1
|
Contemori G, Guenot J, Cottereau BR, Trotter Y, Battaglini L, Bertamini M. Neural and Perceptual Adaptations in Bilateral Macular Degeneration: An Integrative Review. Neuropsychologia 2025:109165. [PMID: 40345486 DOI: 10.1016/j.neuropsychologia.2025.109165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/03/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Bilateral age-related macular degeneration (AMD) results in central vision loss, affecting the fovea-associated cortical regions. This review examines neuroimaging and psychophysical evidence of spontaneous neural adaptation in acquired bilateral central scotoma. Early visual brain areas show reduced cortical thickness and axonal integrity due to postsynaptic (anterograde) degeneration. Contrary to animal models, evidence for spontaneous adaptation in the primary visual cortex (V1) is limited. Activity in the lesion projection zone (LPZ), previously seen as extensive cortical remapping, may result from non-retinotopic peripheral-to-foveal feedback, sharing substrates with healthy retinal feedforward processes. Preferred retinal loci (PRLs) are influenced more by location and task than by residual vision quality. Reduced lateral masking in the PRL may reflect decreased contrast sensitivity from retinal damage, rather than genuine adaptive mechanisms. Weakened crowding in the PRL is explained by transient adaptation in healthy subjects to artificial scotomas, not by long-term plasticity. Higher visual areas may show compensatory mechanisms enhancing complex tasks like symmetry, face, and motion discrimination. Leveraging spontaneous adaptation through perceptual learning-based treatments can preserve residual visual abilities. Because of limited evidence for spontaneous reorganization in AMD, behavioural training and emerging techniques are crucial for optimal treatment efficacy.
Collapse
Affiliation(s)
- Giulio Contemori
- Department of General Psychology, University of Padova, Padova, Italy.
| | - Jade Guenot
- Smith-Kettlewell Eye Research Institute, San Francisco, CA, USA
| | - Benoit R Cottereau
- CerCo UMR 5549, CNRS - Université Toulouse III, Toulouse, France; IPAL, CNRS IRL 2955, Singapore, Singapore
| | - Yves Trotter
- CerCo UMR 5549, CNRS - Université Toulouse III, Toulouse, France
| | - Luca Battaglini
- Department of General Psychology, University of Padova, Padova, Italy; Centro di Ateneo dei Servizi Clinici Universitari Psicologici (SCUP), University of Padova, Padova, Italy; Neuro.Vis.U.S, University of Padova, Padova, Italy
| | - Marco Bertamini
- Department of General Psychology, University of Padova, Padova, Italy
| |
Collapse
|
2
|
d’Almeida OC, Sampaio JM, Ferreira S, Silva ED, Castelo-Branco M. Long term adult visual plasticity after the developmental critical period in genetically determined peripheral visual loss. Heliyon 2025; 11:e41970. [PMID: 40028558 PMCID: PMC11867287 DOI: 10.1016/j.heliyon.2025.e41970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/14/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
Adult neural plasticity within the visual system remains controversial. Starkly opposing views still remain on the ability of the visual system to reorganize in adulthood. Most attempts have focused on testing reorganization upon central visual loss. However, central loss triggers immediate adaptive strategies such as the emergence of new retinal preferential fixation loci, which may preclude plasticity. Moreover, plasticity may be further reduced in later ageing periods. Here we addressed this issue by studying visual plasticity in a genetically determined retinal disorder, Retinitis Pigmentosa, in which peripheral visual loss emerges not long after the critical period, in teenage years. We performed a case-control study with one-to-one matching and used an artificial scotoma approach which carefully simulated the defective visual field of each RP patient on a normal-sighted control. We used as outcomes population receptive field measures to probe long-term plasticity using fMRI retinotopy. We found evidence for reorganization based on pRF size metrics and explained variance of reorganized visual field maps. In sum, visual cortical plasticity triggered by peripheral visual loss occurs beyond the critical period of visual maturation.
Collapse
Affiliation(s)
- Otília C. d’Almeida
- Univ Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
| | - Joana M. Sampaio
- Univ Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
| | - Sónia Ferreira
- Univ Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
| | - Eduardo D. Silva
- Univ Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
| | - Miguel Castelo-Branco
- Univ Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), Coimbra, Portugal
- Univ Coimbra, Faculty of Medicine, Coimbra, Portugal
- Univ Maastricht, Faculty of Psychology, Maastricht, the Netherlands
| |
Collapse
|
3
|
Skerswetat J, Ross NC, Idman-Rait C, Sun K, Wynn O, Bex PJ. Visual Performance of People With Albinism Assessed With Generalizable and Adaptive AIM and FInD Methods. Invest Ophthalmol Vis Sci 2024; 65:34. [PMID: 39312223 PMCID: PMC11423948 DOI: 10.1167/iovs.65.11.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
Purpose People with albinism (PwA) are known to have visual impairments; however, little is known about whether these functions are disrupted across earlier and later stages of the visual pathway. We investigated distinct perceptual functions and fixation stability within each observer and compared the data with age- (±5 years) and sex-matched controls. Methods Twenty-one self-reported PwA and twenty-one controls were recruited. Angular-indication measurement (AIM) and foraging-interactive-D-prime (FInD) psychophysical methods were deployed to measure OS, OD, and OU near visual acuity, spatial contrast sensitivity function (CSF), temporal contrast sensitivity (tCS; 0.5 c/°; horizontal grating: 0, 1, 2, 4, and 8 Hz), OU glare acuity, threshold-versus-contrast (2c/° vertical grating), long, medium, and short wavelength cone-isolated color detection, color discrimination, stereoacuity across spatial frequencies (1c/°, 2c/°, 4c/°, 8c/°), horizontal, circular, radial pattern and motion coherence, and equivalent-noise motion detection. Thresholds were determined by AIM and FInD and compared using N-ANOVAs, t-tests, planned multi-comparisons, correlations, and unsupervised, agglomerative hierarchical cluster analysis for each group. Results We found significant differences between groups for most visual functions except for simple and complex form-coherence (two way-ANOVAs, P > 0.05) and complex motion coherence. Correlations between outcomes revealed more significant correlations for PwA and differences in the specific correlates between groups. Unsupervised hierarchical clustering revealed different functional clusters between groups. Conclusions AIM and FInD successfully interrogated visual deficits in PwA. Overall, PwA showed impaired performance in achromatic, chromatic, temporal, and binocular functions, and had higher intrinsic noise levels. Midlevel vision was comparable between groups. Unsupervised cluster analysis and correlation between outcomes revealed a difference in functional outcome clusters between groups. The results may help to increase the efficiency of screening and identify target deficits for rehabilitation.
Collapse
Affiliation(s)
- Jan Skerswetat
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States
- Department of Ophthalmology, University of California, Irvine, California, United States
| | - Nicole Christie Ross
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States
- New England College of Optometry, Massachusetts, United States
| | | | - Katie Sun
- New England College of Optometry, Massachusetts, United States
| | - Olivia Wynn
- New England College of Optometry, Massachusetts, United States
| | - Peter John Bex
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States
| |
Collapse
|
4
|
Herrera E, Chédotal A, Mason C. Development of the Binocular Circuit. Annu Rev Neurosci 2024; 47:303-322. [PMID: 38635868 DOI: 10.1146/annurev-neuro-111020-093230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Seeing in three dimensions is a major property of the visual system in mammals. The circuit underlying this property begins in the retina, from which retinal ganglion cells (RGCs) extend to the same or opposite side of the brain. RGC axons decussate to form the optic chiasm, then grow to targets in the thalamus and midbrain, where they synapse with neurons that project to the visual cortex. Here we review the cellular and molecular mechanisms of RGC axonal growth cone guidance across or away from the midline via receptors to cues in the midline environment. We present new views on the specification of ipsi- and contralateral RGC subpopulations and factors implementing their organization in the optic tract and termination in subregions of their targets. Lastly, we describe the functional and behavioral aspects of binocular vision, focusing on the mouse, and discuss recent discoveries in the evolution of the binocular circuit.
