1
|
Naffaa MM, Yin HH. Lateral Ventricular Neural Stem Cells Provide Negative Feedback to Circuit Activation Through GABAergic Signaling. Cells 2025; 14:426. [PMID: 40136675 PMCID: PMC11940892 DOI: 10.3390/cells14060426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Recent studies have demonstrated that circuit activation in vivo can regulate proliferation of lateral ventricular neural stem cells (LV NSCs), although the underlying molecular and cellular mechanisms are not yet fully understood. Here, we investigated the role of GABAergic signaling in the interaction between LV NSCs and the anterior cingulate cortex-subependymal-choline acetyltransferase+ (ChAT+) neuron (ACC-subep-ChAT+) circuit. We found that monoamine oxidase B (MAOB), a key enzyme involved in gamma-aminobutyric acid (GABA) synthesis, is expressed in LV NSCs, and that activation of the ACC-subep-ChAT+ circuit can modulate MAOB activity. Additionally, LV NSCs express LRRC8D, a core component of volume-regulated anion channels, and GABA transporter-1 (GAT-1, SLC6A1). We show evidence that, through GABA signaling, LRRC8D and GAT-1 can provide a negative feedback signal to ChAT+ neurons, a key component of the ACC-subep-ChAT+ circuit that regulate proliferation of LV NSCs. These findings suggest that MAOB-driven GABA synthesis, LRRC8D-regulated chloride and GABA transport, and GAT-1-facilitated GABA reuptake can regulate neural circuit activation and influence NSC proliferation dynamics in the LV.
Collapse
Affiliation(s)
- Moawiah M. Naffaa
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Henry H. Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
2
|
Liang Z, Jin N, Guo W. Neural stem cell heterogeneity in adult hippocampus. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:6. [PMID: 40053275 DOI: 10.1186/s13619-025-00222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 03/10/2025]
Abstract
Adult neurogenesis is a unique cellular process of the ongoing generation of new neurons throughout life, which primarily occurs in the subgranular zone (SGZ) of the dentate gyrus (DG) and the subventricular zone (SVZ) of the lateral ventricle. In the adult DG, newly generated granule cells from neural stem cells (NSCs) integrate into existing neural circuits, significantly contributing to cognitive functions, particularly learning and memory. Recently, more and more studies have shown that rather than being a homogeneous population of identical cells, adult NSCs are composed of multiple subpopulations that differ in their morphology and function. In this study, we provide an overview of the origin, regional characteristics, prototypical morphology, and molecular factors that contribute to NSC heterogeneity. In particular, we discuss the molecular mechanisms underlying the balance between activation and quiescence of NSCs. In summary, this review highlights that deciphering NSC heterogeneity in the adult brain is a challenging but critical step in advancing our understanding of tissue-specific stem cells and the process of neurogenesis in the adult brain.
Collapse
Affiliation(s)
- Ziqi Liang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Nuomeng Jin
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
3
|
Meller SJ, Greer CA. Olfactory Development and Dysfunction: Involvement of Microglia. Physiology (Bethesda) 2025; 40:0. [PMID: 39499248 DOI: 10.1152/physiol.00037.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/07/2024] Open
Abstract
Olfactory deficits are increasingly recognized in a variety of neurological, neurodevelopmental, psychiatric, and viral diseases. While the pathology underlying olfactory loss is likely to differ across diseases, one shared feature may be an immune response mediated by microglia. Microglia orchestrate the brain's response to environmental insults and maintain neurodevelopmental homeostasis. Here, we explore the potential involvement of microglia in olfactory development and loss in disease. The effects of microglia-mediated immune response during development may be of special relevance to the olfactory system, which is unique in both its vulnerability to environmental insults as well as its extended period of neurogenesis and neuronal migration.
Collapse
Affiliation(s)
- Sarah J Meller
- Departments of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, United States
- Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, United States
- The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Charles A Greer
- Departments of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, United States
- Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, United States
- The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
4
|
Zhou W, Munoz JR, Henry Ho HY, Hanamura K, Dalva MB. Specific neuroblast-derived signals control both cell migration and fate in the rostral migratory stream. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638163. [PMID: 40027825 PMCID: PMC11870606 DOI: 10.1101/2025.02.18.638163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Functional neuronal circuits require neuroblasts migrate to appropriate locations and then differentiate into neuronal subtypes. However, it remains unknown how neuroblasts in the subventricular zone (SVZ) are guided through the rostral migratory stream (RMS) to the olfactory bulb (OB). Here we define EphB2 as a neuroblast-derived cue that controls migration along the RMS and helps to determine cell fate. Within the RMS, EphB2 is expressed selectively in, kinase-active in, and required for the migration of neuroblasts. As neuroblasts enter the OB and differentiate, EphB kinase activity is down-regulated, and in the granule cell layer (GCL), EphB2 expression is down-regulated. Blocking EphB kinase activity or knocking down EphB2 results in defects in migration and premature cellular differentiation in the RMS. Unexpectedly, premature loss of EphB2 expression causes neuroblasts to stop migrating and differentiate into astrocyte-like cells. Thus, EphB2 kinase activity and expression are linked to migration and specification of neuroblast fate.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Neuroscience and the Jefferson Synaptic Biology Center, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
| | - James R. Munoz
- Present address: Department of Psychology and Neuroscience, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314, USA
| | - Hsin-Yi Henry Ho
- Department of Cell Biology and Human Anatomy, UC Davis School of Medicine, One Shields Avenue, Davis, CA 95616
| | - Kenji Hanamura
- Department of Neuroscience and the Jefferson Synaptic Biology Center, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
- Present address: Faculty of Medical Technology, Department of Radiological Technology, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata-City, 950-3198, Japan
| | - Matthew B. Dalva
- Department of Neuroscience and the Jefferson Synaptic Biology Center, Thomas Jefferson University, 900 Walnut Street, Philadelphia, PA 19107, USA
- Present Address: Tulane Brain Institute, Tulane University, 201 Flower Hall, 6823 St. Charles Avenue, New Orleans, LA 70118
| |
Collapse
|
5
|
Kim YK, Jo D, Choi S, Song J. High-fat diet triggers transcriptomic changes in the olfactory bulb. Heliyon 2025; 11:e42196. [PMID: 39927144 PMCID: PMC11804815 DOI: 10.1016/j.heliyon.2025.e42196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 02/11/2025] Open
Abstract
Metabolic imbalance contributes to cognitive impairment, anxiety, depressive behavior, and impaired olfactory perception. Recent studies have focused on olfactory dysfunction in patients with obesity and diabetes accompanied by cognitive dysfunction, considering that the synaptic signal from the olfactory bulb is directly transmitted to memory consolidation-related brain regions. This study investigated transcriptomic changes in the olfactory bulb in high-fat diet (HFD)-fed mice compared to that in normal-diet-fed mice. We sampled olfactory bulbs from HFD-fed mice, performed RNA sequencing, and measured mRNA levels in olfactory bulb tissue. Additionally, we assessed plasma cytokine levels in HFD-fed mice. We found differences in the expression of protein-coding and non-coding RNAs involved in insulin, lipid metabolism, neurogenesis, serotonin, dopamine, and gamma-aminobutyric acid-related signaling in the olfactory bulb of HFD-fed mice compared to control mice. Thus, our findings suggest potential therapeutic targets for treating olfactory dysfunction and related neural disorders in individuals with metabolic syndrome.
Collapse
Affiliation(s)
- Young-Kook Kim
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Danbi Jo
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Seoyoon Choi
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Juhyun Song
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun, 58128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| |
Collapse
|
6
|
Zhao A, Xu W, Han R, Wei J, Yu Q, Wang M, Li H, Li M, Chi G. Role of histone modifications in neurogenesis and neurodegenerative disease development. Ageing Res Rev 2024; 98:102324. [PMID: 38762100 DOI: 10.1016/j.arr.2024.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
Progressive neuronal dysfunction and death are key features of neurodegenerative diseases; therefore, promoting neurogenesis in neurodegenerative diseases is crucial. With advancements in proteomics and high-throughput sequencing technology, it has been demonstrated that histone post-transcriptional modifications (PTMs) are often altered during neurogenesis when the brain is affected by disease or external stimuli and that the degree of histone modification is closely associated with the development of neurodegenerative diseases. This review aimed to show the regulatory role of histone modifications in neurogenesis and neurodegenerative diseases by discussing the changing patterns and functional significance of histone modifications, including histone methylation, acetylation, ubiquitination, phosphorylation, and lactylation. Finally, we explored the control of neurogenesis and the development of neurodegenerative diseases by artificially modulating histone modifications.
Collapse
Affiliation(s)
- Anqi Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Wenhong Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Rui Han
- Department of Neurovascular Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Junyuan Wei
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Qi Yu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Miaomiao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Haokun Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
7
|
Ferreira A, Constantinescu VS, Malvaut S, Saghatelyan A, Hardy SV. Distinct forms of structural plasticity of adult-born interneuron spines in the mouse olfactory bulb induced by different odor learning paradigms. Commun Biol 2024; 7:420. [PMID: 38582915 PMCID: PMC10998910 DOI: 10.1038/s42003-024-06115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/27/2024] [Indexed: 04/08/2024] Open
Abstract
The morpho-functional properties of neural networks constantly adapt in response to environmental stimuli. The olfactory bulb is particularly prone to constant reshaping of neural networks because of ongoing neurogenesis. It remains unclear whether the complexity of distinct odor-induced learning paradigms and sensory stimulation induces different forms of structural plasticity. In the present study, we automatically reconstructed spines in 3D from confocal images and performed unsupervised clustering based on morphometric features. We show that while sensory deprivation decreased the spine density of adult-born neurons without affecting the morphometric properties of these spines, simple and complex odor learning paradigms triggered distinct forms of structural plasticity. A simple odor learning task affected the morphometric properties of the spines, whereas a complex odor learning task induced changes in spine density. Our work reveals distinct forms of structural plasticity in the olfactory bulb tailored to the complexity of odor-learning paradigms and sensory inputs.
Collapse
Affiliation(s)
- Aymeric Ferreira
- CERVO Brain Research Center, Quebec City, QC, G1J 2G3, Canada
- Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Vlad-Stefan Constantinescu
- CERVO Brain Research Center, Quebec City, QC, G1J 2G3, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Sarah Malvaut
- CERVO Brain Research Center, Quebec City, QC, G1J 2G3, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Armen Saghatelyan
- CERVO Brain Research Center, Quebec City, QC, G1J 2G3, Canada.
- Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, G1V 0A6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
| | - Simon V Hardy
- CERVO Brain Research Center, Quebec City, QC, G1J 2G3, Canada.
- Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, QC, G1V 0A6, Canada.
