Proc Natl Acad Sci U S A 2016; 113:E1479-88. [PMID: 26884160 DOI: 10.1073/pnas.1600644113] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Escherichia coli Min system self-organizes into a cell-pole to cell-pole oscillator on the membrane to prevent divisions at the cell poles. Reconstituting the Min system on a lipid bilayer has contributed to elucidating the oscillatory mechanism. However, previous in vitro patterns were attained with protein densities on the bilayer far in excess of those in vivo and failed to recapitulate the standing wave oscillations observed in vivo. Here we studied Min protein patterning at limiting MinD concentrations reflecting the in vivo conditions. We identified "burst" patterns--radially expanding and imploding binding zones of MinD, accompanied by a peripheral ring of MinE. Bursts share several features with the in vivo dynamics of the Min system including standing wave oscillations. Our data support a patterning mechanism whereby the MinD-to-MinE ratio on the membrane acts as a toggle switch: recruiting and stabilizing MinD on the membrane when the ratio is high and releasing MinD from the membrane when the ratio is low. Coupling this toggle switch behavior with MinD depletion from the cytoplasm drives a self-organized standing wave oscillator.
Collapse
|
35
|
Banigan EJ, Marko JF. Self-propulsion and interactions of catalytic particles in a chemically active medium. Phys Rev E 2016; 93:012611. [PMID: 26871126 DOI: 10.1103/physreve.93.012611] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Indexed: 11/07/2022]
Abstract
Enzymatic "machines," such as catalytic rods or colloids, can self-propel and interact by generating gradients of their substrates. We theoretically investigate the behaviors of such machines in a chemically active environment where their catalytic substrates are continuously synthesized and destroyed, as occurs in living cells. We show how the kinetic properties of the medium modulate self-propulsion and pairwise interactions between machines, with the latter controlled by a tunable characteristic interaction range analogous to the Debye screening length in an electrolytic solution. Finally, we discuss the effective force arising between interacting machines and possible biological applications, such as partitioning of bacterial plasmids.
Collapse
Affiliation(s)
- Edward J Banigan
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
| | - John F Marko
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA.,Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
36
|
Magalon A, Alberge F. Distribution and dynamics of OXPHOS complexes in the bacterial cytoplasmic membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:198-213. [PMID: 26545610 DOI: 10.1016/j.bbabio.2015.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/23/2022]
Abstract
Oxidative phosphorylation (OXPHOS) is an essential process for most living organisms mostly sustained by protein complexes embedded in the cell membrane. In order to thrive, cells need to quickly respond to changes in the metabolic demand or in their environment. An overview of the strategies that can be employed by bacterial cells to adjust the OXPHOS outcome is provided. Regulation at the level of gene expression can only provide a means to adjust the OXPHOS outcome to long-term trends in the environment. In addition, the actual view is that bioenergetic membranes are highly compartmentalized structures. This review discusses what is known about the spatial organization of OXPHOS complexes and the timescales at which they occur. As exemplified with the commensal gut bacterium Escherichia coli, three levels of spatial organization are at play: supercomplexes, membrane microdomains and polar assemblies. This review provides a particular focus on whether dynamic spatial organization can fine-tune the OXPHOS through the definition of specialized functional membrane microdomains. Putative mechanisms responsible for spatio-temporal regulation of the OXPHOS complexes are discussed. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux.
Collapse
Affiliation(s)
- Axel Magalon
- CNRS, Laboratoire de Chimie Bactérienne (UMR 7283), Institut de Microbiologie de la Méditerranée, 13009 Marseille, France; Aix-Marseille University, UMR 7283, 13009 Marseille, France.
