1
|
Li P, Galek P, Grothe J, Kaskel S. Carbon-based iontronics - current state and future perspectives. Chem Sci 2025; 16:7130-7154. [PMID: 40201167 PMCID: PMC11974446 DOI: 10.1039/d4sc06817c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025] Open
Abstract
Over the past few decades, carbon materials, including fullerenes, carbon nanotubes, graphene, and porous carbons, have achieved tremendous success in the fields of energy, environment, medicine, and beyond, through their development and application. Due to their unique physical and chemical characteristics for enabling simultaneous interaction with ions and transport of electrons, carbon materials have been attracting increasing attention in the emerging field of iontronics in recent years. In this review, we first summarize the recent progress and achievements of carbon-based iontronics (ionic sensors, ionic transistors, ionic diodes, ionic pumps, and ionic actuators) for multiple bioinspired applications ranging from information sensing, processing, and actuation, to simple and basic artificial intelligent reflex arc units for the construction of smart and autonomous iontronics. Additionally, the promising potential of carbon materials for smart iontronics is highlighted and prospects are provided in this review, which provide new insights for the further development of nanostructured carbon materials and carbon-based smart iontronics.
Collapse
Affiliation(s)
- Panlong Li
- Inorganic Chemistry I, Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| | - Przemyslaw Galek
- Inorganic Chemistry I, Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| | - Julia Grothe
- Inorganic Chemistry I, Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
| | - Stefan Kaskel
- Inorganic Chemistry I, Technische Universität Dresden Bergstrasse 66 01069 Dresden Germany
- Fraunhofer IWS Winterbergstrasse 28 01277 Dresden Germany
| |
Collapse
|
2
|
Joshi A, Lele PP. Scrutinizing Stator Rotation in the Bacterial Flagellum: Reconciling Experiments and Switching Models. Biomolecules 2025; 15:355. [PMID: 40149891 PMCID: PMC11940233 DOI: 10.3390/biom15030355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
The bacterial flagellar motor is one of the few known rotary motors, powering motility and chemotaxis. The mechanisms underlying its rotation and the switching of its rotational direction are fundamental problems in biology that are of significant interest. Recent high-resolution studies of the flagellar motor have transformed our understanding of the motor, revealing a novel gear mechanism where a membranous pentamer of MotA proteins rotates around a cell wall-anchored dimer of MotB proteins to turn the contacting flagellar rotor. A derivative model suggests that significant changes in rotor diameter occur during switching, enabling each MotA5MotB2 stator unit to shift between internal and external gear configurations, causing clockwise (CW) and counterclockwise (CCW) motor rotation, respectively. However, recent structural work favors a mechanism where the stator units dynamically swing back and forth between the two gear configurations without significant changes in rotor diameter. Given the intricate link between the switching model and the gear mechanism for flagellar rotation, a critical evaluation of the underlying assumptions is crucial for refining switching models. This review scrutinizes key assumptions within prevailing models of flagellar rotation and switching, identifies knowledge gaps, and proposes avenues for future biophysical tests.
Collapse
Affiliation(s)
- Ayush Joshi
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77480, USA;
| | - Pushkar P. Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77480, USA;
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77840, USA
| |
Collapse
|
3
|
Ghosh S, Wu CJ, Moller AG, Launay A, Hall LN, Hansen BT, Fischer ER, Youn JH, Khil PP, Dekker JP. Transcriptional diversification in a human-adapting zoonotic pathogen drives niche-specific evolution. Nat Commun 2025; 16:2067. [PMID: 40021638 PMCID: PMC11871327 DOI: 10.1038/s41467-025-57331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 02/14/2025] [Indexed: 03/03/2025] Open
Abstract
Bacterial pathogens can undergo striking adaptive evolutionary change in the context of infection, driven by selection forces associated with host defenses and antibiotic treatment. In this work, we analyze the transcriptional landscape associated with adaptation in an emerging zoonotic pathogen, Bordetella hinzii, as it evolved during a 45-month infection in an IL12Rβ1-deficient immunocompromised host. We find evidence of multiple niche-specific modifications in the intravascular and gastrointestinal compartments, involving the superoxide dismutase system, glutamate and ectoine metabolism, chaperone-mediated protein folding, pilus organization, and peptide transport. Individual blood lineages displayed modifications in glutathione, phenylacetate, and 3-phenylpropionate metabolism, iron cluster assembly, and electron transport, whereas individual gastrointestinal lineages demonstrated changes relating to gluconeogenesis, de novo pyrimidine synthesis, and transport of peptides and phosphate ions. Down regulation of the flagellar operon with corresponding loss of flagellar structures occurred in multiple lineages, suggesting an evolutionary tradeoff between motility and host immune evasion. Finally, methylome analysis demonstrates alteration of global genome methylation associated with loss of a Type III methyltransferase. Our findings reveal striking plasticity in how pathogen transcriptomes explore functional space as they evolve in the context of host infection, and demonstrate that such analysis may uncover phenotypic adaptations not apparent from genomic analysis alone.