- Department of Computer Science and Software Engineering, Université Laval, Quebec City, QC, G1V 0A6, Canada.
| |
Collapse
|
8
|
Šimončičová E, Henderson Pekarik K, Vecchiarelli HA, Lauro C, Maggi L, Tremblay MÈ. Adult Neurogenesis, Learning and Memory. ADVANCES IN NEUROBIOLOGY 2024; 37:221-242. [PMID: 39207695 DOI: 10.1007/978-3-031-55529-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neural plasticity can be defined as the ability of neural circuits to be shaped by external and internal factors. It provides the brain with a capacity for functional and morphological remodelling, with many lines of evidence indicating that these changes are vital for learning and memory formation. The basis of this brain plasticity resides in activity- and experience-driven modifications of synaptic strength, including synaptic formation, elimination or weakening, as well as of modulation of neuronal population, which drive the structural reorganization of neural networks. Recent evidence indicates that brain-resident glial cells actively participate in these processes, suggesting that mechanisms underlying plasticity in the brain are multifaceted. Establishing the 'tripartite' synapse, the role of astrocytes in modulating synaptic transmission in response to neuronal activity was recognized first. Further redefinition of the synapse as 'quad-partite' followed to acknowledge the contribution of microglia which were revealed to affect numerous brain functions via dynamic interactions with synapses, acting as 'synaptic sensors' that respond to neuronal activity and neurotransmitter release, as well as crosstalk with astrocytes. Early studies identified microglial ability to dynamically survey their local brain environment and established their integral role in the active interfacing of environmental stimuli (both internal and external), with brain plasticity and remodelling. Following the introduction to neurogenesis, this chapter details the role that microglia play in regulating neurogenesis in adulthood, specifically as it relates to learning and memory, as well as factors involved in modulation of microglia. Further, a microglial perspective is introduced for the context of environmental enrichment impact on neurogenesis, learning and memory across states of stress, ageing, disease and injury.
Collapse
Affiliation(s)
- Eva Šimončičová
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | | | - Clotilde Lauro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Laura Maggi
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
9
|
Guimarães DM, Valério-Gomes B, Vianna-Barbosa RJ, Oliveira W, Neves GÂ, Tovar-Moll F, Lent R. Social isolation leads to mild social recognition impairment and losses in brain cellularity. Brain Struct Funct 2023; 228:2051-2066. [PMID: 37690044 DOI: 10.1007/s00429-023-02705-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Chronic social stress is a significant risk factor for several neuropsychiatric disorders, mainly major depressive disorder (MDD). In this way, patients with clinical depression may display many symptoms, including disrupted social behavior and anxiety. However, like many other psychiatric diseases, MDD has a very complex etiology and pathophysiology. Because social isolation is one of the multiple depression-inducing factors in humans, this study aims to understand better the link between social stress and MDD using an animal model based on social isolation after weaning, which is known to produce social stress in mice. We focused on cellular composition and white matter integrity to establish possible links with the abnormal social behavior that rodents isolated after weaning displayed in the three-chamber social approach and recognition tests. We used the isotropic fractionator method to assess brain cellularity, which allows us to robustly estimate the number of oligodendrocytes and neurons in dissected brain regions. In addition, diffusion tensor imaging (DTI) was employed to analyze white matter microstructure. Results have shown that post-weaning social isolation impairs social recognition and reduces the number of neurons and oligodendrocytes in important brain regions involved in social behavior, such as the anterior neocortex and the olfactory bulb. Despite the limitations of animal models of psychological traits, evidence suggests that behavioral impairments observed in patients might have similar biological underpinnings.
Collapse
Affiliation(s)
- Daniel Menezes Guimarães
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Robarts Research Institute, University of Western Ontario, London, Canada.
| | - Bruna Valério-Gomes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Washington Oliveira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilda Ângela Neves
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Roberto Lent
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- D'Or Institute of Research and Education, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Coppola DM, Reisert J. The Role of the Stimulus in Olfactory Plasticity. Brain Sci 2023; 13:1553. [PMID: 38002512 PMCID: PMC10669894 DOI: 10.3390/brainsci13111553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Plasticity, the term we use to describe the ability of a nervous system to change with experience, is the evolutionary adaptation that freed animal behavior from the confines of genetic determinism. This capacity, which increases with brain complexity, is nowhere more evident than in vertebrates, especially mammals. Though the scientific study of brain plasticity dates back at least to the mid-19th century, the last several decades have seen unprecedented advances in the field afforded by new technologies. Olfaction is one system that has garnered particular attention in this realm because it is the only sensory modality with a lifelong supply of new neurons, from two niches no less! Here, we review some of the classical and contemporary literature dealing with the role of the stimulus or lack thereof in olfactory plasticity. We have restricted our comments to studies in mammals that have used dual tools of the field: stimulus deprivation and stimulus enrichment. The former manipulation has been implemented most frequently by unilateral naris occlusion and, thus, we have limited our comments to research using this technique. The work reviewed on deprivation provides substantial evidence of activity-dependent processes in both developing and adult mammals at multiple levels of the system from olfactory sensory neurons through to olfactory cortical areas. However, more recent evidence on the effects of deprivation also establishes several compensatory processes with mechanisms at every level of the system, whose function seems to be the restoration of information flow in the face of an impoverished signal. The results of sensory enrichment are more tentative, not least because of the actual manipulation: What odor or odors? At what concentrations? On what schedule? All of these have frequently not been sufficiently rationalized or characterized. Perhaps it is not surprising, then, that discrepant results are common in sensory enrichment studies. Despite this problem, evidence has accumulated that even passively encountered odors can "teach" olfactory cortical areas to better detect, discriminate, and more efficiently encode them for future encounters. We discuss these and other less-established roles for the stimulus in olfactory plasticity, culminating in our recommended "aspirations" for the field going forward.
Collapse
Affiliation(s)
- David M. Coppola
- Biology Department, Randolph-Macon College, Ashland, VA 23005, USA
| | | |
Collapse
|
11
|
Athanassi A, Breton M, Chalençon L, Brunelin J, Didier A, Bath K, Mandairon N. Chronic unpredictable mild stress alters odor hedonics and adult olfactory neurogenesis in mice. Front Neurosci 2023; 17:1224941. [PMID: 37600017 PMCID: PMC10435088 DOI: 10.3389/fnins.2023.1224941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Experiencing chronic stress significantly increases the risk for depression. Depression is a complex disorder with varied symptoms across patients. However, feeling of sadness and decreased motivation, and diminished feeling of pleasure (anhedonia) appear to be core to most depressive pathology. Odorants are potent signals that serve a critical role in social interactions, avoiding danger, and consummatory behaviors. Diminished quality of olfactory function is associated with negative effects on quality of life leading to and aggravating the symptoms of depression. Odor hedonic value (I like or I dislike this smell) is a dominant feature of olfaction and guides approach or avoidance behavior of the odor source. The neural representation of the hedonic value of odorants is carried by the granule cells in the olfactory bulb, which functions to modulate the cortical relay of olfactory information. The granule cells of the olfactory bulb and those of the dentate gyrus are the two major populations of cells in the adult brain with continued neurogenesis into adulthood. In hippocampus, decreased neurogenesis has been linked to development or maintenance of depression symptoms. Here, we hypothesize that chronic mild stress can alter olfactory hedonics through effects on the olfactory bulb neurogenesis, contributing to the broader anhedonia phenotype in stress-associated depression. To test this, mice were subjected to chronic unpredictable mild stress and then tested on measures of depressive-like behaviors, odor hedonics, and measures of olfactory neurogenesis. Chronic unpredictable mild stress led to a selective effect on odor hedonics, diminishing attraction to pleasant but not unpleasant odorants, an effect that was accompanied by a specific decrease in adult neurogenesis and of the percentage of adult-born cells responding to pleasant odorants in the olfactory bulb.
Collapse
Affiliation(s)
- Anna Athanassi
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Marine Breton
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Laura Chalençon
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Jérome Brunelin
- Centre Hospitalier Le Vinatier, Bron, France
- INSERM, U1028, CNRS UMR5292, PSYR2 Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Anne Didier
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| | - Kevin Bath
- Division of Developmental Neuroscience, New York State Psychiatric Institute, Research Foundation for Mental Hygiene, New York, NY, United States
- Department of Psychiatry, Columbia University Medical College, New York, NY, United States
| | - Nathalie Mandairon
- INSERM, U1028, CNRS UMR5292, Neuropop Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Université Jean Monnet, Bron, France
| |
Collapse
|
12
|
Higuchi Y, Arakawa H. Serotonergic mediation of the brain-wide neurogenesis: Region-dependent and receptor-type specific roles on neurogenic cellular transformation. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100102. [PMID: 37638344 PMCID: PMC10458724 DOI: 10.1016/j.crneur.2023.100102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/18/2023] [Accepted: 07/15/2023] [Indexed: 08/29/2023] Open
Abstract
Brain serotonin (5-hydroxytryptamine, 5-HT) is a key molecule for the mediation of depression-related brain states, but the neural mechanisms underlying 5-HT mediation need further investigation. A possible mechanism of the therapeutic antidepressant effects is neurogenic cell production, as stimulated by 5-HT signaling. Neurogenesis, the proliferation of neural stem cells (NSCs), and cell differentiation and maturation occur across brain regions, particularly the hippocampal dentate gyrus and the subventricular zone, throughout one's lifespan. 5-HT plays a major role in the mediation of neurogenic processes, which in turn leads to the therapeutic effect on depression-related states. In this review article, we aim to identify how the neuronal 5-HT system mediates the process of neurogenesis, including cell proliferation, cell-type differentiation and maturation. First, we will provide an overview of the neurogenic cell transformation that occurs in brain regions containing or lacking NSCs. Second, we will review brain region-specific mechanisms of 5-HT-mediated neurogenesis by comparing regions localized to NSCs, i.e., the hippocampus and subventricular zone, with those not containing NSCs. Highlighting these 5-HT mechanisms that mediate neurogenic cell production processes in a brain-region-specific manner would provide unique insights into the role of 5-HT in neurogenesis and its associated effects on depression.
