1
|
Li J, Liao Y, Wei W, Xu X, He J, Zhao T. Effects of Simulated Nitrogen and Phosphorus Deposition on Dioecious Populus cathayana Growth and Defense Traits. PLANTS (BASEL, SWITZERLAND) 2025; 14:1261. [PMID: 40284149 PMCID: PMC12030083 DOI: 10.3390/plants14081261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Human activities have increased the imbalance in atmospheric N and P deposition, which changes soil nutrient availability and subsequently affects the structure and function of terrestrial ecosystems. Dioecious plants are important parts of terrestrial ecosystems and are characterized by sex-related differences in their response to the external environment and always exhibit a skewed sex ratio, which makes them more vulnerable to climate change and increases their risk of extinction. However, little attention has been paid to the effects of unbalanced N and P deposition on these plants, especially on their defense traits. In this study, we used dioecious Populus cathayana to investigate the influence of gradient N and P deposition on the correlation between growth and defense traits. The results showed that although the different rates of N and P deposition enhanced biomass accumulation in both sexes to varying degrees, the most substantial biomass increment was noted under a lower-nitrogen and higher-phosphorus (LNHP) treatment regimen, with females showing an approximately 112% increase and males a 47% increase in total biomass. In response to varying levels of simulated N and P deposition, males and females adopt distinct strategies for biomass allocation. Although declines in root biomass were observed in both sexes as nutrient availability increased, the decrement was more marked in males; under the LNHP treatment, it dropped by about 11%, while under a high-nitrogen and high-phosphorus (HNHP) treatment, the decrease was about 35%. Conversely, females demonstrated a heightened propensity to allocate biomass towards leaf development. Furthermore, with increasing N and P deposition, there was a general reduction in the concentrations of physical and chemical defense substances within the leaves of both sexes. Nonetheless, the correlations between defense substances, nutrient element content, non-structural carbohydrate (NSC) content, and dry biomass were more pronounced in males, suggesting a greater sensitivity to defense substance responses in males than in females. Overall, these results indicate that there is sexual dimorphism in the accumulation of chemical substances in male and female P. cathayana under unbalanced N and P deposition and they provide a technical and theoretical basis for predicting the population dynamics of dioecious plants, maintaining the stability of poplar populations, and constructing high-productivity poplar plantations globally in the future.
Collapse
Affiliation(s)
- Junyu Li
- College of Geography and Geomatics, Xuchang University, Xuchang 461000, China;
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Nanchong 637009, China; (Y.L.); (W.W.); (X.X.); (T.Z.)
| | - Yongmei Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Nanchong 637009, China; (Y.L.); (W.W.); (X.X.); (T.Z.)
| | - Wanrong Wei
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Nanchong 637009, China; (Y.L.); (W.W.); (X.X.); (T.Z.)
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xiaoqin Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Nanchong 637009, China; (Y.L.); (W.W.); (X.X.); (T.Z.)
- Institute of Ecology, China West Normal University, Nanchong 637009, China
| | - Jundong He
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Nanchong 637009, China; (Y.L.); (W.W.); (X.X.); (T.Z.)
- Institute of Ecology, China West Normal University, Nanchong 637009, China
| | - Tingting Zhao
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Nanchong 637009, China; (Y.L.); (W.W.); (X.X.); (T.Z.)
| |
Collapse
|
2
|
Zhu G, Yang S, He W, Han X, Chen L, Chen G, Lin T. Simulated nitrogen deposition enhances resistance of female poplars over males to Pestalotiopsis microspora infection through the recruitment of antagonistic microbes in phyllosphere. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124484. [PMID: 39933372 DOI: 10.1016/j.jenvman.2025.124484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
Atmospheric nitrogen deposition has globally increased due to human activities and has strongly interfered with plant growth and resistance to biotic stressors. Dioecious plant species have shown secondary dimorphism in growth and development between male and female individuals in response to increased nitrogen deposition. However, the extent to whether these sexual differences influence variations in phyllosphere microbial communities and the associated pathogen resistance between male and female conspecifics remains unclear. To address this knowledge gap, female and male full-sibs of a poplar species were exposed to simulated nitrogen deposition and then artificially infected with a leaf pathogenic fungus, Pestalotiopsis microspora. The findings revealed that simulated nitrogen deposition promoted the growth of both sexes, with male plants exhibiting superior growth. Following P. microspora infection, female control plants displayed a greater leaf lesion area compared to males, but simulated nitrogen deposition reversed this difference. Further phyllosphere microbiome analysis and toxicity test indicated that the sexual differences in pathogen resistance between male and female conspecifics were likely attributable to alterations in the composition and structure of epiphytic microbes as the phyllosphere of female plants harbored a higher abundance of ecologically beneficial microbes with potential biological control capabilities, whereas males exhibited an increase abundance in the phytopathogens genera in response to simulated nitrogen deposition. Confirmatively, two bacterial strains were successfully isolated from the epiphytic phyllosphere of female plants that exhibited strong antagonistic effect against the pathogenic fungus P. microspora in both in vitro and in vivo conditions. The findings have significant implications for the selection of suitable poplar sexes for landscaping and reforestation efforts in areas experienced severe atmospheric nitrogen deposition.