Collapse
Affiliation(s)
- Soma Ghosh
- Bacterial Pathogenesis and Antimicrobial Resistance Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chao-Jung Wu
- Bacterial Pathogenesis and Antimicrobial Resistance Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110301, Taiwan
| | - Abraham G Moller
- Bacterial Pathogenesis and Antimicrobial Resistance Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrien Launay
- Bacterial Pathogenesis and Antimicrobial Resistance Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Endogenomiks, Zapopan, Jalisco, Mexico
| | - Laina N Hall
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- University of California Berkeley, Berkeley, CA, USA
| | - Bryan T Hansen
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Elizabeth R Fischer
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jung-Ho Youn
- National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Pavel P Khil
- Bacterial Pathogenesis and Antimicrobial Resistance Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - John P Dekker
- Bacterial Pathogenesis and Antimicrobial Resistance Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Trivedi A, Miratsky JA, Henderson EC, Singharoy A, Shrivastava A. A membrane-associated conveyor belt controls the rotational direction of the bacterial type 9 secretion system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.23.614571. [PMID: 39386584 PMCID: PMC11463627 DOI: 10.1101/2024.09.23.614571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Many bacteria utilize the type 9 secretion system (T9SS) for gliding motility, surface colonization, and pathogenesis. This dual-function motor supports both gliding motility and protein secretion, where rotation of the T9SS plays a central role. Fueled by the energy of the stored proton motive force and transmitted through the torque of membrane-anchored stator units, the rotary T9SS propels an adhesin-coated conveyor belt along the bacterial outer membrane like a molecular snowmobile, thereby enabling gliding motion. However, the mechanisms controlling the rotational direction and gliding motility of T9SS remain elusive. Shedding light on this mechanism, we find that in the gliding bacterium Flavobacterium johnsoniae , deletion of the C-terminus of a conveyor belt protein GldJ controls, and in fact, reverses the rotational direction of T9SS from counterclockwise to clockwise thus suggesting that the interface between the conveyor belt protein GldJ and the T9SS ring protein GldK plays an important role in controlling the directionality of T9SS. Combined with MD simulation of the T9SS stator units GldLM, we suggest a 'tri-component gearset' model where the conveyor belt controls the rotational direction of its driver, the T9SS, thus providing adaptive sensory feedback to influence the motility of the gliding bacterium.
Collapse
|
5
|
Chen Y, Tachiyama S, Li Y, Feng X, Zhao H, Wu Y, Guo Y, Lara-Tejero M, Hua C, Liu J, Gao B. Tetrameric PilZ protein stabilizes stator ring in complex flagellar motor and is required for motility in Campylobacter jejuni. Proc Natl Acad Sci U S A 2025; 122:e2412594121. [PMID: 39793078 PMCID: PMC11725899 DOI: 10.1073/pnas.2412594121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025] Open
Abstract
Rotation of the bacterial flagellum, the first identified biological rotary machine, is driven by its stator units. Knowledge gained about the function of stator units has increasingly led to studies of rotary complexes in different cellular pathways. Here, we report that a tetrameric PilZ family protein, FlgX, is a structural component underneath the stator units in the flagellar motor of Campylobacter jejuni. FlgX forms a stable tetramer that does not bind cyclic di-GMP (c-di-GMP), unlike other canonical PilZ domain-containing proteins. Cryoelectron tomography and subtomogram averaging of flagellar motors in situ provide evidence that FlgX interacts with each stator unit and plays a critical role in stator ring assembly and stability. Furthermore, FlgX is conserved and was most likely present in the common ancestor of the phylum Campylobacterota. Overall, FlgX represents a divergence in function for PilZ superfamily proteins as well as a player in the key stator-rotor interaction of complex flagellar motors.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Shoichi Tachiyama
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| | - Yuqian Li
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| | - Xueyin Feng
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Hang Zhao
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng475004, China
| | - Yanmin Wu
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yu Guo
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| | - María Lara-Tejero
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
| | - Canfeng Hua
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| | - Beile Gao
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| |
Collapse
|
6
|
Nakamura S, Minamino T. Structure and Dynamics of the Bacterial Flagellar Motor Complex. Biomolecules 2024; 14:1488. [PMID: 39766194 PMCID: PMC11673145 DOI: 10.3390/biom14121488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Many bacteria swim in liquids and move over solid surfaces by rotating flagella. The bacterial flagellum is a supramolecular protein complex that is composed of about 30 different flagellar proteins ranging from a few to tens of thousands. Despite structural and functional diversities of the flagella among motile bacteria, the flagellum commonly consists of a membrane-embedded rotary motor fueled by an ion motive force across the cytoplasmic membrane, a universal joint, and a helical propeller that extends several micrometers beyond the cell surface. The flagellar motor consists of a rotor and several stator units, each of which acts as a transmembrane ion channel complex that converts the ion flux through the channel into the mechanical work required for force generation. The rotor ring complex is equipped with a reversible gear that is regulated by chemotactic signal transduction pathways. As a result, bacteria can move to more desirable locations in response to environmental changes. Recent high-resolution structural analyses of flagella using cryo-electron microscopy have provided deep insights into the assembly, rotation, and directional switching mechanisms of the flagellar motor complex. In this review article, we describe the current understanding of the structure and dynamics of the bacterial flagellum.