Collapse
Affiliation(s)
- Yuki Higuchi
- Department of Systems Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hiroyuki Arakawa
- Department of Systems Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
13
|
Chen B, Stein A, Olesch FT, Hummel T. Odor deprivation influences human olfactory function. Physiol Behav 2023; 262:114090. [PMID: 36681230 DOI: 10.1016/j.physbeh.2023.114090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023]
Abstract
Odor deprivation leads to anatomical and neurochemical changes in the olfactory system, but its effect on human olfaction has not been systematically explored. The present randomized, controlled study aimed to investigate whether odor deprivation by different methods can affect olfactory function in humans. In the present study, sixty-one healthy participants were randomly assigned into three groups: a nasal device group (wearing an intranasal silicone air diversion system for 6-8 h daily), a mask group (wearing a filtering face piece for 6-8 h daily) and a control group (no special instructions in terms of wearing masks). Before and immediately after a 14-day study phase, all participants underwent assessments of olfactory function, nasal patency and well-being. Following the 2-week observation period, the nasal device group exhibited significantly reduced TDI scores (with especially pronounced reductions for odor threshold scores), and the mask group exhibited a minor increase in odor identification scores compared with the control group. The change in well-being scores was positively associated with changes in odor identification and TDI scores. Olfactory deprivation using an intranasal silicone air diversion device is associated with olfactory impairment (especially for odor thresholds). Highlighting the exposure-driven plasticity of the olfactory system, it may serve as a possible model of hyposmia in future studies. In addition, it may also prove useful in patients with parosmia, possibly reducing the burden of unpleasant odorous sensations.
Collapse
Affiliation(s)
- Ben Chen
- Smell & Taste Clinic, Department of Otorhinolaryngology, Dresden, TU Germany; Center for Geriatric Neuroscience, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| | - Anabel Stein
- Smell & Taste Clinic, Department of Otorhinolaryngology, Dresden, TU Germany
| | - Falk-Tony Olesch
- Smell & Taste Clinic, Department of Otorhinolaryngology, Dresden, TU Germany
| | - Thomas Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, Dresden, TU Germany
| |
Collapse
|
14
|
Geribaldi-Doldán N, Carrascal L, Pérez-García P, Oliva-Montero JM, Pardillo-Díaz R, Domínguez-García S, Bernal-Utrera C, Gómez-Oliva R, Martínez-Ortega S, Verástegui C, Nunez-Abades P, Castro C. Migratory Response of Cells in Neurogenic Niches to Neuronal Death: The Onset of Harmonic Repair? Int J Mol Sci 2023; 24:6587. [PMID: 37047560 PMCID: PMC10095545 DOI: 10.3390/ijms24076587] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Harmonic mechanisms orchestrate neurogenesis in the healthy brain within specific neurogenic niches, which generate neurons from neural stem cells as a homeostatic mechanism. These newly generated neurons integrate into existing neuronal circuits to participate in different brain tasks. Despite the mechanisms that protect the mammalian brain, this organ is susceptible to many different types of damage that result in the loss of neuronal tissue and therefore in alterations in the functionality of the affected regions. Nevertheless, the mammalian brain has developed mechanisms to respond to these injuries, potentiating its capacity to generate new neurons from neural stem cells and altering the homeostatic processes that occur in neurogenic niches. These alterations may lead to the generation of new neurons within the damaged brain regions. Notwithstanding, the activation of these repair mechanisms, regeneration of neuronal tissue within brain injuries does not naturally occur. In this review, we discuss how the different neurogenic niches respond to different types of brain injuries, focusing on the capacity of the progenitors generated in these niches to migrate to the injured regions and activate repair mechanisms. We conclude that the search for pharmacological drugs that stimulate the migration of newly generated neurons to brain injuries may result in the development of therapies to repair the damaged brain tissue.
Collapse
Affiliation(s)
- Noelia Geribaldi-Doldán
- Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Livia Carrascal
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Patricia Pérez-García
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - José M. Oliva-Montero
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Ricardo Pardillo-Díaz
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Samuel Domínguez-García
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
- Department of Neuroscience, Karolinska Institutet, Biomedicum, 17177 Stockholm, Sweden
| | - Carlos Bernal-Utrera
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Fisioterapia, Facultad de Enfermería, Fisioterapia y Podología, Universidad de Sevilla, 41009 Sevilla, Spain
| | - Ricardo Gómez-Oliva
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Sergio Martínez-Ortega
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Cristina Verástegui
- Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Pedro Nunez-Abades
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Carmen Castro
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| |
Collapse
|
15
|
The impact of amino acid metabolism on adult neurogenesis. Biochem Soc Trans 2023; 51:233-244. [PMID: 36606681 DOI: 10.1042/bst20220762] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
Adult neurogenesis is a multistage process during which newborn neurons are generated through the activation and proliferation of neural stem cells (NSCs) and integrated into existing neural networks. Impaired adult neurogenesis has been observed in various neurological and psychiatric disorders, suggesting its critical role in cognitive function, brain homeostasis, and neural repair. Over the past decades, mounting evidence has identified a strong association between metabolic status and adult neurogenesis. Here, we aim to summarize how amino acids and their neuroactive metabolites affect adult neurogenesis. Furthermore, we discuss the causal link between amino acid metabolism, adult neurogenesis, and neurological diseases. Finally, we propose that systematic elucidation of how amino acid metabolism regulates adult neurogenesis has profound implications not only for understanding the biological underpinnings of brain development and neurological diseases, but also for providing potential therapeutic strategies to intervene in disease progression.
Collapse
|
16
|
Meller SJ, Hernandez L, Martin-Lopez E, Kloos ZA, Liberia T, Greer CA. Microglia Maintain Homeostatic Conditions in the Developing Rostral Migratory Stream. eNeuro 2023; 10:ENEURO.0197-22.2023. [PMID: 36697258 PMCID: PMC9910579 DOI: 10.1523/eneuro.0197-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/03/2023] [Accepted: 01/14/2023] [Indexed: 01/27/2023] Open
Abstract
Microglia invade the neuroblast migratory corridor of the rostral migratory stream (RMS) early in development. The early postnatal RMS does not yet have the dense astrocyte and vascular scaffold that helps propel forward migrating neuroblasts, which led us to consider whether microglia help regulate conditions permissive to neuroblast migration in the RMS. GFP-labeled microglia in CX3CR-1GFP/+ mice assemble primarily along the outer borders of the RMS during the first postnatal week, where they exhibit predominantly an ameboid morphology and associate with migrating neuroblasts. Microglia ablation for 3 d postnatally does not impact the density of pulse labeled BrdU+ neuroblasts nor the distance migrated by tdTomato electroporated neuroblasts in the RMS. However, microglia wrap DsRed-labeled neuroblasts in the RMS of P7 CX3CR-1GFP/+;DCXDsRed/+ mice and express the markers CD68, CLEC7A, MERTK, and IGF-1, suggesting active regulation in the developing RMS. Microglia depletion for 14 d postnatally further induced an accumulation of CC3+ DCX+ apoptotic neuroblasts in the RMS, a wider RMS and extended patency of the lateral ventricle extension in the olfactory bulb. These findings illustrate the importance of microglia in maintaining a healthy neuroblast population and an environment permissive to neuroblast migration in the early postnatal RMS.
Collapse
Affiliation(s)
- Sarah J Meller
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520
- The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, New Haven, CT 06520
| | - Lexie Hernandez
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520
| | - Eduardo Martin-Lopez
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520
| | - Zachary A Kloos
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520
| | - Teresa Liberia
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520
| | - Charles A Greer
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06520
- The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
17
|
Hu R, Shankar J, Dong GZ, Villar PS, Araneda RC. α 2-Adrenergic modulation of I h in adult-born granule cells in the olfactory bulb. Front Cell Neurosci 2023; 16:1055569. [PMID: 36687519 PMCID: PMC9853206 DOI: 10.3389/fncel.2022.1055569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/29/2022] [Indexed: 01/09/2023] Open
Abstract
In the olfactory bulb (OB), a large population of axon-less inhibitory interneurons, the granule cells (GCs), coordinate network activity and tune the output of principal neurons, the mitral and tufted cells (MCs), through dendrodendritic interactions. Furthermore, GCs undergo neurogenesis throughout life, providing a source of plasticity to the neural network of the OB. The function and integration of GCs in the OB are regulated by several afferent neuromodulatory signals, including noradrenaline (NA), a state-dependent neuromodulator that plays a crucial role in the regulation of cortical function and task-specific decision processes. However, the mechanisms by which NA regulates GC function are not fully understood. Here, we show that NA modulates hyperpolarization-activated currents (Ih) via the activation of α2-adrenergic receptors (ARs) in adult-born GCs (abGCs), thus directly acting on channels that play essential roles in regulating neuronal excitability and network oscillations in the brain. This modulation affects the dendrodendritic output of GCs leading to an enhancement of lateral inhibition onto the MCs. Furthermore, we show that NA modulates subthreshold resonance in GCs, which could affect the temporal integration of abGCs. Together, these results provide a novel mechanism by which a state-dependent neuromodulator acting on Ih can regulate GC function in the OB.
Collapse
|
18
|
Alkailani MI, Aittaleb M, Tissir F. WNT signaling at the intersection between neurogenesis and brain tumorigenesis. Front Mol Neurosci 2022; 15:1017568. [PMID: 36267699 PMCID: PMC9577257 DOI: 10.3389/fnmol.2022.1017568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Neurogenesis and tumorigenesis share signaling molecules/pathways involved in cell proliferation, differentiation, migration, and death. Self-renewal of neural stem cells is a tightly regulated process that secures the accuracy of cell division and eliminates cells that undergo mitotic errors. Abnormalities in the molecular mechanisms controlling this process can trigger aneuploidy and genome instability, leading to neoplastic transformation. Mutations that affect cell adhesion, polarity, or migration enhance the invasive potential and favor the progression of tumors. Here, we review recent evidence of the WNT pathway’s involvement in both neurogenesis and tumorigenesis and discuss the experimental progress on therapeutic opportunities targeting components of this pathway.
Collapse
Affiliation(s)
- Maisa I. Alkailani
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Mohamed Aittaleb
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Fadel Tissir
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- *Correspondence: Fadel Tissir,
| |
Collapse
|
19
|
Divergence between Neuronal and Oligodendroglial Cell Fate, in Postnatal Brain Neural Stem Cells, Leads to Divergent Properties in Polymorphic In Vitro Assays. Cells 2022; 11:cells11111743. [PMID: 35681436 PMCID: PMC9179558 DOI: 10.3390/cells11111743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Two main stem cell pools exist in the postnatal mammalian brain that, although they share some “stemness” properties, also exhibit significant differences. Multipotent neural stem cells survive within specialized microenvironments, called niches, and they are vulnerable to ageing. Oligodendroglial lineage-restricted progenitor cells are widely distributed in the brain parenchyma and are more resistant to the effects of ageing. Here, we create polymorphic neural stem cell cultures and allow cells to progress towards the neuronal and the oligodendroglial lineage. We show that the divergence of cell fate is accompanied by a divergence in the properties of progenitors, which reflects their adaptation to life in the niche or the parenchyma. Neurogenesis shows significant spatial restrictions and a dependence on laminin, a major niche component, while oligodendrogenesis shows none of these constraints. Furthermore, the blocking of integrin-β1 leads to opposing effects, reducing neurogenesis and enhancing oligodendrogenesis. Therefore, polymorphic neural stem cell assays can be used to investigate the divergence of postnatal brain stem cells and also to predict the in vivo effects of potential therapeutic molecules targeting stem and progenitor cells, as we do for the microneurotrophin BNN-20.