Collapse
Affiliation(s)
- Eloísa Herrera
- Instituto de Neurociencias (CSIC-UMH), Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Alicante, Spain;
| | - Alain Chédotal
- Université Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, Lyon, France
- Institut de Pathologie, Groupe Hospitalier Est, Hospices Civils de Lyon, Lyon, France
- Institut de la Vision, INSERM, Sorbonne Université, Paris, France;
| | - Carol Mason
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, Zuckerman Institute, Columbia University, New York, NY, USA;
| |
Collapse
|
5
|
Quanz EV, Kuske J, Stolle FH, Bach M, Heinrich SP, Hoffmann MB, Al-Nosairy KO. Effect of nystagmus on VEP-based objective visual acuity estimates. Sci Rep 2024; 14:16797. [PMID: 39039066 PMCID: PMC11263480 DOI: 10.1038/s41598-024-66819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/04/2024] [Indexed: 07/24/2024] Open
Abstract
In order to determine the effect of nystagmus on objective visual acuity (VA) estimates, we compared subjective (VApsych) and objective (VEP, VAVEP) VA estimates in participants with nystagmus. For this purpose, 20 participants with nystagmus (NY) caused by idiopathic infantile nystagmus, albinism, achiasma or acquired nystagmus were recruited in this study. Estimates of BCVA (best corrected visual acuity) were determined psychophysically (VApsych; FrACT, Freiburg visual acuity test) and electrophysiologically (VAVEP; EP2000) according to ISCEV (International Society of Clinical Electrophysiology of Vision) guidelines. For each participant the eye with the stronger fixation instability [Nidek microperimeter (MP-1), Nidek Instruments] was included for further analysis. VApsych vs VAVEP were compared via paired t-tests and the correlation of the difference between VApsych and VAVEP (∆VA) vs the degree of fixation instability was tested with Pearson correlation (r). We found VAVEP to be better than VApsych [by 0.12 Logarithm of the Minimum Angle of Resolution (logMAR); mean ± standard error (SE) of VAVEP vs VApsych: 0.176 ± 0.06 vs. 0.299 ± 0.06, P = 0.017] and ∆VA to be correlated linearly with the degree of fixation instability (r2 = 0.21,p = 0.048). In conclusion, on average we report a small VA overestimation, around 1 line, for VAVEP compared to VApsych in NY. This overestimation depended on the magnitude of the fixation instability. As a rule of thumb, a reduction of the fixation probability in the central 4° from 100 to 50% leads on average to a VAVEP overestimation of around 0.25 logMAR, i.e. 2.5 lines.
Collapse
Affiliation(s)
- Elisabeth V Quanz
- Ophthalmic Department, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Juliane Kuske
- Ophthalmic Department, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Francie H Stolle
- Ophthalmic Department, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
| | - Michael Bach
- Eye Center, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sven P Heinrich
- Eye Center, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael B Hoffmann
- Ophthalmic Department, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany.
- Center for Behavioral Brain Sciences Magdeburg, Magdeburg, Germany.
| | | |
Collapse
|
6
|
Tsytsarev V, Plachez C, Zhao S, O'Connor DH, Erzurumlu RS. Bilateral Whisker Representations in the Primary Somatosensory Cortex in Robo3cKO Mice Are Reflected in the Primary Motor Cortex. Neuroscience 2024; 544:128-137. [PMID: 38447690 PMCID: PMC11146016 DOI: 10.1016/j.neuroscience.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
In Robo3cKO mice, midline crossing defects of the trigeminothalamic projections from the trigeminal principal sensory nucleus result in bilateral whisker maps in the somatosensory thalamus and consequently in the face representation area of the primary somatosensory (S1) cortex (Renier et al., 2017; Tsytsarev et al., 2017). We investigated whether this bilateral sensory representation in the whisker-barrel cortex is also reflected in the downstream projections from the S1 to the primary motor (M1) cortex. To label these projections, we injected anterograde viral axonal tracer in S1 cortex. Corticocortical projections from the S1 distribute to similar areas across the ipsilateral hemisphere in control and Robo3cKO mice. Namely, in both genotypes they extend to the M1, premotor/prefrontal cortex (PMPF), secondary somatosensory (S2) cortex. Next, we performed voltage-sensitive dye imaging (VSDi) in the left hemisphere following ipsilateral and contralateral single whisker stimulation. While controls showed only activation in the contralateral whisker barrel cortex and M1 cortex, the Robo3cKO mouse left hemisphere was activated bilaterally in both the barrel cortex and the M1 cortex. We conclude that the midline crossing defect of the trigeminothalamic projections leads to bilateral whisker representations not only in the thalamus and the S1 cortex but also downstream from the S1, in the M1 cortex.
Collapse
Affiliation(s)
- Vassiliy Tsytsarev
- Department of Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF-2, Baltimore, MD 21201, USA.
| | - Céline Plachez
- Department of Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF-2, Baltimore, MD 21201, USA.
| | - Shuxin Zhao
- Department of Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF-2, Baltimore, MD 21201, USA.
| | - Daniel H O'Connor
- The Zanvyl Krieger Mind/Brain Institute, The Johns Hopkins University, 3400 N. Charles Street, 338 Krieger Hall, Baltimore, MD 21218, USA.
| | - Reha S Erzurumlu
- Department of Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSF-2, Baltimore, MD 21201, USA.
| |
Collapse
|
7
|
Sheth V, McLean RJ, Tu Z, Ather S, Gottlob I, Proudlock FA. Visual Field Deficits in Albinism in Comparison to Idiopathic Infantile Nystagmus. Invest Ophthalmol Vis Sci 2024; 65:13. [PMID: 38319668 PMCID: PMC10854418 DOI: 10.1167/iovs.65.2.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Purpose This is the first systematic comparison of visual field (VF) deficits in people with albinism (PwA) and idiopathic infantile nystagmus (PwIIN) using static perimetry. We also compare best-corrected visual acuity (BCVA) and optical coherence tomography measures of the fovea, parafovea, and circumpapillary retinal nerve fiber layer in PwA. Methods VF testing was performed on 62 PwA and 36 PwIIN using a Humphrey Field Analyzer (SITA FAST 24-2). Mean detection thresholds for each eye were calculated, along with quadrants and central measures. Retinal layers were manually segmented in the macular region. Results Mean detection thresholds were significantly lower than normative values for PwA (-3.10 ± 1.67 dB, P << 0.0001) and PwIIN (-1.70 ± 1.54 dB, P < 0.0001). Mean detection thresholds were significantly lower in PwA compared to PwIIN (P < 0.0001) and significantly worse for left compared to right eyes in PwA (P = 0.0002) but not in PwIIN (P = 0.37). In PwA, the superior nasal VF was significantly worse than other quadrants (P < 0.05). PwIIN appeared to show a mild relative arcuate scotoma. In PwA, central detection thresholds were correlated with foveal changes in the inner and outer retina. VF was strongly correlated to BCVA in both groups. Conclusions Clear peripheral and central VF deficits exist in PwA and PwIIN, and static VF results need to be interpreted with caution clinically. Since PwA exhibit considerably lower detection thresholds compared to PwIIN, VF defects are unlikely to be due to nystagmus in PwA. In addition to horizontal VF asymmetry, PwA exhibit both vertical and interocular asymmetries, which needs further exploration.
Collapse
Affiliation(s)
- Viral Sheth
- Health Sciences School, University of Sheffield, Sheffield, Yorkshire, United Kingdom
- The University of Leicester Ulverscroft Eye Unit, Psychology and Vision Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Rebecca J. McLean
- The University of Leicester Ulverscroft Eye Unit, Psychology and Vision Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Zhanhan Tu
- The University of Leicester Ulverscroft Eye Unit, Psychology and Vision Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Sarim Ather
- Oxford University Hospitals NHS Foundation Trust, Headley Way, Headington, Oxfordshire, United Kingdom
| | - Irene Gottlob
- The University of Leicester Ulverscroft Eye Unit, Psychology and Vision Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom
- Department of Neurology, Cooper University Health Care, Cooper Medical School of Rowan University, Camden, New Jersey, United States
| | - Frank A. Proudlock
- The University of Leicester Ulverscroft Eye Unit, Psychology and Vision Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom
| |
Collapse
|
8
|
Proudlock FA, McLean RJ, Sheth V, Ather S, Gottlob I. Phenotypic Features Determining Visual Acuity in Albinism and the Role of Amblyogenic Factors. Invest Ophthalmol Vis Sci 2024; 65:14. [PMID: 38319667 PMCID: PMC10854414 DOI: 10.1167/iovs.65.2.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Albinism is a spectrum disorder causing foveal hypoplasia, nystagmus, and hypopigmentation of the iris and fundus along with other visual deficits, which can all impact vision. Albinism is also associated with amblyogenic factors which could affect monocular visual acuity. The foveal appearance in albinism can range from mild foveal hypoplasia to that which is indistinguishable from the peripheral retina. The appearance can be quickly and easily graded using the Leicester Grading System in the clinic. However, interquartile ranges of 0.3 logMAR for the grades associated with albinism limit the accuracy of the grading system in predicting vision. Here, we discuss the potential role of nystagmus presenting evidence that it may not be a major source of variability in the prediction of visual acuity. We also show that interocular differences in visual acuity are low in albinism despite high levels of amblyogenic factors indicating that active suppression of vision in one eye in albinism is uncommon.