Collapse
Affiliation(s)
- Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai 980-8579, Japan;
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita Osaka 565-0871, Japan
| |
Collapse
|
7
|
Tan J, Zhang L, Zhou X, Han S, Zhou Y, Zhu Y. Structural basis of the bacterial flagellar motor rotational switching. Cell Res 2024; 34:788-801. [PMID: 39179739 PMCID: PMC11528121 DOI: 10.1038/s41422-024-01017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
The bacterial flagellar motor is a huge bidirectional rotary nanomachine that drives rotation of the flagellum for bacterial motility. The cytoplasmic C ring of the flagellar motor functions as the switch complex for the rotational direction switching from counterclockwise to clockwise. However, the structural basis of the rotational switching and how the C ring is assembled have long remained elusive. Here, we present two high-resolution cryo-electron microscopy structures of the C ring-containing flagellar basal body-hook complex from Salmonella Typhimurium, which are in the default counterclockwise state and in a constitutively active CheY mutant-induced clockwise state, respectively. In both complexes, the C ring consists of four subrings, but is in two different conformations. The CheY proteins are bound into an open groove between two adjacent protomers on the surface of the middle subring of the C ring and interact with the FliG and FliM subunits. The binding of the CheY protein induces a significant upward shift of the C ring towards the MS ring and inward movements of its protomers towards the motor center, which eventually remodels the structures of the FliG subunits and reverses the orientations and surface electrostatic potential of the αtorque helices to trigger the counterclockwise-to-clockwise rotational switching. The conformational changes of the FliG subunits reveal that the stator units on the motor require a relocation process in the inner membrane during the rotational switching. This study provides unprecedented molecular insights into the rotational switching mechanism and a detailed overall structural view of the bacterial flagellar motors.
Collapse
Affiliation(s)
- Jiaxing Tan
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and College of Animal Sciences, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ling Zhang
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and College of Animal Sciences, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xingtong Zhou
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and College of Animal Sciences, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Siyu Han
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and College of Animal Sciences, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Zhou
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yongqun Zhu
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and College of Animal Sciences, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.
- Shanghai Institute for Advanced Study, Zhejiang University, Shanghai, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
- Center for Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Zhu S, He R, Zhang R, Yuan J. Mechanosensitive dose response of the bacterial flagellar motor. Phys Rev E 2024; 110:054402. [PMID: 39690685 DOI: 10.1103/physreve.110.054402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 10/02/2024] [Indexed: 12/19/2024]
Abstract
The bacterial flagellar motor is both chemo- and mechanosensitive. It is sensitive to the intracellular concentration of the chemotaxis response regulator CheY-P and to external load conditions. The motor's dose-response curve, which represents the probability of the motor rotating clockwise (CW bias) as a function of CheY-P concentration, characterizes its chemical sensitivity. However, it remains unclear how this dose-response curve depends on the load conditions. Here, we measured the dose-response curves of the motor under various load conditions. Surprisingly, we found that the dose-response curve exhibited minimal changes with load at low CW biases, but shifted leftward with higher sensitivity to CheY-P concentration at high CW biases when the load increased. This observation contradicts previous model predictions that incorporated the effect of stator-rotor interaction on motor switching. Through the development of an Ising-type model for the coupled chemo- and mechanosensitivity of the flagellar switch, we revealed that the mechanism underlying the mechanosensitive dose response is the synergistic interplay between the adaptive remodeling of the motor switch complex and the nonequilibrium effect of the stator-rotor interaction.
Collapse
|
9
|
Yu Y, Liang L, Sun T, Lu H, Yang P, Li J, Pang Q, Zeng J, Shi P, Li J, Lu Y. Micro/Nanomotor-Driven Intelligent Targeted Delivery Systems: Dynamics Sources and Frontier Applications. Adv Healthc Mater 2024; 13:e2400163. [PMID: 39075811 DOI: 10.1002/adhm.202400163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/05/2024] [Indexed: 07/31/2024]
Abstract
Micro/nanomotors represent a promising class of drug delivery carriers capable of converting surrounding chemical or external energy into mechanical power, enabling autonomous movement. Their distinct autonomous propulsive force distinguishes them from other carriers, offering significant potential for enhancing drug penetration across cellular and tissue barriers. A comprehensive understanding of micro/nanomotor dynamics with various power sources is crucial to facilitate their transition from proof-of-concept to clinical application. In this review, micro/nanomotors are categorized into three classes based on their energy sources: endogenously stimulated, exogenously stimulated, and live cell-driven. The review summarizes the mechanisms governing micro/nanomotor movements under these energy sources and explores factors influencing autonomous motion. Furthermore, it discusses methods for controlling micro/nanomotor movement, encompassing aspects related to their structure, composition, and environmental factors. The remarkable propulsive force exhibited by micro/nanomotors makes them valuable for significant biomedical applications, including tumor therapy, bio-detection, bacterial infection therapy, inflammation therapy, gastrointestinal disease therapy, and environmental remediation. Finally, the review addresses the challenges and prospects for the application of micro/nanomotors. Overall, this review emphasizes the transformative potential of micro/nanomotors in overcoming biological barriers and enhancing therapeutic efficacy, highlighting their promising clinical applications across various biomedical fields.
