1
|
Pekny M, Wilhelmsson U, Pekna M. The dual role of astrocyte activation and reactive gliosis. Neurosci Lett 2014; 565:30-8. [PMID: 24406153 DOI: 10.1016/j.neulet.2013.12.071] [Citation(s) in RCA: 499] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/21/2013] [Accepted: 12/29/2013] [Indexed: 11/16/2022]
Abstract
Astrocyte activation and reactive gliosis accompany most of the pathologies in the brain, spinal cord, and retina. Reactive gliosis has been described as constitutive, graded, multi-stage, and evolutionary conserved defensive astroglial reaction [Verkhratsky and Butt (2013) In: Glial Physiology and Pathophysiology]. A well- known feature of astrocyte activation and reactive gliosis are the increased production of intermediate filament proteins (also known as nanofilament proteins) and remodeling of the intermediate filament system of astrocytes. Activation of astrocytes is associated with changes in the expression of many genes and characteristic morphological hallmarks, and has important functional consequences in situations such as stroke, trauma, epilepsy, Alzheimer's disease (AD), and other neurodegenerative diseases. The impact of astrocyte activation and reactive gliosis on the pathogenesis of different neurological disorders is not yet fully understood but the available experimental evidence points to many beneficial aspects of astrocyte activation and reactive gliosis that range from isolation and sequestration of the affected region of the central nervous system (CNS) from the neighboring tissue that limits the lesion size to active neuroprotection and regulation of the CNS homeostasis in times of acute ischemic, osmotic, or other kinds of stress. The available experimental data from selected CNS pathologies suggest that if not resolved in time, reactive gliosis can exert inhibitory effects on several aspects of neuroplasticity and CNS regeneration and thus might become a target for future therapeutic interventions.
Collapse
Affiliation(s)
- Milos Pekny
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg SE-405 30, Sweden; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.
| | - Ulrika Wilhelmsson
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Marcela Pekna
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg SE-405 30, Sweden; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Pekny T, Faiz M, Wilhelmsson U, Curtis MA, Matej R, Skalli O, Pekny M. Synemin is expressed in reactive astrocytes and Rosenthal fibers in Alexander disease. APMIS 2013; 122:76-80. [DOI: 10.1111/apm.12088] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 01/09/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Tulen Pekny
- Department of Clinical Neuroscience and Rehabilitation; Center for Brain Repair and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Göteborg Sweden
| | - Maryam Faiz
- Department of Clinical Neuroscience and Rehabilitation; Center for Brain Repair and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Göteborg Sweden
| | - Ulrika Wilhelmsson
- Department of Clinical Neuroscience and Rehabilitation; Center for Brain Repair and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Göteborg Sweden
| | - Maurice A. Curtis
- Department of Clinical Neuroscience and Rehabilitation; Center for Brain Repair and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Göteborg Sweden
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine; Thomayer's Hospital; Prague Czech Republic
| | - Omar Skalli
- Department of Biological Sciences; University of Memphis; Memphis TN USA
| | - Milos Pekny
- Department of Clinical Neuroscience and Rehabilitation; Center for Brain Repair and Rehabilitation; Institute of Neuroscience and Physiology; Sahlgrenska Academy; University of Gothenburg; Göteborg Sweden
| |
Collapse
|
3
|
Wilhelmsson U, Faiz M, de Pablo Y, Sjöqvist M, Andersson D, Widestrand A, Potokar M, Stenovec M, Smith PLP, Shinjyo N, Pekny T, Zorec R, Ståhlberg A, Pekna M, Sahlgren C, Pekny M. Astrocytes negatively regulate neurogenesis through the Jagged1-mediated Notch pathway. Stem Cells 2013; 30:2320-9. [PMID: 22887872 DOI: 10.1002/stem.1196] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Adult neurogenesis is regulated by a number of cellular players within the neurogenic niche. Astrocytes participate actively in brain development, regulation of the mature central nervous system (CNS), and brain plasticity. They are important regulators of the local environment in adult neurogenic niches through the secretion of diffusible morphogenic factors, such as Wnts. Astrocytes control the neurogenic niche also through membrane-associated factors, however, the identity of these factors and the mechanisms involved are largely unknown. In this study, we sought to determine the mechanisms underlying our earlier finding of increased neuronal differentiation of neural progenitor cells when cocultured with astrocytes lacking glial fibrillary acidic protein (GFAP) and vimentin (GFAP(-/-) Vim(-/-) ). We used primary astrocyte and neurosphere cocultures to demonstrate that astrocytes inhibit neuronal differentiation through a cell-cell contact. GFAP(-/-) Vim(-/-) astrocytes showed reduced endocytosis of Notch ligand Jagged1, reduced Notch signaling, and increased neuronal differentiation of neurosphere cultures. This effect of GFAP(-/-) Vim(-/-) astrocytes was abrogated in the presence of immobilized Jagged1 in a manner dependent on the activity of γ-secretase. Finally, we used GFAP(-/-) Vim(-/-) mice to show that in the absence of GFAP and vimentin, hippocampal neurogenesis under basal conditions as well as after injury is increased. We conclude that astrocytes negatively regulate neurogenesis through the Notch pathway, and endocytosis of Notch ligand Jagged1 in astrocytes and Notch signaling from astrocytes to neural stem/progenitor cells depends on the intermediate filament proteins GFAP and vimentin.