Collapse
Affiliation(s)
- Frank A Proudlock
- The University of Leicester Ulverscroft Eye Unit, Psychology and Vision Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Rebecca J McLean
- The University of Leicester Ulverscroft Eye Unit, Psychology and Vision Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Viral Sheth
- The University of Leicester Ulverscroft Eye Unit, Psychology and Vision Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom
- Health Sciences School, University of Sheffield, Sheffield, Yorkshire, United Kingdom
| | - Sarim Ather
- Oxford University Hospitals NHS Foundation Trust, Headley Way, Headington, Oxfordshire, United Kingdom
| | - Irene Gottlob
- The University of Leicester Ulverscroft Eye Unit, Psychology and Vision Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom
- Department of Neurology, Cooper University Health Care, Cooper Medical School of Rowan University, Camden, New Jersey, United States
| |
Collapse
|
9
|
Al-Nosairy KO, Quanz EV, Eick CM, Hoffmann MB, Kornmeier J. Altered Perception of the Bistable Motion Quartet in Albinism. Invest Ophthalmol Vis Sci 2023; 64:39. [PMID: 38015177 PMCID: PMC10691394 DOI: 10.1167/iovs.64.14.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
Purpose Perception of the motion quartet (MQ) alternates between horizontal and vertical motion, with a bias toward vertical motion. This vertical bias has been explained by the dominance of intrahemispheric processing. In albinism, each hemisphere receives input from both visual hemifields owing to enhanced crossing of the optic nerves at the optic chiasm. This might affect the perception of the ambiguous MQ and particularly the vertical bias. Methods The effect of optic nerve misrouting in persons with albinism and nystagmus (PWA, n = 14) on motion perception for MQ was compared with healthy controls (HC; n = 11) and with persons with nystagmus in the absence of optic nerve misrouting (PWN; n = 12). We varied the ratio of horizontal and vertical distances of MQ dots (aspect ratio [AR]) between 0.75 and 1.25 and compared the percentages of horizontal and vertical motion percepts as a function of AR between groups. Results For HC, the probability of vertical motion perception increased as a sigmoid function with increasing AR exhibiting the expected vertical percept bias (mean, 58%; median, 54%; vertical motion percepts). PWA showed a surprisingly strong horizontal bias independent of the AR with a mean of 11% (median, 10%) vertical motion percepts. The PWN was in between PWA and HC, with a mean of 34% (median, 47%) vertical perception. Nystagmus alone is unlikely to explain this pattern of results because PWA and PWN had comparable fixation stabilities. Conclusions The strong horizontal bias observed in PWA and PWN might partly result from the horizontal nystagmus. The even stronger horizontal bias in PWA indicates that the intrahemispherical corepresentation of both visual hemifields may play an additional role. The altered perception of the MQ in PWA opens opportunities to (i) understand the interplay of stability and plasticity in altered visual pathway conditions and (ii) identify visual pathway abnormalities with a perception-based test using the MQ.
Collapse
Affiliation(s)
| | - Elisabeth V. Quanz
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany
| | - Charlotta M. Eick
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany
| | - Michael B. Hoffmann
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| | - Jürgen Kornmeier
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
- Department of Psychiatry and Psychotherapy, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Molz B, Herbik A, Baseler HA, de Best P, Raz N, Gouws A, Ahmadi K, Lowndes R, McLean RJ, Gottlob I, Kohl S, Choritz L, Maguire J, Kanowski M, Käsmann-Kellner B, Wieland I, Banin E, Levin N, Morland AB, Hoffmann MB. Achromatopsia-Visual Cortex Stability and Plasticity in the Absence of Functional Cones. Invest Ophthalmol Vis Sci 2023; 64:23. [PMID: 37847226 PMCID: PMC10584018 DOI: 10.1167/iovs.64.13.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/07/2023] [Indexed: 10/18/2023] Open
Abstract
Purpose Achromatopsia is a rare inherited disorder rendering retinal cone photoreceptors nonfunctional. As a consequence, the sizable foveal representation in the visual cortex is congenitally deprived of visual input, which prompts a fundamental question: is the cortical representation of the central visual field in patients with achromatopsia remapped to take up processing of paracentral inputs? Such remapping might interfere with gene therapeutic treatments aimed at restoring cone function. Methods We conducted a multicenter study to explore the nature and plasticity of vision in the absence of functional cones in a cohort of 17 individuals affected by autosomal recessive achromatopsia and confirmed biallelic disease-causing CNGA3 or CNGB3 mutations. Specifically, we tested the hypothesis of foveal remapping in human achromatopsia. For this purpose, we applied two independent functional magnetic resonance imaging (fMRI)-based mapping approaches, i.e. conventional phase-encoded eccentricity and population receptive field mapping, to separate data sets. Results Both fMRI approaches produced the same result in the group comparison of achromatopsia versus healthy controls: sizable remapping of the representation of the central visual field in the primary visual cortex was not apparent. Conclusions Remapping of the cortical representation of the central visual field is not a general feature in achromatopsia. It is concluded that plasticity of the human primary visual cortex is less pronounced than previously assumed. A pretherapeutic imaging workup is proposed to optimize interventions.
Collapse
Affiliation(s)
- Barbara Molz
- Department of Psychology, University of York, Heslington, York, United Kingdom
- Department of Ophthalmology, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Anne Herbik
- Department of Ophthalmology, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Heidi A. Baseler
- Department of Psychology, University of York, Heslington, York, United Kingdom
- Hull York Medical School, University of York, Heslington, York, United Kingdom
- York Biomedical Research Institute, University of York, Heslington, York, United Kingdom
| | - Peter de Best
- fMRI Unit, Department of Neurology, Hadassah Medical Center, Jerusalem, Israel
| | - Noa Raz
- fMRI Unit, Department of Neurology, Hadassah Medical Center, Jerusalem, Israel
| | - Andre Gouws
- Department of Psychology, University of York, Heslington, York, United Kingdom
- York Neuroimaging Centre, Department of Psychology, University of York, York, United Kingdom
| | - Khazar Ahmadi
- Department of Ophthalmology, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Rebecca Lowndes
- York Neuroimaging Centre, Department of Psychology, University of York, York, United Kingdom
| | - Rebecca J. McLean
- University of Leicester Ulverscroft Eye Unit, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Irene Gottlob
- University of Leicester Ulverscroft Eye Unit, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University Clinics Tübingen, Tübingen, Germany
| | - Lars Choritz
- Department of Ophthalmology, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - John Maguire
- School of Optometry and Vision Sciences, University of Bradford, Bradford, United Kingdom
- Department of Neurophysiology, Children's Health Ireland (CHI) at Crumlin, Dublin, Ireland
| | - Martin Kanowski
- Department of Neurology, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Barbara Käsmann-Kellner
- Department of Ophthalmology, Saarland University Hospital and Medical Faculty of the Saarland University Hospital, Homburg, Germany
| | - Ilse Wieland
- Department for Molecular Genetics, Institute for Human Genetics, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
| | - Eyal Banin
- Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Netta Levin
- fMRI Unit, Department of Neurology, Hadassah Medical Center, Jerusalem, Israel
| | - Antony B. Morland
- Department of Psychology, University of York, Heslington, York, United Kingdom
- York Biomedical Research Institute, University of York, Heslington, York, United Kingdom
- York Neuroimaging Centre, Department of Psychology, University of York, York, United Kingdom
| | - Michael B. Hoffmann
- Department of Ophthalmology, University Hospital, Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
11
|
Puzniak RJ, Prabhakaran GT, McLean RJ, Stober S, Ather S, Proudlock FA, Gottlob I, Dineen RA, Hoffmann MB. CHIASM-Net: Artificial Intelligence-Based Direct Identification of Chiasmal Abnormalities in Albinism. Invest Ophthalmol Vis Sci 2023; 64:14. [PMID: 37815506 PMCID: PMC10573586 DOI: 10.1167/iovs.64.13.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023] Open
Abstract
Purpose Albinism is a congenital disorder affecting pigmentation levels, structure, and function of the visual system. The identification of anatomical changes typical for people with albinism (PWA), such as optic chiasm malformations, could become an important component of diagnostics. Here, we tested an application of convolutional neural networks (CNNs) for this purpose. Methods We established and evaluated a CNN, referred to as CHIASM-Net, for the detection of chiasmal malformations from anatomic magnetic resonance (MR) images of the brain. CHIASM-Net, composed of encoding and classification modules, was developed using MR images of controls (n = 1708) and PWA (n = 32). Evaluation involved 8-fold cross validation involving accuracy, precision, recall, and F1-score metrics and was performed on a subset of controls and PWA samples excluded from the training. In addition to quantitative metrics, we used Explainable AI (XAI) methods that granted insights into factors driving the predictions of CHIASM-Net. Results The results for the scenario indicated an accuracy of 85 ± 14%, precision of 90 ± 14% and recall of 81 ± 18%. XAI methods revealed that the predictions of CHIASM-Net are driven by optic-chiasm white matter and by the optic tracts. Conclusions CHIASM-Net was demonstrated to use relevant regions of the optic chiasm for albinism detection from magnetic resonance imaging (MRI) brain anatomies. This indicates the strong potential of CNN-based approaches for visual pathway analysis and ultimately diagnostics.
