1
|
Kriegler M, Wernet V, Hetzer B, Herrero S, Wei A, Wäckerle J, Dewein I, Fischer R. Cell-end marker proteins are required for hyphal ring formation and size determination of traps in Arthrobotrys flagrans. J Cell Sci 2025; 138:jcs263744. [PMID: 40270444 DOI: 10.1242/jcs.263744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/21/2025] [Indexed: 04/25/2025] Open
Abstract
Filamentous fungi grow by apical extension where secretory vesicles are transported long distances by microtubules and by actin prior to fusion with the cell membrane. Apical, membrane-bound cell-end marker proteins (CEMPs) organise the cytoskeletons and thereby the growth machinery. CEMPs have been characterised mainly in Schizosaccharomyces pombe and Aspergillus nidulans. Here, we studied the role of CEMPs in the nematode-trapping fungus Arthrobotrys flagrans. This predatory fungus forms ring-shaped adhesive traps to capture nematodes, such as Caenorhabditis elegans. Traps are morphologically and physiologically different from vegetative hyphae and are generated by hyphal turning and fusion of the trap tip cell with the basal hypha. The absence of the membrane-anchored CEMP receptor protein, TeaR, caused a reduction in ring size, whereas deletion of teaA or teaC largely prevented the formation of ring-shaped hyphae, and most traps appeared as adhesive sticks. Hence, compared to Schizosaccharomyces pombe and Aspergillus nidulans, loss of function of the CEMPs results in a severe morphological phenotype. The mutant strains also show changes in cell-to-cell communication and hyphal fusion, suggesting novel functions and interconnections with other signalling processes in the cell.
Collapse
Affiliation(s)
- Marius Kriegler
- Institute for Applied Biosciences, Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Valentin Wernet
- Institute for Applied Biosciences, Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Birgit Hetzer
- Max-Rubner-Institut (MRI) - Federal Research Institute of Nutrition and Food, Haid-und-Neu-Strasse 9, 76131 Karlsruhe, Germany
| | - Satur Herrero
- Institute for Applied Biosciences, Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Anlun Wei
- Institute for Applied Biosciences, Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Jan Wäckerle
- Institute for Applied Biosciences, Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Imane Dewein
- Institute for Applied Biosciences, Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Reinhard Fischer
- Institute for Applied Biosciences, Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| |
Collapse
|
2
|
Martínez-Mira A, Castillo-Saldarriaga C, Uribe-Gutiérrez L, Céspedes-Gutíerrez E, Cortés-Rojas D, Gómez-Álvarez M, Cruz-Barrera M. Culture media design and scaling-up of submerged fermentation for the nematophagous fungus Duddingtonia flagrans. Exp Parasitol 2025; 269:108901. [PMID: 39805386 DOI: 10.1016/j.exppara.2025.108901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/02/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Biological control, which utilizes nematophagous fungi to reduce gastrointestinal nematode populations, may effectively diminish the need for chemical anthelmintic treatments. However, the limited knowledge surrounding the mass production of chlamydospores hinders the widespread use of biological products as alternatives to traditional anthelmintics. This study aimed to evaluate the development of liquid culture media for the large-scale production of the nematophagous fungi Duddingtonia flagrans using a systematic procedure, progressing from microplates to bioreactor. The liquid culture media were successfully validated in a 13 L bioreactor, achieving a yield of 2.18x107 chlam/g per day, which is comparable to the standard process of solid-state fermentation (SSF). Moreover, the nematode predatory ability remained unaffected by the changes in scales and exhibited a superior efficacy of over 90%. Consequently, this study demonstrates that the submerged fermentation approach serves as a viable alternative for the mass production of nematophagous fungi like D. flagrans.