Collapse
Affiliation(s)
- Ulrika Wilhelmsson
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Parpura V, Heneka MT, Montana V, Oliet SHR, Schousboe A, Haydon PG, Stout RF, Spray DC, Reichenbach A, Pannicke T, Pekny M, Pekna M, Zorec R, Verkhratsky A. Glial cells in (patho)physiology. J Neurochem 2012; 121:4-27. [PMID: 22251135 DOI: 10.1111/j.1471-4159.2012.07664.x] [Citation(s) in RCA: 416] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuroglial cells define brain homeostasis and mount defense against pathological insults. Astroglia regulate neurogenesis and development of brain circuits. In the adult brain, astrocytes enter into intimate dynamic relationship with neurons, especially at synaptic sites where they functionally form the tripartite synapse. At these sites, astrocytes regulate ion and neurotransmitter homeostasis, metabolically support neurons and monitor synaptic activity; one of the readouts of the latter manifests in astrocytic intracellular Ca(2+) signals. This form of astrocytic excitability can lead to release of chemical transmitters via Ca(2+) -dependent exocytosis. Once in the extracellular space, gliotransmitters can modulate synaptic plasticity and cause changes in behavior. Besides these physiological tasks, astrocytes are fundamental for progression and outcome of neurological diseases. In Alzheimer's disease, for example, astrocytes may contribute to the etiology of this disorder. Highly lethal glial-derived tumors use signaling trickery to coerce normal brain cells to assist tumor invasiveness. This review not only sheds new light on the brain operation in health and disease, but also points to many unknowns.
Collapse
Affiliation(s)
- Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy & Nanotechnology Laboratories, and Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, Alabama, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Lu Y, Iandiev I, Hollborn M, Körber N, Ulbricht E, Hirrlinger PG, Pannicke T, Wei E, Bringmann A, Wolburg H, Wilhelmsson U, Pekny M, Wiedemann P, Reichenbach A, Käs JA. Reactive glial cells: increased stiffness correlates with increased intermediate filament expression. FASEB J 2010; 25:624-31. [DOI: 10.1096/fj.10-163790] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yun‐Bi Lu
- Division of Soft Matter PhysicsDepartment of PhysicsUniversität LeipzigLeipzigGermany
- Paul Flechsig Institute of Brain ResearchUniversität LeipzigLeipzigGermany
- Department of PharmacologySchool of MedicineZhejiang UniversityHang ZhouChina
| | - Ianors Iandiev
- Department of OphthalmologyUniversität LeipzigLeipzigGermany
| | | | - Nicole Körber
- Paul Flechsig Institute of Brain ResearchUniversität LeipzigLeipzigGermany
- Translational Centre for Regenerative MedicineLeipzigGermany
| | - Elke Ulbricht
- Paul Flechsig Institute of Brain ResearchUniversität LeipzigLeipzigGermany
| | | | - Thomas Pannicke
- Paul Flechsig Institute of Brain ResearchUniversität LeipzigLeipzigGermany
| | - Er‐Qing Wei
- Department of PharmacologySchool of MedicineZhejiang UniversityHang ZhouChina
| | | | | | - Ulrika Wilhelmsson
- Center for Brain Repair and RehabilitationDepartment of Clinical Neuroscience and RehabilitationInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Milos Pekny
- Center for Brain Repair and RehabilitationDepartment of Clinical Neuroscience and RehabilitationInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Peter Wiedemann
- Department of OphthalmologyUniversität LeipzigLeipzigGermany
| | | | - Josef A. Käs
- Division of Soft Matter PhysicsDepartment of PhysicsUniversität LeipzigLeipzigGermany
| |
Collapse
|
6
|
Pekny M, Lane EB. Intermediate filaments and stress. Exp Cell Res 2007; 313:2244-54. [PMID: 17524394 DOI: 10.1016/j.yexcr.2007.04.023] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 04/01/2007] [Accepted: 04/03/2007] [Indexed: 11/23/2022]
Abstract
Before we can explain why so many closely related intermediate filament genes have evolved in vertebrates, while maintaining such dramatically tissue specific expression, we need to understand their function. The best evidence for intermediate filament function comes from observing the consequences of mutation and mis-expression, primarily in human tissues. Mostly these observations suggest that intermediate filaments are important in allowing individual cells, the tissues and whole organs to cope with various types of stress, in health and disease. Exactly how they do this is unclear and many aspects of cell dysfunction have been associated with intermediate filaments to date. In particular, it is still not clear whether the non-mechanical functions now being attributed to intermediate filaments are primary functions of these structural proteins, or secondary consequences of their function to respond to mechanical stress. We discuss selected situations in which responses to stress are clearly influenced by intermediate filaments.
