1
|
Bao X, Feng X, Huang H, Li M, Chen D, Wang Z, Li J, Huang Q, Cai Y, Li Y. Day-night hyperarousal in tinnitus patients. Sleep Med 2025; 131:106519. [PMID: 40262425 DOI: 10.1016/j.sleep.2025.106519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/24/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
Tinnitus, which affects 12-30 % of the population, is associated with sleep disturbances and daytime dysfunction, yet the neural mechanisms that link wake-up states remain unclear. This study investigated electroencephalographic (EEG) characteristics of 51 tinnitus patients and 51 controls across wakefulness (eyes-open, eyes-closed, mental arithmetic) and sleep stages (N1, N2, N3, REM) to clarify day-night pathological mechanisms. The key findings showed persistent hyperarousal in tinnitus: wakefulness revealed enhanced gamma power (30-45 Hz) in eyes-closed and task states, while sleep demonstrated elevated gamma/beta power across all stages accompanied by reduced delta/theta power in deep sleep (N2/N3).). An analysis of sleep structure indicates impaired stability in maintaining the N2 stage among tinnitus patients, corroborating a reduction in N3 duration and an increased proportion of the N2 stage. From the wake states to the sleep stages, group × state interactions for the delta/theta power suggest an impaired state regulation capacity in tinnitus patients. Correlation clustering further revealed aberrant integration of wake-related gamma/beta activity into non-rapid eye movement sleep, indicating neuroplastic overgeneralization of wake hyperarousal into sleep. These results extend the so-called loss-of-inhibition theory to sleep, proposing that deficient low-frequency oscillations fail to suppress hyperarousal, impairing sleep-dependent neuroplasticity, and perpetuating daytime symptoms. Furthermore, this study establishes sleep as a critical therapeutic target to interrupt the 24-h dysfunctional cycle of tinnitus.
Collapse
Affiliation(s)
- Xiaoyu Bao
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Research Center for Brain Machine Intelligence, Pazhou Lab, Guangzhou, 510005, China
| | - Xueji Feng
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Research Center for Brain Machine Intelligence, Pazhou Lab, Guangzhou, 510005, China
| | - Haiyun Huang
- School of Artificial Intelligence, South China Normal University, Foshan, 528225, China; Research Center for Brain Machine Intelligence, Pazhou Lab, Guangzhou, 510005, China
| | - Man Li
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Research Center for Brain Machine Intelligence, Pazhou Lab, Guangzhou, 510005, China
| | - Di Chen
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Research Center for Brain Machine Intelligence, Pazhou Lab, Guangzhou, 510005, China
| | - Zijian Wang
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Research Center for Brain Machine Intelligence, Pazhou Lab, Guangzhou, 510005, China
| | - Jiahong Li
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China
| | - Qiyun Huang
- Research Center for Brain Machine Intelligence, Pazhou Lab, Guangzhou, 510005, China.
| | - Yuexin Cai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yuanqing Li
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Research Center for Brain Machine Intelligence, Pazhou Lab, Guangzhou, 510005, China.
| |
Collapse
|
2
|
Lashaki RA, Raeisi Z, Sodagartojgi A, Abedi Lomer F, Aghdaei E, Najafzadeh H. EEG microstate analysis in trigeminal neuralgia: identifying potential biomarkers for enhanced diagnostic accuracy. Acta Neurol Belg 2025:10.1007/s13760-025-02812-0. [PMID: 40418510 DOI: 10.1007/s13760-025-02812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 05/11/2025] [Indexed: 05/27/2025]
Abstract
OBJECTIVE This study investigated EEG microstate dynamics in trigeminal neuralgia (TN) patients to understand the central nervous system's contribution to this neuropathic pain condition. Despite TN's traditional classification as a peripheral neuropathy, altered brain network organization may play a critical role in pain chronification and treatment resistance, making EEG microstates a valuable tool for capturing these dynamic neural signatures. METHODS We analyzed resting-state EEG recordings from 14 healthy individuals and 36 TN patients through a systematic analytical pipeline. After preprocessing with a fifth-order Butterworth band-pass filter (10-40 Hz), we employed k-means clustering to identify four distinct microstate configurations (4-7 states). From these configurations, we extracted temporal parameters (duration, occurrence, coverage, and mean global field power) and constructed transition probability matrices to characterize brain state dynamics. These features were then evaluated using ANOVA and utilized in machine learning classification models to assess their discriminative potential. RESULTS TN patients demonstrated distinct microstate abnormalities, including dramatically increased durations in specific microstates (5-6 times longer than controls) and consistently reduced global field power (0.03 vs. 0.35). Transition probability analyses revealed striking differences between groups: healthy subjects exhibited balanced bidirectional transitions (particularly B↔C at ~ 31-33%), whereas TN patients showed highly asymmetric patterns with strong directional flows (B→A: 33.5%, C→A: 35.2%, D→A: 34.4% in 4-state model). Most notably, state E functioned as a distinctive "sink" in TN patients, receiving significant transitions while exhibiting minimal outward flow (only 2.8-3.6% in 7-state model), suggesting trapped neural processing. Machine learning classification achieved exceptional discrimination between groups (91.9% accuracy with SVM), with optimal performance using four features in simpler 4-state models. CONCLUSION Our findings establish EEG microstate analysis as a promising neurophysiological framework for understanding TN pathophysiology, revealing objective biomarkers that reflect altered brain network dynamics rather than simply peripheral nerve dysfunction. These distinctive microstate patterns align with contemporary pain processing theories and offer potential applications in diagnosis, treatment monitoring, and development of novel therapeutic approaches targeting the central mechanisms of TN.
Collapse
Affiliation(s)
- Reza Ahmadi Lashaki
- Department of Computer Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.
| | - Zahra Raeisi
- Department of Computer Science, University of Fairleigh Dickinson, Vancouver Campus, Vancouver, Canada
| | | | - Fatemeh Abedi Lomer
- Department of Computer Engineering, Faculty of Electrical and Computer Engineering islamic azad university Miyaneh branch, Miyaneh, Iran
- School of Electrical and Computer Engineering, The University of Oklahoma, Norman, USA
| | - Elnaz Aghdaei
- School of Electrical and Computer Engineering, The University of Oklahoma, Norman, USA
| | - Hossein Najafzadeh
- Department of Medical Bioengineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Bioengineering, Faculty Of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Ave, Tabriz, 51666, Iran
| |
Collapse
|
3
|
Zhang H, Chai S, Shan D, Liu G, Zhang Y. Combining quantified EEG with clinical measures to better predict outcomes of acute disorders of consciousness. Neurophysiol Clin 2025; 55:103048. [PMID: 39813809 DOI: 10.1016/j.neucli.2025.103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/18/2025] Open
Abstract
OBJECTIVE To explore the application of the neuronal recovery model (i.e., the ABCD model derived from EEG power spectral analysis) in forecasting outcomes for patients with acute disorders of consciousness (DOC). METHODS Patients with acute DOC were enrolled, and clinical assessments, including the Glasgow Coma Scale (GCS), Full Outline of UnResponsiveness (FOUR), and Coma Recovery Scale-Revised (CRS-R) scores, along with electroencephalography (EEG), were documented on the first day post-enrollment. The ABCD model, derived from EEG power spectral data reflecting frequency bands, categorized brain activity into four distinct groups (A, B, C, D). Outcome prognoses were evaluated using the Glasgow Outcome Scale-Extended (GOSE) six months after enrollment. Statistical analyses were performed to assess the correlation between the ABCD model and clinical assessments, and to investigate the predictive value of EEG and clinical assessments for the long-term prognosis. RESULTS A total of 93 patients with acute DOC were included; the median age was 64 years (interquartile range 52, 72), of which 52 patients had favorable outcomes. Significant correlations were observed between the ABCD model and both the FOUR and CRS-R scores. The CRS-R and ABCD model demonstrated relatively good predictive value for six-month prognoses, with Area Under the Curve (AUC) values of 0.695 and 0.678, respectively (P < 0.05). Furthermore, the combination of the CRS-R score and ABCD model exhibited the highest predictive value with an AUC of 0.746. CONCLUSIONS The ABCD model effectively predicted the prognosis of patients with acute DOC in combination with CRS-R.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shuting Chai
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Dawei Shan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Gang Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yan Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
4
|
Shi W, Zhao Q, Gao H, Yang C, Tan Z, Li N, Jiang F, Wang H, Ji Y, Zhou Y. Involvement of BK Channels and Ryanodine Receptors in Salicylate-induced Tinnitus. Mol Neurobiol 2025; 62:4115-4138. [PMID: 39397241 PMCID: PMC11880135 DOI: 10.1007/s12035-024-04533-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Neural hyperexcitability of the central auditory system is a key pathological characteristic of tinnitus, but its underlying molecular mechanisms remain elusive. The large-conductance Ca2+-activated K+ channel (BK) plays a crucial role in down- or upregulating neuronal activity. This study aims to investigate the role of BK channels in mediating tinnitus-associated neural hyperexcitability and elucidate the mechanisms behind it. Immunofluorescent staining revealed extensive expression of the BK channels on neurons within the central auditory system of rats. After long-term systemic administration of salicylate, a stable tinnitus inducer, we observed a significant change in the expression levels of BKα and β4 subunits in the rat central auditory system. In addition, salicylate was found to enhance the outward potassium currents mediated by the BK channel when exogenously expressed in HEK293 cells. Interestingly, this effect could be blocked by ryanodine, a potent inhibitor of ryanodine receptors (RyRs). Molecular docking identified Gln4020 within the central domain of RyR as a key residue in RyR-salicylate interactions. The results indicated that salicylate might directly activate RyRs leading to Ca2+ release from endoplasmic reticulum, and increased BK currents subsequently. Systemic treatment with paxilline, a potent blocker of BK channel, selectively reversed the increased P4/P1 amplitude ratios in the frequency region of tinnitus perception induced by single-dose salicylate administration. These results suggest that BK channels and ryanodine receptors may play a selective role in salicylate-induced tinnitus.
Collapse
Affiliation(s)
- Wenying Shi
- School of Basic Medical Sciences, Hebei University, Baoding, 071000, China
| | - Qi Zhao
- School of Basic Medical Sciences, Hebei University, Baoding, 071000, China
| | - Hongwei Gao
- School of Basic Medical Sciences, Hebei University, Baoding, 071000, China
| | - Chao Yang
- Shanghai Chongming Xinhua Translational Medical Institute for Cancer Pain, Shanghai, 202150, China
| | - Zhiyong Tan
- School of Basic Medical Sciences, Hebei University, Baoding, 071000, China
| | - Na Li
- School of Basic Medical Sciences, Hebei University, Baoding, 071000, China
| | - Feng Jiang
- Shanghai Chongming Xinhua Translational Medical Institute for Cancer Pain, Shanghai, 202150, China
| | - Hongjie Wang
- School of Basic Medical Sciences, Hebei University, Baoding, 071000, China
| | - Yonghua Ji
- School of Basic Medical Sciences, Hebei University, Baoding, 071000, China
- Shanghai Chongming Xinhua Translational Medical Institute for Cancer Pain, Shanghai, 202150, China
| | - You Zhou
- School of Basic Medical Sciences, Hebei University, Baoding, 071000, China.
| |
Collapse
|
5
|
Santana JERS, Carvalho ML, Lopes TDS, Miranda JGV, Montoya P, Baptista AF, Fonseca A. Distinct Brain Connectivity Patterns in Sickle Cell Disease: A Biomarker for Chronic Pain Severity. Brain Connect 2025; 15:125-138. [PMID: 40106228 DOI: 10.1089/brain.2024.0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Background: Central nervous system complications are common in sickle cell disease (SCD), and the defining associated biomarkers are becoming increasingly relevant for physicians in diagnostic and prognostic contexts. Recent studies have reported altered brain connectivity in pain processing, highlighting a new avenue for developing sensitive measures of SCD severity. Method: This cross-sectional study used graph theory concepts to analyze effective connectivity in individuals with SCD and healthy controls during rest and motor imagery tasks. The SCD group was further divided into two subgroups based on pain intensity (less pain or more pain) during the evaluation. Results: Individuals with SCD and chronic pain exhibited a distinct brain connectivity signature compared to healthy individuals and within pain sublevels. Conclusion: Chronic pain in SCD shows a unique brain connectivity pattern when compared to healthy subjects and across different pain levels. The results support the hypothesis that chronic pain condition is associated with decreased interhub connections and increased intrahub connections for specific brain rhythms. Furthermore, the small-world parameter can distinguish SCD individuals from controls and differentiate pain levels within SCD individuals, offering a promising biomarker for clinical assessment.
Collapse
Affiliation(s)
- Jamille E R S Santana
- Health and Functionality Study Group, Federal University of Bahia, Salvador, Brazil
- NAPeN Network (Nucleus of Assistance, Research and Teaching in Neuromodulation), Recife, Brazil
- Postgraduate Program in Neuroscience and Cognition, Federal University of ABC, São Paulo, Brazil
- Center of Mathematics, Computation and Cognition, Federal University of ABC, São Paulo, Brazil
| | - Maria Luiza Carvalho
- Center of Mathematics, Computation and Cognition, Federal University of ABC, São Paulo, Brazil
| | - Tiago da Silva Lopes
- Health and Functionality Study Group, Federal University of Bahia, Salvador, Brazil
- NAPeN Network (Nucleus of Assistance, Research and Teaching in Neuromodulation), Recife, Brazil
- Center of Mathematics, Computation and Cognition, Federal University of ABC, São Paulo, Brazil
| | - José G V Miranda
- Health and Functionality Study Group, Federal University of Bahia, Salvador, Brazil
- Institute of Physics, Federal University of Bahia, Bahia, Brazil
| | - Pedro Montoya
- Center of Mathematics, Computation and Cognition, Federal University of ABC, São Paulo, Brazil
- Research Institute of Health Sciences, University of Balearic Islands, Palma de Mallorca, Spain
| | - Abrahão F Baptista
- Health and Functionality Study Group, Federal University of Bahia, Salvador, Brazil
- NAPeN Network (Nucleus of Assistance, Research and Teaching in Neuromodulation), Recife, Brazil
- Postgraduate Program in Neuroscience and Cognition, Federal University of ABC, São Paulo, Brazil
- Center of Mathematics, Computation and Cognition, Federal University of ABC, São Paulo, Brazil
| | - André Fonseca
- Center of Mathematics, Computation and Cognition, Federal University of ABC, São Paulo, Brazil
| |
Collapse
|
6
|
Shabestari PS, Schoisswohl S, Wellauer Z, Naas A, Kleinjung T, Schecklmann M, Langguth B, Neff P. Prediction of acoustic tinnitus suppression using resting-state EEG via explainable AI approach. Sci Rep 2025; 15:10968. [PMID: 40164712 PMCID: PMC11958676 DOI: 10.1038/s41598-025-95351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/20/2025] [Indexed: 04/02/2025] Open
Abstract
Tinnitus is defined as the perception of sound without an external source. Its perceptual suppression or on/off states remain poorly understood. This study investigates neural traits linked to brief acoustic tinnitus suppression (BATS) using naive resting-state EEG (closed eyes) from 102 individuals. A set of EEG features (band power, entropy, aperiodic slope and offset of the EEG spectrum, and connectivity) and standard classifiers were applied achieving consistent high accuracy across data splits: 98% for sensor and 86% for source models. The Random Forest model outperformed other classifiers by excelling in robustness and reduction of overfitting. It identified several key EEG features, most prominently alpha and gamma frequency band power. Gamma power was stronger in the left auditory network, while alpha power dominated the right hemisphere. Aperiodic features were normalized in individuals with BATS. Additionally, hyperconnected auditory-limbic networks in BATS suggest sensory gating may aid suppression. These findings demonstrate robust classification of BATS status, revealing distinct neural traits between tinnitus subpopulations. Our work emphasizes the role of neural mechanisms in predicting and managing tinnitus suppression. Moreover, it advances the understanding of effective feature selection, model choice, and validation strategies for analyzing clinical neurophysiological data in general.