Collapse
|
20
|
Vatandoust SM, Meftahi GH. The Effect of Sericin on the Cognitive Impairment, Depression, and Anxiety Caused by Learned Helplessness in Male Mice. J Mol Neurosci 2022; 72:963-974. [PMID: 35165850 DOI: 10.1007/s12031-022-01982-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
Learned helplessness (LH) induces cognitive and emotional abnormalities via alteration of synaptic and apoptotic markers in the hippocampus. Given the sericin's neuroprotective effects on different experimental models, this study aimed to address whether sericin is able to reduce LH-induced behavioral and molecular changes in the mouse model. Sixty male mice (3 months old) were randomly divided into control, normal saline (NS), and/or different doses of sericin (Ser [100, 200, and 300 mg/kg]) for 21 days. Accordingly, the animals in NS and sericin-treated groups were subjected to 1 day learned helplessness protocol. Behavioral deficits were evaluated and alterations in both synaptic and apoptotic factors were evaluated in the hippocampus. Induction of LH was associated with behavioral changes (depression and cognitive impairment). On the other hand, the administration of sericin effectively normalized these deficits. At molecular levels, sericin increased the levels of synaptophysin, synapsin-1, and PSD-95, and decreased apoptosis in the hippocampus. Although the exact mechanisms underlying the neuroprotective effects of sericin are not fully understood, our results showed that this effect mediated via modulation of the synaptic and apoptotic proteins in the hippocampus of LH-subjected mice.
Collapse
Affiliation(s)
| | - Gholam Hossein Meftahi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Pei W, Meng F, Deng Q, Zhang B, Gu Y, Jiao B, Xu H, Tan J, Zhou X, Li Z, He G, Ruan J, Ding Y. Electroacupuncture promotes the survival and synaptic plasticity of hippocampal neurons and improvement of sleep deprivation-induced spatial memory impairment. CNS Neurosci Ther 2021; 27:1472-1482. [PMID: 34623740 PMCID: PMC8611786 DOI: 10.1111/cns.13722] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/11/2022] Open
Abstract
Aims This study aimed to investigate whether electroacupuncture (EA) promotes the survival and synaptic plasticity of hippocampal neurons by activating brain‐derived neurotrophic factor (BDNF)/tyrosine receptor kinase (TrkB)/extracellular signal‐regulated kinase (Erk) signaling, thereby improving spatial memory deficits in rats under SD. Methods In vivo, Morris water maze (MWM) was used to detect the effect of EA on learning and memory, at the same time Western blotting (WB), immunofluorescence (IF), and transmission electron microscopy (TEM) were used to explore the plasticity of hippocampal neurons and synapses, and the expression of BDNF/TrkB/Erk signaling. In vitro, cultured hippocampal neurons were treated with exogenous BDNF and the TrkB inhibitor K252a to confirm the relationship between BDNF/TrkB/Erk signaling and synaptic plasticity. Results Our results showed that EA mitigated the loss of hippocampal neurons and synapses, stimulated hippocampal neurogenesis, and improved learning and memory of rats under SD accompanied by upregulation of BDNF and increased phosphorylation of TrkB and Erk. In cultured hippocampal neurons, exogenous BDNF enhanced the expression of synaptic proteins, the frequency of the postsynaptic currents, and the phosphorylation of TrkB and Erk; these effects were reversed by treatment with K252a. Conclusions Electroacupuncture alleviates SD‐induced spatial memory impairment by promoting hippocampal neurogenesis and synaptic plasticity via activation of BDNF/TrkB/Erk signaling, which provided evidence for EA as a therapeutic strategy for countering the adverse effects of SD on cognition.
Collapse
Affiliation(s)
- Wenya Pei
- Department of Acupuncture, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fanqi Meng
- Department of Acupuncture, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingwen Deng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Baobao Zhang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuan Gu
- Guangzhou Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Boyu Jiao
- Department of Acupuncture, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haoyu Xu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiuqing Tan
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Xin Zhou
- Department of Acupuncture, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiling Li
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Guanheng He
- Department of Acupuncture, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingwen Ruan
- Department of Acupuncture, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Ding
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Capsoni S, Fogli Iseppe A, Casciano F, Pignatelli A. Unraveling the Role of Dopaminergic and Calretinin Interneurons in the Olfactory Bulb. Front Neural Circuits 2021; 15:718221. [PMID: 34690707 PMCID: PMC8531203 DOI: 10.3389/fncir.2021.718221] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/31/2021] [Indexed: 11/27/2022] Open
Abstract
The perception and discriminating of odors are sensory activities that are an integral part of our daily life. The first brain region where odors are processed is the olfactory bulb (OB). Among the different cell populations that make up this brain area, interneurons play an essential role in this sensory activity. Moreover, probably because of their activity, they represent an exception compared to other parts of the brain, since OB interneurons are continuously generated in the postnatal and adult period. In this review, we will focus on periglomerular (PG) cells which are a class of interneurons found in the glomerular layer of the OB. These interneurons can be classified into distinct subtypes based on their neurochemical nature, based on the neurotransmitter and calcium-binding proteins expressed by these cells. Dopaminergic (DA) periglomerular cells and calretinin (CR) cells are among the newly generated interneurons and play an important role in the physiology of OB. In the OB, DA cells are involved in the processing of odors and the adaptation of the bulbar network to external conditions. The main role of DA cells in OB appears to be the inhibition of glutamate release from olfactory sensory fibers. Calretinin cells are probably the best morphologically characterized interneurons among PG cells in OB, but little is known about their function except for their inhibitory effect on noisy random excitatory signals arriving at the main neurons. In this review, we will mainly describe the electrophysiological properties related to the excitability profiles of DA and CR cells, with a particular view on the differences that characterize DA mature interneurons from cells in different stages of adult neurogenesis.
Collapse
Affiliation(s)
- Simona Capsoni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| | - Alex Fogli Iseppe
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
- Interdepartmental Research Centre for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, Ferrara, Italy
| | - Angela Pignatelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
23
|
Ceanga M, Dahab M, Witte OW, Keiner S. Adult Neurogenesis and Stroke: A Tale of Two Neurogenic Niches. Front Neurosci 2021; 15:700297. [PMID: 34447293 PMCID: PMC8382802 DOI: 10.3389/fnins.2021.700297] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/30/2021] [Indexed: 01/17/2023] Open
Abstract
In the aftermath of an acute stroke, numerous signaling cascades that reshape the brain both in the perilesional zone as well as in more distal regions are activated. Despite continuous improvement in the acute treatment of stroke and the sustained research efforts into the pathophysiology of stroke, we critically lag in our integrated understanding of the delayed and chronic responses to ischemic injury. As such, the beneficial or maladaptive effect of some stroke-induced cellular responses is unclear, restricting the advancement of therapeutic strategies to target long-term complications. A prominent delayed effect of stroke is the robust increase in adult neurogenesis, which raises hopes for a regenerative strategy to counter neurological deficits in stroke survivors. In the adult brain, two regions are known to generate new neurons from endogenous stem cells: the subventricular zone (SVZ) and the dentate subgranular zone (SGZ) of the hippocampus. While both niches respond with an increase in neurogenesis post-stroke, there are significant regional differences in the ensuing stages of survival, migration, and maturation, which may differently influence functional outcome. External interventions such as rehabilitative training add a further layer of complexity by independently modulating the process of adult neurogenesis. In this review we summarize the current knowledge regarding the effects of ischemic stroke on neurogenesis in the SVZ and in the SGZ, and the influence of exogenous stimuli such as motor activity or enriched environment (EE). In addition, we discuss the contribution of SVZ or SGZ post-stroke neurogenesis to sensory, motor and cognitive recovery.
Collapse
Affiliation(s)
- Mihai Ceanga
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Mahmoud Dahab
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W. Witte
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Silke Keiner
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
24
|
Libbrecht S, Van den Haute C, Welkenhuysen M, Braeken D, Haesler S, Baekelandt V. Chronic chemogenetic stimulation of the anterior olfactory nucleus reduces newborn neuron survival in the adult mouse olfactory bulb. J Neurochem 2021; 158:1186-1198. [PMID: 34338310 DOI: 10.1111/jnc.15486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 01/06/2023]
Abstract
During adult rodent life, newborn neurons are added to the olfactory bulb (OB) in a tightly controlled manner. Upon arrival in the OB, input synapses from the local bulbar network and the higher olfactory cortex precede the formation of functional output synapses, indicating a possible role for these regions in newborn neuron survival. An interplay between the environment and the piriform cortex in the regulation of newborn neuron survival has been suggested. However, the specific network and the neuronal cell types responsible for this effect have not been elucidated. Furthermore, the role of the other olfactory cortical areas in this process is not known. Here we demonstrate that pyramidal neurons in the mouse anterior olfactory nucleus, the first cortical area for odor processing, have a key role in the survival of newborn neurons. Using DREADD (Designer Receptors Exclusively Activated by Designer Drugs) technology, we applied chronic stimulation to the anterior olfactory nucleus and observed a decrease in newborn neurons in the OB through induction of apoptosis. These findings provide further insight into the network regulating neuronal survival in adult neurogenesis and strengthen the importance of the surrounding network for sustained integration of new neurons.
Collapse
Affiliation(s)
- Sarah Libbrecht
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Life Science Technologies Department, Imec, Leuven, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | | | - Dries Braeken
- Life Science Technologies Department, Imec, Leuven, Belgium
| | - Sebastian Haesler
- Research Group Neurophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium.,VIB, Leuven, Belgium.,Neuroelectronics Research Flanders, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Büeler H. Mitochondrial and Autophagic Regulation of Adult Neurogenesis in the Healthy and Diseased Brain. Int J Mol Sci 2021; 22:ijms22073342. [PMID: 33805219 PMCID: PMC8036818 DOI: 10.3390/ijms22073342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Adult neurogenesis is a highly regulated process during which new neurons are generated from neural stem cells in two discrete regions of the adult brain: the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus in the hippocampus. Defects of adult hippocampal neurogenesis have been linked to cognitive decline and dysfunction during natural aging and in neurodegenerative diseases, as well as psychological stress-induced mood disorders. Understanding the mechanisms and pathways that regulate adult neurogenesis is crucial to improving preventative measures and therapies for these conditions. Accumulating evidence shows that mitochondria directly regulate various steps and phases of adult neurogenesis. This review summarizes recent findings on how mitochondrial metabolism, dynamics, and reactive oxygen species control several aspects of adult neural stem cell function and their differentiation to newborn neurons. It also discusses the importance of autophagy for adult neurogenesis, and how mitochondrial and autophagic dysfunction may contribute to cognitive defects and stress-induced mood disorders by compromising adult neurogenesis. Finally, I suggest possible ways to target mitochondrial function as a strategy for stem cell-based interventions and treatments for cognitive and mood disorders.