| | - François Alberge
- CNRS, Laboratoire de Chimie Bactérienne (UMR 7283), Institut de Microbiologie de la Méditerranée, 13009 Marseille, France; Aix-Marseille University, UMR 7283, 13009 Marseille, France
| |
Collapse
|
37
|
Alberge F, Espinosa L, Seduk F, Sylvi L, Toci R, Walburger A, Magalon A. Dynamic subcellular localization of a respiratory complex controls bacterial respiration. eLife 2015; 4. [PMID: 26077726 PMCID: PMC4466248 DOI: 10.7554/elife.05357] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/20/2015] [Indexed: 11/17/2022] Open
Abstract
Respiration, an essential process for most organisms, has to optimally respond to changes in the metabolic demand or the environmental conditions. The branched character of their respiratory chains allows bacteria to do so by providing a great metabolic and regulatory flexibility. Here, we show that the native localization of the nitrate reductase, a major respiratory complex under anaerobiosis in Escherichia coli, is submitted to tight spatiotemporal regulation in response to metabolic conditions via a mechanism using the transmembrane proton gradient as a cue for polar localization. These dynamics are critical for controlling the activity of nitrate reductase, as the formation of polar assemblies potentiates the electron flux through the complex. Thus, dynamic subcellular localization emerges as a critical factor in the control of respiration in bacteria. DOI:http://dx.doi.org/10.7554/eLife.05357.001 Respiration occurs at different levels: the body, the organ, and the cells. At the cellular level, it is a molecular process that produces a high-energy molecule called adenosine triphosphate (ATP) using the biochemical energy stored in sugars, fatty acids, and other nutrients. Along with the ATP, this process also provides another source of energy to the cell: an electrochemical gradient across the membrane used for a range of processes ranging from the transport of molecules and ions to cell motility. In order to thrive, cells need to quickly respond to cues from the environment or elsewhere in the cell. A cell must therefore have the ability to increase or decrease cellular respiration and the production of ATP to ensure it has an appropriate supply of energy. In bacteria, the protein complexes responsible for cellular respiration are embedded in the cell membrane. In the past decade, research has suggested that large molecules are arranged in a specific way throughout the bacterial cell, which directly influences how they work. Alberge et al. tested this idea by studying the localization of a respiratory complex called nitrate reductase—which is important for generating energy in the absence of oxygen—through the introduction of a fluorescent marker tagged to the complex in the cell membrane of a rod-shaped bacterium called Escherichia coli. This allowed the complex to be tracked when the cells were viewed using a microscope. The experiments revealed that the location of the complex varies depending on how much energy the cell requires. For example, when the cells are in an oxygen-poor environment, the nitrate reductase complex moves towards the poles at each end of the bacterial cells. This allows the cells to produce ATP more efficiently through respiration of nitrate. Alberge et al. show that a ‘proton gradient’, caused by positively charged hydrogen ions moving through the cell membrane as the result of respiration, controls where the complexes are located in the membrane. Alberge et al.'s findings provide experimental support that dynamic localization of respiratory complexes plays an important role in controlling respiration in bacteria. The next challenge will be to identify the genes that influence the distribution of respiratory complexes throughout the cell, which may help to explain how bacterial cells have adapted to specific environments. DOI:http://dx.doi.org/10.7554/eLife.05357.002
Collapse
Affiliation(s)
- François Alberge
- Laboratoire de Chimie Bactérienne UMR7283, Institut de Microbiologie de la Méditerranée, Centre national de la recherche scientifique, Aix Marseille Université, Marseille, France
| | - Leon Espinosa
- Laboratoire de Chimie Bactérienne UMR7283, Institut de Microbiologie de la Méditerranée, Centre national de la recherche scientifique, Aix Marseille Université, Marseille, France
| | - Farida Seduk
- Laboratoire de Chimie Bactérienne UMR7283, Institut de Microbiologie de la Méditerranée, Centre national de la recherche scientifique, Aix Marseille Université, Marseille, France
| | - Léa Sylvi
- Laboratoire de Chimie Bactérienne UMR7283, Institut de Microbiologie de la Méditerranée, Centre national de la recherche scientifique, Aix Marseille Université, Marseille, France
| | - René Toci
- Laboratoire de Chimie Bactérienne UMR7283, Institut de Microbiologie de la Méditerranée, Centre national de la recherche scientifique, Aix Marseille Université, Marseille, France
| | - Anne Walburger
- Laboratoire de Chimie Bactérienne UMR7283, Institut de Microbiologie de la Méditerranée, Centre national de la recherche scientifique, Aix Marseille Université, Marseille, France
| | - Axel Magalon
- Laboratoire de Chimie Bactérienne UMR7283, Institut de Microbiologie de la Méditerranée, Centre national de la recherche scientifique, Aix Marseille Université, Marseille, France
| |
Collapse
|
38
|
Kiyomitsu T. Mechanisms of daughter cell-size control during cell division. Trends Cell Biol 2015; 25:286-95. [DOI: 10.1016/j.tcb.2014.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/14/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
|
39
|
Abstract
Protein gradients play key roles in subcellular spatial organization. In bacteria, ParA adenosine triphosphatases, or ATPases, form dynamic gradients on the nucleoid surface, which imparts positional information for the segregation, transport, and positioning of chromosomes, plasmids, and large protein assemblies. Despite the apparent simplicity of these minimal and self-organizing systems, the mechanism remains unclear. The small size of bacteria along with the number of physical and biochemical processes involved in subcellular organization makes it difficult to study these systems under controlled conditions in vivo. We developed a cell-free reconstitution technique that allows for the visualization of ParA-mediated cargo transport on a DNA carpet, which acts as a biomimetic of the nucleoid surface. Here, we present methods to express, purify, and visualize the dynamic properties of the SopABC system from F plasmid, considered a paradigm for the study of ParA-type systems. We hope similar cell-free studies will be used to address the biochemical and biophysical underpinnings of this ubiquitous transport scheme in bacteria.