Collapse
Affiliation(s)
- Yue Yu
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Ling Liang
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Ting Sun
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Haiying Lu
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Pushan Yang
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Jinrong Li
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Qinjiao Pang
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Jia Zeng
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Ping Shi
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yongping Lu
- Guangyuan Central Hospital, Guangyuan, 628000, P. R. China
| |
Collapse
|
10
|
Kho CJY, Lau MML, Chung HH, Fukui K. Selection of vaccine candidates against Pseudomonas koreensis using reverse vaccinology and a preliminary efficacy trial in Empurau (Tor tambroides). FISH & SHELLFISH IMMUNOLOGY 2024; 151:109688. [PMID: 38857817 DOI: 10.1016/j.fsi.2024.109688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 06/12/2024]
Abstract
This study marks the first utilization of reverse vaccinology to develop recombinant subunit vaccines against Pseudomonas koreensis infection in Empurau (Tor tambroides). The proteome (5538 proteins) was screened against various filters to prioritize proteins based on features that are associated with virulence, subcellular localization, transmembrane helical structure, antigenicity, essentiality, non-homology with the host proteome, molecular weight, and stability, which led to the identification of eight potential vaccine candidates. These potential vaccine candidates were cloned and expressed, with six achieving successful expression and purification. The antigens were formulated into two distinct vaccine mixtures, Vac A and Vac B, and their protective efficacy was assessed through in vivo challenge experiments. Vac A and Vac B demonstrated high protective efficacies of 100 % and 81.2 %, respectively. Histological analyses revealed reduced tissue damage in vaccinated fish after experimental infection, with Vac A showing no adverse effects, whereas Vac B exhibited mild degenerative changes. Quantitative real-time PCR results showed a significant upregulation of TNF-α and downregulation of IL-1β in the kidneys, spleen, gills, and intestine in both Vac A- and Vac B-immunized fish after challenged with P. koreensis. Additionally, IL-8 exhibits tissue-specific differential expression, with significant upregulation in the kidney, gills, and intestine, and downregulation in the spleen, particularly notable in Vac A-immunized fish. The research underscores the effectiveness of the reverse vaccinology approach in fish and demonstrates the promising potential of Vac A and Vac B as recombinant subunit vaccines.
Collapse
Affiliation(s)
- Cindy Jia Yung Kho
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Melinda Mei Lin Lau
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Hung Hui Chung
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Koji Fukui
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama, 337-8570, Japan.
| |
Collapse
|
11
|
Zhou Q, Hu Y, You Y, Gao Y, Wang X, Qin L. Functional analysis of OmpA and its contribution to pathogenesis of Edwardsiella tarda. Microb Pathog 2024; 193:106760. [PMID: 38914348 DOI: 10.1016/j.micpath.2024.106760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/27/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Outer membrane protein A (OmpA), a major component of outer membrane proteins in gram-negative bacteria, is considered to be an important virulence factor in various pathogenic bacteria, but its underlying mechanisms involved in pathogenic process of Edwardsiella tarda has not yet been fully elucidated. E. tarda is an important facultative intracellular pathogen with a broad host range. This bacterium could survive and replicate in macrophages as an escape mechanism from the host defense. To address the functions of OmpA and its potential roles in the pathogenesis of E. tarda, ΔompA mutant strain and ΔompA-C complementary strain were constructed by the allelic exchange method in this study. Here, we demonstrate that the abilities of motility, biofilm formation and adherence to RAW264.7 cells of ΔompA were significantly impaired, although there was no difference in growth between wild-type (WT) strain and ΔompA. Moreover, inactivation of ompA rendered E. tarda more sensitive to oxidative, heat shock and osmotic stress, which simulate the in vivo conditions that E. tarda encounters within the intramacrophage environment. Consist with this observation, ΔompA was also found to be markedly attenuated for growth within macrophages. In addition, compared with the WT strain, ΔompA activated macrophages to release more inflammatory mediators, including tumor necrosis factor alpha (TNF-α), reactive oxygen species (ROS) and nitric oxide (NO). However, flow cytometry analysis revealed that ΔompA induced less apoptosis of RAW264.7 cells as compared with WT strain, characterized by decreased Annexin V binding and the activation of caspase-3. Overall, our findings suggest an importance of OmpA to E. tarda and provide the first comprehensive insight into its functions and potential roles in the pathogenesis of E. tarda, including its effect on interaction with macrophages.
Collapse
Affiliation(s)
- Quan Zhou
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Yushuai Hu
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Yicheng You
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Yingli Gao
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Xingqiang Wang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Lei Qin
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China.
| |
Collapse
|
12
|
Mazzantini D, Gherardini G, Rossi V, Celandroni F, Calvigioni M, Panattoni A, Massimino M, Lupetti A, Ghelardi E. Dissecting the role of the MS-ring protein FliF in Bacillus cereus flagella-related functions. Mol Microbiol 2024; 122:255-270. [PMID: 39030901 DOI: 10.1111/mmi.15299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/22/2024]
Abstract
The flagellar MS-ring, uniquely constituted by FliF, is essential for flagellar biogenesis and functionality in several bacteria. The aim of this study was to dissect the role of FliF in the Gram-positive and peritrichously flagellated Bacillus cereus. We demonstrate that fliF forms an operon with the upstream gene fliE. In silico analysis of B. cereus ATCC 14579 FliF identifies functional domains and amino acid residues that are essential for protein functioning. The analysis of a ΔfliF mutant of B. cereus, constructed in this study using an in frame markerless gene replacement method, reveals that the mutant is unexpectedly able to assemble flagella, although in reduced amounts compared to the parental strain. Nevertheless, motility is completely abolished by fliF deletion. FliF deprivation causes the production of submerged biofilms and affects the ability of B. cereus to adhere to gastrointestinal mucins. We additionally show that the fliF deletion does not compromise the secretion of the three components of hemolysin BL, a toxin secreted through the flagellar type III secretion system. Overall, our findings highlight the important role of B. cereus FliF in flagella-related functions, being the protein required for complete flagellation, motility, mucin adhesion, and pellicle biofilms.