Collapse
Affiliation(s)
- Robert J Puzniak
- Visual Processing Lab, Department of Ophthalmology, Otto-von-Guericke-University, Magdeburg, Germany
- Department of Neuroscience, Psychology, and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Gokulraj T Prabhakaran
- Visual Processing Lab, Department of Ophthalmology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Rebecca J McLean
- University of Leicester Ulverscroft Eye Unit, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Sebastian Stober
- Artificial Intelligence Lab, Institute for Intelligent Cooperating Systems, Otto-von-Guericke-University, Magdeburg, Germany
| | - Sarim Ather
- Department of Radiology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Headington, Oxford, United Kingdom
| | - Frank A Proudlock
- University of Leicester Ulverscroft Eye Unit, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
| | - Irene Gottlob
- University of Leicester Ulverscroft Eye Unit, University of Leicester, Leicester Royal Infirmary, Leicester, United Kingdom
- Cooper Neurological Institute and Cooper Medical School of Rowan University, Camden, New Jersey, United States
| | - Robert A Dineen
- Mental Health and Clinical Neuroscience, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Nottingham, United Kingdom
| | - Michael B Hoffmann
- Visual Processing Lab, Department of Ophthalmology, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto-von-Guericke-Universität, Magdeburg, Germany
| |
Collapse
|
12
|
Pilat A, McLean RJ, Vanina A, Dineen RA, Gottlob I. Clinical features and imaging characteristics in achiasmia. Brain Commun 2023; 5:fcad219. [PMID: 37680693 PMCID: PMC10481774 DOI: 10.1093/braincomms/fcad219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/24/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
Achiasmia is a rare visual pathway maldevelopment with reduced decussation of the axons in the optic chiasm. Our aim was to investigate clinical characteristics, macular, optic nerve and brain morphology in achiasmia. A prospective, cross-sectional, observational study of 12 participants with achiasmia [8 males and 4 females; 29.6 ± 18.4 years (mean ± standard deviation)] and 24 gender-, age-, ethnicity- and refraction-matched healthy controls was done. Full ophthalmology assessment, eye movement recording, a high-resolution spectral-domain optical coherence tomography of the macular and optic disc, five-channel visual-evoked responses, eye movement recordings and MRI scans of the brain and orbits were acquired. Achiasmia was confirmed in all 12 clinical participants by visual-evoked responses. Visual acuity in this group was 0.63 ± 0.19 and 0.53 ± 0.19 for the right and left eyes, respectively; most participants had mild refractive errors. All participants with achiasmia had see-saw nystagmus and no measurable stereo vision. Strabismus and abnormal head position were noted in 58% of participants. Optical coherence tomography showed optic nerve hypoplasia with associated foveal hypoplasia in four participants. In the remaining achiasmia participants, macular changes with significantly thinner paracentral inner segment (P = 0.002), wider pit (P = 0.04) and visual flattening of the ellipsoid line were found. MRI demonstrated chiasmatic aplasia in 3/12 (25%), chiasmatic hypoplasia in 7/12 (58%) and a subjectively normal chiasm in 2/12 (17%). Septo-optic dysplasia and severe bilateral optic nerve hypoplasia were found in three patients with chiasmic aplasia/hypoplasia on MRI. In this largest series of achiasmia patients to date, we found for the first time that neuronal abnormalities occur already at the retinal level. Foveal changes, optic nerve hypoplasia and the midline brain anomaly suggest that these abnormalities could be part of the same spectrum, with different manifestations of events during foetal development occurring with varying severity.
Collapse
Affiliation(s)
- Anastasia Pilat
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Rebecca J McLean
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | | | - Robert A Dineen
- Division of Clinical Neuroscience, Queen’s Medical Centre, Radiological Sciences, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Queen’s Medical Centre, University of Nottingham, Nottingham, UK
| | - Irene Gottlob
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
- Department of Neurology, Cooper University Hospital, Cooper Neurological Institute, Camden, USA
| |
Collapse
|
13
|
Li H, Zhou Q, Chen Y, Hu H, Gao L, Takahata T. Three-dimensional topography of eye-specific domains in the lateral geniculate nucleus of pigmented and albino rats. Cereb Cortex 2023; 33:9599-9615. [PMID: 37415460 DOI: 10.1093/cercor/bhad229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
We previously revealed the presence of ocular dominance columns (ODCs) in the primary visual cortex (V1) of pigmented rats. On the other hand, previous studies have shown that the ipsilateral-eye domains of the dorsal lateral geniculate nucleus (dLGN) are segregated into a handful of patches in pigmented rats. To investigate the three-dimensional (3D) topography of the eye-specific patches of the dLGN and its relationship with ODCs, we injected different tracers into the right and left eyes and examined strain difference, development, and plasticity of the patches. Furthermore, we applied the tissue clearing technique to reveal the 3D morphology of the LGN and were able to observe entire retinotopic map of the rat dLGN at a certain angle. Our results show that the ipsilateral domains of the dLGN appear mesh-like at any angle and are developed at around time of eye-opening. Their development was moderately affected by abnormal visual experience, but the patch formation was not disrupted. In albino Wistar rats, ipsilateral patches were observed in the dLGN, but they were much fewer, especially near the central visual field. These results provide insights into how ipsilateral patches of the dLGN arise, and how the geniculo-cortical arrangement is different between rodents and primates.
Collapse
Affiliation(s)
- Hangqi Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310029, P. R. China
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310029, P. R. China
| | - Qiuying Zhou
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310029, P. R. China
- Department of Neurology and Ophthalmology of the Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310029, P. R. China
| | - Yanlu Chen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, P.R. China
| | - Huijie Hu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, P.R. China
| | - Liang Gao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, P.R. China
| | - Toru Takahata
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310029, P. R. China
- Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310029, P. R. China
- Department of Neurology and Ophthalmology of the Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310029, P. R. China
| |
Collapse
|
14
|
Carvalho J, Invernizzi A, Martins J, Renken RJ, Cornelissen FW. Local neuroplasticity in adult glaucomatous visual cortex. Sci Rep 2022; 12:21981. [PMID: 36539453 PMCID: PMC9767937 DOI: 10.1038/s41598-022-24709-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
The degree to which the adult human visual cortex retains the ability to functionally adapt to damage at the level of the eye remains ill-understood. Previous studies on cortical neuroplasticity primarily focused on the consequences of foveal visual field defects (VFD), yet these findings may not generalize to peripheral defects such as occur in glaucoma. Moreover, recent findings on neuroplasticity are often based on population receptive field (pRF) mapping, but interpreting these results is complicated in the absence of appropriate control conditions. Here, we used fMRI-based neural modeling to assess putative changes in pRFs associated with glaucomatous VFD. We compared the fMRI-signals and pRF in glaucoma participants to those of controls with case-matched simulated VFD. We found that the amplitude of the fMRI-signal is reduced in glaucoma compared to control participants and correlated with disease severity. Furthermore, while coarse retinotopic structure is maintained in all participants with glaucoma, we observed local pRF shifts and enlargements in early visual areas, relative to control participants. These differences suggest that the adult brain retains some degree of local neuroplasticity. This finding has translational relevance, as it is consistent with VFD masking, which prevents glaucoma patients from noticing their VFD and seeking timely treatment.
Collapse
Affiliation(s)
- Joana Carvalho
- grid.4494.d0000 0000 9558 4598Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands ,grid.421010.60000 0004 0453 9636Pre-Clinical MRI Laboratory, Champalimaud Centre for the Unknown, Avenida de Brasilia, 1400-038 Lisbon, Portugal
| | - Azzurra Invernizzi
- grid.4494.d0000 0000 9558 4598Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands ,grid.59734.3c0000 0001 0670 2351Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Joana Martins
- grid.4494.d0000 0000 9558 4598Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Remco J. Renken
- grid.4494.d0000 0000 9558 4598Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands ,grid.4494.d0000 0000 9558 4598Cognitive Neuroscience Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Frans W. Cornelissen
- grid.4494.d0000 0000 9558 4598Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Li K, Wang Q, Wang L, Huang Y. Cognitive dysfunctions in high myopia: An overview of potential neural morpho-functional mechanisms. Front Neurol 2022; 13:1022944. [PMID: 36408499 PMCID: PMC9669364 DOI: 10.3389/fneur.2022.1022944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 10/28/2023] Open
Abstract
Dementia and cognitive impairment (CIM) carry high levels of mortality. Visual impairment (VI) is linked with CIM risk. High myopia (HM) is a chronic disease frequently leading to irreversible blindness. Current opinion has shifted from retinal injury as the cause of HM to the condition being considered an eye-brain disease. However, the pathogenesis of this disease and the manner in which neural structures are damaged are poorly understood. This review comprehensively discusses the relationship between HM, the central nervous system, and CIM, together with the novel concept of three visual pathways, and possible research perspectives.