Collapse
|
40
|
Griffin EE. Cytoplasmic localization and asymmetric division in the early embryo of Caenorhabditis elegans. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:267-82. [PMID: 25764455 DOI: 10.1002/wdev.177] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/16/2014] [Accepted: 01/04/2015] [Indexed: 11/09/2022]
Abstract
During the initial cleavages of the Caenorhabditis elegans embryo, a series of rapid and invariant asymmetric cell divisions pattern the fate, size, and position of four somatic blastomeres and a single germline blastomere. These asymmetric divisions are orchestrated by a collection of maternally deposited factors that are initially symmetrically distributed in the newly fertilized embryo. Maturation of the sperm-derived centrosome in the posterior cytoplasm breaks this symmetry by triggering a dramatic and highly stereotyped partitioning of these maternal factors. A network of conserved cell polarity regulators, the PAR proteins, form distinct anterior and posterior domains at the cell cortex. From these domains, the PAR proteins direct the segregation of somatic and germline factors into opposing regions of the cytoplasm such that, upon cell division, they are preferentially inherited by the somatic blastomere or the germline blastomere, respectively. The segregation of these factors is controlled, at least in part, by a series of reaction-diffusion mechanisms that are asymmetrically deployed along the anterior/posterior axis. The characterization of these mechanisms has important implications for our understanding of how cells are polarized and how spatial organization is generated in the cytoplasm. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Erik E Griffin
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
41
|
Positioning the flagellum at the center of a dividing cell to combine bacterial division with magnetic polarity. mBio 2015; 6:e02286. [PMID: 25714711 PMCID: PMC4358019 DOI: 10.1128/mbio.02286-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Faithful replication of all structural features is a sine qua non condition for the success of bacterial reproduction by binary fission. For some species, a key challenge is to replicate and organize structures with multiple polarities. Polarly flagellated magnetotactic bacteria are the prime example of organisms dealing with such a dichotomy; they have the challenge of bequeathing two types of polarities to their daughter cells: magnetic and flagellar polarities. Indeed, these microorganisms align and move in the Earth’s magnetic field using an intracellular chain of nano-magnets that imparts a magnetic dipole to the cell. The paradox is that, after division occurs in cells, if the new flagellum is positioned opposite to the old pole devoid of a flagellum during cell division, the two daughter cells will have opposite magnetic polarities with respect to the positions of their flagella. Here we show that magnetotactic bacteria of the class Gammaproteobacteria pragmatically solve this problem by synthesizing a new flagellum at the division site. In addition, we model this particular structural inheritance during cell division. This finding opens up new questions regarding the molecular aspects of the new division mechanism, the way other polarly flagellated magnetotactic bacteria control the rotational direction of their flagella, and the positioning of organelles. Magnetotactic bacteria produce chains of magnetic nanoparticles that endow the cells with a magnetic dipole, a “compass” used for navigation. This feature, however, also drastically complicates cellular division in the case of polarly flagellated bacteria. In this case, the bacteria have to pass on to their daughter cells two types of cellular polarities simultaneously, their magnetic polarity and the polarity of their motility apparatus. We show here that magnetotactic bacteria of the Gammaproteobacteria class pragmatically solve this problem by synthesizing the new flagellum at the division site, a division scheme never observed so far in bacteria. Even though the molecular mechanisms behind this scheme cannot be resolved at the moment due to the lack of genetic tools, this discovery provides a new window into the organizational complexity of simple organisms.
Collapse
|
42
|
Saunders TE. Aggregation-fragmentation model of robust concentration gradient formation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:022704. [PMID: 25768528 DOI: 10.1103/physreve.91.022704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Indexed: 06/04/2023]
Abstract
Concentration gradients of signaling molecules are essential for patterning during development and they have been observed in both unicellular and multicellular systems. In subcellular systems, clustering of the signaling molecule has been observed. We develop a theoretical model of cluster-mediated concentration gradient formation based on the Becker-Döring equations of aggregation-fragmentation processes. We show that such a mechanism produces robust concentration gradients on realistic time and spatial scales so long as the process of clustering does not significantly stabilize the signaling molecule. Finally, we demonstrate that such a model is applicable to the pom1p subcellular gradient in fission yeast.