Collapse
Affiliation(s)
- Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Guendalina Gherardini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Virginia Rossi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Adelaide Panattoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Mariacristina Massimino
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonella Lupetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Research Center Nutraceuticals and Food for Health-Nutrafood, University of Pisa, Pisa, Italy
| |
Collapse
|
13
|
Xu Q, Ali S, Afzal M, Nizami AS, Han S, Dar MA, Zhu D. Advancements in bacterial chemotaxis: Utilizing the navigational intelligence of bacteria and its practical applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172967. [PMID: 38705297 DOI: 10.1016/j.scitotenv.2024.172967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
The fascinating world of microscopic life unveils a captivating spectacle as bacteria effortlessly maneuver through their surroundings with astonishing accuracy, guided by the intricate mechanism of chemotaxis. This review explores the complex mechanisms behind this behavior, analyzing the flagellum as the driving force and unraveling the intricate signaling pathways that govern its movement. We delve into the hidden costs and benefits of this intricate skill, analyzing its potential to propagate antibiotic resistance gene while shedding light on its vital role in plant colonization and beneficial symbiosis. We explore the realm of human intervention, considering strategies to manipulate bacterial chemotaxis for various applications, including nutrient cycling, algal bloom and biofilm formation. This review explores the wide range of applications for bacterial capabilities, from targeted drug delivery in medicine to bioremediation and disease control in the environment. Ultimately, through unraveling the intricacies of bacterial movement, we can enhance our comprehension of the intricate web of life on our planet. This knowledge opens up avenues for progress in fields such as medicine, agriculture, and environmental conservation.
Collapse
Affiliation(s)
- Qi Xu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Shehbaz Ali
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Afzal
- Soil & Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Abdul-Sattar Nizami
- Sustainable Development Study Centre, Government College University, Lahore 54000, Pakistan
| | - Song Han
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Mudasir A Dar
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
14
|
Johnson S, Deme JC, Furlong EJ, Caesar JJE, Chevance FFV, Hughes KT, Lea SM. Structural basis of directional switching by the bacterial flagellum. Nat Microbiol 2024; 9:1282-1292. [PMID: 38459206 DOI: 10.1038/s41564-024-01630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/01/2024] [Indexed: 03/10/2024]
Abstract
The bacterial flagellum is a macromolecular protein complex that harvests energy from uni-directional ion flow across the inner membrane to power bacterial swimming via rotation of the flagellar filament. Rotation is bi-directional, with binding of a cytoplasmic chemotactic response regulator controlling reversal, though the structural and mechanistic bases for rotational switching are not well understood. Here we present cryoelectron microscopy structures of intact Salmonella flagellar basal bodies (3.2-5.5 Å), including the cytoplasmic C-ring complexes required for power transmission, in both counter-clockwise and clockwise rotational conformations. These reveal 180° movements of both the N- and C-terminal domains of the FliG protein, which, when combined with a high-resolution cryoelectron microscopy structure of the MotA5B2 stator, show that the stator shifts from the outside to the inside of the C-ring. This enables rotational switching and reveals how uni-directional ion flow across the inner membrane is used to accomplish bi-directional rotation of the flagellum.
Collapse
Affiliation(s)
- Steven Johnson
- Center for Structural Biology, CCR, NCI, Frederick, MD, USA.
| | - Justin C Deme
- Center for Structural Biology, CCR, NCI, Frederick, MD, USA
| | - Emily J Furlong
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Division of Biomedical Science and Biochemistry, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Joseph J E Caesar
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK
| | | | - Kelly T Hughes
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Susan M Lea
- Center for Structural Biology, CCR, NCI, Frederick, MD, USA.
| |
Collapse
|
15
|
Wei Y, Cheng X, Liao Y, Zeng S, Li Y, Zhang Y, Gao C, Zhang Y, Wan J, Gu J, Zou Q. Recombinant Pseudomonas aeruginosa flagellin delivered using ferritin nanoparticles provides enhanced cross-protection against lung infection in mice. Mol Immunol 2023; 163:235-242. [PMID: 37866168 DOI: 10.1016/j.molimm.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023]
Abstract
Increasing prevalence of multidrug- and pan-drug-resistant Pseudomonas aeruginosa (PA) strains has created an urgent need for an effective vaccine. Flagellin is an essential vaccine target because of its contribution to bacterial motility and other pathogenic processes. However, flagellin-based vaccines have not been successful thus far, probably due to a lack of efficient adjuvants or delivery systems. In this study, we genetically fused an A-type flagellin (FliC) to the self-assembled nanocarrier ferritin to construct the nanoparticle vaccine, reFliC-ferritin (reFliC-FN). reFliC-FN formed homogenous nanoparticles and induced a quick T helper 1 (Th1)-predominant immune response, which was quite different from that induced by recombinant FliC alone. In addition, reFliC-FN provided enhanced protection against PA strains carrying the A-type and heterogeneous B-type flagellins. Preliminary safety assays revealed the good biocompatibility and biosafety of reFliC-FN. Therefore, our data highlight the potential of ferritin as an ideal delivery system and suggest reFliC-FN as a promising PA vaccine candidate.