Collapse
Affiliation(s)
- Hansruedi Büeler
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
26
|
Bressan C, Saghatelyan A. Intrinsic Mechanisms Regulating Neuronal Migration in the Postnatal Brain. Front Cell Neurosci 2021; 14:620379. [PMID: 33519385 PMCID: PMC7838331 DOI: 10.3389/fncel.2020.620379] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/08/2020] [Indexed: 01/19/2023] Open
Abstract
Neuronal migration is a fundamental brain development process that allows cells to move from their birthplaces to their sites of integration. Although neuronal migration largely ceases during embryonic and early postnatal development, neuroblasts continue to be produced and to migrate to a few regions of the adult brain such as the dentate gyrus and the subventricular zone (SVZ). In the SVZ, a large number of neuroblasts migrate into the olfactory bulb (OB) along the rostral migratory stream (RMS). Neuroblasts migrate in chains in a tightly organized micro-environment composed of astrocytes that ensheath the chains of neuroblasts and regulate their migration; the blood vessels that are used by neuroblasts as a physical scaffold and a source of molecular factors; and axons that modulate neuronal migration. In addition to diverse sets of extrinsic micro-environmental cues, long-distance neuronal migration involves a number of intrinsic mechanisms, including membrane and cytoskeleton remodeling, Ca2+ signaling, mitochondria dynamics, energy consumption, and autophagy. All these mechanisms are required to cope with the different micro-environment signals and maintain cellular homeostasis in order to sustain the proper dynamics of migrating neuroblasts and their faithful arrival in the target regions. Neuroblasts in the postnatal brain not only migrate into the OB but may also deviate from their normal path to migrate to a site of injury induced by a stroke or by certain neurodegenerative disorders. In this review, we will focus on the intrinsic mechanisms that regulate long-distance neuroblast migration in the adult brain and on how these pathways may be modulated to control the recruitment of neuroblasts to damaged/diseased brain areas.
Collapse
Affiliation(s)
- Cedric Bressan
- CERVO Brain Research Center, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, Canada
| | - Armen Saghatelyan
- CERVO Brain Research Center, Quebec City, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
27
|
Závodská M, Fabianová K, Martončíková M, Raček A, Račeková E. Low Fos expression in newly generated neurons of the main and accessory olfactory bulb following single maternal separation. Stress 2020; 23:678-687. [PMID: 33375878 DOI: 10.1080/10253890.2020.1828337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The main and accessory olfactory bulbs (MOB and AOB) are unique in that they produce new neurons throughout adulthood. Despite the recent knowledge about the involvement of postnatally generated cells in several aspects of olfaction, the functional role of these neurons is still not sufficiently understood. The function of newly generated olfactory bulb neurons is primarily investigated in relation to activities related to smell. Stress-induced activation of new olfactory neurons has not yet been studied. Thus, our work was aimed to investigate whether a stressful event, such as maternal separation (MS) can induce Fos expression in postnatally-born neurons in the MOB and AOB. Rat pups were exposed to single maternal separation (SMS) for 2 h at the postnatal days: P7, P14, and P21. Quantification of immunohistochemically labeled Fos + cells revealed that exposure to SMS in different age stages during the first postnatal month stimulates activity in cells of individual MOB/AOB layers in an age-dependent manner. In order to find out whether newly generated cells in the MOB/AOB could express Fos protein as a response to SMS, newborn rats were administrated with the marker of proliferation, bromodeoxyuridine (BrdU) at P0, and three weeks later (at P21) colocalization of Fos and BrdU in the neurons of the MOB and AOB was assessed. Quantitative analysis of BrdU/Fos double-labeled cells showed that Fos is expressed only in a small number of postnatally generated cells within the MOB/AOB. Our results indicate that postnatally generated MOB/AOB neurons are less sensitive to stress caused by MS than preexisting ones. LAY SUMMARY Our results showed that single maternal separation (SMS) is a stressful event that in age-dependent manner stimulates cellular activity in the main and accessory olfactory bulb (AOB) - the structures dedicated to odor information processing. The low level of Fos expression in newborn neurons of the main and accessory bulb indicates that postnatally generated cells are less sensitive to neonatal stress than preexisting neurons.
Collapse
Affiliation(s)
- Monika Závodská
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Košice, Slovak Republic
| | - Kamila Fabianová
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Košice, Slovak Republic
| | - Marcela Martončíková
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Košice, Slovak Republic
| | - Adam Raček
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovak Republic
| | - Enikő Račeková
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Košice, Slovak Republic
| |
Collapse
|
28
|
Developmental Potential and Plasticity of Olfactory Epithelium Stem Cells Revealed by Heterotopic Grafting in the Adult Brain. Stem Cell Reports 2020; 14:692-702. [PMID: 32243847 PMCID: PMC7160358 DOI: 10.1016/j.stemcr.2020.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
The neural stem cells (NSCs) residing in the olfactory epithelium (OE) regenerate damaged olfactory sensory neurons throughout adulthood. The accessibility and availability of these NSCs in living individuals, including humans, makes them a promising candidate for harvesting their potential for cell replacement therapies. However, this requires an in-depth understanding of their developmental potential after grafting. Here, we investigated the developmental potential and plasticity of mouse OE-derived NSCs after grafting into the adult subventricular zone (SVZ) neurogenic niche. Our results showed that OE-derived NSCs integrate and proliferate just like endogenous SVZ stem cells, migrate with similar dynamics as endogenous neuroblasts toward the olfactory bulb, and mature and acquire similar electrophysiological properties as endogenous adult-born bulbar interneurons. These results reveal the developmental potential and plasticity of OE-derived NSCs in vivo and show that they can respond to heterotopic neurogenic cues to adapt their phenotype and become functional neurons in ectopic brain regions. OE-derived NSCs integrate in the SVZ after heterotopic transplantation OE-derived NSCs respond to SVZ niche factors and change their developmental program The development of OE-derived and SVZ NSCs are indistinguishable OE-derived NSCs grafted into the SVZ become functional bulbar interneurons
Collapse
|
29
|
Andrejew R, Glaser T, Oliveira-Giacomelli Á, Ribeiro D, Godoy M, Granato A, Ulrich H. Targeting Purinergic Signaling and Cell Therapy in Cardiovascular and Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1201:275-353. [PMID: 31898792 DOI: 10.1007/978-3-030-31206-0_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular purines exert several functions in physiological and pathophysiological mechanisms. ATP acts through P2 receptors as a neurotransmitter and neuromodulator and modulates heart contractility, while adenosine participates in neurotransmission, blood pressure, and many other mechanisms. Because of their capability to differentiate into mature cell types, they provide a unique therapeutic strategy for regenerating damaged tissue, such as in cardiovascular and neurodegenerative diseases. Purinergic signaling is pivotal for controlling stem cell differentiation and phenotype determination. Proliferation, differentiation, and apoptosis of stem cells of various origins are regulated by purinergic receptors. In this chapter, we selected neurodegenerative and cardiovascular diseases with clinical trials using cell therapy and purinergic receptor targeting. We discuss these approaches as therapeutic alternatives to neurodegenerative and cardiovascular diseases. For instance, promising results were demonstrated in the utilization of mesenchymal stem cells and bone marrow mononuclear cells in vascular regeneration. Regarding neurodegenerative diseases, in general, P2X7 and A2A receptors mostly worsen the degenerative state. Stem cell-based therapy, mainly through mesenchymal and hematopoietic stem cells, showed promising results in improving symptoms caused by neurodegeneration. We propose that purinergic receptor activity regulation combined with stem cells could enhance proliferative and differentiation rates as well as cell engraftment.
Collapse
Affiliation(s)
- Roberta Andrejew
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Talita Glaser
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Ágatha Oliveira-Giacomelli
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Deidiane Ribeiro
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Mariana Godoy
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil.,Laboratory of Neurodegenerative Diseases, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro Granato
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
30
|
Hunyadi A, Gaál B, Matesz C, Meszar Z, Morawski M, Reimann K, Lendvai D, Alpar A, Wéber I, Rácz É. Distribution and classification of the extracellular matrix in the olfactory bulb. Brain Struct Funct 2019; 225:321-344. [PMID: 31858237 PMCID: PMC6957564 DOI: 10.1007/s00429-019-02010-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 12/11/2019] [Indexed: 11/30/2022]
Abstract
Extracellular matrix (ECM) became an important player over the last few decades when studying the plasticity and regeneration of the central nervous system. In spite of the established role of ECM in these processes throughout the central nervous system (CNS), only few papers were published on the ECM of the olfactory system, which shows a lifelong plasticity, synaptic remodeling and postnatal neurogenesis. In the present study, we have described the localization and organization of major ECM molecules, the hyaluronan, the lecticans, tenascin-R and HAPLN1 link protein in the olfactory bulb (OB) of the rat. We detected all of these molecules in the OB showing differences in the molecular composition, staining intensity, and organization of ECM between the layers and in some cases within a single layer. One of the striking features of ECM staining pattern in the OB was that the reactions are shown dominantly in the neuropil, the PNNs were found rarely and they exhibited thin or diffuse appearance Similar organization was shown in human and mice samples. As the PNN limits the neural plasticity, its rare appearance may be related to the high degree of plasticity in the OB.
Collapse
Affiliation(s)
- Andrea Hunyadi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen, 4032, Hungary
| | - Botond Gaál
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen, 4032, Hungary
| | - Clara Matesz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen, 4032, Hungary.,Division of Oral Anatomy, Faculty of Dentistry, University of Debrecen, Nagyerdei krt. 98., Debrecen, 4032, Hungary.,MTA-DE Neuroscience Research Group, Nagyerdei krt. 98., Debrecen, 4032, Hungary
| | - Zoltan Meszar
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen, 4032, Hungary.,MTA-DE Neuroscience Research Group, Nagyerdei krt. 98., Debrecen, 4032, Hungary
| | - Markus Morawski
- Paul-Flechsig-Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Katja Reimann
- Paul-Flechsig-Institute of Brain Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - David Lendvai
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, 1085, Hungary
| | - Alan Alpar
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, 1085, Hungary.,SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Semmelweis University, Budapest, 1085, Hungary
| | - Ildikó Wéber
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen, 4032, Hungary
| | - Éva Rácz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen, 4032, Hungary. .,MTA-DE Neuroscience Research Group, Nagyerdei krt. 98., Debrecen, 4032, Hungary.
| |
Collapse
|
31
|
Khacho M, Harris R, Slack RS. Mitochondria as central regulators of neural stem cell fate and cognitive function. Nat Rev Neurosci 2019; 20:34-48. [PMID: 30464208 DOI: 10.1038/s41583-018-0091-3] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Emerging evidence now indicates that mitochondria are central regulators of neural stem cell (NSC) fate decisions and are crucial for both neurodevelopment and adult neurogenesis, which in turn contribute to cognitive processes in the mature brain. Inherited mutations and accumulated damage to mitochondria over the course of ageing serve as key factors underlying cognitive defects in neurodevelopmental disorders and neurodegenerative diseases, respectively. In this Review, we explore the recent findings that implicate mitochondria as crucial regulators of NSC function and cognition. In this respect, mitochondria may serve as targets for stem-cell-based therapies and interventions for cognitive defects.