Collapse
Affiliation(s)
- Anny Martínez-Mira
- Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Bioproducts Department, Mosquera, Colombia
| | - Carlos Castillo-Saldarriaga
- Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Bioproducts Department, Mosquera, Colombia
| | - Liz Uribe-Gutiérrez
- Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Tibaitatá Research Center, Mosquera, Colombia
| | | | - Diego Cortés-Rojas
- Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Bioproducts Department, Mosquera, Colombia.
| | - Martha Gómez-Álvarez
- Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Bioproducts Department, Mosquera, Colombia
| | - Mauricio Cruz-Barrera
- Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Bioproducts Department, Mosquera, Colombia
| |
Collapse
|
3
|
Wang Y, Dong Y, Liu K, Li G, Cheng J, Cao Y, Yang Y, Qin L, Huang B. Conserved fungal effector NLS1 suppresses Lepidoptera insect immunity by targeting the host defense protein Hdd11. INSECT SCIENCE 2024. [PMID: 39382256 DOI: 10.1111/1744-7917.13454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024]
Abstract
Entomopathogenic fungi have been widely used as the main mycoinsecticide for controlling agricultural and forest pests. The effector molecules of these mycopathogens have evolved to adapt to their hosts. The role of fungal effectors in evading the host immune system in insects remains mainly unclear. We characterized the widely distributed fungal effector necrosis-inducing-like secreted protein 1 (NLS1) in the entomopathogenic fungus Metarhizium robertsii. Our findings revealed the presence of M. robertsii NLS1 (MrNLS1) in host hemocytes during the early stage of hemocoel infection. MrNLS1 knock down (ΔMrNLS1) reduced fungal pathogenicity during infection and altered the expression of host immune genes. The molecular docking results and the yeast 2-hybrid assay confirmed that MrNLS1 interacts with the host defense protein Hdd11. The phylogenetic analysis indicated that Hdd11 is conserved across a broad range of Lepidoptera species. Knock down of hdd11 in Helicoverpa armigera, Bombyx mori, and Galleria mellonella markedly suppressed their immune responses against M. robertsii. However, no significant difference was observed in the mean lethal time between hdd11-knockdown Lepidoptera species infected with ΔMrNLS1 and those infected with wild-type M. robertsii. Therefore, in Lepidoptera insects, Hdd11 is essential for fungal defense. In conclusion, M. robertsii infects Lepidoptera insects by targeting host Hdd11 through its protein MrNLS1, thereby suppressing the host immune response. Our findings clarify the molecular mechanisms underlying fungal infection pathogenesis.
Collapse
Affiliation(s)
- Yulong Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Ying Dong
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Kexin Liu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Gen Li
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Jing Cheng
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Yin Cao
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Yang Yang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Li Qin
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
| |
Collapse
|
4
|
Emser J, Wernet N, Hetzer B, Wohlmann E, Fischer R. The cysteine-rich virulence factor NipA of Arthrobotrys flagrans interferes with cuticle integrity of Caenorhabditis elegans. Nat Commun 2024; 15:5795. [PMID: 38987250 PMCID: PMC11237121 DOI: 10.1038/s41467-024-50096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
Animals protect themself from microbial attacks by robust skins or a cuticle as in Caenorhabditis elegans. Nematode-trapping fungi, like Arthrobotrys flagrans, overcome the cuticle barrier and colonize the nematode body. While lytic enzymes are important for infection, small-secreted proteins (SSPs) without enzymatic activity, emerge as crucial virulence factors. Here, we characterized NipA (nematode induced protein) which A. flagrans secretes at the penetration site. In the absence of NipA, A. flagrans required more time to penetrate C. elegans. Heterologous expression of the fungal protein in the epidermis of C. elegans led to blister formation. NipA contains 13 cysteines, 12 of which are likely to form disulfide bridges, and the remaining cysteine was crucial for blister formation. We hypothesize that NipA interferes with cuticle integrity to facilitate fungal entry. Genome-wide expression analyses of C. elegans expressing NipA revealed mis-regulation of genes associated with extracellular matrix (ECM) maintenance and innate immunity.