Collapse
Affiliation(s)
- Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore; and Institute of Molecular and Cell Biology, Proteos, Singapore
| |
Collapse
|
43
|
Erb ML, Kraemer JA, Coker JKC, Chaikeeratisak V, Nonejuie P, Agard DA, Pogliano J. A bacteriophage tubulin harnesses dynamic instability to center DNA in infected cells. eLife 2014; 3. [PMID: 25429514 PMCID: PMC4244570 DOI: 10.7554/elife.03197] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 10/22/2014] [Indexed: 11/13/2022] Open
Abstract
Dynamic instability, polarity, and spatiotemporal organization are hallmarks of the microtubule cytoskeleton that allow formation of complex structures such as the eukaryotic spindle. No similar structure has been identified in prokaryotes. The bacteriophage-encoded tubulin PhuZ is required to position DNA at mid-cell, without which infectivity is compromised. Here, we show that PhuZ filaments, like microtubules, stochastically switch from growing in a distinctly polar manner to catastrophic depolymerization (dynamic instability) both in vitro and in vivo. One end of each PhuZ filament is stably anchored near the cell pole to form a spindle-like array that orients the growing ends toward the phage nucleoid so as to position it near mid-cell. Our results demonstrate how a bacteriophage can harness the properties of a tubulin-like cytoskeleton for efficient propagation. This represents the first identification of a prokaryotic tubulin with the dynamic instability of microtubules and the ability to form a simplified bipolar spindle.
Collapse
Affiliation(s)
- Marcella L Erb
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - James A Kraemer
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Joanna K C Coker
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Vorrapon Chaikeeratisak
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Poochit Nonejuie
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - David A Agard
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| |
Collapse
|
44
|
Zieske K, Schwille P. Reconstitution of self-organizing protein gradients as spatial cues in cell-free systems. eLife 2014; 3. [PMID: 25271375 PMCID: PMC4215534 DOI: 10.7554/elife.03949] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/30/2014] [Indexed: 11/13/2022] Open
Abstract
Intracellular protein gradients are significant determinants of spatial organization. However, little is known about how protein patterns are established, and how their positional information directs downstream processes. We have accomplished the reconstitution of a protein concentration gradient that directs the assembly of the cell division machinery in E.coli from the bottom-up. Reconstituting self-organized oscillations of MinCDE proteins in membrane-clad soft-polymer compartments, we demonstrate that distinct time-averaged protein concentration gradients are established. Our minimal system allows to study complex organizational principles, such as spatial control of division site placement by intracellular protein gradients, under simplified conditions. In particular, we demonstrate that FtsZ, which marks the cell division site in many bacteria, can be targeted to the middle of a cell-like compartment. Moreover, we show that compartment geometry plays a major role in Min gradient establishment, and provide evidence for a geometry-mediated mechanism to partition Min proteins during bacterial development.
Collapse
Affiliation(s)
- Katja Zieske
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany
| |
Collapse
|
45
|
Vecchiarelli AG, Li M, Mizuuchi M, Mizuuchi K. Differential affinities of MinD and MinE to anionic phospholipid influence Min patterning dynamics in vitro. Mol Microbiol 2014; 93:453-63. [PMID: 24930948 DOI: 10.1111/mmi.12669] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2014] [Indexed: 11/28/2022]
Abstract
The E. coli Min system forms a cell-pole-to-cell-pole oscillator that positions the divisome at mid-cell. The MinD ATPase binds the membrane and recruits the cell division inhibitor MinC. MinE interacts with and releases MinD (and MinC) from the membrane. The chase of MinD by MinE creates the in vivo oscillator that maintains a low level of the division inhibitor at mid-cell. In vitro reconstitution and visualization of Min proteins on a supported lipid bilayer has provided significant advances in understanding Min patterns in vivo. Here we studied the effects of flow, lipid composition, and salt concentration on Min patterning. Flow and no-flow conditions both supported Min protein patterns with somewhat different characteristics. Without flow, MinD and MinE formed spiraling waves. MinD and, to a greater extent MinE, have stronger affinities for anionic phospholipid. MinD-independent binding of MinE to anionic lipid resulted in slower and narrower waves. MinE binding to the bilayer was also more susceptible to changes in ionic strength than MinD. We find that modulating protein diffusion with flow, or membrane binding affinities with changes in lipid composition or salt concentration, can differentially affect the retention time of MinD and MinE, leading to spatiotemporal changes in Min patterning.
Collapse
Affiliation(s)
- Anthony G Vecchiarelli
- Laboratory of Molecular Biology, National Institute of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | | |
Collapse
|