Collapse
Affiliation(s)
- Mireille Khacho
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, Ontario, Canada
| | - Richard Harris
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Ruth S Slack
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
32
|
Tepe B, Hill MC, Pekarek BT, Hunt PJ, Martin TJ, Martin JF, Arenkiel BR. Single-Cell RNA-Seq of Mouse Olfactory Bulb Reveals Cellular Heterogeneity and Activity-Dependent Molecular Census of Adult-Born Neurons. Cell Rep 2019; 25:2689-2703.e3. [PMID: 30517858 PMCID: PMC6342206 DOI: 10.1016/j.celrep.2018.11.034] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/18/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022] Open
Abstract
Cellular heterogeneity within the mammalian brain poses a challenge
toward understanding its complex functions. Within the olfactory bulb, odor
information is processed by subtypes of inhibitory interneurons whose
heterogeneity and functionality are influenced by ongoing adult neurogenesis. To
investigate this cellular heterogeneity and better understand adult-born neuron
development, we utilized single-cell RNA sequencing and computational modeling
to reveal diverse and transcriptionally distinct neuronal and nonneuronal cell
types. We also analyzed molecular changes during adult-born interneuron
maturation and uncovered developmental programs within their gene expression
profiles. Finally, we identified that distinct neuronal subtypes are
differentially affected by sensory experience. Together, these data provide a
transcriptome-based foundation for investigating subtype-specific neuronal
function in the olfactory bulb (OB), charting the molecular profiles that arise
during the maturation and integration of adult-born neurons and how they
dynamically change in an activity-dependent manner. Using single-cell sequencing, Tepe et al. describe cellular heterogeneity
in the mouse olfactory bulb, uncover markers for each cell type, and reveal
differentially regulated genes in adult-born neurons. These findings provide a
framework for studying cell-type-specific functions and circuit integration in
the mammalian brain.
Collapse
Affiliation(s)
- Burak Tepe
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew C Hill
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brandon T Pekarek
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patrick J Hunt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas J Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James F Martin
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; The Texas Heart Institute, 6770 Bertner Avenue, Houston, TX 77030, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Benjamin R Arenkiel
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; McNair Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
33
|
Figueres-Oñate M, Sánchez-Villalón M, Sánchez-González R, López-Mascaraque L. Lineage Tracing and Cell Potential of Postnatal Single Progenitor Cells In Vivo. Stem Cell Reports 2019; 13:700-712. [PMID: 31543472 PMCID: PMC6829765 DOI: 10.1016/j.stemcr.2019.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 01/01/2023] Open
Abstract
Understanding the contribution of adult neural progenitor cells (NPCs) and their lineage potential is a great challenge in neuroscience. To reveal progenitor diversity and cell-lineage relationships of postnatal NPCs in the subventricular zone (SVZ), we performed in vivo lineage-tracing genetic analysis using the UbC-StarTrack. We determined the progeny of single SVZ-NPCs, the number of cells per clone, the dispersion of sibling cells, and the cell types within clones. Long-term analysis revealed that both the cell-dispersion pattern and number of cells comprising clones varied depending on the glial/neuronal nature of sibling cells. Sibling-olfactory interneurons were primarily located within the same layer, while sibling-glial cells populated SVZ-adjacent areas. Sibling astrocytes and interneurons did not form big clones, whereas oligodendroglial-lineage clones comprised the largest clones originated in adult brains. These results demonstrate the existence of SVZ postnatal bipotential progenitors that give rise to clones widely dispersed across the olfactory bulb and SVZ-adjacent areas. Bipotent postnatal progenitors produce clones of olfactory neurons and glial cells Different clonal cell patterns in astroglial, oligodendroglial, and neuronal lineages Sibling neuroblasts migrating to the olfactory bulb widespread along the RMS axis Sibling astrocytes and interneurons form discrete cell clones
Collapse
|
34
|
Ceci M, Mariano V, Romano N. Zebrafish as a translational regeneration model to study the activation of neural stem cells and role of their environment. Rev Neurosci 2019; 30:45-66. [PMID: 30067512 DOI: 10.1515/revneuro-2018-0020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023]
Abstract
The review is an overview of the current knowledge of neuronal regeneration properties in mammals and fish. The ability to regenerate the damaged parts of the nervous tissue has been demonstrated in all vertebrates. Notably, fish and amphibians have the highest capacity for neurogenesis, whereas reptiles and birds are able to only regenerate specific regions of the brain, while mammals have reduced capacity for neurogenesis. Zebrafish (Danio rerio) is a promising model of study because lesions in the brain or complete cross-section of the spinal cord are followed by an effective neuro-regeneration that successfully restores the motor function. In the brain and the spinal cord of zebrafish, stem cell activity is always able to re-activate the molecular programs required for central nervous system regeneration. In mammals, traumatic brain injuries are followed by reduced neurogenesis and poor axonal regeneration, often insufficient to functionally restore the nervous tissue, while spinal injuries are not repaired at all. The environment that surrounds the stem cell niche constituted by connective tissue and stimulating factors, including pro-inflammation molecules, seems to be a determinant in triggering stem cell proliferation and/or the trans-differentiation of connective elements (mainly fibroblasts). Investigating and comparing the neuronal regeneration in zebrafish and mammals may lead to a better understanding of the mechanisms behind neurogenesis, and the failure of the regenerative response in mammals, first of all, the role of inflammation, considered the main inhibitor of the neuronal regeneration.
Collapse
Affiliation(s)
- Marcello Ceci
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell'Università, I-01100 Viterbo, Italy
| | - Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Nicla Romano
- Department of Ecological and Biological Sciences, University of Tuscia, largo dell'Università, I-01100 Viterbo, Italy
| |
Collapse
|
35
|
The Impact of Ethologically Relevant Stressors on Adult Mammalian Neurogenesis. Brain Sci 2019; 9:brainsci9070158. [PMID: 31277460 PMCID: PMC6680763 DOI: 10.3390/brainsci9070158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
Adult neurogenesis—the formation and functional integration of adult-generated neurons—remains a hot neuroscience topic. Decades of research have identified numerous endogenous (such as neurotransmitters and hormones) and exogenous (such as environmental enrichment and exercise) factors that regulate the various neurogenic stages. Stress, an exogenous factor, has received a lot of attention. Despite the large number of reviews discussing the impact of stress on adult neurogenesis, no systematic review on ethologically relevant stressors exists to date. The current review details the effects of conspecifically-induced psychosocial stress (specifically looking at the lack or disruption of social interactions and confrontation) as well as non-conspecifically-induced stress on mammalian adult neurogenesis. The underlying mechanisms, as well as the possible functional role of the altered neurogenesis level, are also discussed. The reviewed data suggest that ethologically relevant stressors reduce adult neurogenesis.
Collapse
|
36
|
Nemirovich-Danchenko NM, Khodanovich MY. New Neurons in the Post-ischemic and Injured Brain: Migrating or Resident? Front Neurosci 2019; 13:588. [PMID: 31275097 PMCID: PMC6591486 DOI: 10.3389/fnins.2019.00588] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/23/2019] [Indexed: 12/11/2022] Open
Abstract
The endogenous potential of adult neurogenesis is of particular interest for the development of new strategies for recovery after stroke and traumatic brain injury. These pathological conditions affect endogenous neurogenesis in two aspects. On the one hand, injury usually initiates the migration of neuronal precursors (NPCs) to the lesion area from the already existing, in physiological conditions, neurogenic niche - the ventricular-subventricular zone (V-SVZ) near the lateral ventricles. On the other hand, recent studies have convincingly demonstrated the local generation of new neurons near lesion areas in different brain locations. The striatum, cortex, and hippocampal CA1 region are considered to be locations of such new neurogenic zones in the damaged brain. This review focuses on the relative contribution of two types of NPCs of different origin, resident population in new neurogenic zones and cells migrating from the lateral ventricles, to post-stroke or post-traumatic enhancement of neurogenesis. The migratory pathways of NPCs have also been considered. In addition, the review highlights the advantages and limitations of different methodological approaches to the definition of NPC location and tracking of new neurons. In general, we suggest that despite the considerable number of studies, we still lack a comprehensive understanding of neurogenesis in the damaged brain. We believe that the advancement of methods for in vivo visualization and longitudinal observation of neurogenesis in the brain could fundamentally change the current situation in this field.
Collapse
Affiliation(s)
| | - Marina Yu. Khodanovich
- Laboratory of Neurobiology, Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russia
| |
Collapse
|
37
|
Yao W, Liu W, Deng K, Wang Z, Wang DH, Zhang XY. GnRH expression and cell proliferation are associated with seasonal breeding and food hoarding in Mongolian gerbils (Meriones unguiculatus). Horm Behav 2019; 112:42-53. [PMID: 30922890 DOI: 10.1016/j.yhbeh.2019.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
Abstract
Seasonal brain plasticity contributes to a variety of physiological and behavioral processes. We hypothesized that variations in GnRH expression and cell proliferation facilitated seasonal breeding and food hoarding. Here, we reported seasonal changes in sexual and social behavior, GnRH expression and brain cell proliferation, and the role of photoperiod in inducing seasonal breeding and brain plasticity in Mongolian gerbils (Meriones unguiculatus). The gerbils captured in April and July had more mature sexual development, higher exploratory behavior, and preferred novelty much more than those captured in September. Male gerbils captured in April and July had consistently higher GnRH expression than those captured in September. GnRH expression was also found to be suppressed by food-induced hoarding behavior in the breeding season. Both subadult and adult gerbils from April and July had higher cell proliferation in SVZ, hypothalamus and amygdala compared to those in September. However, adult gerbils captured in September preferred familiar objects, and no seasonal differences were found in cell proliferation in hippocampal dentate gyrus among the three seasons. The laboratory study showed that photoperiod alone did not alter reproductive traits, behavior, cell proliferation or cell survival in the detected brain regions. These findings suggest that the structural variations in GnRH expression in hypothalamus and cell proliferation in hypothalamus, amygdala and hippocampus are associated with seasonal breeding and food hoarding in gerbils. It gives a new insight into the proximate physiological and neural basis for these seasonal life-history traits of breeding and food hoarding in small mammals.