Collapse
Affiliation(s)
- Guoqing Zhu
- State Key Laboratory for Vegetation Structure, Functions and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, and Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, 650500, Kunming, China
| | - Shuya Yang
- State Key Laboratory for Vegetation Structure, Functions and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, and Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, 650500, Kunming, China
| | - Wanci He
- State Key Laboratory for Vegetation Structure, Functions and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, and Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, 650500, Kunming, China
| | - Xiaotao Han
- State Key Laboratory for Vegetation Structure, Functions and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, and Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, 650500, Kunming, China
| | - Lianghua Chen
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
| | - Gang Chen
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
| | - Tiantian Lin
- State Key Laboratory for Vegetation Structure, Functions and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, and Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, 650500, Kunming, China; Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China.
| |
Collapse
|
3
|
Zhang H, Hou K, Liang X, Lin W, Ma R, Zang Y, Zhan X, Wang M, Feng S, Ying Q, Zheng B, Wang H, Shen C. Sex-specific responses of Taxus mairei to UV-B radiation involved altering the interactions between the microbiota assembly and host secondary metabolism. MICROBIOME 2024; 12:165. [PMID: 39244575 PMCID: PMC11380788 DOI: 10.1186/s40168-024-01882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/27/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND To adapt to constantly changing environments, ancient gymnosperms have coevolved with diverse endophytic fungi that are essential for the fitness and adaptability of the plant host. However, the effect of sex on plant-endophyte interactions in response to environmental stressors remains unknown. RNA-seq integrated with ITS analysis was applied to reveal the potential mechanisms underlying the sex-specific responses of Taxus mairei to ultraviolet (UV)-B radiation. RESULTS Enrichment analysis suggested that sex influenced the expression of several genes related to the oxidation-reduction system, which might play potential roles in sex-mediated responses to UV-B radiations. ITS-seq analysis clarified the effects of UV-B radiation and sex on the composition of endophytic fungal communities. Sex influenced various secondary metabolic pathways, thereby providing chemicals for T. mairei host to produce attractants and/or inhibitors to filter microbial taxa. Analysis of fungal biomarkers suggested that UV-B radiation reduced the effect of sex on fungal communities. Moreover, Guignardia isolate #1 was purified to investigate the role of endophytic fungi in sex-mediated responses to UV-B radiation. Inoculation with spores produced by isolate #1 significantly altered various oxidation-reduction systems of the host by regulating the expression of APX2, GST7 NCED1, ZE1, CS1, and CM1. CONCLUSION These results revealed the roles of endophytic fungi in sex-mediated responses to UV-B radiation and provided novel insights into the sex-specific responses of Taxus trees to environmental stressors. Video Abstract.
Collapse
Affiliation(s)
- Hongshan Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Kharkiv Institute, Hangzhou Normal University, Hangzhou, 311121, China
| | - Kailin Hou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xueshuang Liang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Wanting Lin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Ruoyun Ma
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Yue Zang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xiaori Zhan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Mingshuang Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Shangguo Feng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Qicai Ying
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China.
- Kharkiv Institute, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
4
|
Lin XR, Yang D, Wei YF, Ding DC, Ou HP, Yang SD. Amaranth Plants with Various Color Phenotypes Recruit Different Soil Microorganisms in the Rhizosphere. PLANTS (BASEL, SWITZERLAND) 2024; 13:2200. [PMID: 39204636 PMCID: PMC11359728 DOI: 10.3390/plants13162200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
To explore and utilize the abundant soil microorganisms and their beneficial functions, high-throughput sequencing technology was used to analyze soil microbial compositions in the rhizosphere of red and green amaranth varieties. The results showed that significant differences in soil microbial composition could be found in the rhizosphere of amaranth plants with different color phenotypes. Firstly, soil bacterial compositions in the rhizosphere were significantly different between red and green amaranths. Among them, Streptomyces, Pseudonocardia, Pseudolabrys, Acidibacter, norank_ f_ Micropepsaceae, Bradyrhizobium, and Nocardioides were the unique dominant soil bacterial genera in the rhizosphere of red amaranth. In contrast, Conexibacter, norank_f_norank_o_norank_c_TK10, and norank_f_ norank_o_ norank_ c_AD3 were the special dominant soil bacterial genera in the rhizosphere of green amaranth. Additionally, even though the soil fungal compositions in the rhizosphere were not significantly different between red and green amaranths, the abundance of the dominant soil fungal genera in the rhizosphere showed significant differences between red and green amaranths. For example, unclassified_k__Fungi, Fusarium, Cladophialophora, unclassified_c__Sordariomycetes and unclassified_p__Chytridiomycota significantly enriched as the dominant soil fungal genera in the rhizosphere of the red amaranth. In contrast, Aspergillues only significantly enriched as the dominant soil fungal genus in the rhizosphere of green amaranth. All of the above results indicated that amaranth with various color phenotypes exactly recruited different microorganisms in rhizosphere, and the enrichments of soil microorganisms in the rhizosphere could be speculated in contributing to amaranth color formations.