Collapse
Affiliation(s)
- Kaixiu Li
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Qun Wang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liqiang Wang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yifei Huang
- Department of Ophthalmology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
16
|
Al-Nosairy KO, Quanz EV, Biermann J, Hoffmann MB. Optical Coherence Tomography as a Biomarker for Differential Diagnostics in Nystagmus: Ganglion Cell Layer Thickness Ratio. J Clin Med 2022; 11:jcm11174941. [PMID: 36078871 PMCID: PMC9456294 DOI: 10.3390/jcm11174941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/25/2022] Open
Abstract
In albinism, with the use of optical coherence tomography (OCT), a thinning of the macular ganglion cell layer was recently reported. As a consequence, the relevant OCT measure, i.e., a reduction of the temporal/nasal ganglion cell layer thickness quotient (GCLTQ), is a strong candidate for a novel biomarker of albinism. However, nystagmus is a common trait in albinism and is known as a potential confound of imaging techniques. Therefore, there is a need to determine the impact of nystagmus without albinism on the GCLTQ. In this bi-center study, the retinal GCLTQ was determined (OCT Spectralis, Heidelberg Engineering, Heidelberg, Germany) for healthy controls (n = 5, 10 eyes) vs. participants with nystagmus and albinism (Nalbinism, n = 8, 15 eyes), and with nystagmus of other origins (Nother, n = 11, 17 eyes). Macular OCT with 25 horizontal B scans 20 × 20° with 9 automated real time tracking (ART) frames centered on the retina was obtained for each group. From the sectoral GCLTs of the early treatment diabetic retinopathy study (ETDRS) circular thickness maps, i.e., 3 mm and 6 mm ETDRS rings, GCLTQ I and GCLTQ II were determined. Both GCLTQs were reduced in Nalbinism (GCLTQ I and II: 0.78 and 0.77, p < 0.001) compared to Nother (0.91 and 0.93) and healthy controls (0.89 and 0.95). The discrimination of Nalbinism from Nother via GCLTQ I and II had an area under the curve of 80 and 82% with an optimal cutoff point of 0.86 and 0.88, respectively. In conclusion, lower GCLTQ in Nalbinism appears as a distinguished feature in albinism-related nystagmus as opposed to other causes of nystagmus.
Collapse
Affiliation(s)
- Khaldoon O. Al-Nosairy
- Department of Ophthalmology, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Elisabeth V. Quanz
- Department of Ophthalmology, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Julia Biermann
- Department of Ophthalmology, University of Muenster Medical Centre, 48149 Muenster, Germany
| | - Michael B. Hoffmann
- Department of Ophthalmology, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39118 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
17
|
Pigmented Long-Evans rats demonstrate better visual ability than albino Wistar rats in slow angles-descent forepaw grasping test. Neuroreport 2022; 33:543-547. [PMID: 35882010 DOI: 10.1097/wnr.0000000000001815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Albino people are known to have vision deficit. Albino animals are shown to have abnormal connectivity and malformation of the visual system. However, not many studies have revealed visual impairment of albino animals in the level of perception. To link anatomical abnormality and perceptual visual impairment of albinism, we compared the perceptual vision between the pigmented Long-Evans and the albino Wistar rats. We used the slow angled-descent forepaw grasping (SLAG) test. We hanged the rats in the air by their tails and slowly moved them around a safety bar so that they could see it. When the rats recognized the bar and try to grab it to escape, we counted the trial as 'positive', and we measured positive rates. We also measured the distance between the bar and their whiskers during the rats' initial grasping action, and evaluated type of action at the first contact to the bar. The positive-action rate in the Long-Evans rat group showed significantly higher than the Wistar rat group (0.85 ± 0.047, n = 10, vs. 0.29 ± 0.043, n = 10; P < 0.0001). Besides, when the action was positive, the distance between the bar and their whiskers was longer in the Long-Evans rat group than that in the Wistar rat group (117 ± 5.3 mm vs. 58.8 ± 4.6 mm; P < 0.0001). The Long-Evans rats grasped the bar more precisely than the Wistar rats. The pigmented Long-Evans rats have much better visual perception than the albino Wistar rats.
Collapse
|
18
|
Normal Retinotopy in Primary Visual Cortex in a Congenital Complete Unilateral Lesion of Lateral Geniculate Nucleus in Human: A Case Study. Int J Mol Sci 2022; 23:ijms23031055. [PMID: 35162977 PMCID: PMC8835673 DOI: 10.3390/ijms23031055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 11/17/2022] Open
Abstract
Impairment of the geniculostriate pathway results in scotomas in the corresponding part of the visual field. Here, we present a case of patient IB with left eye microphthalmia and with lesions in most of the left geniculostriate pathway, including the Lateral Geniculate Nucleus (LGN). Despite the severe lesions, the patient has a very narrow scotoma in the peripheral part of the lower-right-hemifield only (beyond 15° of eccentricity) and complete visual field representation in the primary visual cortex. Population receptive field mapping (pRF) of the patient’s visual field reveals orderly eccentricity maps together with contralateral activation in both hemispheres. With diffusion tractography, we revealed connections between superior colliculus (SC) and cortical structures in the hemisphere affected by the lesions, which could mediate the retinotopic reorganization at the cortical level. Our results indicate an astonishing case for the flexibility of the developing retinotopic maps where the contralateral thalamus receives fibers from both the nasal and temporal retinae.
Collapse
|
19
|
Abstract
We describe a collection of T1-, diffusion- and functional T2*-weighted magnetic resonance imaging data from human individuals with albinism and achiasma. This repository can be used as a test-bed to develop and validate tractography methods like diffusion-signal modeling and fiber tracking as well as to investigate the properties of the human visual system in individuals with congenital abnormalities. The MRI data is provided together with tools and files allowing for its preprocessing and analysis, along with the data derivatives such as manually curated masks and regions of interest for performing tractography.
Collapse
|
20
|
Puzniak RJ, Prabhakaran GT, Hoffmann MB. Deep Learning-Based Detection of Malformed Optic Chiasms From MRI Images. Front Neurosci 2021; 15:755785. [PMID: 34759795 PMCID: PMC8573410 DOI: 10.3389/fnins.2021.755785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
Convolutional neural network (CNN) models are of great promise to aid the segmentation and analysis of brain structures. Here, we tested whether CNN trained to segment normal optic chiasms from the T1w magnetic resonance imaging (MRI) image can be also applied to abnormal chiasms, specifically with optic nerve misrouting as typical for human albinism. We performed supervised training of the CNN on the T1w images of control participants (n = 1049) from the Human Connectome Project (HCP) repository and automatically generated algorithm-based optic chiasm masks. The trained CNN was subsequently tested on data of persons with albinism (PWA; n = 9) and controls (n = 8) from the CHIASM repository. The quality of outcome segmentation was assessed via the comparison to manually defined optic chiasm masks using the Dice similarity coefficient (DSC). The results revealed contrasting quality of masks obtained for control (mean DSC ± SEM = 0.75 ± 0.03) and PWA data (0.43 ± 0.8, few-corrected p = 0.04). The fact that the CNN recognition of the optic chiasm fails for chiasm abnormalities in PWA underlines the fundamental differences in their spatial features. This finding provides proof of concept for a novel deep-learning-based diagnostics approach of chiasmal misrouting from T1w images, as well as further analyses on chiasmal misrouting and their impact on the structure and function of the visual system.
Collapse
Affiliation(s)
- Robert J Puzniak
- Visual Processing Lab, Department of Ophthalmology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Gokulraj T Prabhakaran
- Visual Processing Lab, Department of Ophthalmology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Michael B Hoffmann
- Visual Processing Lab, Department of Ophthalmology, Otto-von-Guericke-University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
21
|
Prabhakaran GT, Al-Nosairy KO, Tempelmann C, Thieme H, Hoffmann MB. Mapping Visual Field Defects With fMRI - Impact of Approach and Experimental Conditions. Front Neurosci 2021; 15:745886. [PMID: 34566575 PMCID: PMC8455880 DOI: 10.3389/fnins.2021.745886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022] Open
Abstract
Current initiatives to restore vision emphasize the need for objective assessments of visual field (VF) defects as pursued with functional magnetic resonance imaging (fMRI) approaches. Here, we compared population receptive field (pRF) mapping-based VF reconstructions to an fMRI method that uses more robust visual stimulation (on-off block design) in combination with individualized anatomy-driven retinotopic atlas-information (atlas-based VF). We investigated participants with sizable peripheral VF-deficits due to advanced glaucoma (n = 4) or retinitis pigmentosa (RP; n = 2) and controls (n = 6) with simulated scotoma. We obtained (1) standard automated perimetry (SAP) data as reference VFs and 3T fMRI data for (2) pRF-mapping [8-direction bar stimulus, fixation color change task] and (3) block-design full-field stimulation [8-direction drifting contrast patterns during (a) passive viewing (PV) and (b) one-back-task (OBT; reporting successions of identical motion directions) to probe the impact of previously reported task-related unspecific visual cortex activations]. Correspondence measures between the SAP and fMRI-based VFs were accuracy, assisted by sensitivity and specificity. We found an accuracy of pRF-based VF from V1 in patients [median: 0.62] that was similar to previous reports and increased by adding V2 and V3 to the analysis [0.74]. In comparison to the pRF-based VF, equivalent accuracies were obtained for the atlas-based VF for both PV [0.67] and, unexpectedly, the OBT [0.59], where, however, unspecific cortical activations were reflected by a reduction in sensitivity [0.71 (PV) and 0.35 (OBT)]. In conclusion, in patients with peripheral VF-defects, we demonstrate that previous fMRI procedures to obtain VF-estimates might be enhanced by: (1) pooling V1-V3 to enhance accuracy; (2) reporting sensitivity and specificity measures to increase transparency of the VF-reconstruction metric; (3) applying atlas-based procedures, if pRF-based VFs are not available or difficult to obtain; and (4) giving, counter-intuitively, preference to PV. These findings are expected to provide guidance to overcome current limitations of translating fMRI-based methods to a clinical work-up.