Collapse
Affiliation(s)
- Payam S Shabestari
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stefan Schoisswohl
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
- Department of Psychology, Universitaet der Bundeswehr München, Neubiberg, Germany
| | - Zino Wellauer
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
| | - Adrian Naas
- Business School, Institute New Work, Bern University of Applied Sciences, Bern, Switzerland
- Department of Psychology, University of Fribourg/Freiburg, Fribourg/Freiburg, Switzerland
| | - Tobias Kleinjung
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Patrick Neff
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
7
|
Li Y, Long S, Yu J, Feng J, Meng S, Li Y, Zhao L, Yu Y. Preoperative Sleep Deprivation Exacerbates Anesthesia/Surgery-induced Abnormal GABAergic Neurotransmission and Neuronal Damage in the Hippocampus in Aged Mice. Mol Neurobiol 2025:10.1007/s12035-025-04851-3. [PMID: 40106167 DOI: 10.1007/s12035-025-04851-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Older adults with anesthesia and surgery often suffer from postoperative cognitive dysfunction (POCD), which puts a heavy burden on rehabilitation. Preoperative sleep disorder, a common phenomenon in elderly anesthesia patients, is closely associated with POCD, but the underlying mechanism is still not fully understood. Hippocampal gamma-aminobutyric acid (GABA)ergic neurotransmission has been reported to play an important role in sleep disorder and cognitive impairment. The aim of this study was to elucidate the effect of preoperative acute sleep deprivation (SD) on anesthesia/surgery-induced POCD and the potential mechanism of hippocampal GABAergic neurotransmission. In the aged (18-20-month-old) male mice, we used a rotating rod to deprive sleep for 24 h and induced a POCD model using sevoflurane exposure combined with laparotomy exploration. A sequential set of behavioral tests, including open field test (OFT), Y-maze, and novel object recognition (NOR), was conducted to assess cognitive performances. In vivo magnetic resonance imaging (MRI) technique was used to observe hippocampal axonal microstructural changes. The levels of GABAergic neurotransmitter markers glutamic acid decarboxylase (GAD) 67, vesicular GABA transporter (VGAT), GABA transporter (GAT)-1, and GABA in the hippocampus were detected with enzyme-linked immunosorbent assay (ELISA). The reactivity of GABAergic neurons and neuronal damage in different subregions of the hippocampus were observed by immunofluorescence and Nissl staining, respectively. Compared the anesthesia/surgery (A/S) mice, 24-h SD combined with A/S induced shorter stay time in the central area of the open field, less the percent of novel arm preference in the Y maze, and lower recognition index in the NOR, as well as significantly enhanced hippocampal GABAergic neurotransmission, decreased hippocampal axonal integrity and density, and increased GAD67 reactivity and reduced the number of neurons in hippocampal CA1. Preoperative 24-h SD exacerbated anesthesia/surgery-induced POCD in aged mice, with the cumulative effect of abnormal GABAergic neurotransmission and neuronal damage in the hippocampus.
Collapse
Affiliation(s)
- Yun Li
- Department of Anesthesiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Siwen Long
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Jiafeng Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Jingyu Feng
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Shuqi Meng
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China
| | - Lina Zhao
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Research Institute of Anesthesiology, Tianjin, 300052, China.
| |
Collapse
|
8
|
Firestone E, Uda H, Kuroda N, Sakakura K, Sonoda M, Ueda R, Kitazawa Y, Lee MH, Jeong JW, Luat AF, Cools MJ, Sood S, Asano E. Normative high-frequency oscillation phase-amplitude coupling and effective connectivity under sevoflurane. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.644050. [PMID: 40166237 PMCID: PMC11956958 DOI: 10.1101/2025.03.18.644050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Resective surgery for pediatric drug-resistant focal epilepsy often requires extraoperative intracranial electroencephalography recording to accurately localize the epileptogenic zone. This procedure entails multiple neurosurgeries, intracranial electrode implantation and explantation, and days of invasive inpatient evaluation. There is a need for methods to reduce diagnostic burden and introduce objective epilepsy biomarkers. Our preliminary studies aimed to address these issues by using sevoflurane anesthesia to rapidly and reversibly activate intraoperative phase-amplitude coupling between delta and high-frequency activities, as well as high-frequency activity-based effective connectivity. Phase-amplitude coupling can serve as a proxy for spike-and-wave discharges, and effective connectivity describes the spatiotemporal dynamics of neural information flow among regions. Notably, sevoflurane activated these interictal electrocorticography biomarkers most robustly in areas whose resection led to seizure freedom. However, they were also increased in normative brain regions that did not require removal for seizure control. Before using these electrocorticography biomarkers prospectively to guide resection, we should understand their endogenous distribution and propagation pathways, at different anesthetic stages. In the current study, we highlighted the normative distribution of delta and high-frequency activity phase-amplitude coupling and effective connectivity under sevoflurane. Normative data was derived from nineteen patients, whose ages ranged from four to eighteen years and included eleven males. All achieved seizure control following focal resection. Electrocorticography was recorded at an isoflurane baseline, during stepwise increases in sevoflurane concentration, and also during extraoperative slow-wave sleep without anesthesia. Normative electrode sites were then mapped onto a standard cortical surface for anatomical visualization. Dynamic tractography traced white matter pathways that connected sites with significantly augmented biomarkers. Finally, we analyzed all sites -regardless of normal or abnormal status - to determine whether sevoflurane-enhanced biomarker values could intraoperatively localize the epileptogenic sites. We found that normative electrocorticography biomarkers increased as a function of sevoflurane concentration, especially in bilateral frontal and parietal lobe regions (Bonferroni-corrected p-values <0.05). Callosal fibers directly connected homotopic Rolandic regions exhibiting elevated phase-amplitude coupling. The superior longitudinal fasciculus linked frontal and parietal association cortices showing augmented effective connectivity. Higher biomarker values, particularly at three to four volume percent sevoflurane, characterized epileptogenicity and seizure-onset zone status (Bonferroni-corrected p-values <0.05). Supplementary analysis showed that epileptogenic sites exhibited less augmentation in delta-based effective connectivity. This study helps clarify the normative distribution of, and plausible propagation pathways supporting, sevoflurane enhanced electrocorticographic biomarkers. Future work should confirm that sevoflurane-activated electrocorticography biomarkers can predict postoperative seizure outcomes in larger cohorts, to establish their clinical utility.
Collapse
|
9
|
Perez TM, Adhia DB, Glue P, Zeng J, Dillingham P, Navid MS, Niazi IK, Young CK, Smith M, De Ridder D. Infraslow Closed-Loop Brain Training for Anxiety and Depression (ISAD): A pilot randomised, sham-controlled trial in adult females with internalizing disorders. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2025:10.3758/s13415-025-01279-z. [PMID: 40102367 DOI: 10.3758/s13415-025-01279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/06/2025] [Indexed: 03/20/2025]
Abstract
INTRODUCTION The core resting-state networks (RSNs) have been shown to be dysfunctional in individuals with internalizing disorders (IDs; e.g., anxiety, depression). Source-localised, closed-loop brain training of infraslow (≤ 0.1 Hz) EEG signals may have the potential to reduce symptoms associated with IDs and restore normal core RSN function. METHODS We conducted a pilot randomized, double-blind, sham-controlled, parallel-group (3-arm) trial of infraslow neurofeedback (ISF-NFB) in adult females (n = 60) with IDs. Primary endpoints, which included the Hospital Anxiety and Depression Scale (HADS) and resting-state EEG activity and connectivity, were measured at baseline and post 6 sessions. RESULTS This study found credible evidence of strong nonspecific effects as evidenced by clinically important HADS score improvements (i.e., reductions) across groups. An absence of HADS score change differences between the sham and active groups indicated a lack of specific effects. Although there were credible slow (0.2-1.5 Hz) and delta (2-3.5 Hz) band activity reductions in the 1-region ISF-NFB group relative to sham within the targeted region of interest (i.e., posterior cingulate), differences in activity and connectivity modulation in the targeted frequency band of interest (i.e., ISFs = 0.01-0.1 Hz) were lacking between sham and active groups. Credible positive associations between changes in HADS depression scores and anterior cingulate cortex slow and delta activity also were found. CONCLUSIONS Short-term sham and genuine ISF-NFB resulted in rapid, clinically important improvements that were nonspecific in nature and possibly driven by placebo-related mechanisms. Future ISF-NFB trials should consider implementing design modifications that may better induce differential modulation of ISFs between sham and treatment groups, thereby enhancing the potential for specific clinical effects in ID populations. TRIAL REGISTRATION The trial was prospectively registered with the Australia New Zealand Clinical Trials Registry (ANZCTR; Trial ID: ACTRN12619001428156).
Collapse
Affiliation(s)
- Tyson M Perez
- Department of Surgical Sciences, University of Otago, Dunedin, 9016, New Zealand.
- Department of Psychological Medicine, University of Otago, Dunedin, New Zealand.
| | - Divya B Adhia
- Department of Surgical Sciences, University of Otago, Dunedin, 9016, New Zealand
| | - Paul Glue
- Department of Psychological Medicine, University of Otago, Dunedin, New Zealand
| | - Jiaxu Zeng
- Department of Preventative & Social Medicine, Otago Medical School-Dunedin Campus, University of Otago, Dunedin, New Zealand
| | - Peter Dillingham
- Coastal People Southern Skies Centre of Research Excellence, Department of Mathematics & Statistics, University of Otago, Dunedin, New Zealand
| | - Muhammad S Navid
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
- Donders Institute for Brain, Cognition and Behaviour, Radbout University Medical Center, Nijmegen, The Netherlands
| | - Imran K Niazi
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
| | - Calvin K Young
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Mark Smith
- Neurofeedback Therapy Services of New York, New York, NY, USA
| | - Dirk De Ridder
- Department of Surgical Sciences, University of Otago, Dunedin, 9016, New Zealand
| |
Collapse
|
10
|
Ohno N, Neshige S, Nonaka M, Yamada H, Takebayashi Y, Ishibashi H, Aoki S, Yamazaki Y, Iida K, Maruyama H. Alpha-band activity in density spectral array predictive for neurological outcome in patients with hypoxic-ischemic encephalopathy. Clin Neurol Neurosurg 2025; 250:108791. [PMID: 40010242 DOI: 10.1016/j.clineuro.2025.108791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/12/2024] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND In patients with hypoxic-ischemic encephalopathy (HIE), EEG is used to predict outcomes. However, a clear threshold for EEG findings associated with favorable outcomes remains unestablished. This study evaluates the predictive value of density spectral array (DSA)-based background activity in HIE patients. METHODS Forty-four consecutive HIE patients with disturbance of consciousness (2010-2023) were retrospectively assessed and categorized into highly malignant, malignant, or benign EEG patterns according to the conventional EEG classification. The presence of alpha-band activity, defined as an increase in alpha (or theta) frequency band power visible in the DSA, was also assessed. The relationship among conventional EEG classification, alpha-band activity, and neurological outcomes was evaluated. RESULTS All patients with highly malignant EEG lacked alpha-band activity and experienced poor outcomes, whereas those with less severe patterns occasionally exhibited alpha-band activity (14 % in the malignant vs. 60 % in the benign, p = 0.021), and demonstrated various outcomes. Recovery of consciousness until discharge was more prominent in patients with alpha-band activity compared to those without (100 % vs. 39 %, p < 0.001). CONCLUSIONS DSA-based evaluations provide a simple and valuable tool for predicting favorable neurological outcomes.
Collapse
Affiliation(s)
- Narumi Ohno
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan; Epilepsy Center, Hiroshima University Hospital, Hiroshima, Japan.
| | - Shuichiro Neshige
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan; Epilepsy Center, Hiroshima University Hospital, Hiroshima, Japan.
| | - Megumi Nonaka
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| | - Hidetada Yamada
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| | - Yoshiko Takebayashi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| | - Haruka Ishibashi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| | - Shiro Aoki
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| | - Yu Yamazaki
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| | - Koji Iida
- Epilepsy Center, Hiroshima University Hospital, Hiroshima, Japan.
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan; Epilepsy Center, Hiroshima University Hospital, Hiroshima, Japan.
| |
Collapse
|
11
|
Tadic VP, Timic Stamenic T, Todorovic SM. Ca V2.3 channels in the mouse central medial thalamic nucleus are essential for thalamocortical oscillations and spike wave discharges. Sci Rep 2025; 15:4966. [PMID: 39929891 PMCID: PMC11811020 DOI: 10.1038/s41598-025-87795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Voltage-gated calcium channels are important for thalamocortical (TC) oscillations related to spike-wave discharges (SWDs) during absence seizures. The role of CaV2.3 R-type channels expressed in the thalamic intralaminar complex in SWDs, however, is not well studied. We investigated pharmacologically induced SWDs from the central medial thalamus (CMT) and somatosensory cortex in a CaV2.3 knockout (KO) mouse model using local field potential (LFP), and electroencephalographic (EEG) recordings. The duration of cumulative SWDs was significantly decreased in CaV2.3 KO mice compared with wild-type (WT) mice. A characteristic increase in the delta and theta waves was observed in both the CMT and somatosensory cortex during SWDs with delta (1-4 Hz) band TC synchronization increasing only in WT animals. Specifically, in the KO mice, LFPs recorded from the CMT showed no significant changes in the delta band and a significant decrease in the theta (4-8 Hz) band, and cortical EEG recordings showed a significant increase in the delta band, but no changes in the theta band. The baseline TC phase synchronization in the delta band was also more pronounced in the CaV2.3 KO mice than in WT mice. These findings suggest that R-type calcium channels in the CMT play a crucial role in sustaining and promoting the oscillatory activity of the TC network during absence seizures.