Collapse
Affiliation(s)
- Yujie Wei
- College of Bioengineering, Chongqing University, Chongqing 400044, China; National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Xin Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Yaling Liao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Sheng Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Yuhang Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Yiwen Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Chen Gao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Yi Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Jiqing Wan
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Jiang Gu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| | - Quanming Zou
- College of Bioengineering, Chongqing University, Chongqing 400044, China; National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
16
|
Johnson S, Deme JC, Furlong EJ, Caesar JJ, Chevance FF, Hughes KT, Lea SM. Structural Basis of Directional Switching by the Bacterial Flagellum. RESEARCH SQUARE 2023:rs.3.rs-3417165. [PMID: 39108497 PMCID: PMC11302681 DOI: 10.21203/rs.3.rs-3417165/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
The bacterial flagellum is a macromolecular protein complex that harvests energy from ion-flow across the inner membrane to power bacterial swimming in viscous fluids via rotation of the flagellar filament. Bacteria such as Salmonella enterica are capable of bi-directional flagellar rotation even though ion flow is uni-directional. How uni-directional ion-movement through the inner membrane is utilized by this macromolecular machine to drive bi-directional flagellar rotation is not understood, but a chemotactic response regulator in the cytoplasm is known to reverse the direction of rotation. We here present cryo-EM structures of intact Salmonella flagellar basal bodies, including the cytoplasmic complexes required for power transmission, in conformations representing both directions of rotation. The structures reveal that the conformational changes required for switching the direction of rotation involve 180 degree rotations of both the N- and C-terminal domains of the FliG protein. Combining these models with a new, high-resolution, cryo-EM structure of the MotA5B2 stator, in complex with the C-terminal domain of FliG, reveals how uni-directional ion-flow across the inner membrane is used to accomplish bi-directional rotation of the flagellum.
Collapse
Affiliation(s)
- Steven Johnson
- Center for Structural Biology, CCR, NCI, Frederick, MD 21702-1201 USA
| | - Justin C. Deme
- Center for Structural Biology, CCR, NCI, Frederick, MD 21702-1201 USA
| | - Emily J. Furlong
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Joseph J.E. Caesar
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK
| | | | - Kelly T. Hughes
- Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | - Susan M. Lea
- Center for Structural Biology, CCR, NCI, Frederick, MD 21702-1201 USA
| |
Collapse
|
17
|
Hu H, Popp PF, Santiveri M, Roa-Eguiara A, Yan Y, Martin FJO, Liu Z, Wadhwa N, Wang Y, Erhardt M, Taylor NMI. Ion selectivity and rotor coupling of the Vibrio flagellar sodium-driven stator unit. Nat Commun 2023; 14:4411. [PMID: 37500658 PMCID: PMC10374538 DOI: 10.1038/s41467-023-39899-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Bacteria swim using a flagellar motor that is powered by stator units. Vibrio spp. are highly motile bacteria responsible for various human diseases, the polar flagella of which are exclusively driven by sodium-dependent stator units (PomAB). However, how ion selectivity is attained, how ion transport triggers the directional rotation of the stator unit, and how the stator unit is incorporated into the flagellar rotor remained largely unclear. Here, we have determined by cryo-electron microscopy the structure of Vibrio PomAB. The electrostatic potential map uncovers sodium binding sites, which together with functional experiments and molecular dynamics simulations, reveal a mechanism for ion translocation and selectivity. Bulky hydrophobic residues from PomA prime PomA for clockwise rotation. We propose that a dynamic helical motif in PomA regulates the distance between PomA subunit cytoplasmic domains, stator unit activation, and torque transmission. Together, our study provides mechanistic insights for understanding ion selectivity and rotor incorporation of the stator unit of the bacterial flagellum.