Collapse
Affiliation(s)
| | | | - Claus Tempelmann
- Department of Neurology, Otto von Guericke University, Magdeburg, Germany
| | - Hagen Thieme
- Department of Ophthalmology, Otto von Guericke University, Magdeburg, Germany
| | - Michael B Hoffmann
- Department of Ophthalmology, Otto von Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
22
|
Ptito M, Paré S, Dricot L, Cavaliere C, Tomaiuolo F, Kupers R. A quantitative analysis of the retinofugal projections in congenital and late-onset blindness. NEUROIMAGE-CLINICAL 2021; 32:102809. [PMID: 34509923 PMCID: PMC8435915 DOI: 10.1016/j.nicl.2021.102809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/14/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023]
Abstract
Congenital (CB) and late blind (LB) affects the integrity brain visual structures. We measured the integrity of the retino-fugal system using structural MRI images. Optic nerve, optic tract, optic chiasm and LGN were reduced by 50 to 60% in CB and LB. There were no differences between CB and LB. In LB, optic nerve volume correlated negatively with blindness duration.
Vision loss early in life has dramatic consequences on the organization of the visual system and hence on structural plasticity of its remnant components. Most of the studies on the anatomical changes in the brain following visual deprivation have focused on the re-organization of the visual cortex and its afferent and efferent projections. In this study, we performed a quantitative analysis of the volume and size of the optic chiasm, optic nerve, optic tract and the lateral geniculate nucleus (LGN), the retino recipient thalamic nucleus. Analysis was carried out on structural T1-weighted MRIs from 22 congenitally blind (CB), 14 late blind (LB) and 29 age -and sex-matched sighted control (SC) subjects. We manually segmented the optic nerve, optic chiasm and optic tract, while LGN volumes were extracted using in-house software. We also measured voxel intensity of optic nerve, optic chiasm and optic tract. Mean volumes of the optic nerve, optic tract and optic chiasm were reduced by 50 to 60% in both CB and LB participants. No significant differences were found between the congenitally and late-onset blind participants for any of the measures. Our data further revealed reduced white matter voxel intensities in optic nerve, optic chiasm and optic tract in blind compared to sighted participants, suggesting decreased myelin content in the atrophied white matter. The LGN was reduced by 50% and 44% in CB and LB, respectively. In LB, optic nerve volume correlated negatively with the blindness duration index; no such correlation was found for optic chiasm, optic tract and LGN. The observation that despite the absence of visual input about half of the subcortical retinofugal projections are structurally preserved raises the question of their functional role. One possibility is that the surviving fibers play a role in the maintenance of circadian rhythms in the blind through the intrinsically photosensitive melanopsin-containing retinal ganglion cells.
Collapse
Affiliation(s)
- Maurice Ptito
- School of Optometry, University of Montreal, Montreal, QC, Canada; BRAINlab, University of Copenhagen, Copenhagen, Denmark; Danish Research Center for Magnetic Resonance (DRCMR), Copenhagen University Hospital, Hvidovre, Denmark
| | - Samuel Paré
- School of Optometry, University of Montreal, Montreal, QC, Canada
| | - Laurence Dricot
- Institute of NeuroScience (IoNS), Université catholique de Louvain (UCLouvain), Belgium
| | - Carlo Cavaliere
- IRCCS SDN, Naples, Italy; Coma Science Group, Cyclotron Research Center and Neurology Department, University and University Hospital of Liège, Liège, Belgium
| | - Francesco Tomaiuolo
- Univesità degli Studi di Messina, Dipartimento di Medicina Clinica e Sperimentale
| | - Ron Kupers
- School of Optometry, University of Montreal, Montreal, QC, Canada; BRAINlab, University of Copenhagen, Copenhagen, Denmark; Institute of NeuroScience (IoNS), Université catholique de Louvain (UCLouvain), Belgium.
| |
Collapse
|
23
|
Prabhakaran GT, Al-Nosairy KO, Tempelmann C, Wagner M, Thieme H, Hoffmann MB. Functional Dynamics of Deafferented Early Visual Cortex in Glaucoma. Front Neurosci 2021; 15:653632. [PMID: 34381327 PMCID: PMC8350780 DOI: 10.3389/fnins.2021.653632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/23/2021] [Indexed: 12/03/2022] Open
Abstract
In advanced retinitis pigmentosa with retinal lesions, the lesion projection zone (LPZ) in the early visual cortex can be driven during visual tasks, while it remains unresponsive during passive viewing. We tested whether this finding translates to advanced glaucoma, a major cause of acquired blindness. During visual stimulation, 3T fMRI scans were acquired for participants with advanced glaucoma (n = 4; age range: 51–72) and compared to two reference groups, i.e., advanced retinitis pigmentosa (n = 3; age range: 46–78) and age-matched healthy controls with simulated defects (n = 7). The participants viewed grating patterns drifting in 8 directions (12 s) alternating with uniform gray (12 s), either during passive viewing (PV), i.e., central fixation, or during a one-back task (OBT), i.e., reports of succeeding identical motion directions. As another reference, a fixation-dot task condition was included. Only in glaucoma and retinitis pigmentosa but not in controls, fMRI-responses in the lesion projection zone (LPZ) of V1 shifted from negative for PV to positive for OBT (p = 0.024 and p = 0.012, respectively). In glaucoma, these effects also reached significance in V3 (p = 0.006), while in V2 there was a non-significant trend (p = 0.069). The general absence of positive responses in the LPZ during PV underscores the lack of early visual cortex bottom-up plasticity for acquired visual field defects in humans. Trends in our exploratory analysis suggesting the task-dependent LPZ responses to be inversely related to visual field loss, indicate the benefit of patient stratification strategies in future studies with greater sample sizes. We conclude that top-down mechanisms associated with task-elicited demands rather than visual cortex remapping appear to shape LPZ responses not only in retinitis pigmentosa, but also in glaucoma. These insights are of critical importance for the development of schemes for treatment and rehabilitation in glaucoma and beyond.
Collapse
Affiliation(s)
| | | | - Claus Tempelmann
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Markus Wagner
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany
| | - Hagen Thieme
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany
| | - Michael B Hoffmann
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
24
|
Hoffmann MB, Choritz L, Thieme H, Prabhakaran GT, Puzniak RJ. [Neuro-computational approaches for objective assessment of visual function]. Ophthalmologe 2021; 118:900-906. [PMID: 34032917 DOI: 10.1007/s00347-021-01404-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Retinal pathologies affect the structure and function of post-retinal visual pathways. These post-retinal alterations bear the potential to obstruct the aim of innovative retinal treatment to restore visual function. OBJECTIVE Current developments in the field of neuroimaging and the associated neurocomputational approaches enable a detailed assessment of this interrelationship. As a consequence, they open up the possibility to anticipate the success of treatment. METHODS This review article demonstrates how innovations particularly in magnetic resonance imaging (MRI)-based anatomical, functional, and diffusion imaging can guide visual pathway assessments that are relevant for ophthalmological applications. RESULTS Specific examples of retinal and visual pathway pathologies in the context of a detailed analysis of the visual pathway are described. CONCLUSION A concept is introduced of how to translate the meaningful but technically and computationally challenging neuroimaging procedures into a clinical setting in order to effectively connect these procedures to innovative treatment approaches.
Collapse
Affiliation(s)
- Michael B Hoffmann
- Universitäts-Augenklinik, Otto-von-Guericke Universität, Leipziger Str. 44, 39120, Magdeburg, Deutschland. .,Center for Behavioral Brain Sciences, 39120, Magdeburg, Deutschland.
| | - Lars Choritz
- Universitäts-Augenklinik, Otto-von-Guericke Universität, Leipziger Str. 44, 39120, Magdeburg, Deutschland
| | - Hagen Thieme
- Universitäts-Augenklinik, Otto-von-Guericke Universität, Leipziger Str. 44, 39120, Magdeburg, Deutschland
| | - Gokulraj T Prabhakaran
- Universitäts-Augenklinik, Otto-von-Guericke Universität, Leipziger Str. 44, 39120, Magdeburg, Deutschland
| | - Robert J Puzniak
- Universitäts-Augenklinik, Otto-von-Guericke Universität, Leipziger Str. 44, 39120, Magdeburg, Deutschland
| |
Collapse
|
25
|
Duwell EJ, Woertz EN, Mathis J, Carroll J, DeYoe EA. Aberrant visual population receptive fields in human albinism. J Vis 2021; 21:19. [PMID: 34007988 PMCID: PMC8142699 DOI: 10.1167/jov.21.5.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/15/2021] [Indexed: 11/27/2022] Open
Abstract
Retinotopic organization is a fundamental feature of visual cortex thought to play a vital role in encoding spatial information. One important aspect of normal retinotopy is the representation of the right and left hemifields in contralateral visual cortex. However, in human albinism, many temporal retinal afferents decussate aberrantly at the optic chiasm resulting in partially superimposed representations of opposite hemifields in each hemisphere of visual cortex. Previous functional magnetic resonance imaging (fMRI) studies in human albinism suggest that the right and left hemifield representations are superimposed in a mirror-symmetric manner. This should produce imaging voxels which respond to two separate locations mirrored across the vertical meridian. However, it is not yet clear how retino-cortical miswiring in albinism manifests at the level of single voxel population receptive fields (pRFs). Here, we used pRF modeling to fit both single and dual pRF models to the visual responses of voxels in visual areas V1 to V3 of five subjects with albinism. We found that subjects with albinism (but not controls) have sizable clusters of voxels with unequivocal dual pRFs consistently corresponding to, but not fully coextensive with, regions of hemifield overlap. These dual pRFs were typically positioned at locations roughly mirrored across the vertical meridian and were uniquely clustered within a portion of the visual field for each subject.