Collapse
Affiliation(s)
- Jennifer Emser
- Institute for Applied Biosciences. Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Nicole Wernet
- Institute for Applied Biosciences. Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Birgit Hetzer
- Max Rubner-Institut (MRI) - Federal Research Institute of Nutrition and Food, Haid-und-Neu-Strasse 9, Karlsruhe, 76131, Germany
| | - Elke Wohlmann
- Institute for Applied Biosciences. Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany
| | - Reinhard Fischer
- Institute for Applied Biosciences. Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, 76131, Germany.
| |
Collapse
|
5
|
Hu X, Hoffmann DS, Wang M, Schuhmacher L, Stroe MC, Schreckenberger B, Elstner M, Fischer R. GprC of the nematode-trapping fungus Arthrobotrys flagrans activates mitochondria and reprograms fungal cells for nematode hunting. Nat Microbiol 2024; 9:1752-1763. [PMID: 38877225 PMCID: PMC11222155 DOI: 10.1038/s41564-024-01731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/14/2024] [Indexed: 06/16/2024]
Abstract
Initiation of development requires differential gene expression and metabolic adaptations. Here we show in the nematode-trapping fungus, Arthrobotrys flagrans, that both are achieved through a dual-function G-protein-coupled receptor (GPCR). A. flagrans develops adhesive traps and recognizes its prey, Caenorhabditis elegans, through nematode-specific pheromones (ascarosides). Gene-expression analyses revealed that ascarosides activate the fungal GPCR, GprC, at the plasma membrane and together with the G-protein alpha subunit GasA, reprograms the cell. However, GprC and GasA also reside in mitochondria and boost respiration. This dual localization of GprC in A. flagrans resembles the localization of the cannabinoid receptor CB1 in humans. The C. elegans ascaroside-sensing GPCR, SRBC66 and GPCRs of many fungi are also predicted for dual localization, suggesting broad evolutionary conservation. An SRBC64/66-GprC chimaeric protein was functional in A. flagrans, and C. elegans SRBC64/66 and DAF38 share ascaroside-binding sites with the fungal GprC receptor, suggesting 400-million-year convergent evolution.
Collapse
Affiliation(s)
- Xiaodi Hu
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - David S Hoffmann
- Department of Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Mai Wang
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Lars Schuhmacher
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Maria C Stroe
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Birgit Schreckenberger
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Marcus Elstner
- Department of Theoretical Chemical Biology, Institute for Physical Chemistry, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany.
| |
Collapse
|
6
|
Pop M, Klemke AL, Seidler L, Wernet N, Steudel PL, Baust V, Wohlmann E, Fischer R. Caenorhabditis elegans neuropeptide NLP-27 enhances neurodegeneration and paralysis in an opioid-like manner during fungal infection. iScience 2024; 27:109484. [PMID: 38784855 PMCID: PMC11112505 DOI: 10.1016/j.isci.2024.109484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 10/26/2023] [Accepted: 03/08/2024] [Indexed: 05/25/2024] Open
Abstract
The nervous system of metazoans is involved in host-pathogen interactions to control immune activation. In Caenorhabditis elegans, this includes sleep induction, mediated by neuropeptide-like proteins (NLPs), which increases the chance of survival after wounding. Here we analyzed the role of NLP-27 in the infection of C. elegans with the nematode-trapping fungus Arthrobotrys flagrans. Early responses of C. elegans were the upregulation of nlp-27, the induction of paralysis (sleep), and neurodegeneration of the mechanosensing PVD (Posterior Ventral Process D) neurons. Deletion of nlp-27 reduced neurodegeneration during fungal attack. Induction of nlp-27 was independent of the MAP kinase PMK-1, and expression of nlp-27 in the hypodermis was sufficient to induce paralysis, although NLP-27 was also upregulated in head neurons. NLP-27 contains the pentapeptide YGGYG sequence known to bind the human μ- and κ-type opioid receptors suggesting NLP-27 or peptides thereof act on opioid receptors. The opioid receptor antagonist naloxone shortened the paralysis time like overexpression of NLP-27.