Collapse
Affiliation(s)
- Vasilije P Tadic
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Tamara Timic Stamenic
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Slobodan M Todorovic
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Neuroscience Pharmacology Graduate Programs, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
12
|
Ueno K, Yamada K, Ueda M, Naito Y, Ishii R. Current source density and functional connectivity extracted from resting-state electroencephalography as biomarkers for chronic low back pain. Pain Rep 2025; 10:e1233. [PMID: 39816905 PMCID: PMC11732644 DOI: 10.1097/pr9.0000000000001233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/18/2024] [Accepted: 11/07/2024] [Indexed: 01/18/2025] Open
Abstract
Introduction Chronic low back pain (CLBP) is a global health issue, and its nonspecific causes make treatment challenging. Understanding the neural mechanisms of CLBP should contribute to developing effective therapies. Objectives To compare current source density (CSD) and functional connectivity (FC) extracted from resting electroencephalography (EEG) between patients with CLBP and healthy controls and to examine the correlations between EEG indices and symptoms. Methods Thirty-four patients with CLBP and 34 healthy controls in an open data set were analyzed. Five-minute resting-state closed-eye EEG was acquired using the international 10-20 system. Current source density across frequency bands was calculated using exact low-resolution electromagnetic tomography. Functional connectivity was assessed between 24 cortical regions using lagged linear connectivity. Correlations between pain symptoms and CSD distribution and FC were examined in patients with CLBP. Results Current source density analysis showed no significant differences between the groups. The CLBP group exhibited significantly reduced FC in the β3 band between the left middle temporal gyrus and the posterior cingulate cortex, and between the ventral medial prefrontal cortex and the left inferior parietal lobule. Prefrontal θ and δ activity positively correlated with pain symptoms. Increased β1 band FC between the right dorsolateral prefrontal cortex and right auditory cortex correlated with greater pain intensity. Conclusions We found altered neural activity and connectivity in patients with CLBP, particularly in prefrontal and temporal regions. These results suggest potential targets for pain modulation through brain pathways and highlight the value of EEG biomarkers in understanding pain mechanisms and assessing treatment efficacy.
Collapse
Affiliation(s)
- Keita Ueno
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| | - Keiko Yamada
- Pain Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Anesthesiology and Pain Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Masaya Ueda
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| | - Yasuo Naito
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
| | - Ryouhei Ishii
- Department of Occupational Therapy, Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
13
|
Johnson-Black PH, Carlson JM, Vespa PM. Traumatic brain injury and disorders of consciousness. HANDBOOK OF CLINICAL NEUROLOGY 2025; 207:75-96. [PMID: 39986729 DOI: 10.1016/b978-0-443-13408-1.00014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Trauma is one of the most common causes of disorders of consciousness (DOC) worldwide. Traumatic brain injury (TBI) leads to heterogeneous, multifocal injury via focal brain damage and diffuse axonal injury, causing an acquired network disorder. Recovery occurs through reemergence of dynamic cortical and subcortical networks. Accurate diagnostic evaluation is essential toward promoting recovery and may be more challenging in traumatic than non-traumatic brain injuries. Standardized neurobehavioral assessment is the cornerstone for assessments in the acute, prolonged, and chronic phases of traumatic DOC, while structural and functional neuroimaging, tractography, nuclear medicine studies, and electrophysiologic techniques assist with differentiation of DOC states and prognostication. Prognosis for recovery is better for patients with TBI than those with non-traumatic brain injuries, and the timeline for recovery is longer. The majority of patients experience improvement in their DOC within the first year post-injury, but recovery can continue for five and even ten years after TBI. Pharmacologic therapy and device-related neuromodulation represent important areas for future research.
Collapse
Affiliation(s)
- Phoebe H Johnson-Black
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Julia M Carlson
- Department of Neurology, UNC Neurorecovery Clinic, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Paul M Vespa
- Assistant Dean of Research in Critical Care, Gary L. Brinderson Family Chair in Neurocritical Care, Department of Neurosurgery and Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
14
|
Yang Y, Cao TQ, He SH, Wang LC, He QH, Fan LZ, Huang YZ, Zhang HR, Wang Y, Dang YY, Wang N, Chai XK, Wang D, Jiang QH, Li XL, Liu C, Wang SY. Revolutionizing treatment for disorders of consciousness: a multidisciplinary review of advancements in deep brain stimulation. Mil Med Res 2024; 11:81. [PMID: 39690407 DOI: 10.1186/s40779-024-00585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Among the existing research on the treatment of disorders of consciousness (DOC), deep brain stimulation (DBS) offers a highly promising therapeutic approach. This comprehensive review documents the historical development of DBS and its role in the treatment of DOC, tracing its progression from an experimental therapy to a detailed modulation approach based on the mesocircuit model hypothesis. The mesocircuit model hypothesis suggests that DOC arises from disruptions in a critical network of brain regions, providing a framework for refining DBS targets. We also discuss the multimodal approaches for assessing patients with DOC, encompassing clinical behavioral scales, electrophysiological assessment, and neuroimaging techniques methods. During the evolution of DOC therapy, the segmentation of central nuclei, the recording of single-neurons, and the analysis of local field potentials have emerged as favorable technical factors that enhance the efficacy of DBS treatment. Advances in computational models have also facilitated a deeper exploration of the neural dynamics associated with DOC, linking neuron-level dynamics with macroscopic behavioral changes. Despite showing promising outcomes, challenges remain in patient selection, precise target localization, and the determination of optimal stimulation parameters. Future research should focus on conducting large-scale controlled studies to delve into the pathophysiological mechanisms of DOC. It is imperative to further elucidate the precise modulatory effects of DBS on thalamo-cortical and cortico-cortical functional connectivity networks. Ultimately, by optimizing neuromodulation strategies, we aim to substantially enhance therapeutic outcomes and greatly expedite the process of consciousness recovery in patients.
Collapse
Affiliation(s)
- Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
- Innovative Center, Beijing Institute of Brain Disorders, Beijing, 100070, China.
- Department of Neurosurgery, Chinese Institute for Brain Research, Beijing, 100070, China.
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 7BN, UK.
| | - Tian-Qing Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Sheng-Hong He
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 7BN, UK
| | - Lu-Chen Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Qi-Heng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Ling-Zhong Fan
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100080, China
| | - Yong-Zhi Huang
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Hao-Ran Zhang
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100080, China
| | - Yong Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100080, China
| | - Yuan-Yuan Dang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100080, China
| | - Nan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xiao-Ke Chai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Dong Wang
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, China
| | - Qiu-Hua Jiang
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, China
| | - Xiao-Li Li
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Chen Liu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.
| | - Shou-Yan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
15
|
Alasoadura M, Leclerc J, Hazime M, Leprince J, Vaudry D, Chuquet J. The Excessive Tonic Inhibition of the Peri-infarct Cortex Depresses Low Gamma Rhythm Power During Poststroke Recovery. J Neurosci 2024; 44:e1482232024. [PMID: 39406519 PMCID: PMC11622182 DOI: 10.1523/jneurosci.1482-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/02/2024] [Accepted: 09/09/2024] [Indexed: 12/06/2024] Open
Abstract
The cortex immediately surrounding a brain ischemic lesion, the peri-infarct cortex (PIC), harbors a large part of the potential to recover lost functions. However, our understanding of the neurophysiological conditions in which synaptic plasticity operates remains limited. Here we hypothesized that the chronic imbalance between excitation and inhibition of the PIC prevents the normalization of the gamma rhythm, a waveband of neural oscillations thought to orchestrate action potential trafficking. Probing the local field potential activity of the forelimb primary sensory cortex (S1FL) located in the PIC of male adult mice, we found a constant, deep reduction of low-gamma oscillation power (L-gamma; 30-50 Hz) precisely during the critical time window for recovery (1-3 weeks after stroke). The collapse of L-gamma power negatively correlated with behavioral progress in affected forelimb use. Mapping astrocyte reactivity and GABA-like immunoreactivity in the PIC revealed a parallel high signal, which gradually increased when approaching the lesion. Increasing tonic inhibition with local infusion of GABA or by blocking its recapture reduced L-gamma oscillation power in a magnitude similar to stroke. Conversely, the negative allosteric modulation of tonic GABA conductance using L655,708 or the gliopeptide ODN rescued the L-gamma power of the PIC. Altogether the present data point out that the chronic excess of ambient GABA in the PIC limits the generation of L-gamma oscillations in the repairing cortex and suggests that rehabilitative interventions aimed at normalizing low-gamma power within the critical period of stroke recovery could optimize the restitution of lost functions.
Collapse
Affiliation(s)
- Michael Alasoadura
- Univ Rouen Normandie, Normandie Univ, GRHVN UR3830, F-76000 Rouen, France
- Univ Rouen Normandie, Inserm, Normandie Univ, NORDIC UMR 1239, F-76000 Rouen, France
| | - Juliette Leclerc
- Univ Rouen Normandie, Normandie Univ, GRHVN UR3830, F-76000 Rouen, France
| | - Mahmoud Hazime
- Univ Rouen Normandie, Inserm, Normandie Univ, NORDIC UMR 1239, F-76000 Rouen, France
| | - Jérôme Leprince
- Univ Rouen Normandie, Inserm, Normandie Univ, NORDIC UMR 1239, F-76000 Rouen, France
| | - David Vaudry
- Univ Rouen Normandie, Inserm, Normandie Univ, NORDIC UMR 1239, F-76000 Rouen, France
| | - Julien Chuquet
- Univ Rouen Normandie, Normandie Univ, GRHVN UR3830, F-76000 Rouen, France
- Univ Rouen Normandie, Inserm, Normandie Univ, NORDIC UMR 1239, F-76000 Rouen, France
| |
Collapse
|
16
|
Alashram AR. The efficacy of transcranial random noise stimulation in treating tinnitus: a systematic review. Eur Arch Otorhinolaryngol 2024; 281:6239-6252. [PMID: 39046497 DOI: 10.1007/s00405-024-08858-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE This review aims to examine the effects of transcranial random noise stimulation (tRNS) on tinnitus and to determine the optimal treatment parameters, if possible. METHODS A comprehensive search, including MEDLINE, PubMed, EMBASE, CINAHL, SCOPUS, and PEDro, was conducted to determine experiments studying the effects of tRNS on tinnitus from inception to March 1, 2024. The Physiotherapy Evidence Database (PEDro) scale was used to evaluate the quality of the included studies. RESULTS Seven studies met the eligibility criteria. A total of 616 patients with non-pulsatile tinnitus (mean age 50.93 years; 66% males) were included in this review. The included studies ranged from 3 to 8 out of 10 (median = 7) on the PEDro scale. The results showed that tRNS is an effective intervention in reducing tinnitus symptoms. CONCLUSIONS The evidence for the effects of tRNS on people with chronic non-pulsatile tinnitus is promising. Administering tRNS with an intensity of 1-2 mA, high-frequency (101-650 Hz), using a 35 cm² electrode size over the auditory cortex and DLPFC, for 20 min with eight sessions may demonstrate the desired tRNS effects. The tRNS stimulation should be contralateral for unilateral tinnitus and bilaterally for bilateral tinnitus. Combining tRNS with other concurrent interventions may show superior effects in reducing tinnitus compared to tRNS alone. Further high-quality studies with larger sample sizes are strongly needed.
Collapse
Affiliation(s)
- Anas R Alashram
- Department of Physiotherapy, Middle East University, Airport Road, Amman, 1666, Jordan.
- Applied Science Research Center, Applied Science Private University, Amman, Jordan.
- Centre of SpaceBio-Medicine, Department of Systems Medicine, Faculty of Medicine and Surgery, San Raffaele Roma Open University, University of Rome "Tor Vergata", Rome, 00133, Italy.
| |
Collapse
|
17
|
De Ridder D, Vanneste S. Thalamocortical dysrhythmia and reward deficiency syndrome as uncertainty disorders. Neuroscience 2024; 563:20-32. [PMID: 39505139 DOI: 10.1016/j.neuroscience.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/18/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
A common anatomical core has been described for psychiatric disorders, consisting of the dorsal anterior cingulate cortex (dACC) and anterior insula, processing uncertainty. A common neurophysiological core has been described for other brain related disorders, called thalamocortical dysrhythmia (TCD), consisting of persistent cross-frequency coupling between low and high frequencies. And a common genetic core has been described for yet another set of hypodopaminergic pathologies called reward deficiency syndromes (RDS). Considering that some RDS have the neurophysiological features of TCD, it can be hypothesized that TCD and RDS have a common anatomical core, yet a differentiating associated neurophysiological mechanism. The EEGs of 683 subjects are analysed in source space for both differences and conjunction between TCD and healthy controls, RDS and healthy controls, and between TCD and RDS. A balance between current densities of the pregenual anterior cingulate cortex (pgACC) extending into the ventromedial prefrontal cortex (vmPFC) and dACC is calculated as well. TCD and RDS share a common anatomical and neurophysiological core, consisting of beta activity in the dACC and theta activity in dACC extending into precuneus and dorsolateral prefrontal cortex. TCD and RDS differ in pgACC/vmPFC activity and demonstrate an opposite balance between pgACC/vmPFC and dACC. Based on the Bayesian brain model TCD and RDS can be defined as uncertainty disorders in which the pgACC/vmPFC and dACC have an opposite balance, possibly explained by an inverted-U curve profile of both pgACC/vmPFC and dACC.
Collapse
Affiliation(s)
- Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, New Zealand
| | - Sven Vanneste
- Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
18
|
Hsiao FJ, Chen WT, Liu HY, Wu YT, Wang YF, Pan LLH, Lai KL, Chen SP, Coppola G, Wang SJ. Altered brainstem-cortex activation and interaction in migraine patients: somatosensory evoked EEG responses with machine learning. J Headache Pain 2024; 25:185. [PMID: 39468471 PMCID: PMC11514809 DOI: 10.1186/s10194-024-01892-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND To gain a comprehensive understanding of the altered sensory processing in patients with migraine, in this study, we developed an electroencephalography (EEG) protocol for examining brainstem and cortical responses to sensory stimulation. Furthermore, machine learning techniques were employed to identify neural signatures from evoked brainstem-cortex activation and their interactions, facilitating the identification of the presence and subtype of migraine. METHODS This study analysed 1,000-epoch-averaged somatosensory evoked responses from 342 participants, comprising 113 healthy controls (HCs), 106 patients with chronic migraine (CM), and 123 patients with episodic migraine (EM). Activation amplitude and effective connectivity were obtained using weighted minimum norm estimates with spectral Granger causality analysis. This study used support vector machine algorithms to develop classification models; multimodal data (amplitude, connectivity, and scores of psychometric assessments) were applied to assess the reliability and generalisability of the identification results from the classification models. RESULTS The findings revealed that patients with migraine exhibited reduced amplitudes for responses in both the brainstem and cortical regions and increased effective connectivity between these regions in the gamma and high-gamma frequency bands. The classification model with characteristic features performed well in distinguishing patients with CM from HCs, achieving an accuracy of 81.8% and an area under the curve (AUC) of 0.86 during training and an accuracy of 76.2% and an AUC of 0.89 during independent testing. Similarly, the model effectively identified patients with EM, with an accuracy of 77.5% and an AUC of 0.84 during training and an accuracy of 87% and an AUC of 0.88 during independent testing. Additionally, the model successfully differentiated patients with CM from patients with EM, with an accuracy of 70.5% and an AUC of 0.73 during training and an accuracy of 72.7% and an AUC of 0.74 during independent testing. CONCLUSION Altered brainstem-cortex activation and interaction are characteristic of the abnormal sensory processing in migraine. Combining evoked activity analysis with machine learning offers a reliable and generalisable tool for identifying patients with migraine and for assessing the severity of their condition. Thus, this approach is an effective and rapid diagnostic tool for clinicians.