Collapse
Affiliation(s)
- Xin-Ru Lin
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education Guangxi Agricultural College, Guangxi University, Nanning 530004, China; (X.-R.L.)
| | - Da Yang
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education Guangxi Agricultural College, Guangxi University, Nanning 530004, China; (X.-R.L.)
| | - Yu-Fei Wei
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education Guangxi Agricultural College, Guangxi University, Nanning 530004, China; (X.-R.L.)
| | - Dian-Cao Ding
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education Guangxi Agricultural College, Guangxi University, Nanning 530004, China; (X.-R.L.)
| | - Hui-Ping Ou
- Agricultural Resources and Environmental Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning 530004, China
| | - Shang-Dong Yang
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education Guangxi Agricultural College, Guangxi University, Nanning 530004, China; (X.-R.L.)
| |
Collapse
|
5
|
Xia Z, Chen BJW, Korpelainen H, Niinemets Ü, Li C. Belowground ecological interactions in dioecious plants: why do opposites attract but similar ones repel? TRENDS IN PLANT SCIENCE 2024; 29:630-637. [PMID: 38485646 DOI: 10.1016/j.tplants.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 06/09/2024]
Abstract
Dioecious plant species exhibit sexual dimorphism in various aspects, including morphology, physiology, life history, and behavior, potentially influencing sex-specific interactions. While it is generally accepted that intersexual interactions in dioecious species are less intense compared with intrasexual interactions, the mechanisms underlying belowground facilitation in intersexual combinations remain less understood. Here, we explore these mechanisms, which encompass resource complementarity, mycorrhizal fungal networks, root exudate-mediated belowground chemical communication, as well as plant-soil feedback. We address the reason for the lack of consistency in the strength of inter- and intrasexual interactions. We also propose that a comprehensive understanding of the potential positive consequences of sex-specific interactions can contribute to maintaining ecological equilibrium, conserving biodiversity, and enhancing the productivity of agroforestry.
Collapse
Affiliation(s)
- Zhichao Xia
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Bin J W Chen
- College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, FI-00014, Finland
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Chunyang Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Guo Q, Zhu Y, Sun F, Korpelainen H, Niinemets Ü, Li C. Male, female, and mixed-sex poplar plantations support divergent soil microbial communities. GLOBAL CHANGE BIOLOGY 2024; 30:e17198. [PMID: 38379533 DOI: 10.1111/gcb.17198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
Males and females of dioecious plants have sex-specific adaptations to diverse habitats. The effects of inter- and intrasexual interactions in poplar plantations on composition, structure, and function of soil microbiota have not been explored in degraded areas. We conducted a series of greenhouse and field experiments to investigate how belowground competition, soil microbial communities, and seasonal variation nitrogen content differ among female, male, and mixed-sex Populus cathayana plantations. In the greenhouse experiment, female neighbors suppressed the growth of males under optimal nitrogen conditions. However, male neighbors enhanced stable isotope ratio of nitrogen (δ15 N) of females under intersexual competition. In the field, the root length density, root area density, and biomass of fine roots were lower in female plantations than in male or mixed-sex plantations. Bacterial networks of female, male, and mixed-sex plantations were characterized by different composition of hub nodes, including connectors, modules, and network hubs. The sex composition of plantations altered bacterial and fungal community structures according to Bray-Curtis distances, with 44% and 65% of variance explained by the root biomass, respectively. The total soil nitrogen content of mixed-sex plantation was higher than that in female plantation in spring and summer. The mixed-sex plantation also had a higher β-1,4-N-acetyl-glucosaminidase activity in summer and a higher nitrification rate in autumn than the other two plantations. The seasonal soil N content, nitrification rate, and root distribution traits demonstrated spatiotemporal niche separation in the mixed-sex plantation. We argue that a strong female-female competition and limited nitrogen content could strongly impede plant growth and reduce the resistance of monosex plantations to climate change and the mixed-sex plantations constitutes a promising way to restore degraded land.
Collapse
Affiliation(s)
- Qingxue Guo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yuanjing Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Fangyuan Sun
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Chunyang Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|