Collapse
Affiliation(s)
- Maria Pop
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Anna-Lena Klemke
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Lena Seidler
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Nicole Wernet
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Pietrina Loredana Steudel
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Vanessa Baust
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Elke Wohlmann
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| |
Collapse
|
7
|
Azizullah, Noman M, Gao Y, Wang H, Xiong X, Wang J, Li D, Song F. The SUMOylation pathway regulates the pathogenicity of Fusarium oxysporum f. sp. niveum in watermelon through stabilizing the pH regulator FonPalC via SUMOylation. Microbiol Res 2024; 281:127632. [PMID: 38310728 DOI: 10.1016/j.micres.2024.127632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/12/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
SUMOylation is a key post-translational modification, where small ubiquitin-related modifier (SUMO) proteins regulate crucial biological processes, including pathogenesis, in phytopathogenic fungi. Here, we investigated the function and mechanism of the SUMOylation pathway in the pathogenicity of Fusarium oxysporum f. sp. niveum (Fon), the fungal pathogen that causes watermelon Fusarium wilt. Disruption of key SUMOylation pathway genes, FonSMT3, FonAOS1, FonUBC9, and FonMMS21, significantly reduced pathogenicity, impaired penetration ability, and attenuated invasive growth capacity of Fon. Transcription and proteomic analyses identified a diverse set of SUMOylation-regulated differentially expressed genes and putative FonSMT3-targeted proteins, which are predicted to be involved in infection, DNA damage repair, programmed cell death, reproduction, growth, and development. Among 155 putative FonSMT3-targeted proteins, FonPalC, a Pal/Rim-pH signaling regulator, was confirmed to be SUMOylated. The FonPalC protein accumulation was significantly decreased in SUMOylation-deficient mutant ∆Fonsmt3. Deletion of FonPalC resulted in impaired mycelial growth, decreased pathogenicity, enhanced osmosensitivity, and increased intracellular vacuolation in Fon. Importantly, mutations in conserved SUMOylation sites of FonPalC failed to restore the defects in ∆Fonpalc mutant, indicating the critical function of the SUMOylation in FonPalC stability and Fon pathogenicity. Identifying key SUMOylation-regulated pathogenicity-related proteins provides novel insights into the molecular mechanisms underlying Fon pathogenesis regulated by SUMOylation.
Collapse
Affiliation(s)
- Azizullah
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Muhammad Noman
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yizhou Gao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hui Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaohui Xiong
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiajing Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dayong Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fengming Song
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
8
|
Hong S, Shang J, Sun Y, Tang G, Wang C. Fungal infection of insects: molecular insights and prospects. Trends Microbiol 2024; 32:302-316. [PMID: 37778923 DOI: 10.1016/j.tim.2023.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/27/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Entomopathogenic fungi (EPF) distribute in different fungal phyla with variable host ranges and play essential role in regulating insect populations by infecting hosts via cuticle penetration. The representative ascomycete EPF of Metarhizium and Beauveria species have been widely used in mechanistic investigations of fungus-insect interactions and as ecofriendly mycoinsecticides. Here, we review the function of diverse genes, pathways, and secondary metabolites associated with EPF stepwise infections. In particular, emerging evidence has shown that EPF have to outcompete insect ectomicrobiotas prior to penetrating cuticles, and subvert or evade host antifungal immunity by using effector-like proteins and chemicals like plant pathogens. Future prospects are discussed for a better understanding of fungal pathobiology, which will provide novel insights into microbe-animal interactions.
Collapse
Affiliation(s)
- Song Hong
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junmei Shang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaneli Sun
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guirong Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
9
|
Nunes GT, Corrêa DC, Chitolina MB, da Rosa G, Pereira RCDF, Cargnelutti JF, Vogel FSF. Efficacy Evaluation of a Commercial Formulation With Duddingtonia Flagrans in Equine Gastrointestinal Nematodes. J Equine Vet Sci 2023; 131:104930. [PMID: 37739142 DOI: 10.1016/j.jevs.2023.104930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/15/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
The indiscriminate use of antiparasitics for the treatment of helminths in horses has caused the ineffectiveness of commonly used chemical active principles, therefore, new alternatives such as the use of helminthophagous fungi have been studied. In this context, this study aimed to evaluate the in vitro efficacy of the commercial formulation Bioverm, composed of the fungus Duddingtonia flagrans strain AC001, in the reduction of gastrointestinal nematode larvae in equine feces. In coproculture, the genus Cyathostomum sp. was the most prevalent in the analyzed samples. The commercial formulation with D. flagrans demonstrated effectiveness in the predation of Cyathostomum sp. in tests. The recommended dose of 0.4 g, containing 105 chlamydospores per gram of product, reduced larvae by 44.23%, while the extrapolated dose of 1.0 g with the same concentrations of chlamydospores (105/g) resulted in a reduction of 57.20%, indicating the effectiveness of the product in controlling infective larvae.