Collapse
Grants
- 110-2321-B-010-005, 111-2321-B-A49-004, 109-2221-E-003-MY2, and 111-2221-E-A49-038 Ministry of Science and Technology, Taiwan
- 110-2321-B-010-005, 111-2321-B-A49-004, 109-2221-E-003-MY2, and 111-2221-E-A49-038 Ministry of Science and Technology, Taiwan
- 112-2321-B-075-007, 113-2321-B-A49-017, and 112-2221-E-A49 -012 -MY2 National Science and Technology Council, Taiwan
- 112-2321-B-075-007, 113-2321-B-A49-017, and 112-2221-E-A49 -012 -MY2 National Science and Technology Council, Taiwan
Collapse
Affiliation(s)
- Fu-Jung Hsiao
- Brain Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei, Taiwan.
| | - Wei-Ta Chen
- Brain Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurology, Keelung Hospital, Ministry of Health and Welfare, Keelung, Taiwan
| | - Hung-Yu Liu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Te Wu
- Brain Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei, Taiwan
| | - Yen-Feng Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Ling Hope Pan
- Brain Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei, Taiwan
| | - Kuan-Lin Lai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Pin Chen
- Brain Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, Latina, Italy
| | - Shuu-Jiun Wang
- Brain Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
19
|
Brooks CJ, Fielding J, White OB, Badcock DR, McKendrick AM. Exploring the Phenotype and Possible Mechanisms of Palinopsia in Visual Snow Syndrome. Invest Ophthalmol Vis Sci 2024; 65:23. [PMID: 39412817 PMCID: PMC11488523 DOI: 10.1167/iovs.65.12.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Purpose Palinopsia (persistent afterimages and/or trailing) is a common but poorly understood symptom of the neurological condition visual snow syndrome. This study aimed to collect a phenotypical description of palinopsia in visual snow syndrome and probe for abnormalities in temporal visual processing, hypothesizing that palinopsia could arise from increased visibility of normal afterimage signals or prolonged visible persistence. Methods Thirty controls and 31 participants with visual snow syndrome (18 with migraine) took part. Participants completed a palinopsia symptom questionnaire. Contrast detection thresholds were measured before and after brief exposure to a spatial grating because deficient contrast adaptation could increase afterimage visibility. Temporal integration and segregation were assessed using missing-element and odd-element tasks, respectively, because prolonged persistence would promote integration at wide temporal offsets. To distinguish the effects of visual snow syndrome from comorbid migraine, 25 people with migraine alone participated in an additional experiment. Results Palinopsia was common in visual snow syndrome, typically presenting as unformed images that were frequently noticed. Contrary to our hypotheses, we found neither reduced contrast adaptation (F(3.22, 190.21) = 0.71, P = 0.56) nor significantly prolonged temporal integration thresholds (F(1, 59) = 2.35, P = 0.13) in visual snow syndrome. Instead, participants with visual snow syndrome could segregate stimuli in closer succession than controls (F(1, 59) = 4.62, P = 0.04, ηp2 = 0.073) regardless of co-occurring migraine (F(2, 53) = 1.22, P = 0.30). In contrast, individuals with migraine alone exhibited impaired integration (F(2, 53) = 4.44, P = 0.017, ηp2 = 0.14). Conclusions Although neither deficient contrast adaptation nor prolonged visible persistence explains palinopsia, temporal resolution of spatial cues is enhanced and potentially more flexible in visual snow syndrome.
Collapse
Affiliation(s)
- Cassandra J. Brooks
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
| | - Joanne Fielding
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
| | - Owen B. White
- Department of Neurosciences, Central Clinical School, Monash University, Melbourne, Australia
| | - David R. Badcock
- School of Psychological Science, The University of Western Australia, Crawley, Australia
| | - Allison M. McKendrick
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
- Lions Eye Institute, Nedlands, Australia
- School of Allied Health, The University of Western Australia, Crawley, Australia
| |
Collapse
|
20
|
Liu P, Xue X, Zhang C, Zhou H, Ding Z, Wang L, Jiang Y, Zhang Z, Shen W, Yang S, Wang F. Mid-Infrared Photons Alleviate Tinnitus by Activating the KCNQ2 Channel in the Auditory Cortex. RESEARCH (WASHINGTON, D.C.) 2024; 7:0479. [PMID: 39296986 PMCID: PMC11408936 DOI: 10.34133/research.0479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024]
Abstract
Tinnitus is a phantom auditory sensation often accompanied by hearing loss, cognitive impairments, and psychological disturbances in various populations. Dysfunction of KCNQ2 and KCNQ3 channels-voltage-dependent potassium ion channels-in the cochlear nucleus can cause tinnitus. Despite the recognized significance of KCNQ2 and KCNQ3 channels in the auditory cortex, their precise relationship and implications in the pathogenesis of tinnitus remain areas of scientific inquiry. This study aimed to elucidate the pathological roles of KCNQ2 and KCNQ3 channels within the auditory cortex in tinnitus development and examine the therapeutic potential of mid-infrared photons for tinnitus treatment. We utilized a noise-induced tinnitus model combined with immunofluorescence, electrophysiological recording, and molecular dynamic simulation to investigate the morphological and physiological alterations after inducing tinnitus. Moreover, in vivo irradiation was administered to verify the treatment effects of infrared photons. Tinnitus was verified by deficits of the gap ratio with similar prepulse inhibition ratio and auditory brainstem response threshold. We observed an important enhancement in neuronal excitability in the auditory cortex using patch-clamp recordings, which correlated with KCNQ2 and KCNQ3 channel dysfunction. After irradiation with infrared photons, excitatory neuron firing was inhibited owing to increased KCNQ2 current resulting from structural alterations in the filter region. Meanwhile, deficits of the acoustic startle response in tinnitus animals were alleviated by infrared photons. Furthermore, infrared photons reversed the abnormal hyperexcitability of excitatory neurons in the tinnitus group. This study provided a novel method for modulating neuron excitability in the auditory cortex using KCNQ2 channels through a nonthermal effect. Infrared photons effectively mitigated tinnitus-related behaviors by suppressing abnormal neural excitability, potentially laying the groundwork for innovative therapeutic approaches for tinnitus treatment.
Collapse
Affiliation(s)
- Peng Liu
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital,
Chinese PLA Medical School, Beijing 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing 100853, China
| | - Xinmiao Xue
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital,
Chinese PLA Medical School, Beijing 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing 100853, China
| | - Chi Zhang
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital,
Chinese PLA Medical School, Beijing 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing 100853, China
| | - Hanwen Zhou
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital,
Chinese PLA Medical School, Beijing 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing 100853, China
| | - Zhiwei Ding
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital,
Chinese PLA Medical School, Beijing 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing 100853, China
| | - Li Wang
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital,
Chinese PLA Medical School, Beijing 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing 100853, China
| | - Yuke Jiang
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital,
Chinese PLA Medical School, Beijing 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing 100853, China
| | - Zhixin Zhang
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital,
Chinese PLA Medical School, Beijing 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing 100853, China
| | - Weidong Shen
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital,
Chinese PLA Medical School, Beijing 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing 100853, China
| | - Shiming Yang
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital,
Chinese PLA Medical School, Beijing 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing 100853, China
| | - Fangyuan Wang
- Senior Department of Otolaryngology Head and Neck Surgery, the 6th Medical Center of Chinese PLA General Hospital,
Chinese PLA Medical School, Beijing 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing 100853, China
| |
Collapse
|
21
|
Shoushtarian M, Esmaelpoor J, Bravo MMG, Fallon JB. Cochlear implant induced changes in cortical networks associated with tinnitus severity. J Neural Eng 2024; 21:056009. [PMID: 39178903 DOI: 10.1088/1741-2552/ad731d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
Objective.We investigated tinnitus-related cortical networks in cochlear implant users who experience tinnitus and whose perception of tinnitus changes with use of their implant. Tinnitus, the perception of unwanted sounds which are not present externally, can be a debilitating condition. In individuals with cochlear implants, use of the implant is known to modulate tinnitus, often improving symptoms but worsening them in some cases. Little is known about underlying cortical changes with use of the implant, which lead to changes in tinnitus perception. In this study we investigated whether changes in brain networks with the cochlear implant turned on and off, were associated with changes in tinnitus perception, as rated subjectively.Approach.Using functional near-infrared spectroscopy, we recorded cortical activity at rest, from 14 cochlear implant users who experienced tinnitus. Recordings were performed with the cochlear implant turned off and on. For each condition, participants rated the loudness and annoyance of their tinnitus using a visual rating scale. Changes in neural synchrony have been reported in humans and animal models of tinnitus. To assess neural synchrony, functional connectivity networks with the implant turned on and off, were compared using two network features: node strength and diversity coefficient.Main results.Changes in subjective ratings of loudness were significantly correlated with changes in node strength, averaged across occipital channels (r=-0.65, p=0.01). Changes in both loudness and annoyance were significantly correlated with changes in diversity coefficient averaged across all channels (r=-0.79,p<0.001 and r=-0.86,p<0.001). More distributed connectivity with the implant on, compared to implant off, was associated with a reduction in tinnitus loudness and annoyance.Significance.A better understanding of neural mechanisms underlying tinnitus suppression with cochlear implant use, could lead to their application as a tinnitus treatment and pave the way for effective use of other less invasive stimulation-based treatments.
Collapse
Affiliation(s)
- Mehrnaz Shoushtarian
- The Bionics Institute, East Melbourne, Victoria, Australia
- Medical Bionics Department, The University of Melbourne, Melbourne, Australia
| | - Jamal Esmaelpoor
- The Bionics Institute, East Melbourne, Victoria, Australia
- Medical Bionics Department, The University of Melbourne, Melbourne, Australia
| | | | - James B Fallon
- The Bionics Institute, East Melbourne, Victoria, Australia
- Medical Bionics Department, The University of Melbourne, Melbourne, Australia
- Department of Otolaryngology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
22
|
Lopes TS, Santana JE, Silva WS, Fraga FJ, Montoya P, Sá KN, Lopes LC, Lucena R, Zana Y, Baptista AF. Increased Delta and Theta Power Density in Sickle Cell Disease Individuals with Chronic Pain Secondary to Hip Osteonecrosis: A Resting-State Eeg Study. Brain Topogr 2024; 37:859-873. [PMID: 38060074 DOI: 10.1007/s10548-023-01027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Identify the presence of a dysfunctional electroencephalographic (EEG) pattern in individuals with sickle cell disease (SCD) and hip osteonecrosis, and assess its potential associations with depression, anxiety, pain severity, and serum levels of brain-derived neurotrophic factor (BDNF). METHODS In this cross-sectional investigation, 24 SCD patients with hip osteonecrosis and chronic pain were matched by age and sex with 19 healthy controls. Resting-state EEG data were recorded using 32 electrodes for both groups. Power spectral density (PSD) and peak alpha frequency (PAF) were computed for each electrode across Delta, Theta, Alpha, and Beta frequency bands. Current Source Density (CSD) measures were performed utilizing the built-in Statistical nonparametric Mapping Method of the LORETA-KEY software. RESULTS Our findings demonstrated that SCD individuals exhibited higher PSD in delta and theta frequency bands when compared to healthy controls. Moreover, SCD individuals displayed increased CSD in delta and theta frequencies, coupled with decreased CSD in the alpha frequency within brain regions linked to pain processing, motor function, emotion, and attention. In comparison to the control group, depression symptoms, and pain intensity during hip abduction were positively correlated with PSD and CSD in the delta frequency within the parietal region. Depression symptoms also exhibited a positive association with PSD and CSD in the theta frequency within the same region, while serum BDNF levels showed a negative correlation with CSD in the alpha frequency within the left insula. CONCLUSION This study indicates that individuals with SCD experiencing hip osteonecrosis and chronic pain manifest a dysfunctional EEG pattern characterized by the persistence of low-frequency PSD during a resting state. This dysfunctional EEG pattern may be linked to clinical and biochemical outcomes, including depression symptoms, pain severity during movement, and serum BDNF levels.
Collapse
Affiliation(s)
- Tiago S Lopes
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, Santo Andre, Brazil.
- NAPEN network (Nucleus of Assistance, Research, and Teaching in Neuromodulation), São Paulo, Brazil.
- Bahia Adventist College, Cachoeira, Brazil.
| | - Jamille E Santana
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, Santo Andre, Brazil
- NAPEN network (Nucleus of Assistance, Research, and Teaching in Neuromodulation), São Paulo, Brazil
| | | | - Francisco J Fraga
- Engineering, Modelling, and Applied Social Sciences Center, Federal University of ABC, Santo André, SP, Brazil
| | - Pedro Montoya
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, Santo Andre, Brazil
- Research Institute of Health Sciences, University of Balearic Islands, Palma de Mallorca, Spain
| | - Katia N Sá
- NAPEN network (Nucleus of Assistance, Research, and Teaching in Neuromodulation), São Paulo, Brazil
- Postgraduate and Research, Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
| | - Larissa C Lopes
- Graduate Program in Medicine and Health, Federal University of Bahia, Salvador, Brazil
| | - Rita Lucena
- Graduate Program in Medicine and Health, Federal University of Bahia, Salvador, Brazil
| | - Yossi Zana
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, Santo Andre, Brazil
| | - Abrahão F Baptista
- Center for Mathematics, Computation, and Cognition, Federal University of ABC, Santo Andre, Brazil
- NAPEN network (Nucleus of Assistance, Research, and Teaching in Neuromodulation), São Paulo, Brazil
- Laboratory of Medical Investigations 54, Clinics Hospital, São Paulo State University, São Paulo, Brazil
| |
Collapse
|
23
|
Vanneste S, Byczynski G, Verplancke T, Ost J, Song JJ, De Ridder D. Switching tinnitus on or off: An initial investigation into the role of the pregenual and rostral to dorsal anterior cingulate cortices. Neuroimage 2024; 297:120713. [PMID: 38944171 DOI: 10.1016/j.neuroimage.2024.120713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024] Open
Abstract
Research indicates that hearing loss significantly contributes to tinnitus, but it alone does not fully explain its occurrence, as many people with hearing loss do not experience tinnitus. To identify a secondary factor for tinnitus generation, we examined a unique dataset of individuals with intermittent chronic tinnitus, who experience fluctuating periods of tinnitus. EEGs of healthy controls were compared to EEGs of participants who reported perceiving tinnitus on certain days, but no tinnitus on other days.. The EEG data revealed that tinnitus onset is associated with increased theta activity in the pregenual anterior cingulate cortex and decreased theta functional connectivity between the pregenual anterior cingulate cortex and the auditory cortex. Additionally, there is increased alpha effective connectivity from the dorsal anterior cingulate cortex to the pregenual anterior cingulate cortex. When tinnitus is not perceived, differences from healthy controls include increased alpha activity in the pregenual anterior cingulate cortex and heightened alpha connectivity between the pregenual anterior cingulate cortex and auditory cortex. This suggests that tinnitus is triggered by a switch involving increased theta activity in the pregenual anterior cingulate cortex and decreased theta connectivity between the pregenual anterior cingulate cortex and auditory cortex, leading to increased theta-gamma cross-frequency coupling, which correlates with tinnitus loudness. Increased alpha activity in the dorsal anterior cingulate cortex correlates with distress. Conversely, increased alpha activity in the pregenual anterior cingulate cortex can transiently suppress the phantom sound by enhancing theta connectivity to the auditory cortex. This mechanism parallels chronic neuropathic pain and suggests potential treatments for tinnitus by promoting alpha activity in the pregenual anterior cingulate cortex and reducing alpha activity in the dorsal anterior cingulate cortex through pharmacological or neuromodulatory approaches.