Collapse
Affiliation(s)
- Milos Pekny
- Department of Clinical Neuroscience and Rehabilitation, Institute for Neuroscience and Physiology, Sahlgrenska Academy, Göteborg University, Göteborg, Sweden.
| | | |
Collapse
|
7
|
Pekny M, Wilhelmsson U, Bogestål YR, Pekna M. The role of astrocytes and complement system in neural plasticity. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 82:95-111. [PMID: 17678957 DOI: 10.1016/s0074-7742(07)82005-8] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In neurotrauma, brain ischemia or neurodegenerative diseases, astrocytes become reactive (which is known as reactive gliosis) and this is accompanied by an altered expression of many genes. Two cellular hallmarks of reactive gliosis are hypertrophy of astrocyte processes and the upregulation of the part of the cytoskeleton known as intermediate filaments, which are composed of nestin, vimentin, and GFAP. Our aim has been to better understand the function of reactive astrocytes in CNS diseases. Using mice deficient for astrocyte intermediate filaments (GFAP(-/-)Vim(-/-)), we were able to attenuate reactive gliosis and slow down the healing process after neurotrauma. We demonstrated the key role of reactive astrocytes in neurotrauma-at an early stage after neurotrauma, reactive astrocytes have a neuroprotective effect; at a later stage, they facilitate the formation of posttraumatic glial scars and inhibit CNS regeneration, specifically, they seem to compromise neural graft survival and integration, reduce the extent of synaptic regeneration, inhibit neurogenesis in the old age, and inhibit regeneration of severed CNS axons. We propose that reactive astrocytes are the future target for the therapeutic strategies promoting regeneration and plasticity in the brain and spinal cord in various disease conditions. Through its involvement in inflammation, opsonization, and cytolysis, complement protects against infectious agents. Although most of the complement proteins are synthesized in CNS, the role of the complement system in the normal or ischemic CNS remains unclear. Complement activiation in the CNS has been generally considered as contributing to tissue damage. However, growing body of evidence suggests that complement may be a physiological neuroprotective mechanism as well as it may participate in maintenance and repair of the adult brain.
Collapse
Affiliation(s)
- Milos Pekny
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute for Neuroscience and Physiology at Sahlgrenska Academy Göteborg University, 405 30 Göteborg, Sweden
| | | | | | | |
Collapse
|
8
|
Abstract
Astrocytes become activated (reactive) in response to many CNS pathologies, such as stroke, trauma, growth of a tumor, or neurodegenerative disease. The process of astrocyte activation remains rather enigmatic and results in so-called "reactive gliosis," a reaction with specific structural and functional characteristics. In stroke or in CNS trauma, the lesion itself, the ischemic environment, disrupted blood-brain barrier, the inflammatory response, as well as in metabolic, excitotoxic, and in some cases oxidative crises--all affect the extent and quality of reactive gliosis. The fact that astrocytes function as a syncytium of interconnected cells both in health and in disease, rather than as individual cells, adds yet another dimension to this picture. This review focuses on several aspects of astrocyte activation and reactive gliosis and discusses its possible roles in the CNS trauma and ischemia. Particular emphasis is placed on the lessons learnt from mouse genetic models in which the absence of intermediate filament proteins in astrocytes leads to attenuation of reactive gliosis with distinct pathophysiological and clinical consequences.
Collapse
Affiliation(s)
- Milos Pekny
- The Arvid Carlsson Institute for Neuroscience, Institute of Clinical Neuroscience, Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| | - Michael Nilsson
- The Arvid Carlsson Institute for Neuroscience, Institute of Clinical Neuroscience, Sahlgrenska Academy at Göteborg University, Göteborg, Sweden
| |
Collapse
|
9
|
Abstract
Astroglial cells are the most abundant cells in the mammalian central nervous system (CNS), yet our knowledge about their function in health and disease has been limited. This review focuses on the recent work addressing the function of intermediate filaments in astroglial cells under severe mechanical or osmotic stress, in hypoxia, and in brain and spinal cord injury. Recent data show that when astrocyte intermediate filaments are genetically ablated in mice, reactive gliosis is attenuated and the course of several CNS pathologies is altered, while the signs of CNS regeneration become more prominent. GFAP is the principal astrocyte intermediate filament protein and dominant mutations in the GFAP gene have been shown to lead to Alexander disease, a fatal neurodegenerative condition in humans.
Collapse
Affiliation(s)
- Milos Pekny
- Department of Medical Biochemistry, Sahlgrenska Academy at Göteborg University, Box 430, 405 30 Göteborg, Sweden.
| | | |
Collapse
|
10
|
Affiliation(s)
- E Birgitte Lane
- Cancer Research UK, Cell Structure Research Group, University of Dundee School of Life Sciences, Dundee DD1 5EH, Scotland
| | | |
Collapse
|