Collapse
Affiliation(s)
- Gabriela Tormes Nunes
- Departamento de Medicina Veterinária Preventiva, Laboratório de Bacteriologia (LABAC), Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Diego Cristiano Corrêa
- Departamento de Medicina Veterinária Preventiva, Laboratório de Bacteriologia (LABAC), Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Gilneia da Rosa
- Departamento de Medicina Veterinária Preventiva, Laboratório de Doenças Parasitárias (LADOPAR), Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Juliana Felipetto Cargnelutti
- Departamento de Medicina Veterinária Preventiva, Laboratório de Bacteriologia (LABAC), Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Fernanda Silveira Flôres Vogel
- Departamento de Medicina Veterinária Preventiva, Laboratório de Doenças Parasitárias (LADOPAR), Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
10
|
Will I, Beckerson WC, de Bekker C. Using machine learning to predict protein-protein interactions between a zombie ant fungus and its carpenter ant host. Sci Rep 2023; 13:13821. [PMID: 37620441 PMCID: PMC10449854 DOI: 10.1038/s41598-023-40764-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Parasitic fungi produce proteins that modulate virulence, alter host physiology, and trigger host responses. These proteins, classified as a type of "effector," often act via protein-protein interactions (PPIs). The fungal parasite Ophiocordyceps camponoti-floridani (zombie ant fungus) manipulates Camponotus floridanus (carpenter ant) behavior to promote transmission. The most striking aspect of this behavioral change is a summit disease phenotype where infected hosts ascend and attach to an elevated position. Plausibly, interspecific PPIs drive aspects of Ophiocordyceps infection and host manipulation. Machine learning PPI predictions offer high-throughput methods to produce mechanistic hypotheses on how this behavioral manipulation occurs. Using D-SCRIPT to predict host-parasite PPIs, we found ca. 6000 interactions involving 2083 host proteins and 129 parasite proteins, which are encoded by genes upregulated during manipulated behavior. We identified multiple overrepresentations of functional annotations among these proteins. The strongest signals in the host highlighted neuromodulatory G-protein coupled receptors and oxidation-reduction processes. We also detected Camponotus structural and gene-regulatory proteins. In the parasite, we found enrichment of Ophiocordyceps proteases and frequent involvement of novel small secreted proteins with unknown functions. From these results, we provide new hypotheses on potential parasite effectors and host targets underlying zombie ant behavioral manipulation.
Collapse
Affiliation(s)
- Ian Will
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL, 32816, USA.
| | - William C Beckerson
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL, 32816, USA
| | - Charissa de Bekker
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL, 32816, USA.