Collapse
Affiliation(s)
- Sven Vanneste
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, College Green 2, Dublin, Ireland; Global Brain Health Institute & Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland; Brai3n, Ghent, Belgium.
| | - Gabriel Byczynski
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, College Green 2, Dublin, Ireland; Global Brain Health Institute & Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | | | | | - Jae-Jin Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, the Republic of Korea; Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, the Republic of Korea
| | - Dirk De Ridder
- Brai3n, Ghent, Belgium; Unit of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Song J, Wang Y, Ouyang F, Zeng X, Yang J. Differences in brain functional connectivity between tinnitus with or without hearing loss. Neuroreport 2024; 35:712-720. [PMID: 38829954 DOI: 10.1097/wnr.0000000000002057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
To explore the differences in brain imaging in tinnitus with or without hearing loss (HL). We acquired functional MRI scans from 26 tinnitus patients with HL (tinnitus-HL), 24 tinnitus patients with no HL (tinnitus-NHL), and 26 healthy controls (HCs) matched by age and sex. The left and right thalamus were selected as seeds to study the endogenous functional connectivity (FC) of the whole brain, and its correlation with clinical indices was analyzed. Brain regions showing FC differences among the three groups included the Heschl gyrus (HES), right Hippocampus (HIP), right Amygdala (AMYG), left Calcarine fissure and surrounding cortex (CAL). Post hoc analysis showed that the thalamus-HIP connection and thalamus-lingual gyrus (LING) connection were enhanced in the tinnitus-NHL group, as compared to tinnitus-HL. Compared with HCs, the tinnitus-NHL group showed an enhanced connection between the thalamus and the left Inferior occipital gyrus, left CAL and LING. While in the tinnitus-HL group, the connection between the thalamus and several brain regions (right HES, right AMYG, etc) was weakened. In the tinnitus-HL group, the tinnitus handicap inventory scores were positively correlated with the FC of the left thalamus and right HES, right thalamus and right Rolandic operculum. The duration of tinnitus was negatively correlated with the FC of the right thalamus and right HIP. Abnormal FC in the thalamus may play an important role in the pathogenesis of tinnitus. Tinnitus-NHL and tinnitus-HL show different connection patterns, indicating that there are some differences in their pathogenesis.
Collapse
Affiliation(s)
- Jianxiong Song
- Department of Cariology and Endodontics, Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University
- Department of Otolaryngology
| | | | - Fang Ouyang
- Department of Endocrinology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | | | - Jian Yang
- Department of Cariology and Endodontics, Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University
| |
Collapse
|
25
|
Pacheco-Barrios K, Teixeira PEP, Martinez-Magallanes D, Neto MS, Pichardo EA, Camargo L, Lima D, Cardenas-Rojas A, Fregni F. Brain compensatory mechanisms in depression and memory complaints in fibromyalgia: the role of theta oscillatory activity. PAIN MEDICINE (MALDEN, MASS.) 2024; 25:514-522. [PMID: 38652585 PMCID: PMC11292043 DOI: 10.1093/pm/pnae030] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND The different clinical presentations of fibromyalgia syndrome (FMS) might play independent roles in the unclear etiology of cognitive impairments and depressive symptoms seen in patients with FMS. Understanding how these clinical presentations are associated with the clinical and neurophysiological aspects of FMS is important for the development of effective treatments. AIM To explore the relationship of memory complaints and depressive symptoms with the different clinical and neurophysiological characteristics of FMS. METHODS Cross-sectional data analysis from a randomized clinical trial. Baseline demographics and data on physical fitness, sleep, anxiety, depression, cortical excitability, and pain (clinical and mechanistic) from 63 subjects with FMS were used. Multiple linear and logistic association models were constructed. RESULTS Final regression models including different sets of predictions were statistically significant (P < .001), explaining approximately 50% of the variability in cognitive complaints and depression status. Older subjects had higher levels of anxiety, poorer sleep quality, lower motor threshold, and higher relative theta power in the central area and were more likely to have clinical depression. Higher anxiety, pain, and theta power were associated with a higher likelihood of memory complaints. CONCLUSION Depression symptoms seem to be associated with transcranial magnetic stimulation-indexed motor threshold and psychosocial variables, whereas memory complaints are associated with pain intensity and higher theta oscillations. These mechanisms might be catalyzed or triggered by some behavioral and clinical features, such as older age, sleep disruption, and anxiety. The correlation with clinical variables suggests that the increasing of theta oscillations is a compensatory response in patients with FMS, which can be explored in future studies to improve the treatment of FMS. TRIAL REGISTRATION ClinicalTrials.gov ID NCT03371225.
Collapse
Affiliation(s)
- Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Cambridge, MA 02138, United States
- Harvard Medical School, Boston, MA 02115, United States
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, av. Industrial 3484, Lima, Peru
| | - Paulo E P Teixeira
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Cambridge, MA 02138, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Daniela Martinez-Magallanes
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Cambridge, MA 02138, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Moacir Silva Neto
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Cambridge, MA 02138, United States
- Harvard Medical School, Boston, MA 02115, United States
- Life Checkup—Medicina Esportiva Avançada, Brasília, DF, 70200-730, Brazil
| | - Elly Angelica Pichardo
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Cambridge, MA 02138, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Lucas Camargo
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Cambridge, MA 02138, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Daniel Lima
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Cambridge, MA 02138, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Alejandra Cardenas-Rojas
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Cambridge, MA 02138, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Cambridge, MA 02138, United States
- Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
26
|
Fabrizio-Stover EM, Oliver DL, Burghard AL. Tinnitus mechanisms and the need for an objective electrophysiological tinnitus test. Hear Res 2024; 449:109046. [PMID: 38810373 DOI: 10.1016/j.heares.2024.109046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Tinnitus, the perception of sound with no external auditory stimulus, is a complex, multifaceted, and potentially devastating disorder. Despite recent advances in our understanding of tinnitus, there are limited options for effective treatment. Tinnitus treatments are made more complicated by the lack of a test for tinnitus based on objectively measured physiological characteristics. Such an objective test would enable a greater understanding of tinnitus mechanisms and may lead to faster treatment development in both animal and human research. This review makes the argument that an objective tinnitus test, such as a non-invasive electrophysiological measure, is desperately needed. We review the current tinnitus assessment methods, the underlying neural correlates of tinnitus, the multiple tinnitus generation theories, and the previously investigated electrophysiological measurements of tinnitus. Finally, we propose an alternate objective test for tinnitus that may be valid in both animal and human subjects.
Collapse
Affiliation(s)
- Emily M Fabrizio-Stover
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA; Department of Otolaryngology-Head and Neck Surgery, Medical University South Carolina, Charleston, SC, USA
| | - Douglas L Oliver
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Alice L Burghard
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA.
| |
Collapse
|
27
|
Camargo L, Pacheco-Barrios K, Marques LM, Caumo W, Fregni F. Adaptive and Compensatory Neural Signatures in Fibromyalgia: An Analysis of Resting-State and Stimulus-Evoked EEG Oscillations. Biomedicines 2024; 12:1428. [PMID: 39062001 PMCID: PMC11274211 DOI: 10.3390/biomedicines12071428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to investigate clinical and physiological predictors of brain oscillatory activity in patients with fibromyalgia (FM), assessing resting-state power, event-related desynchronization (ERD), and event-related synchronization (ERS) during tasks. We performed a cross-sectional analysis, including clinical and neurophysiological data from 78 subjects with FM. Multivariate regression models were built to explore predictors of electroencephalography bands. Our findings show a negative correlation between beta oscillations and pain intensity; fibromyalgia duration is positively associated with increased oscillatory power at low frequencies and in the beta band; ERS oscillations in the theta and alpha bands seem to be correlated with better symptoms of FM; fatigue has a signature in the alpha band-a positive relationship in resting-state and a negative relationship in ERS oscillations. Specific neural signatures lead to potential clusters of neural adaptation, in which beta oscillatory activity in the resting state represents a more adaptive activity when pain levels are low and stimulus-evoked oscillations at lower frequencies are likely brain compensatory mechanisms. These neurophysiological changes may help to understand the impact of long-term chronic pain in the central nervous system and the descending inhibitory system in fibromyalgia subjects.
Collapse
Affiliation(s)
- Lucas Camargo
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (L.C.); (K.P.-B.)
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (L.C.); (K.P.-B.)
- Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima 15024, Peru
| | - Lucas M. Marques
- Mental Health Department, Santa Casa de São Paulo School of Medical Sciences, São Paulo 01238-010, Brazil;
| | - Wolnei Caumo
- School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil;
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (L.C.); (K.P.-B.)
| |
Collapse
|
28
|
Guo B, Liu T, Choi S, Mao H, Wang W, Xi K, Jones C, Hartley ND, Feng D, Chen Q, Liu Y, Wimmer RD, Xie Y, Zhao N, Ou J, Arias-Garcia MA, Malhotra D, Liu Y, Lee S, Pasqualoni S, Kast RJ, Fleishman M, Halassa MM, Wu S, Fu Z. Restoring thalamocortical circuit dysfunction by correcting HCN channelopathy in Shank3 mutant mice. Cell Rep Med 2024; 5:101534. [PMID: 38670100 PMCID: PMC11149412 DOI: 10.1016/j.xcrm.2024.101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/11/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Thalamocortical (TC) circuits are essential for sensory information processing. Clinical and preclinical studies of autism spectrum disorders (ASDs) have highlighted abnormal thalamic development and TC circuit dysfunction. However, mechanistic understanding of how TC dysfunction contributes to behavioral abnormalities in ASDs is limited. Here, our study on a Shank3 mouse model of ASD reveals TC neuron hyperexcitability with excessive burst firing and a temporal mismatch relationship with slow cortical rhythms during sleep. These TC electrophysiological alterations and the consequent sensory hypersensitivity and sleep fragmentation in Shank3 mutant mice are causally linked to HCN2 channelopathy. Restoring HCN2 function early in postnatal development via a viral approach or lamotrigine (LTG) ameliorates sensory and sleep problems. A retrospective case series also supports beneficial effects of LTG treatment on sensory behavior in ASD patients. Our study identifies a clinically relevant circuit mechanism and proposes a targeted molecular intervention for ASD-related behavioral impairments.
Collapse
Affiliation(s)
- Baolin Guo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Soonwook Choi
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Kaiwen Xi
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Carter Jones
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nolan D Hartley
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Dayun Feng
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Qian Chen
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Yingying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ralf D Wimmer
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Yuqiao Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ningxia Zhao
- Xi'an TCM Hospital of Encephalopathy, Shaanxi University of Chinese Medicine, Xi'an 710032, China
| | - Jianjun Ou
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, National Clinical Research Center for Mental Disorders, Changsha 410011, China
| | - Mario A Arias-Garcia
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Diya Malhotra
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yang Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Sihak Lee
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sammuel Pasqualoni
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ryan J Kast
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Morgan Fleishman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael M Halassa
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Zhanyan Fu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
29
|
Schiff ND. Toward an interventional science of recovery after coma. Neuron 2024; 112:1595-1610. [PMID: 38754372 PMCID: PMC11827330 DOI: 10.1016/j.neuron.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Recovery of consciousness after coma remains one of the most challenging areas for accurate diagnosis and effective therapeutic engagement in the clinical neurosciences. Recovery depends on preservation of neuronal integrity and evolving changes in network function that re-establish environmental responsiveness. It typically occurs in defined steps: it begins with eye opening and unresponsiveness in a vegetative state, then limited recovery of responsiveness characterizes the minimally conscious state, and this is followed by recovery of reliable communication. This review considers several points for novel interventions, for example, in persons with cognitive motor dissociation in whom a hidden cognitive reserve is revealed. Circuit mechanisms underlying restoration of behavioral responsiveness and communication are discussed. An emerging theme is the possibility to rescue latent capacities in partially damaged human networks across time. These opportunities should be exploited for therapeutic engagement to achieve individualized solutions for restoration of communication and environmental interaction across varying levels of recovery.
Collapse
Affiliation(s)
- Nicholas D Schiff
- Jerold B. Katz Professor of Neurology and Neuroscience, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
30
|
Takarae Y, Zanesco A, Erickson CA, Pedapati EV. EEG Microstates as Markers for Cognitive Impairments in Fragile X Syndrome. Brain Topogr 2024; 37:432-446. [PMID: 37751055 DOI: 10.1007/s10548-023-01009-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
Fragile X syndrome (FXS) is one of the most common inherited causes of intellectual disabilities. While there is currently no cure for FXS, EEG is considered an important method to investigate the pathophysiology and evaluate behavioral and cognitive treatments. We conducted EEG microstate analysis to investigate resting brain dynamics in FXS participants. Resting-state recordings from 70 FXS participants and 71 chronological age-matched typically developing control (TDC) participants were used to derive microstates via modified k-means clustering. The occurrence, mean global field power (GFP), and global explained variance (GEV) of microstate C were significantly higher in the FXS group compared to the TDC group. The mean GFP was significantly negatively correlated with non-verbal IQ (NVIQ) in the FXS group, where lower NVIQ scores were associated with greater GFP. In addition, the occurrence, mean duration, mean GFP, and GEV of microstate D were significantly greater in the FXS group than the TDC group. The mean GFP and occurrence of microstate D were also correlated with individual alpha frequencies in the FXS group, where lower IAF frequencies accompanied greater microstate GFP and occurrence. Alterations in microstates C and D may be related to the two well-established cognitive characteristics of FXS, intellectual disabilities and attention impairments, suggesting that microstate parameters could serve as markers to study cognitive impairments and evaluate treatment outcomes in this population. Slowing of the alpha peak frequency and its correlation to microstate D parameters may suggest changes in thalamocortical dynamics in FXS, which could be specifically related to attention control. (250 words).