Collapse
Affiliation(s)
- Haidai Hu
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Philipp F Popp
- Institute for Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany
| | - Mònica Santiveri
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Aritz Roa-Eguiara
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Yumeng Yan
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Freddie J O Martin
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Zheyi Liu
- College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, 314400, China
| | - Navish Wadhwa
- Department of Physics, Arizona State University, Tempe, AZ, 85287, USA
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, 85287, USA
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, 314400, China
| | - Marc Erhardt
- Institute for Biology/Molecular Microbiology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115, Berlin, Germany
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
18
|
Zhang H, Guan W, Shu J, Yu S, Xiong Y, Liu G, Zhong Y, Chen J, Zhao Z, He N, Xing Q, Guo D, Li L, Hongbing O. Graphene nano zinc oxide reduces the expression and release of antibiotic resistance-related genes and virulence factors in animal manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163520. [PMID: 37061060 DOI: 10.1016/j.scitotenv.2023.163520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
Animal manure contains many antibiotic resistance genes (ARGs) and virulence factors (VFs), posing significant health threats to humans. However, the effects of graphene nano zinc oxide (GZnONP), a zinc bioaugmentation substitute, on bacterial chemotaxis, ARGs, and VFs in animal manure remain scanty. Herein, the effect of GZnONP on the in vivo anaerobic expression of ARGs and VFs in cattle manure was assessed using high-throughput sequencing. Results showed that GZnONP inhibited bacterial chemotaxis by reducing the zinc pressure under anaerobic fermentation, altering the microbial community structure. The expression of ARGs was significantly lower in GZnONP than in zinc oxide and nano zinc oxide (ZnONP) groups. The expression of VFs was lower in the GZnONP than in the zinc oxide and ZnONP groups by 9.85 % and 13.46 %, respectively. Co-occurrence network analysis revealed that ARGs and VFs were expressed by the Spirochaetes phylum, Paraprevotella genus, and Treponema genus et al. The ARGs-VFs coexistence was related to the expression/abundance of ARGs and VFs genes. GZnONP reduces the abundance of certain bacterial species by disrupting chemotaxis, minimizing the transfer of ARGs and VFs. These findings suggest that GZnONP, a bacterial chemotaxis suppressor, effectively reduces the expression and release of ARGs and VFs in animal manure.
Collapse
Affiliation(s)
- Haibo Zhang
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Weikun Guan
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Jun Shu
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Sen Yu
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Yingmin Xiong
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Gao Liu
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Yuhong Zhong
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Jia Chen
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Zhigang Zhao
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Ning He
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Qingfeng Xing
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Dongsheng Guo
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Lizhi Li
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China.
| | | |
Collapse
|
19
|
Sheng Q, Liu A, Yang P, Chen Z, Wang P, Sun H, Li C, McMinn A, Chen Y, Zhang Y, Su H, Chen X, Zhang Y. The FilZ Protein Contains a Single PilZ Domain and Facilitates the Swarming Motility of Pseudoalteromonas sp. SM9913. Microorganisms 2023; 11:1566. [PMID: 37375068 DOI: 10.3390/microorganisms11061566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Swarming regulation is complicated in flagellated bacteria, especially those possessing dual flagellar systems. It remains unclear whether and how the movement of the constitutive polar flagellum is regulated during swarming motility of these bacteria. Here, we report the downregulation of polar flagellar motility by the c-di-GMP effector FilZ in the marine sedimentary bacterium Pseudoalteromonas sp. SM9913. Strain SM9913 possesses two flagellar systems, and filZ is located in the lateral flagellar gene cluster. The function of FilZ is negatively controlled by intracellular c-di-GMP. Swarming in strain SM9913 consists of three periods. Deletion and overexpression of filZ revealed that, during the period when strain SM9913 expands quickly, FilZ facilitates swarming. In vitro pull-down and bacterial two-hybrid assays suggested that, in the absence of c-di-GMP, FilZ interacts with the CheW homolog A2230, which may be involved in the chemotactic signal transduction pathway to the polar flagellar motor protein FliMp, to interfere with polar flagellar motility. When bound to c-di-GMP, FilZ loses its ability to interact with A2230. Bioinformatic investigation indicated that filZ-like genes are present in many bacteria with dual flagellar systems. Our findings demonstrate a novel mode of regulation of bacterial swarming motility.
Collapse
Affiliation(s)
- Qi Sheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Peiling Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zhuowei Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Peng Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Haining Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chunyang Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Andrew McMinn
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7005, Australia
| | - Yin Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Yuzhong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Hainan Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiulan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yuqiang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
20
|
Schwanbeck J, Oehmig I, Groß U, Bohne W. Clostridioides difficile minimal nutrient requirements for flagellar motility. Front Microbiol 2023; 14:1172707. [PMID: 37065145 PMCID: PMC10098170 DOI: 10.3389/fmicb.2023.1172707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/15/2023] [Indexed: 04/18/2023] Open
Abstract
As many gastro-intestinal pathogens, the majority of Clostridioides difficile strains express flagella together with a complete chemotaxis system. The resulting swimming motility is likely contributing to the colonization success of this important pathogen. In contrast to the well investigated general energy metabolism of C. difficile, little is known about the metabolic requirements for maintaining the ion motive force across the membrane, which in turn powers the flagellar motor. We studied here systematically the effect of various amino acids and carbohydrates on the swimming velocity of C. difficile using video microscopy in conjunction with a software based quantification of the swimming speed. Removal of individual amino acids from the medium identified proline and cysteine as the most important amino acids that power swimming motility. Glycine, which is as proline one of the few amino acids that are reduced in Stickland reactions, was not critical for swimming motility. This suggests that the ion motive force that powers the flagellar motor, is critically depending on proline reduction. A maximal and stable swimming motility was achieved with only four compounds, including the amino acids proline, cysteine and isoleucine together with a single, but interchangeable carbohydrate source such as glucose, succinate, mannose, ribose, pyruvate, trehalose, or ethanolamine. We expect that the identified "minimal motility medium" will be useful in future investigations on the flagellar motility and chemotactic behavior in C. difficile, particularly for the unambiguous identification of chemoattractants.