- Department of Biology, Microbiology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
11
|
Wernet V, Kriegler M, Kumpost V, Mikut R, Hilbert L, Fischer R. Synchronization of oscillatory growth prepares fungal hyphae for fusion. eLife 2023; 12:e83310. [PMID: 37602797 PMCID: PMC10522335 DOI: 10.7554/elife.83310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 08/19/2023] [Indexed: 08/22/2023] Open
Abstract
Communication is crucial for organismic interactions, from bacteria, to fungi, to humans. Humans may use the visual sense to monitor the environment before starting acoustic interactions. In comparison, fungi, lacking a visual system, rely on a cell-to-cell dialogue based on secreted signaling molecules to coordinate cell fusion and establish hyphal networks. Within this dialogue, hyphae alternate between sending and receiving signals. This pattern can be visualized via the putative signaling protein Soft (SofT), and the mitogen-activated protein kinase MAK-2 (MakB) which are recruited in an alternating oscillatory manner to the respective cytoplasmic membrane or nuclei of interacting hyphae. Here, we show that signal oscillations already occur in single hyphae of Arthrobotrys flagrans in the absence of potential fusion partners (cell monologue). They were in the same phase as growth oscillations. In contrast to the anti-phasic oscillations observed during the cell dialogue, SofT and MakB displayed synchronized oscillations in phase during the monologue. Once two fusion partners came into each other's vicinity, their oscillation frequencies slowed down (entrainment phase) and transit into anti-phasic synchronization of the two cells' oscillations with frequencies of 104±28 s and 117±19 s, respectively. Single-cell oscillations, transient entrainment, and anti-phasic oscillations were reproduced by a mathematical model where nearby hyphae can absorb and secrete a limited molecular signaling component into a shared extracellular space. We show that intracellular Ca2+ concentrations oscillate in two approaching hyphae, and depletion of Ca2+ from the medium affected vesicle-driven extension of the hyphal tip, abolished the cell monologue and the anti-phasic synchronization of two hyphae. Our results suggest that single hyphae engage in a 'monologue' that may be used for exploration of the environment and can dynamically shift their extracellular signaling systems into a 'dialogue' to initiate hyphal fusion.
Collapse
Affiliation(s)
- Valentin Wernet
- Karlsruhe Institute of Technology - South Campus Institute for Applied Biosciences Dept. of MicrobiologyKarlsruheGermany
| | - Marius Kriegler
- Karlsruhe Institute of Technology - South Campus Institute for Applied Biosciences Dept. of MicrobiologyKarlsruheGermany
| | - Vojtech Kumpost
- Karlsruhe Institute of Technology – North Campus Institute for Automation and Applied InformaticsEggenstein-LeopoldshafenGermany
- Karlsruhe Institute of Technology – North Campus Institute of Biological and Chemical Systems – Biological Information ProcessingEggenstein-LeopoldshafenGermany
| | - Ralf Mikut
- Karlsruhe Institute of Technology – North Campus Institute for Automation and Applied InformaticsEggenstein-LeopoldshafenGermany
| | - Lennart Hilbert
- Karlsruhe Institute of Technology – North Campus Institute of Biological and Chemical Systems – Biological Information ProcessingEggenstein-LeopoldshafenGermany
- Karlsruhe Institute of Technology – South Campus Zoological Institute Dept. of Systems Biology / BioinformaticsEggenstein-LeopoldshafenGermany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology - South Campus Institute for Applied Biosciences Dept. of MicrobiologyKarlsruheGermany
| |
Collapse
|
12
|
Yoon KH, Indong RA, Lee JI. Making "Sense" of Ecology from a Genetic Perspective: Caenorhabditis elegans, Microbes and Behavior. Metabolites 2022; 12:1084. [PMID: 36355167 PMCID: PMC9697003 DOI: 10.3390/metabo12111084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 12/31/2023] Open
Abstract
Our knowledge of animal and behavior in the natural ecology is based on over a century's worth of valuable field studies. In this post-genome era, however, we recognize that genes are the underpinning of ecological interactions between two organisms. Understanding how genes contribute to animal ecology, which is essentially the intersection of two genomes, is a tremendous challenge. The bacterivorous nematode Caenorhabditis elegans, one of the most well-known genetic animal model experimental systems, experiences a complex microbial world in its natural habitat, providing us with a window into the interplay of genes and molecules that result in an animal-microbial ecology. In this review, we will discuss C. elegans natural ecology, how the worm uses its sensory system to detect the microbes and metabolites that it encounters, and then discuss some of the fascinating ecological dances, including behaviors, that have evolved between the nematode and the microbes in its environment.
Collapse
Affiliation(s)
- Kyoung-hye Yoon
- Department of Physiology, Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Korea
| | - Rocel Amor Indong
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju 26493, Korea
| | - Jin I. Lee
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju 26493, Korea
| |
Collapse
|
13
|
Host and Environmental Sensing by Entomopathogenic Fungi to Infect Hosts. CURRENT CLINICAL MICROBIOLOGY REPORTS 2022. [DOI: 10.1007/s40588-022-00185-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|