Collapse
Affiliation(s)
- Wei Yao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Health Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Wei Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Deng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
38
|
Ziegler AN, Feng Q, Chidambaram S, Testai JM, Kumari E, Rothbard DE, Constancia M, Sandovici I, Cominski T, Pang K, Gao N, Wood TL, Levison SW. Insulin-like Growth Factor II: An Essential Adult Stem Cell Niche Constituent in Brain and Intestine. Stem Cell Reports 2019; 12:816-830. [PMID: 30905741 PMCID: PMC6450461 DOI: 10.1016/j.stemcr.2019.02.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 02/02/2023] Open
Abstract
Tissue-specific stem cells have unique properties and growth requirements, but a small set of juxtacrine and paracrine signals have been identified that are required across multiple niches. Whereas insulin-like growth factor II (IGF-II) is necessary for prenatal growth, its role in adult stem cell physiology is largely unknown. We show that loss of Igf2 in adult mice resulted in a ∼50% reduction in slowly dividing, label-retaining cells in the two regions of the brain that harbor neural stem cells. Concordantly, induced Igf2 deletion increased newly generated neurons in the olfactory bulb accompanied by hyposmia, and caused impairments in learning and memory and increased anxiety. Induced Igf2 deletion also resulted in rapid loss of stem and progenitor cells in the crypts of Lieberkühn, leading to body-weight loss and lethality and the inability to produce organoids in vitro. These data demonstrate that IGF-II is critical for multiple adult stem cell niches.
Collapse
Affiliation(s)
- Amber N. Ziegler
- Department Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Qiang Feng
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102, USA
| | - Shravanthi Chidambaram
- Department Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Jaimie M. Testai
- Department Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Ekta Kumari
- Department Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Deborah E. Rothbard
- Department Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Miguel Constancia
- University of Cambridge Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology, Cambridge CB2 0SW, UK,National Institute for Health Research Cambridge Biomedical Research Centre, The University of Cambridge, Cambridge CB2 0SW, UK,Centre for Trophoblast Research, The University of Cambridge, Cambridge CB2 0SW, UK
| | - Ionel Sandovici
- University of Cambridge Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Department of Obstetrics and Gynaecology, Cambridge CB2 0SW, UK,Centre for Trophoblast Research, The University of Cambridge, Cambridge CB2 0SW, UK
| | - Tara Cominski
- Department Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Kevin Pang
- Department Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102, USA
| | - Teresa L. Wood
- Department Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Steven W. Levison
- Department Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA,Corresponding author
| |
Collapse
|
39
|
Obernier K, Alvarez-Buylla A. Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain. Development 2019; 146:146/4/dev156059. [PMID: 30777863 DOI: 10.1242/dev.156059] [Citation(s) in RCA: 351] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the adult rodent brain, neural stem cells (NSCs) persist in the ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ), which are specialized niches in which young neurons for the olfactory bulb (OB) and hippocampus, respectively, are generated. Recent studies have significantly modified earlier views on the mechanisms of NSC self-renewal and neurogenesis in the adult brain. Here, we discuss the molecular control, heterogeneity, regional specification and cell division modes of V-SVZ NSCs, and draw comparisons with NSCs in the SGZ. We highlight how V-SVZ NSCs are regulated by local signals from their immediate neighbors, as well as by neurotransmitters and factors that are secreted by distant neurons, the choroid plexus and vasculature. We also review recent advances in single cell RNA analyses that reveal the complexity of adult neurogenesis. These findings set the stage for a better understanding of adult neurogenesis, a process that one day may inspire new approaches to brain repair.
Collapse
Affiliation(s)
- Kirsten Obernier
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA .,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
40
|
Abstract
Adult neurogenesis continues to captivate the curiosity of the scientific community; and researchers seem to have a particular interest in identifying the functional implications of such plasticity. While the majority of research focuses on the association between adult neurogenesis and learning and memory (including spatial learning associated with hippocampal neurogenesis and olfactory discrimination associated with neurogenesis in the olfactory system), the following review will explore the link to motivated behaviors. In particular, goal-directed behaviors such as sociosexual, parental, aggressive, as well as depression- and anxiety-like behaviors and their reciprocal association to adult neurogenesis will be evaluated. The review will detail research in humans and other mammalian species. Furthermore, the potential mechanisms underlying these neurogenic alterations will be highlighted. Lastly, the review will conclude with a discussion on the functional significance of these newly generated cells in mediating goal-directed behaviors.
Collapse
Affiliation(s)
- Claudia Jorgensen
- Behavioral Science Department, Utah Valley University, Orem, Utah, USA
| |
Collapse
|
41
|
Coppola DM, White LE. Forever young: Neoteny, neurogenesis and a critique of critical periods in olfaction. J Bioenerg Biomembr 2018; 51:53-63. [PMID: 30421031 DOI: 10.1007/s10863-018-9778-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022]
Abstract
The critical period concept has been one of the most transcendent in science, education, and society forming the basis of our fixation on 'quality' of childhood experiences. The neural basis of this process has been revealed in developmental studies of visual, auditory and somatosensory maps and their enduring modification through manipulations of experience early in life. Olfaction, too, possesses a number of phenomena that share key characteristics with classical critical periods like sensitive temporal windows and experience dependence. In this review, we analyze the candidate critical period-like phenomena in olfaction and find them disanalogous to classical critical periods in other sensory systems in several important ways. This leads us to speculate as to why olfaction may be alone among exteroceptive systems in lacking classical critical periods and how life-long neurogenesis of olfactory sensory neurons and bulbar interneurons-a neotenic vestige-- relates to the structure and function of the mammalian olfactory system.
Collapse
Affiliation(s)
- David M Coppola
- Department of Biology, Randolph Macon College, Ashland, VA, 23005, USA.
| | - Leonard E White
- Department of Neurology, Duke Institute for Brain Sciences, Duke University School of Medicine, Durham, NC, 27708, USA
| |
Collapse
|
42
|
Adams KV, Morshead CM. Neural stem cell heterogeneity in the mammalian forebrain. Prog Neurobiol 2018; 170:2-36. [PMID: 29902499 DOI: 10.1016/j.pneurobio.2018.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 05/23/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022]
Abstract
The brain was long considered an organ that underwent very little change after development. It is now well established that the mammalian central nervous system contains neural stem cells that generate progeny that are capable of making new neurons, astrocytes, and oligodendrocytes throughout life. The field has advanced rapidly as it strives to understand the basic biology of these precursor cells, and explore their potential to promote brain repair. The purpose of this review is to present current knowledge about the diversity of neural stem cells in vitro and in vivo, and highlight distinctions between neural stem cell populations, throughout development, and within the niche. A comprehensive understanding of neural stem cell heterogeneity will provide insights into the cellular and molecular regulation of neural development and lifelong neurogenesis, and will guide the development of novel strategies to promote regeneration and neural repair.
Collapse
Affiliation(s)
- Kelsey V Adams
- Institute of Medical Science, Terrence Donnelly Centre, University of Toronto, Toronto ON, M5S 3E2, Canada.
| | - Cindi M Morshead
- Institute of Medical Science, Terrence Donnelly Centre, University of Toronto, Toronto ON, M5S 3E2, Canada; Department of Surgery, Division of Anatomy, Canada; Institute of Biomaterials and Biomedical Engineering, Canada; Rehabilitation Science Institute, University of Toronto, Canada.
| |
Collapse
|
43
|
Pavlaki I, Alammari F, Sun B, Clark N, Sirey T, Lee S, Woodcock DJ, Ponting CP, Szele FG, Vance KW. The long non-coding RNA Paupar promotes KAP1-dependent chromatin changes and regulates olfactory bulb neurogenesis. EMBO J 2018; 37:embj.201798219. [PMID: 29661885 PMCID: PMC5978383 DOI: 10.15252/embj.201798219] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 01/08/2023] Open
Abstract
Many long non‐coding RNAs (lncRNAs) are expressed during central nervous system (CNS) development, yet their in vivo roles and mechanisms of action remain poorly understood. Paupar, a CNS‐expressed lncRNA, controls neuroblastoma cell growth by binding and modulating the activity of transcriptional regulatory elements in a genome‐wide manner. We show here that the Paupar lncRNA directly binds KAP1, an essential epigenetic regulatory protein, and thereby regulates the expression of shared target genes important for proliferation and neuronal differentiation. Paupar promotes KAP1 chromatin occupancy and H3K9me3 deposition at a subset of distal targets, through the formation of a ribonucleoprotein complex containing Paupar, KAP1 and the PAX6 transcription factor. Paupar‐KAP1 genome‐wide co‐occupancy reveals a fourfold enrichment of overlap between Paupar and KAP1 bound sequences, the majority of which also appear to associate with PAX6. Furthermore, both Paupar and Kap1 loss‐of‐function in vivo disrupt olfactory bulb neurogenesis. These observations provide important conceptual insights into the trans‐acting modes of lncRNA‐mediated epigenetic regulation and the mechanisms of KAP1 genomic recruitment, and identify Paupar and Kap1 as regulators of neurogenesis in vivo.