Collapse
Affiliation(s)
- Julian Schwanbeck
- Institute for Medical Microbiology and Virology, University Medical Center, Göttingen, Germany
- Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| | - Ines Oehmig
- Institute for Medical Microbiology and Virology, University Medical Center, Göttingen, Germany
| | - Uwe Groß
- Institute for Medical Microbiology and Virology, University Medical Center, Göttingen, Germany
- Uwe Groß,
| | - Wolfgang Bohne
- Institute for Medical Microbiology and Virology, University Medical Center, Göttingen, Germany
- *Correspondence: Wolfgang Bohne,
| |
Collapse
|
21
|
Guo S, Liu J. The Bacterial Flagellar Motor: Insights Into Torque Generation, Rotational Switching, and Mechanosensing. Front Microbiol 2022; 13:911114. [PMID: 35711788 PMCID: PMC9195833 DOI: 10.3389/fmicb.2022.911114] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022] Open
Abstract
The flagellar motor is a bidirectional rotary nanomachine used by many bacteria to sense and move through environments of varying complexity. The bidirectional rotation of the motor is governed by interactions between the inner membrane-associated stator units and the C-ring in the cytoplasm. In this review, we take a structural biology perspective to discuss the distinct conformations of the stator complex and the C-ring that regulate bacterial motility by switching rotational direction between the clockwise (CW) and counterclockwise (CCW) senses. We further contextualize recent in situ structural insights into the modulation of the stator units by accessory proteins, such as FliL, to generate full torque. The dynamic structural remodeling of the C-ring and stator complexes as well as their association with signaling and accessory molecules provide a mechanistic basis for how bacteria adjust motility to sense, move through, and survive in specific niches both outside and within host cells and tissues.
Collapse
Affiliation(s)
- Shuaiqi Guo
- Microbial Sciences Institute, Yale University, West Haven, CT, United States.,Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, United States
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, CT, United States.,Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
22
|
Guo S, Xu H, Chang Y, Motaleb MA, Liu J. FliL ring enhances the function of periplasmic flagella. Proc Natl Acad Sci U S A 2022; 119:e2117245119. [PMID: 35254893 PMCID: PMC8931381 DOI: 10.1073/pnas.2117245119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/28/2022] [Indexed: 12/16/2022] Open
Abstract
SignificanceHow flagella sense complex environments and control bacterial motility remain fascinating questions. Here, we deploy cryo-electron tomography to determine in situ structures of the flagellar motor in wild-type and mutant cells of Borrelia burgdorferi, revealing that three flagellar proteins (FliL, MotA, and MotB) form a unique supramolecular complex in situ. Importantly, FliL not only enhances motor function by forming a ring around the stator complex MotA/MotB in its extended, active conformation but also facilitates assembly of the stator complex around the motor. Our in situ data provide insights into how cooperative remodeling of the FliL-stator supramolecular complex helps regulate the collective ion flux and establishes the optimal function of the flagellar motor to guide bacterial motility in various environments.
Collapse
Affiliation(s)
- Shuaiqi Guo
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536
- Microbial Sciences Institute, Yale University, West Haven, CT 06516
| | - Hui Xu
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834
| | - Yunjie Chang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536
- Microbial Sciences Institute, Yale University, West Haven, CT 06516
| | - Md A. Motaleb
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536
- Microbial Sciences Institute, Yale University, West Haven, CT 06516
| |
Collapse
|
23
|
Rieu M, Krutyholowa R, Taylor NMI, Berry RM. A new class of biological ion-driven rotary molecular motors with 5:2 symmetry. Front Microbiol 2022; 13:948383. [PMID: 35992645 PMCID: PMC9389320 DOI: 10.3389/fmicb.2022.948383] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
Several new structures of three types of protein complexes, obtained by cryo-electron microscopy (cryo-EM) and published between 2019 and 2021, identify a new family of natural molecular wheels, the "5:2 rotary motors." These span the cytoplasmic membranes of bacteria, and their rotation is driven by ion flow into the cell. They consist of a pentameric wheel encircling a dimeric axle within the cytoplasmic membrane of both Gram-positive and gram-negative bacteria. The axles extend into the periplasm, and the wheels extend into the cytoplasm. Rotation of these wheels has never been observed directly; it is inferred from the symmetry of the complexes and from the roles they play within the larger systems that they are known to power. In particular, the new structure of the stator complex of the Bacterial Flagellar Motor, MotA5B2, is consistent with a "wheels within wheels" model of the motor. Other 5:2 rotary motors are believed to share the core rotary function and mechanism, driven by ion-motive force at the cytoplasmic membrane. Their structures diverge in their periplasmic and cytoplasmic parts, reflecting the variety of roles that they perform. This review focuses on the structures of 5:2 rotary motors and their proposed mechanisms and functions. We also discuss molecular rotation in general and its relation to the rotational symmetry of molecular complexes.
Collapse
Affiliation(s)
- Martin Rieu
- Department of Physics, University of Oxford, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building University of Oxford, Oxford, United Kingdom
| | - Roscislaw Krutyholowa
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Nicholas M. I. Taylor
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Nicholas M. I. Taylor,
| | - Richard M. Berry
- Department of Physics, University of Oxford, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building University of Oxford, Oxford, United Kingdom
- *Correspondence: Richard M. Berry,
| |
Collapse
|