Collapse
Affiliation(s)
- Yukari Takarae
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, USA.
- M.I.N.D. Institute, University of California, Davis, Sacramento, CA, USA.
| | - Anthony Zanesco
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
31
|
Dai Q, Qu T, Shen G, Wang H. Characterization of the neural circuitry of the auditory thalamic reticular nucleus and its potential role in salicylate-induced tinnitus. Front Neurosci 2024; 18:1368816. [PMID: 38629053 PMCID: PMC11019010 DOI: 10.3389/fnins.2024.1368816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction Subjective tinnitus, the perception of sound without an external acoustic source, is often subsequent to noise-induced hearing loss or ototoxic medications. The condition is believed to result from neuroplastic alterations in the auditory centers, characterized by heightened spontaneous neural activities and increased synchrony due to an imbalance between excitation and inhibition. However, the role of the thalamic reticular nucleus (TRN), a structure composed exclusively of GABAergic neurons involved in thalamocortical oscillations, in the pathogenesis of tinnitus remains largely unexplored. Methods We induced tinnitus in mice using sodium salicylate and assessed tinnitus-like behaviors using the Gap Pre-Pulse Inhibition of the Acoustic Startle (GPIAS) paradigm. We utilized combined viral tracing techniques to identify the neural circuitry involved and employed immunofluorescence and confocal imaging to determine cell types and activated neurons. Results Salicylate-treated mice exhibited tinnitus-like behaviors. Our tracing clearly delineated the inputs and outputs of the auditory-specific TRN. We discovered that chemogenetic activation of the auditory TRN significantly reduced the salicylate-evoked rise in c-Fos expression in the auditory cortex. Discussion This finding posits the TRN as a potential modulatory target for tinnitus treatment. Furthermore, the mapped sensory inputs to the auditory TRN suggest possibilities for employing optogenetic or sensory stimulations to manipulate thalamocortical activities. The precise mapping of the auditory TRN-mediated neural pathways offers a promising avenue for designing targeted interventions to alleviate tinnitus symptoms.
Collapse
Affiliation(s)
| | | | - Guoming Shen
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Haitao Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
32
|
Nakhnikian A, Oribe N, Hirano S, Fujishima Y, Hirano Y, Nestor PG, Francis GA, Levin M, Spencer KM. Spectral decomposition of resting state electroencephalogram reveals unique theta/alpha activity in schizophrenia. Eur J Neurosci 2024; 59:1946-1960. [PMID: 38217348 DOI: 10.1111/ejn.16244] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/18/2023] [Accepted: 12/16/2023] [Indexed: 01/15/2024]
Abstract
Resting state electroencephalographic (EEG) activity in schizophrenia (SZ) is frequently characterised by increased power at slow frequencies and/or a reduction of peak alpha frequency. Here we investigated the nature of these effects. As most studies to date have been limited by reliance on a priori frequency bands which impose an assumed structure on the data, we performed a data-driven analysis of resting EEG recorded in SZ patients and healthy controls (HC). The sample consisted of 39 chronic SZ and 36 matched HC. The EEG was recorded with a dense electrode array. Power spectral densities were decomposed via Varimax-rotated principal component analysis (PCA) over all participants and for each group separately. Spectral PCA was repeated at the cortical level on cortical current source density computed from standardised low resolution brain electromagnetic tomography. There was a trend for power in the theta/alpha range to be increased in SZ compared to HC, and peak alpha frequency was significantly reduced in SZ. PCA revealed that this frequency shift was because of the presence of a spectral component in the theta/alpha range (6-9 Hz) that was unique to SZ. The source distribution of the SZ > HC theta/alpha effect involved mainly prefrontal and parahippocampal areas. Abnormal low frequency resting EEG activity in SZ was accounted for by a unique theta/alpha oscillation. Other reports have described a similar phenomenon suggesting that the neural circuits oscillating in this range are relevant to SZ pathophysiology.
Collapse
Affiliation(s)
- Alexander Nakhnikian
- Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Naoya Oribe
- Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Japan Imaging Center of Psychiatry and Neurology, Fukuoka, Japan
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shogo Hirano
- Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Fujishima
- Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Yoji Hirano
- Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Paul G Nestor
- Department of Psychology, University of Massachusetts, Boston, Massachusetts, USA
| | - Grace A Francis
- Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Kevin M Spencer
- Neural Dynamics Laboratory, Research Service, VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Zheng W, Zhang Q, Zhao Z, Zhang P, Zhao L, Wang X, Yang S, Zhang J, Yao Z, Hu B. Aberrant dynamic functional connectivity of thalamocortical circuitry in major depressive disorder. J Zhejiang Univ Sci B 2024; 25:857-877. [PMID: 39420522 PMCID: PMC11494164 DOI: 10.1631/jzus.b2300401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/24/2023] [Indexed: 03/02/2024]
Abstract
Thalamocortical circuitry has a substantial impact on emotion and cognition. Previous studies have demonstrated alterations in thalamocortical functional connectivity (FC), characterized by region-dependent hypo- or hyper-connectivity, among individuals with major depressive disorder (MDD). However, the dynamical reconfiguration of the thalamocortical system over time and potential abnormalities in dynamic thalamocortical connectivity associated with MDD remain unclear. Hence, we analyzed dynamic FC (dFC) between ten thalamic subregions and seven cortical subnetworks from resting-state functional magnetic resonance images of 48 patients with MDD and 57 healthy controls (HCs) to investigate time-varying changes in thalamocortical FC in patients with MDD. Moreover, dynamic laterality analysis was conducted to examine the changes in functional lateralization of the thalamocortical system over time. Correlations between the dynamic measures of thalamocortical FC and clinical assessment were also calculated. We identified four dynamic states of thalamocortical circuitry wherein patients with MDD exhibited decreased fractional time and reduced transitions within a negative connectivity state that showed strong correlations with primary cortical networks, compared with the HCs. In addition, MDD patients also exhibited increased fluctuations in functional laterality in the thalamocortical system across the scan duration. The thalamo-subnetwork analysis unveiled abnormal dFC variability involving higher-order cortical networks in the MDD cohort. Significant correlations were found between increased dFC variability with dorsal attention and default mode networks and the severity of symptoms. Our study comprehensively investigated the pattern of alteration of the thalamocortical dFC in MDD patients. The heterogeneous alterations of dFC between the thalamus and both primary and higher-order cortical networks may help characterize the deficits of sensory and cognitive processing in MDD.
Collapse
Affiliation(s)
- Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qin Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ziyang Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Pengfei Zhang
- Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China
| | - Leilei Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaomin Wang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Songyu Yang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jing Zhang
- Second Clinical School, Lanzhou University, Lanzhou 730030, China. ,
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730030, China. ,
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China. ,
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China. ,
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China.
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
- Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of Semiconductors, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
34
|
Stern JI, Robertson CE. Visual Snow: Updates and Narrative Review. Curr Pain Headache Rep 2024; 28:55-63. [PMID: 38079073 DOI: 10.1007/s11916-023-01186-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 02/22/2024]
Abstract
PURPOSE OF REVIEW Visual snow (VS) involves visualization of innumerable dots throughout the visual field, sometimes resembling "TV static." Patients who experience this symptom may also have additional visual symptoms (e.g., photophobia, palinopsia, floaters, and nyctalopia) with a pattern now defined as visual snow syndrome (VSS). This manuscript describes both VS and VSS in detail and provides an updated review on the clinical features, pathophysiology, and optimal management strategies for these symptoms. RECENT FINDINGS VS/VSS may be primary or secondary to a variety of etiologies, including ophthalmologic or brain disorders, systemic disease, and medication/hallucinogen exposure. Evaluation involves ruling out secondary causes and mimics of VS. Increasing evidence suggests that VSS is a widespread process extending beyond the visual system. Pathophysiology may involve cortical hyperexcitability or dysfunctional connectivity of thalamocortical or attention/salience networks. VSS is typically a benign, non-progressive syndrome and can be managed with non-medicine strategies. Though no medication provides complete relief, some may provide partial improvement in severity of VS.
Collapse
Affiliation(s)
- Jennifer I Stern
- Neurology Department, Mayo Clinic College of Medicine and Science, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Carrie E Robertson
- Neurology Department, Mayo Clinic College of Medicine and Science, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
35
|
Li J, Li Z, Wang X, Liu Y, Wang S, Wang X, Li Y, Qin L. The Thalamocortical Mechanism Underlying the Generation and Regulation of the Auditory Steady-State Responses in Awake Mice. J Neurosci 2024; 44:e1166232023. [PMID: 37945348 PMCID: PMC10851679 DOI: 10.1523/jneurosci.1166-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/28/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
The auditory steady-state response (ASSR) is a cortical oscillation induced by trains of 40 Hz acoustic stimuli. While the ASSR has been widely used in clinic measurement, the underlying neural mechanism remains poorly understood. In this study, we investigated the contribution of different stages of auditory thalamocortical pathway-medial geniculate body (MGB), thalamic reticular nucleus (TRN), and auditory cortex (AC)-to the generation and regulation of 40 Hz ASSR in C57BL/6 mice of both sexes. We found that the neural response synchronizing to 40 Hz sound stimuli was most prominent in the GABAergic neurons in the granular layer of AC and the ventral division of MGB (MGBv), which were regulated by optogenetic manipulation of TRN neurons. Behavioral experiments confirmed that disrupting TRN activity has a detrimental effect on the ability of mice to discriminate 40 Hz sounds. These findings revealed a thalamocortical mechanism helpful to interpret the results of clinical ASSR examinations.Significance Statement Our study contributes to clarifying the thalamocortical mechanisms underlying the generation and regulation of the auditory steady-state response (ASSR), which is commonly used in both clinical and neuroscience research to assess the integrity of auditory function. Combining a series of electrophysiological and optogenetic experiments, we demonstrate that the generation of cortical ASSR is dependent on the lemniscal thalamocortical projections originating from the ventral division of medial geniculate body to the GABAergic interneurons in the granule layer of the auditory cortex. Furthermore, the thalamocortical process for ASSR is strictly regulated by the activity of thalamic reticular nucleus (TRN) neurons. Behavioral experiments confirmed that dysfunction of TRN would cause a disruption of mice's behavioral performance in the auditory discrimination task.
Collapse
Affiliation(s)
- Jinhong Li
- Department of Physiology, China Medical University, Shenyang 110122, People's Republic of China
| | - Zijie Li
- Department of Physiology, China Medical University, Shenyang 110122, People's Republic of China
| | - Xueru Wang
- Department of Physiology, China Medical University, Shenyang 110122, People's Republic of China
| | - Yunhan Liu
- Department of Physiology, China Medical University, Shenyang 110122, People's Republic of China
| | - Shuai Wang
- Department of Physiology, China Medical University, Shenyang 110122, People's Republic of China
| | - Xuejiao Wang
- Department of Physiology, China Medical University, Shenyang 110122, People's Republic of China
| | - Yingna Li
- Department of Physiology, China Medical University, Shenyang 110122, People's Republic of China
| | - Ling Qin
- Department of Physiology, China Medical University, Shenyang 110122, People's Republic of China
| |
Collapse
|
36
|
Hasan MA, Sattar P, Qazi SA, Fraser M, Vuckovic A. Brain Networks With Modified Connectivity in Patients With Neuropathic Pain and Spinal Cord Injury. Clin EEG Neurosci 2024; 55:88-100. [PMID: 34714181 DOI: 10.1177/15500594211051485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. Neuropathic pain (NP) following spinal cord injury (SCI) affects the quality of life of almost 40% of the injured population. The modified brain connectivity was reported under different NP conditions. Therefore, brain connectivity was studied in the SCI population with and without NP with the aim to identify networks that are altered due to injury, pain, or both. Methods. The study cohort is classified into 3 groups, SCI patients with NP, SCI patients without NP, and able-bodied. EEG of each participant was recorded during motor imagery (MI) of paralyzed and painful, and nonparalyzed and nonpainful limbs. Phased locked value was calculated using Hilbert transform to study altered functional connectivity between different regions. Results. The posterior region connectivity with frontal, fronto-central, and temporal regions is strongly decreased mainly during MI of dominant upper limb (nonparalyzed and nonpainful limbs) in SCI no pain group. This modified connectivity is prominent in the alpha and high-frequency bands (beta and gamma). Moreover, oscillatory modified global connectivity is observed in the pain group during MI of painful and paralyzed limb which is more evident between fronto-posterior, frontocentral-posterior, and within posterior and within frontal regions in the theta and SMR frequency bands. Cluster coefficient and local efficiency values are reduced in patients with no reported pain group while increased in the PWP group. Conclusion. The altered theta band connectivity found in the fronto-parietal network along with a global increase in local efficiency is a consequence of pain only, while altered connectivity in the beta and gamma bands along with a decrease in cluster coefficient values observed in the sensory-motor network is dominantly a consequence of injury only. The outcomes of this study may be used as a potential diagnostic biomarker for the NP. Further, the expected insight holds great clinical relevance in the design of neurofeedback-based neurorehabilitation and connectivity-based brain-computer interfaces for SCI patients.
Collapse
Affiliation(s)
- Muhammad A Hasan
- Department of Biomedical Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Parisa Sattar
- Neurocomputation Laboratory, National Centre for Artificial Intelligence, Karachi, Pakistan
| | - Saad A Qazi
- Neurocomputation Laboratory, National Centre for Artificial Intelligence, Karachi, Pakistan
- Department of Electrical and Computer Engineering, NED University of Engineering & Technology, Karachi, Pakistan
| | - Matthew Fraser
- Queen Elizabeth National Spinal Unit, Southern General Hospital, Glasgow, UK
| | - Aleksandra Vuckovic
- Centre for Rehabilitation Engineering, School of Engineering, University of Glasgow, Glasgow, UK
| |
Collapse
|
37
|
Onofrj M, Russo M, Delli Pizzi S, De Gregorio D, Inserra A, Gobbi G, Sensi SL. The central role of the Thalamus in psychosis, lessons from neurodegenerative diseases and psychedelics. Transl Psychiatry 2023; 13:384. [PMID: 38092757 PMCID: PMC10719401 DOI: 10.1038/s41398-023-02691-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
The PD-DLB psychosis complex found in Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB) includes hallucinations, Somatic Symptom/Functional Disorders, and delusions. These disorders exhibit similar presentation patterns and progression. Mechanisms at the root of these symptoms also share similarities with processes promoting altered states of consciousness found in Rapid Eye Movement sleep, psychiatric disorders, or the intake of psychedelic compounds. We propose that these mechanisms find a crucial driver and trigger in the dysregulated activity of high-order thalamic nuclei set in motion by ThalamoCortical Dysrhythmia (TCD). TCD generates the loss of finely tuned cortico-cortical modulations promoted by the thalamus and unleashes the aberrant activity of the Default Mode Network (DMN). TCD moves in parallel with altered thalamic filtering of external and internal information. The process produces an input overload to the cortex, thereby exacerbating DMN decoupling from task-positive networks. These phenomena alter the brain metastability, creating dreamlike, dissociative, or altered states of consciousness. In support of this hypothesis, mind-altering psychedelic drugs also modulate thalamic-cortical pathways. Understanding the pathophysiological background of these conditions provides a conceptual bridge between neurology and psychiatry, thereby helping to generate a promising and converging area of investigation and therapeutic efforts.