Collapse
Affiliation(s)
- Ioanna Pavlaki
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Farah Alammari
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Bin Sun
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Neil Clark
- MRC Human Genetics Unit, The Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Tamara Sirey
- MRC Human Genetics Unit, The Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Sheena Lee
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Dan J Woodcock
- Warwick Systems Biology Centre, University of Warwick, Coventry, UK
| | - Chris P Ponting
- MRC Human Genetics Unit, The Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Keith W Vance
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
44
|
|
45
|
Redolfi N, Galla L, Maset A, Murru L, Savoia E, Zamparo I, Gritti A, Billuart P, Passafaro M, Lodovichi C. Oligophrenin-1 regulates number, morphology and synaptic properties of adult-born inhibitory interneurons in the olfactory bulb. Hum Mol Genet 2017; 25:5198-5211. [PMID: 27742778 DOI: 10.1093/hmg/ddw340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/28/2016] [Indexed: 12/27/2022] Open
Abstract
Among the X-linked genes associated with intellectual disability, Oligophrenin-1 (OPHN1) encodes for a Rho GTPase-activating protein, a key regulator of several developmental processes, such as dendrite and spine formation and synaptic activity. Inhibitory interneurons play a key role in the development and function of neuronal circuits. Whether a mutation of OPHN1 can affect morphology and synaptic properties of inhibitory interneurons remains poorly understood. To address these open questions, we studied in a well-established mouse model of X-linked intellectual disability, i.e. a line of mice carrying a null mutation of OPHN1, the development and function of adult generated inhibitory interneurons in the olfactory bulb. Combining quantitative morphological analysis and electrophysiological recordings we found that the adult generated inhibitory interneurons were dramatically reduced in number and exhibited a higher proportion of filopodia-like spines, with the consequences on their synaptic function, in OPHN1 ko mice. Furthermore, we found that olfactory behaviour was perturbed in OPHN1 ko mice. Chronic treatment with a Rho kinase inhibitor rescued most of the defects of the newly generated neurons. Altogether, our data indicated that OPHN1 plays a key role in regulating the number, morphology and function of adult-born inhibitory interneurons and contributed to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Nelly Redolfi
- Neuroscience Institute - CNR, Padova, Italy.,VIMM Padova, Italy
| | - Luisa Galla
- Neuroscience Institute - CNR, Padova, Italy.,VIMM Padova, Italy
| | | | - Luca Murru
- Neuroscience Institute, CNR, Milano, Italy
| | | | | | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (TIGET) Milano, Italy
| | | | | | | |
Collapse
|
46
|
Fidaleo M, Cavallucci V, Pani G. Nutrients, neurogenesis and brain ageing: From disease mechanisms to therapeutic opportunities. Biochem Pharmacol 2017; 141:63-76. [PMID: 28539263 DOI: 10.1016/j.bcp.2017.05.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023]
Abstract
Appreciation of the physiological relevance of mammalian adult neurogenesis has in recent years rapidly expanded from a phenomenon of homeostatic cell replacement and brain repair to the current view of a complex process involved in high order cognitive functions. In parallel, an array of endogenous or exogenous triggers of neurogenesis has also been identified, among which metabolic and nutritional cues have drawn significant attention. Converging evidence from animal and in vitro studies points to nutrient sensing and energy metabolism as major physiological determinants of neural stem cell fate, and modulators of the whole neurogenic process. While the cellular and molecular circuitries underlying metabolic regulation of neurogenesis are still incompletely understood, the key role of mitochondrial activity and dynamics, and the importance of autophagy have begun to be fully appreciated; moreover, nutrient-sensitive pathways and transducers such as the insulin-IGF cascade, the AMPK/mTOR axis and the transcription regulators CREB and Sirt-1 have been included, beside more established "developmental" signals like Notch and Wnt, in the molecular networks that dictate neural-stem-cell self-renewal, migration and differentiation in response to local and systemic inputs. Many of these nutrient-related cascades are deregulated in the contest of metabolic diseases and in ageing, and may contribute to impaired neurogenesis and thus to cognition defects observed in these conditions. Importantly, accumulating knowledge on the metabolic control of neurogenesis provides a theoretical framework for the trial of new or repurposed drugs capable of interfering with nutrient sensing as enhancers of neurogenesis in the context of neurodegeneration and brain senescence.
Collapse
Affiliation(s)
- Marco Fidaleo
- Institute of General Pathology, Università Cattolica School of Medicine, 00168 Rome, Italy
| | - Virve Cavallucci
- Institute of General Pathology, Università Cattolica School of Medicine, 00168 Rome, Italy
| | - Giovambattista Pani
- Institute of General Pathology, Università Cattolica School of Medicine, 00168 Rome, Italy.
| |
Collapse
|
47
|
Alizadeh R, Hassanzadeh G, Joghataei MT, Soleimani M, Moradi F, Mohammadpour S, Ghorbani J, Safavi A, Sarbishegi M, Pirhajati Mahabadi V, Alizadeh L, Hadjighassem M. In vitro differentiation of neural stem cells derived from human olfactory bulb into dopaminergic‐like neurons. Eur J Neurosci 2017; 45:773-784. [DOI: 10.1111/ejn.13504] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 12/25/2022]
Abstract
AbstractThis study describes a new accessible source of neuronal stem cells that can be used in Parkinson's disease cell transplant. The human olfactory bulb contains neural stem cells (NSCs) that are responsible for neurogenesis in the brain and the replacement of damaged cellular components throughout life. NSCs are capable of differentiating into neuronal and glial cells. We isolated NSCs from the olfactory bulb of brain‐death donors and differentiated them into dopaminergic neurons. The olfactory bulb tissues obtained were cultured in Dulbecco's modified Eagle's medium/nutrient mixture F12, B27 supplemented with basic fibroblast growth factor, epidermal growth factor and leukemia inhibitory factor. The NSCs and proliferation markers were assessed. The multipotentiality of olfactory bulb NSCs was demonstrated by their capacity to differentiate into neurons, oligodendrocytes and astrocytes. To generate dopaminergic neurons, olfactory bulb NSCs were differentiated in neurobasal medium, supplemented with B27, and treated with sonic hedgehog, fibroblast growth factor 8 and glial cell‐derived neurotrophic factor from the 7th to the 21st day, followed by detection of dopaminergic neuronal markers including tyrosine hydroxylase and aromatic l‐amino acid decarboxylase. The cells were expanded, established in continuous cell lines and differentiated into the two classical neuronal phenotypes. The percentage of co‐positive cells (microtubule‐associated protein 2 and tyrosine hydroxylase; aromatic l‐amino acid decarboxylase and tyrosine hydroxylase) in the treated cells was significantly higher than in the untreated cells. These results illustrate the existence of multipotent NSCs in the adult human olfactory bulb that are capable of differentiating toward putative dopaminergic neurons in the presence of trophic factors. Taken together, our data encourage further investigations of the possible use of olfactory bulb NSCs as a promising cell‐based therapeutic strategy for Parkinson's disease.
Collapse
Affiliation(s)
- Rafieh Alizadeh
- Cellular and Molecular Research Center School of Medicine Iran University of Medical Sciences Tehran Iran
- ENT and Head & Neck Research Center and Department Hazrat Rasoul Akram Hospital Iran University of Medical Sciences (IUMS) Tehran Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center School of Medicine Iran University of Medical Sciences Tehran Iran
- Department of Anatomy School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center School of Medicine Iran University of Medical Sciences Tehran Iran
- Department of Anatomy School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Fatemeh Moradi
- Cellular and Molecular Research Center School of Medicine Iran University of Medical Sciences Tehran Iran
- Department of Anatomy School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Shahram Mohammadpour
- Cellular and Molecular Research Center School of Medicine Iran University of Medical Sciences Tehran Iran
- Department of Anatomy School of Medicine Iran University of Medical Sciences Tehran Iran
- Department of Anatomy School of Medicine Ilam University of Medical Sciences Ilam Iran
| | - Jahangir Ghorbani
- Organ Procurement and Transplant Unit (OPTU) Faculty of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Ali Safavi
- Organ Procurement and Transplant Unit (OPTU) Faculty of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Maryam Sarbishegi
- Department of Anatomy School of Medicine Zahedan University of Medical Sciences Zahedan Iran
| | - Vahid Pirhajati Mahabadi
- ENT and Head & Neck Research Center and Department Hazrat Rasoul Akram Hospital Iran University of Medical Sciences (IUMS) Tehran Iran
- Department of Anatomy School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Leila Alizadeh
- Shefa Neuroscience Research Center Khatam‐Alanbia Hospital, Department of Neuroscience, School of Advanced Technologies in Medicine Tehran Iran
| | - Mahmoudreza Hadjighassem
- Brain and Spinal Cord Injury Research Center Imam Khomeinin Hospital Blv Keshavarz, Tehran University of Medical Sciences Tehran 1419733141 Iran
- School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
48
|
Kawashima F, Saito K, Kurata H, Maegaki Y, Mori T. c-jun is differentially expressed in embryonic and adult neural precursor cells. Histochem Cell Biol 2017; 147:721-731. [PMID: 28091742 DOI: 10.1007/s00418-016-1536-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/25/2016] [Indexed: 12/23/2022]
Abstract
c-jun, a major component of AP-1 transcription factor, has a wide variety of functions. In the embryonic brain, c-jun mRNA is abundantly expressed in germinal layers around the ventricles. Although the subventricular zone (SVZ) of the adult brain is a derivative of embryonic germinal layers and contains neural precursor cells (NPCs), the c-jun expression pattern is not clear. To study the function of c-jun in adult neurogenesis, we analyzed c-jun expression in the adult SVZ by immunohistochemistry and compared it with that of the embryonic brain. We found that almost all proliferating embryonic NPCs expressed c-jun, but the number of c-jun immunopositive cells among proliferating adult NPCs was about half. In addition, c-jun was hardly expressed in post-mitotic migrating neurons in the embryonic brain, but the majority of c-jun immunopositive cells were tangentially migrating neuroblasts heading toward the olfactory bulb in the adult brain. In addition, status epilepticus is known to enhance the transient proliferation of adult NPCs, but the c-jun expression pattern was not significantly affected. These expression patterns suggest that c-jun has a pivotal role in the proliferation of embryonic NPCs, but it has also other roles in adult neurogenesis.
Collapse
Affiliation(s)
- Fumiaki Kawashima
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Kengo Saito
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Hirofumi Kurata
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.,Division of Child Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Yoshihiro Maegaki
- Division of Child Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori, 683-8504, Japan
| | - Tetsuji Mori
- Department of Biological Regulation, School of Health Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| |
Collapse
|
49
|
Cannabinoids as Regulators of Neural Development and Adult Neurogenesis. STEM CELL BIOLOGY AND REGENERATIVE MEDICINE 2017. [DOI: 10.1007/978-3-319-49343-5_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
50
|
Conover JC, Todd KL. Development and aging of a brain neural stem cell niche. Exp Gerontol 2016; 94:9-13. [PMID: 27867091 DOI: 10.1016/j.exger.2016.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/02/2016] [Accepted: 11/10/2016] [Indexed: 01/19/2023]
Abstract
In the anterior forebrain, along the lateral wall of the lateral ventricles, a neurogenic stem cell niche is found in a region referred to as the ventricular-subventricular zone (V-SVZ). In rodents, robust V-SVZ neurogenesis provides new neurons to the olfactory bulb throughout adulthood; however, with increasing age stem cell numbers are reduced and neurogenic capacity is significantly diminished, but new olfactory bulb neurons continue to be produced even in old age. Humans, in contrast, show little to no new neurogenesis after two years of age and whether V-SVZ neural stem cells persist in the adult human brain remains unclear. Here, we review functional and organizational differences in the V-SVZ stem cell niche of mice and humans, and examine how aging affects the V-SVZ niche and its associated functions.
Collapse
Affiliation(s)
- Joanne C Conover
- Department of Physiology and Neurobiology, Institute for Brain and Cognitive Sciences, Center for Aging, University of Connecticut, Storrs, CT 06269, United States.
| | - Krysti L Todd
- Department of Physiology and Neurobiology, Institute for Brain and Cognitive Sciences, Center for Aging, University of Connecticut, Storrs, CT 06269, United States
| |
Collapse
|