Collapse
Affiliation(s)
- Ethan J Duwell
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Erica N Woertz
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Joseph Carroll
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Edgar A DeYoe
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
26
|
Prabhakaran GT, Carvalho J, Invernizzi A, Kanowski M, Renken RJ, Cornelissen FW, Hoffmann MB. Foveal pRF properties in the visual cortex depend on the extent of stimulated visual field. Neuroimage 2020; 222:117250. [PMID: 32798683 DOI: 10.1016/j.neuroimage.2020.117250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 01/28/2023] Open
Abstract
Previous studies demonstrated that alterations in functional MRI derived receptive field (pRF) properties in cortical projection zones of retinal lesions can erroneously be mistaken for cortical large-scale reorganization in response to visual system pathologies. We tested, whether such confounds are also evident in the normal cortical projection zone of the fovea for simulated peripheral visual field defects. We applied fMRI-based visual field mapping of the central visual field at 3 T in eight controls to compare the pRF properties of the central visual field of a reference condition (stimulus radius: 14°) and two conditions with simulated peripheral visual field defect, i.e., with a peripheral gray mask, stimulating only the central 7° or 4° radius. We quantified, for the cortical representation of the actually stimulated visual field, the changes in the position and size of the pRFs associated with reduced peripheral stimulation using conventional and advanced pRF modeling. We found foveal pRF-positions (≤3°) to be significantly shifted towards the periphery (p<0.05, corrected). These pRF-shifts were largest for the 4° condition [visual area (mean eccentricity shift): V1 (0.9°), V2 (0.9°), V3 (1.0°)], but also evident for the 7° condition [V1 (0.5°), V2 (0.5°), V3 (0.9°)]. Further, an overall enlargement of pRF-sizes was observed. These findings indicate the dependence of foveal pRF parameters on the spatial extent of the stimulated visual field and are likely associated with methodological biases and/or physiological mechanisms. Consequently, our results imply that, previously reported similar findings in patients with actual peripheral scotomas need to be interpreted with caution and indicate the need for adequate control conditions in investigations of visual cortex reorganization.
Collapse
Affiliation(s)
| | - Joana Carvalho
- Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Azzurra Invernizzi
- Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martin Kanowski
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Remco J Renken
- Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Cognitive Neuroscience Center, University Medical Center Groningen, University of Groningen, the Netherlands
| | - Frans W Cornelissen
- Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Michael B Hoffmann
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioural Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
27
|
Developments in non-invasive visual electrophysiology. Vision Res 2020; 174:50-56. [PMID: 32540518 DOI: 10.1016/j.visres.2020.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/23/2023]
Abstract
To study the physiology of the primate visual system, non-invasive electrophysiological techniques are of major importance. Two main techniques are available: the electroretinogram (ERG), a mass potential originating in the retina, and the visual evoked potential (VEP), which reflects activity in the primary visual cortex. In this overview, the history and the state of the art of these techniques are briefly presented as an introduction to the special issue "New Developments in non-invasive visual electrophysiology". The overview and the special issue can be used as the starting point for exciting new developments in the electrophysiology of primate and mammalian vision.
Collapse
|
28
|
Esteve P, Crespo I, Kaimakis P, Sandonís A, Bovolenta P. Sfrp1 Modulates Cell-signaling Events Underlying Telencephalic Patterning, Growth and Differentiation. Cereb Cortex 2020; 29:1059-1074. [PMID: 30084950 DOI: 10.1093/cercor/bhy013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 01/09/2018] [Indexed: 12/19/2022] Open
Abstract
The mammalian dorsal telencephalic neuroepithelium develops-from medial to lateral-into the choroid plaque, cortical hem, hippocampal primordium and isocortex under the influence of Bmp, Wnt and Notch signaling. Correct telencephalic development requires a tight coordination of the extent/duration of these signals, but the identification of possible molecular coordinators is still limited. Here, we postulated that Secreted Frizzled Related Protein 1 (Sfrp1), a multifunctional regulator of Bmp, Wnt and Notch signaling strongly expressed during early telencephalic development, may represent 1 of such molecules. We report that in E10.5-E12.5 Sfrp1-/- embryos, the hem and hippocampal domains are reduced in size whereas the prospective neocortex is medially extended. These changes are associated with a significant reduction of the medio-lateral telencephalic expression of Axin2, a read-out of Wnt/βcatenin signaling activation. Furthermore, in the absence of Sfrp1, Notch signaling is increased, cortical progenitor cell cycle is shorter, with expanded progenitor pools and enhanced generation of early-born neurons. Hence, in postnatal Sfrp1-/- animals the anterior hippocampus is reduced and the neocortex is shorter in the antero-posterior and medio-lateral axis but is thicker. We propose that, by controlling Wnt and Notch signaling in opposite directions, Sfrp1 promotes hippocampal patterning and balances medio-lateral and antero-posterior cortex expansion.
Collapse
Affiliation(s)
- Pilar Esteve
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), c/Nicolás Cabrera, Madrid, Spain
| | - Inmaculada Crespo
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), c/Nicolás Cabrera, Madrid, Spain
| | - Polynikis Kaimakis
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), c/Nicolás Cabrera, Madrid, Spain
| | - Africa Sandonís
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), c/Nicolás Cabrera, Madrid, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), c/Nicolás Cabrera, Madrid, Spain
| |
Collapse
|
29
|
Ahmadi K, Fracasso A, Puzniak RJ, Gouws AD, Yakupov R, Speck O, Kaufmann J, Pestilli F, Dumoulin SO, Morland AB, Hoffmann MB. Triple visual hemifield maps in a case of optic chiasm hypoplasia. Neuroimage 2020; 215:116822. [PMID: 32276070 DOI: 10.1016/j.neuroimage.2020.116822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/27/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022] Open
Abstract
In humans, each hemisphere comprises an overlay of two visuotopic maps of the contralateral visual field, one from each eye. Is the capacity of the visual cortex limited to these two maps or are plastic mechanisms available to host more maps? We determined the cortical organization of the visual field maps in a rare individual with chiasma hypoplasia, where visual cortex plasticity is challenged to accommodate three hemifield maps. Using high-resolution fMRI at 7T and diffusion-weighted MRI at 3T, we found three hemiretinal inputs, instead of the normal two, to converge onto the left hemisphere. fMRI-based population receptive field mapping of the left V1-V3 at 3T revealed three superimposed hemifield representations in the left visual cortex, i.e. two representations of opposing visual hemifields from the left eye and one right hemifield representation from the right eye. We conclude that developmental plasticity including the re-wiring of local intra- and cortico-cortical connections is pivotal to support the coexistence and functioning of three hemifield maps within one hemisphere.