Collapse
Affiliation(s)
- Marco Onofrj
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
| | - Mirella Russo
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Stefano Delli Pizzi
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Danilo De Gregorio
- Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Inserra
- Neurobiological Psychiatry Unit, McGill University, Montreal, QC, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, McGill University, Montreal, QC, Canada
| | - Stefano L Sensi
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
38
|
Zhu M, Gong Q. EEG spectral and microstate analysis originating residual inhibition of tinnitus induced by tailor-made notched music training. Front Neurosci 2023; 17:1254423. [PMID: 38148944 PMCID: PMC10750374 DOI: 10.3389/fnins.2023.1254423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023] Open
Abstract
Tailor-made notched music training (TMNMT) is a promising therapy for tinnitus. Residual inhibition (RI) is one of the few interventions that can temporarily inhibit tinnitus, which is a useful technique that can be applied to tinnitus research and explore tinnitus mechanisms. In this study, RI effect of TMNMT in tinnitus was investigated mainly using behavioral tests, EEG spectral and microstate analysis. To our knowledge, this study is the first to investigate RI effect of TMNMT. A total of 44 participants with tinnitus were divided into TMNMT group (22 participants; ECnm, NMnm, RInm represent that EEG recordings with eyes closed stimuli-pre, stimuli-ing, stimuli-post by TMNMT music, respectively) and Placebo control group (22 participants; ECpb, PBpb, RIpb represent that EEG recordings with eyes closed stimuli-pre, stimuli-ing, stimuli-post by Placebo music, respectively) in a single-blind manner. Behavioral tests, EEG spectral analysis (covering delta, theta, alpha, beta, gamma frequency bands) and microstate analysis (involving four microstate classes, A to D) were employed to evaluate RI effect of TMNMT. The results of the study showed that TMNMT had a stronger inhibition ability and longer inhibition time according to the behavioral tests compared to Placebo. Spectral analysis showed that RI effect of TMNMT increased significantly the power spectral density (PSD) of delta, theta bands and decreased significantly the PSD of alpha2 band, and microstate analysis showed that RI effect of TMNMT had shorter duration (microstate B, microstate C), higher Occurrence (microstate A, microstate C, microstate D), Coverage (microstate A) and transition probabilities (microstate A to microstate B, microstate A to microstate D and microstate D to microstate A). Meanwhile, RI effect of Placebo decreased significantly the PSD of alpha2 band, and microstate analysis showed that RI effect of Placebo had shorter duration (microstate C, microstate D), higher occurrence (microstate B, microstate C), lower coverage (microstate C, microstate D), higher transition probabilities (microstate A to microstate B, microstate B to microstate A). It was also found that the intensity of tinnitus symptoms was significant positively correlated with the duration of microstate B in five subgroups (ECnm, NMnm, RInm, ECpb, PBpb). Our study provided valuable experimental evidence and practical applications for the effectiveness of TMNMT as a novel music therapy for tinnitus. The observed stronger residual inhibition (RI) ability of TMNMT supported its potential applications in tinnitus treatment. Furthermore, the temporal dynamics of EEG microstates serve as novel functional and trait markers of synchronous brain activity that contribute to a deep understanding of the neural mechanism underlying TMNMT treatment for tinnitus.
Collapse
Affiliation(s)
- Min Zhu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Qin Gong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
- School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
39
|
Reisinger L, Demarchi G, Weisz N. Eavesdropping on Tinnitus Using MEG: Lessons Learned and Future Perspectives. J Assoc Res Otolaryngol 2023; 24:531-547. [PMID: 38015287 PMCID: PMC10752863 DOI: 10.1007/s10162-023-00916-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Tinnitus has been widely investigated in order to draw conclusions about the underlying causes and altered neural activity in various brain regions. Existing studies have based their work on different tinnitus frameworks, ranging from a more local perspective on the auditory cortex to the inclusion of broader networks and various approaches towards tinnitus perception and distress. Magnetoencephalography (MEG) provides a powerful tool for efficiently investigating tinnitus and aberrant neural activity both spatially and temporally. However, results are inconclusive, and studies are rarely mapped to theoretical frameworks. The purpose of this review was to firstly introduce MEG to interested researchers and secondly provide a synopsis of the current state. We divided recent tinnitus research in MEG into study designs using resting state measurements and studies implementing tone stimulation paradigms. The studies were categorized based on their theoretical foundation, and we outlined shortcomings as well as inconsistencies within the different approaches. Finally, we provided future perspectives on how to benefit more efficiently from the enormous potential of MEG. We suggested novel approaches from a theoretical, conceptual, and methodological point of view to allow future research to obtain a more comprehensive understanding of tinnitus and its underlying processes.
Collapse
Affiliation(s)
- Lisa Reisinger
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria.
| | - Gianpaolo Demarchi
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Nathan Weisz
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
40
|
De Koninck BP, Brazeau D, Guay S, Herrero Babiloni A, De Beaumont L. Transcranial Alternating Current Stimulation to Modulate Alpha Activity: A Systematic Review. Neuromodulation 2023; 26:1549-1584. [PMID: 36725385 DOI: 10.1016/j.neurom.2022.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Transcranial alternating current stimulation (tACS) has been one of numerous investigation methods used for their potential to modulate brain oscillations; however, such investigations have given contradictory results and a lack of standardization. OBJECTIVES In this systematic review, we aimed to assess the potential of tACS to modulate alpha spectral power. The secondary outcome was the identification of tACS methodologic key parameters, adverse effects, and sensations. MATERIALS AND METHODS Studies in healthy adults who were receiving active and sham tACS intervention or any differential condition were included. The main outcome assessed was the increase/decrease of alpha spectral power through either electroencephalography or magnetoencephalography. Secondary outcomes were methodologic parameters, sensation reporting, and adverse effects. Risks of bias and the study quality were assessed with the Cochrane assessment tool. RESULTS We obtained 1429 references, and 20 met the selection criteria. A statistically significant alpha-power increase was observed in nine studies using continuous tACS stimulation and two using intermittent tACS stimulation set at a frequency within the alpha range. A statistically significant alpha-power increase was observed in three more studies using a stimulation frequency outside the alpha range. Heterogeneity among stimulation parameters was recognized. Reported adverse effects were mild. The implementation of double blind was identified as challenging using tACS, in part owing to electrical artifacts generated by stimulation on the recorded signal. CONCLUSIONS Most assessed studies reported that tACS has the potential to modulate brain alpha power. The optimization of this noninvasive brain stimulation method is of interest mostly for its potential clinical applications with neurological conditions associated with perturbations in alpha brain activity. However, more research efforts are needed to standardize optimal parameters to achieve lasting modulation effects, develop methodologic alternatives to reduce experimental bias, and improve the quality of studies using tACS to modulate brain activity.
Collapse
Affiliation(s)
- Beatrice P De Koninck
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada.
| | - Daphnée Brazeau
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada
| | - Samuel Guay
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada
| | - Alberto Herrero Babiloni
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada; McGill University, Montreal, Quebec, Canada
| | - Louis De Beaumont
- Sports and Trauma Applied Research Lab, Montreal Sacred Heart Hospital, CIUSSS North-Montreal-Island, Montreal, Quebec, Canada; University of Montreal, Montréal, Quebec, Canada
| |
Collapse
|
41
|
Jimoh Z, Marouf A, Zenke J, Leung AWS, Gomaa NA. Functional Brain Regions Linked to Tinnitus Pathology and Compensation During Task Performance: A Systematic Review. Otolaryngol Head Neck Surg 2023; 169:1409-1423. [PMID: 37522290 DOI: 10.1002/ohn.459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/24/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVE To systematically search the literature and organize relevant advancements in the connection between tinnitus and the activity of different functional brain regions using functional magnetic resonance imaging (fMRI). DATA SOURCES MEDLINE (OVID), EMBASE (OVID), CINAHL (EBSCO), Web of Science, ProQuest Dissertations & Theses Global, Cochrane Database of Systematic Reviews, and PROSPERO from inception to April 2022. REVIEW METHODS Studies with adult human subjects who suffer from tinnitus and underwent fMRI to relate specific regions of interest to tinnitus pathology or compensation were included. In addition, fMRI had to be performed with a paradigm of stimuli that would stimulate auditory brain activity. Exclusion criteria included non-English studies, animal studies, and studies that utilized a resting state magnetic resonance imaging or other imaging modalities. RESULTS The auditory cortex may work to dampen the effects of central gain. Results from different studies show variable changes in the Heschl's gyrus (HG), with some showing increased activity and others showing inhibition and volume loss. After controlling for hyperacusis and other confounders, tinnitus does not seem to influence the inferior colliculus (IC) activation. However, there is decreased connectivity between the auditory cortex and IC. The cochlear nucleus (CN) generally shows increased activation in tinnitus patients. fMRI evidence indicates significant inhibition of thalamic gating. Activating the thalamus may be of important therapeutic potential. CONCLUSION Patients with tinnitus have significantly altered neuronal firing patterns, especially within the auditory network, when compared to individuals without tinnitus. Tinnitus and hyperacusis commonly coexist, making differentiation of the effects of these 2 phenomena frequently difficult.
Collapse
Affiliation(s)
- Zaharadeen Jimoh
- Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - Azmi Marouf
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Julianna Zenke
- Division of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ada W S Leung
- Department of Occupational Therapy, Neuroscience, and Mental Health Institute, Faculty of Rehabilitation Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Nahla A Gomaa
- Division of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
42
|
Hsiao FJ, Chen WT, Wu YT, Pan LLH, Wang YF, Chen SP, Lai KL, Coppola G, Wang SJ. Characteristic oscillatory brain networks for predicting patients with chronic migraine. J Headache Pain 2023; 24:139. [PMID: 37848845 PMCID: PMC10583316 DOI: 10.1186/s10194-023-01677-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
To determine specific resting-state network patterns underlying alterations in chronic migraine, we employed oscillatory connectivity and machine learning techniques to distinguish patients with chronic migraine from healthy controls and patients with other pain disorders. This cross-sectional study included 350 participants (70 healthy controls, 100 patients with chronic migraine, 40 patients with chronic migraine with comorbid fibromyalgia, 35 patients with fibromyalgia, 30 patients with chronic tension-type headache, and 75 patients with episodic migraine). We collected resting-state magnetoencephalographic data for analysis. Source-based oscillatory connectivity within each network, including the pain-related network, default mode network, sensorimotor network, visual network, and insula to default mode network, was examined to determine intrinsic connectivity across a frequency range of 1-40 Hz. Features were extracted to establish and validate classification models constructed using machine learning algorithms. The findings indicated that oscillatory connectivity revealed brain network abnormalities in patients with chronic migraine compared with healthy controls, and that oscillatory connectivity exhibited distinct patterns between various pain disorders. After the incorporation of network features, the best classification model demonstrated excellent performance in distinguishing patients with chronic migraine from healthy controls, achieving high accuracy on both training and testing datasets (accuracy > 92.6% and area under the curve > 0.93). Moreover, in validation tests, classification models exhibited high accuracy in discriminating patients with chronic migraine from all other groups of patients (accuracy > 75.7% and area under the curve > 0.8). In conclusion, oscillatory synchrony within the pain-related network and default mode network corresponded to altered neurophysiological processes in patients with chronic migraine. Thus, these networks can serve as pivotal signatures in the model for identifying patients with chronic migraine, providing reliable and generalisable results. This approach may facilitate the objective and individualised diagnosis of migraine.
Collapse
Affiliation(s)
- Fu-Jung Hsiao
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Wei-Ta Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shih Pai Rd Sec 2, Taipei, 11217, Taiwan
- Department of Neurology, Keelung Hospital, Ministry of Health and Welfare, Keelung, Taiwan
| | - Yu-Te Wu
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Ling Hope Pan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Feng Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shih Pai Rd Sec 2, Taipei, 11217, Taiwan
| | - Shih-Pin Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shih Pai Rd Sec 2, Taipei, 11217, Taiwan
| | - Kuan-Lin Lai
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shih Pai Rd Sec 2, Taipei, 11217, Taiwan
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, Latina, Italy
| | - Shuu-Jiun Wang
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, 201, Shih Pai Rd Sec 2, Taipei, 11217, Taiwan.
| |
Collapse
|
43
|
Alhajri N, Boudreau SA, Mouraux A, Graven-Nielsen T. Pain-free default mode network connectivity contributes to tonic experimental pain intensity beyond the role of negative mood and other pain-related factors. Eur J Pain 2023; 27:995-1005. [PMID: 37255228 DOI: 10.1002/ejp.2141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Alterations in the default mode network (DMN) connectivity across pain stages suggest a possible DMN involvement in the transition to persistent pain. AIM This study examined whether pain-free DMN connectivity at lower alpha oscillations (8-10 Hz) accounts for a unique variation in experimental peak pain intensity beyond the contribution of factors known to influence pain intensity. METHODS Pain-free DMN connectivity was measured with electroencephalography prior to 1 h of capsaicin-evoked pain using a topical capsaicin patch on the right forearm. Pain intensity was assessed on a (0-10) numerical rating scale and the association between peak pain intensity and baseline measurements was examined using hierarchical multiple regression in 52 healthy volunteers (26 women). The baseline measurements consisted of catastrophizing (helplessness, rumination, magnification), vigilance, depression, negative and positive affect, sex, age, sleep, fatigue, thermal and mechanical pain thresholds and DMN connectivity (medial prefrontal cortex [mPFC]-posterior cingulate cortex [PCC], mPFC-right angular gyrus [rAG], mPFC-left Angular gyrus [lAG], rAG-mPFC and rAG-PCC). RESULTS Pain-free DMN connectivity increased the explained variance in peak pain intensity beyond the contribution of other factors (ΔR2 = 0.10, p = 0.003), with the final model explaining 66% of the variation (R2 = 0.66, ANOVA: p < 0.001). In this model, negative affect (β = 0.51, p < 0.001), helplessness (β = 0.49, p = 0.007), pain-free mPFC-lAG connectivity (β = 0.36, p = 0.003) and depression (β = -0.39, p = 0.009) correlated significantly with peak pain intensity. Interestingly, negative affect and depression, albeit both being negative mood indices, showed opposing relationships with peak pain intensity. CONCLUSIONS This work suggests that pain-free mPFC-lAG connectivity (at lower alpha) may contribute to individual variations in pain-related vulnerability. SIGNIFICANCE These findings could potentially lead the way for investigations in which DMN connectivity is used in identifying individuals more likely to develop chronic pain.
Collapse
Affiliation(s)
- Najah Alhajri
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Shellie Ann Boudreau
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - André Mouraux
- Institute of Neuroscience (IONS), Université catholique de Louvain, Brussels, Belgium
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
44
|
He J, Zhang H, Dang Y, Zhuang Y, Ge Q, Yang Y, Xu L, Xia X, Laureys S, Yu S, Zhang W. Electrophysiological characteristics of CM-pf in diagnosis and outcome of patients with disorders of consciousness. Brain Stimul 2023; 16:1522-1532. [PMID: 37778457 DOI: 10.1016/j.brs.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) in the centromedian-parafascicular complex (CM-pf) has been reported as a potential therapeutic option for disorders of consciousness (DoC). However, the lack of understanding of its electrophysiological characteristics limits the improvement of therapeutic effect. OBJECTIVE To investigate the CM-pf electrophysiological characteristics underlying disorders of consciousness (DoC) and its recovery. METHODS We collected the CM-pf electrophysiological signals from 23 DoC patients who underwent central thalamus DBS (CT-DBS) surgery. Five typical electrophysiological features were extracted, including neuronal firing properties, multiunit activity (MUA) properties, signal stability, spike-MUA synchronization strength (syncMUA), and the background noise level. Their correlations with the consciousness level, the outcome, and the primary clinical factors of DoC were analyzed. RESULTS 11 out of 23 patients (0/2 chronic coma, 5/13 unresponsive wakefulness syndrome/vegetative state (UWS/VS), 6/8 minimally conscious state minus (MCS-)) exhibited an improvement in the level of consciousness after CT-DBS. In CM-pf, significantly stronger gamma band syncMUA strength and alpha band normalized MUA power were found in MCS- patients. In addition, higher firing rates, stronger high-gamma band MUA power and alpha band normalized power, and more stable theta oscillation were correlated with better outcomes. Besides, we also identified electrophysiological properties that are correlated with clinical factors, including etiologies, age, and duration of DoC. CONCLUSION We provide comprehensive analyses of the electrophysiological characteristics of CM-pf in DoC patients. Our results support the 'mesocircuit' hypothesis, one proposed mechanism of DoC recovery, and reveal CM-pf electrophysiological features that are crucial for understanding the pathogenesis of DoC, predicting its recovery, and explaining the effect of clinical factors on DoC.
Collapse
Affiliation(s)
- Jianghong He
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Haoran Zhang
- Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Dang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yutong Zhuang
- Department of Neurosurgery, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qianqian Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Long Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xiaoyu Xia
- Department of Neurosurgery, The Seventh Medical Center of PLA General Hospital, Beijing, 100700, China
| | - Steven Laureys
- CERVO Brain Research Centre, Laval University, Canada; Coma Science Group, GIGA Consciousness Research Unit, Liège University Hospital, Belgium; International Consciousness Science Institute, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shan Yu
- Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wangming Zhang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, China.
| |
Collapse
|
45
|
Heitmann H, Zebhauser PT, Hohn VD, Henningsen P, Ploner M. Resting-state EEG and MEG biomarkers of pathological fatigue - A transdiagnostic systematic review. Neuroimage Clin 2023; 39:103500. [PMID: 37632989 PMCID: PMC10474495 DOI: 10.1016/j.nicl.2023.103500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
Fatigue is a highly prevalent and disabling symptom of many disorders and syndromes, resulting from different pathomechanisms. However, whether and how different mechanisms converge and result in similar symptomatology is only partially understood, and transdiagnostic biomarkers that could further the diagnosis and treatment of fatigue are lacking. We, therefore, performed a transdiagnostic systematic review (PROSPERO: CRD42022330113) of quantitative resting-state electroencephalography (EEG) and magnetoencephalography (MEG) studies in adult patients suffering from pathological fatigue in different disorders. Studies investigating fatigue in healthy participants were excluded. The risk of bias was assessed using a modified Newcastle-Ottawa Scale. Semi-quantitative data synthesis was conducted using modified albatross plots. After searching MEDLINE, Web of Science Core Collection, and EMBASE, 26 studies were included. Cross-sectional studies revealed increased brain activity at theta frequencies and decreased activity at alpha frequencies as potential diagnostic biomarkers. However, the risk of bias was high in many studies and domains. Together, this transdiagnostic systematic review synthesizes evidence on how resting-state M/EEG might serve as a diagnostic biomarker of pathological fatigue. Beyond, this review might help to guide future M/EEG studies on the development of fatigue biomarkers.
Collapse
Affiliation(s)
- Henrik Heitmann
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Germany; TUM-Neuroimaging Center, School of Medicine, Technical University of Munich (TUM), Germany; Department of Psychosomatic Medicine and Psychotherapy, School of Medicine, Technical University of Munich (TUM), Germany
| | - Paul Theo Zebhauser
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Germany; TUM-Neuroimaging Center, School of Medicine, Technical University of Munich (TUM), Germany
| | - Vanessa D Hohn
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Germany; TUM-Neuroimaging Center, School of Medicine, Technical University of Munich (TUM), Germany
| | - Peter Henningsen
- Department of Psychosomatic Medicine and Psychotherapy, School of Medicine, Technical University of Munich (TUM), Germany
| | - Markus Ploner
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Germany; TUM-Neuroimaging Center, School of Medicine, Technical University of Munich (TUM), Germany.
| |
Collapse
|
46
|
Vanneste S, De Ridder D. BurstDR spinal cord stimulation rebalances pain input and pain suppression in the brain in chronic neuropathic pain. Brain Stimul 2023; 16:1186-1195. [PMID: 37541579 DOI: 10.1016/j.brs.2023.07.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023] Open
Abstract
OBJECTIVE Chronic pain is processed by at least three well-known pathways, two pain provoking pathways including a medial 'suffering' and lateral 'painfulness' pathway. A third descending pain pathway modulates pain but is predominantly inhibitory. Chronic pain can be seen as an imbalance between the two pain-provoking and the pain inhibitory pathways. If this assumption is correct, then the imbalance between pain input and pain suppression should reverse and normalize in response to successful, i.e., pain reducing burstDR spinal cord stimulation, one of the current treatment options for neuropathic pain. MATERIALS AND METHODS Fifteen patients, who received spinal cord stimulation for failed back surgery were included in this study, using source localized electrical brain activity and connectivity recording via EEG to identify the purported imbalance. RESULTS BurstDR spinal cord stimulation induces a significant change in EEG activity in both the left and right somatosensory cortex (SSC) for both θ and γ oscillations. In the dorsal anterior cingulate cortex (dACC), we observed a significant drop in both α and β oscillations. This reduction is accompanied by a change in pain intensity and suffering. BurstDR spinal cord stimulation is also associated with a reduction in θ at the pregenual anterior cingulate cortex (pgACC). Analyzing effective connectivity indicates that for the θ band, more information is sent from the pgACC to the left and right SSC. For α, increased information is sent from the pgACC to the dACC and both the left and right SSC. This is associated with a reduced θ-γ coupling in the SSC and reduced α-β coupling in dACC. CONCLUSION This study suggests that chronic pain is indeed an imbalance between the ascending and descending pathways in the brain and that burst spinal cord stimulation can normalize this imbalance in the brain.
Collapse
Affiliation(s)
- Sven Vanneste
- Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| | - Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery, Dunedin School of Medicine, University of Otago, New Zealand
| |
Collapse
|
47
|
Singh A, Smith PF, Zheng Y. Targeting the Limbic System: Insights into Its Involvement in Tinnitus. Int J Mol Sci 2023; 24:9889. [PMID: 37373034 DOI: 10.3390/ijms24129889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Tinnitus is originally derived from the Latin verb tinnire, which means "to ring". Tinnitus, a complex disorder, is a result of sentient cognizance of a sound in the absence of an external auditory stimulus. It is reported in children, adults, and older populations. Patients suffering from tinnitus often present with hearing loss, anxiety, depression, and sleep disruption in addition to a hissing and ringing in the ear. Surgical interventions and many other forms of treatment have been only partially effective due to heterogeneity in tinnitus patients and a lack of understanding of the mechanisms of tinnitus. Although researchers across the globe have made significant progress in understanding the underlying mechanisms of tinnitus over the past few decades, tinnitus is still deemed to be a scientific enigma. This review summarises the role of the limbic system in tinnitus development and provides insight into the development of potential target-specific tinnitus therapies.
Collapse
Affiliation(s)
- Anurag Singh
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- The Eisdell Moore Centre for Research in Hearing and Balance Disorders, University of Auckland, Auckland 1023, New Zealand
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- The Eisdell Moore Centre for Research in Hearing and Balance Disorders, University of Auckland, Auckland 1023, New Zealand
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- The Eisdell Moore Centre for Research in Hearing and Balance Disorders, University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
48
|
Schiff ND. Mesocircuit mechanisms in the diagnosis and treatment of disorders of consciousness. Presse Med 2023; 52:104161. [PMID: 36563999 DOI: 10.1016/j.lpm.2022.104161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The 'mesocircuit hypothesis' proposes mechanisms underlying the recovery of consciousness following severe brain injuries. The model builds up from a single premise that multifocal brain injuries resulting in coma and subsequent disorders of consciousness produce widespread neuronal death and dysfunction. Considering the general properties of cortical, thalamic, and striatal neurons, a lawful and specific circuit-level mechanism is constructed based on these known anatomical and physiological specializations of neuronal subtypes. The mesocircuit model generates many testable predictions at the mesocircuit, local circuit, and cellular level across multiple cerebral structures to correlate diagnostic measurements and interpret therapeutic interventions. The anterior forebrain mesocircuit is integrally related to the frontal-parietal network, another network demonstrated to show strong correlation with levels of recovery in disorders of consciousness. A further extension known as the "ABCD" model has been used to examine interaction of these models in recovery of consciousness using electrophysiological data types. Many studies have examined predictions of the mesocircuit model; here we first present the model and review the accumulated evidence for several predictions of model across multiple stages of recovery function in human subjects. Recent studies linking the mesocircuit model, the ABCD model, and interactions with the frontoparietal network are reviewed. Finally, theoretical implications of the mesocircuit model at the neuronal level are considered to interpret recent studies of deep brain stimulation in the central lateral thalamus in patients recovering from coma and in new experimental models in the context of emerging understanding of neuronal and local circuit mechanisms underlying conscious brain states.
Collapse
Affiliation(s)
- Nicholas D Schiff
- Jerold B. Katz Professor of Neurology and Neuroscience, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, United States.
| |
Collapse
|
49
|
Zebhauser PT, Hohn VD, Ploner M. Resting-state electroencephalography and magnetoencephalography as biomarkers of chronic pain: a systematic review. Pain 2023; 164:1200-1221. [PMID: 36409624 PMCID: PMC10184564 DOI: 10.1097/j.pain.0000000000002825] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022]
Abstract
ABSTRACT Reliable and objective biomarkers promise to improve the assessment and treatment of chronic pain. Resting-state electroencephalography (EEG) is broadly available, easy to use, and cost efficient and, therefore, appealing as a potential biomarker of chronic pain. However, results of EEG studies are heterogeneous. Therefore, we conducted a systematic review (PROSPERO CRD42021272622) of quantitative resting-state EEG and magnetoencephalography (MEG) studies in adult patients with different types of chronic pain. We excluded populations with severe psychiatric or neurologic comorbidity. Risk of bias was assessed using a modified Newcastle-Ottawa Scale. Semiquantitative data synthesis was conducted using modified albatross plots. We included 76 studies after searching MEDLINE, Web of Science Core Collection, Cochrane Central Register of Controlled Trials, and EMBASE. For cross-sectional studies that can serve to develop diagnostic biomarkers, we found higher theta and beta power in patients with chronic pain than in healthy participants. For longitudinal studies, which can yield monitoring and/or predictive biomarkers, we found no clear associations of pain relief with M/EEG measures. Similarly, descriptive studies that can yield diagnostic or monitoring biomarkers showed no clear correlations of pain intensity with M/EEG measures. Risk of bias was high in many studies and domains. Together, this systematic review synthesizes evidence on how resting-state M/EEG might serve as a diagnostic biomarker of chronic pain. Beyond, this review might help to guide future M/EEG studies on the development of pain biomarkers.
Collapse
Affiliation(s)
- Paul Theo Zebhauser
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Vanessa D. Hohn
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Markus Ploner
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
50
|
Pedapati EV, Sweeney JA, Schmitt LM, Ethridge LE, Miyakoshi M, Liu R, Smith E, Shaffer RC, Wu SW, Gilbert DL, Horn PS, Erickson C. Empirical Frequency Bound Derivation Reveals Prominent Mid-Frontal Alpha Associated with Neurosensory Dysfunction in Fragile X Syndrome. RESEARCH SQUARE 2023:rs.3.rs-2855646. [PMID: 37162907 PMCID: PMC10168472 DOI: 10.21203/rs.3.rs-2855646/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The FMR1 gene is inactive in Fragile X syndrome (FXS), resulting in low levels of FMRP and consequent neurochemical, synaptic, and local circuit neurophysiological alterations in the fmr1 KO mouse. In FXS patients, electrophysiological studies have demonstrated a marked reduction in global alpha activity and regional increases in gamma oscillations associated with intellectual disability and sensory hypersensitivity. Since alpha activity is associated with a thalamocortical function with widely distributed modulatory effects on neocortical excitability, insight into alpha physiology may provide insight into systems-level disease mechanisms. Herein, we took a data-driven approach to clarify the temporal and spatial properties of alpha and theta activity in participants with FXS. High-resolution resting-state EEG data were collected from participants affected by FXS (n = 65) and matched controls (n = 70). We used a multivariate technique to empirically classify neural oscillatory bands based on their coherent spatiotemporal patterns. Participants with FXS demonstrated: 1) redistribution of lower-frequency boundaries indicating a "slower" dominant alpha rhythm, 2) an anteriorization of alpha frequency activity, and 3) a correlation of increased individualized alpha power measurements with auditory neurosensory dysfunction. These findings suggest an important role for alterations in thalamocortical physiology for the well-established neocortical hyper-excitability in FXS and, thus, a role for neural systems level disruption to cortical hyperexcitability that has been studied primarily at the local circuit level in animal models.
Collapse
Affiliation(s)
| | | | | | | | | | - Rui Liu
- Cincinnati Children's Hospital Medical Center
| | | | | | - Steve W Wu
- Cincinnati Children's Hospital Medical Center
| | | | - Paul S Horn
- Cincinnati Children's Hospital Medical Center
| | | |
Collapse
|