Collapse
Affiliation(s)
- Khazar Ahmadi
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, 39120, Germany; Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, 22362, Sweden
| | - Alessio Fracasso
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, 3584 CS, the Netherlands; Department of Radiology, University Medical Center Utrecht, Utrecht, 3584 CX, the Netherlands; Spinoza Centre for Neuroimaging, Amsterdam, 1105 BK, the Netherlands; Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QB, UK
| | - Robert J Puzniak
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, 39120, Germany
| | - Andre D Gouws
- Department of Psychology, York Neuroimaging Centre, University of York, York, YO10 5NY, UK
| | - Renat Yakupov
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke University, Magdeburg, 39120, Germany; German Center for Neurodegenerative Diseases, Magdeburg, 39120, Germany
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Institute for Physics, Otto-von-Guericke University, Magdeburg, 39120, Germany; German Center for Neurodegenerative Diseases, Magdeburg, 39120, Germany; Leibniz Institute for Neurobiology, Magdeburg, 39118, Germany; Center for Behavioral Brain Sciences, Magdeburg, 39106, Germany
| | - Joern Kaufmann
- Department of Neurology, Otto-von-Guericke-University, Magdeburg, 39120, Germany
| | - Franco Pestilli
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 1101 E, USA
| | - Serge O Dumoulin
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, 3584 CS, the Netherlands; Spinoza Centre for Neuroimaging, Amsterdam, 1105 BK, the Netherlands; Department of Experimental and Applied Psychology, VU University Amsterdam, Amsterdam, 1081 BT, the Netherlands
| | - Antony B Morland
- Department of Psychology, York Neuroimaging Centre, University of York, York, YO10 5NY, UK; Centre for Neuroscience, Hull-York Medical School, University of York, York, YO10 5DD, UK
| | - Michael B Hoffmann
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, 39120, Germany; Center for Behavioral Brain Sciences, Magdeburg, 39106, Germany.
| |
Collapse
|
30
|
Altered visual population receptive fields in human albinism. Cortex 2020; 128:107-123. [PMID: 32334151 DOI: 10.1016/j.cortex.2020.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/10/2020] [Accepted: 03/07/2020] [Indexed: 02/07/2023]
Abstract
Albinism is a congenital disorder where misrouting of the optic nerves at the chiasm gives rise to abnormal visual field representations in occipital cortex. In typical human development, the left occipital cortex receives retinal input predominantly from the right visual field, and vice-versa. In albinism, there is a more complete decussation of optic nerve fibers at the chiasm, resulting in partial representation of the temporal hemiretina (ipsilateral visual field) in the contralateral hemisphere. In this study, we characterize the receptive field properties for these abnormal representations by conducting detailed fMRI population receptive field mapping in a rare subset of participants with albinism and no ocular nystagmus. We find a nasal bias for receptive field positions in the abnormal temporal hemiretina representation. In addition, by modelling responses to bilateral visual field stimulation in the overlap zone, we found evidence in favor of discrete unilateral receptive fields, suggesting a conservative pattern of spatial selectivity in the presence of abnormal retinal input.
Collapse
|
31
|
Carvalho J, Invernizzi A, Ahmadi K, Hoffmann MB, Renken RJ, Cornelissen FW. Micro-probing enables fine-grained mapping of neuronal populations using fMRI. Neuroimage 2019; 209:116423. [PMID: 31811903 DOI: 10.1016/j.neuroimage.2019.116423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/22/2019] [Accepted: 11/29/2019] [Indexed: 01/03/2023] Open
Abstract
The characterization of receptive field (RF) properties is fundamental to understanding the neural basis of sensory and cognitive behaviour. The combination of non-invasive imaging, such as fMRI, with biologically inspired neural modelling has enabled the estimation of population RFs directly in humans. However, current approaches require making numerous a priori assumptions, so these cannot reveal unpredicted properties, such as fragmented RFs or subpopulations. This is a critical limitation in studies on adaptation, pathology or reorganization. Here, we introduce micro-probing (MP), a technique for fine-grained and largely assumption free characterization of multiple pRFs within a voxel. It overcomes many limitations of current approaches by enabling detection of unexpected RF shapes, properties and subpopulations, by enhancing the spatial detail with which we analyze the data. MP is based on tiny, fixed-size, Gaussian models that efficiently sample the entire visual space and create fine-grained probe maps. Subsequently, we derived population receptive fields (pRFs) from these maps. We demonstrate the scope of our method through simulations and by mapping the visual fields of healthy participants and of a patient group with highly abnormal RFs due to a congenital pathway disorder. Without using specific stimuli or adapted models, MP mapped the bilateral pRFs characteristic of observers with albinism. In healthy observers, MP revealed that voxels may capture the activity of multiple subpopulations RFs that sample distinct regions of the visual field. Thus, MP provides a versatile framework to visualize, analyze and model, without restrictions, the diverse RFs of cortical subpopulations in health and disease.
Collapse
Affiliation(s)
- Joana Carvalho
- Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | - Azzurra Invernizzi
- Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Khazar Ahmadi
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany
| | - Michael B Hoffmann
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Remco J Renken
- Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands; Cognitive Neuroscience Center, University Medical Center Groningen, University of Groningen, Netherlands
| | - Frans W Cornelissen
- Laboratory of Experimental Ophthalmology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
32
|
Puzniak RJ, Ahmadi K, Kaufmann J, Gouws A, Morland AB, Pestilli F, Hoffmann MB. Quantifying nerve decussation abnormalities in the optic chiasm. NEUROIMAGE-CLINICAL 2019; 24:102055. [PMID: 31722288 PMCID: PMC6849426 DOI: 10.1016/j.nicl.2019.102055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 12/26/2022]
Abstract
Diffusion MRI is capable of detecting structural abnormalities of the optic chiasm. Quantification of crossing strength in optic chiasm is of promise for albinism diagnostics. Optic chiasm is a powerful test model for neuroimaging methods resolving crossing fibers.
Objective The human optic chiasm comprises partially crossing optic nerve fibers. Here we used diffusion MRI (dMRI) for the in-vivo identification of the abnormally high proportion of crossing fibers found in the optic chiasm of people with albinism. Methods In 9 individuals with albinism and 8 controls high-resolution 3T dMRI data was acquired and analyzed with a set of methods for signal modeling [Diffusion Tensor (DT) and Constrained Spherical Deconvolution (CSD)], tractography, and streamline filtering (LiFE, COMMIT, and SIFT2). The number of crossing and non-crossing streamlines and their weights after filtering entered ROC-analyses to compare the discriminative power of the methods based on the area under the curve (AUC). The dMRI results were cross-validated with fMRI estimates of misrouting in a subset of 6 albinotic individuals. Results We detected significant group differences in chiasmal crossing for both unfiltered DT (p = 0.014) and CSD tractograms (p = 0.0009) also reflected by AUC measures (for DT and CSD: 0.61 and 0.75, respectively), underlining the discriminative power of the approach. Estimates of crossing strengths obtained with dMRI and fMRI were significantly correlated for CSD (R2 = 0.83, p = 0.012). The results show that streamline filtering methods in combination with probabilistic tracking, both optimized for the data at hand, can improve the detection of crossing in the human optic chiasm. Conclusions Especially CSD-based tractography provides an efficient approach to detect structural abnormalities in the optic chiasm. The most realistic results were obtained with filtering methods with parameters optimized for the data at hand. Significance Our findings demonstrate a novel anatomy-driven approach for the individualized diagnostics of optic chiasm abnormalities.
Collapse
Affiliation(s)
- Robert J Puzniak
- Department of Ophthalmology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Khazar Ahmadi
- Department of Ophthalmology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Andre Gouws
- York Neuroimaging Centre, Department of Psychology, University of York, York, United Kingdom
| | - Antony B Morland
- York Neuroimaging Centre, Department of Psychology, University of York, York, United Kingdom; York Biomedical Research Institute, University of York, York, United Kingdom
| | - Franco Pestilli
- Department of Psychological and Brain Sciences, Program in Neuroscience and Program in Cognitive Science, Indiana University, Bloomington, USA
| | - Michael B Hoffmann
- Department of Ophthalmology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
33
|
Bennett CR, Bex PJ, Bauer CM, Merabet LB. The Assessment of Visual Function and Functional Vision. Semin Pediatr Neurol 2019; 31:30-40. [PMID: 31548022 PMCID: PMC6761988 DOI: 10.1016/j.spen.2019.05.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complete assessment of vision-related abilities should consider visual function (the performance of components of the visual system) and functional vision (visual task-related ability). Assessment methods are highly dependent upon individual characteristics (eg, the presence and type of visual impairment). Typical visual function tests assess factors such as visual acuity, contrast sensitivity, color, depth, and motion perception. These properties each represent an aspect of visual function and may impact an individual's level of functional vision. The goal of any functional vision assessment should be to measure the visual task-related ability under real-world scenarios. Recent technological advancements such as virtual reality can provide new opportunities to improve traditional vision assessments by providing novel objective and ecologically valid measurements of performance, and allowing for the investigation of their neural basis. In this review, visual function and functional vision evaluation approaches are discussed in the context of traditional and novel acquisition methods.
Collapse
Affiliation(s)
- Christopher R Bennett
- The Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA
| | - Peter J Bex
- Translational Vision Lab, Department of Psychology, Northeastern University, Boston, MA
| | - Corinna M Bauer
- The Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA
| | - Lotfi B Merabet
- The Laboratory for Visual Neuroplasticity, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA.
| |
Collapse
|
34
|
Ahmadi K, Herbik A, Wagner M, Kanowski M, Thieme H, Hoffmann MB. Population receptive field and connectivity properties of the early visual cortex in human albinism. Neuroimage 2019; 202:116105. [PMID: 31422172 DOI: 10.1016/j.neuroimage.2019.116105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/28/2019] [Accepted: 08/14/2019] [Indexed: 12/17/2022] Open
Abstract
In albinism, the pathological decussation of the temporal retinal afferents at the optic chiasm leads to superimposed representations of opposing hemifields in the visual cortex. Here, we assessed the equivalence of the two representations and the cortico-cortical connectivity of the early visual areas. Applying fMRI-based population receptive field (pRF)-mapping (both hemifield and bilateral mapping) and connective field (CF)-modeling, we investigated the early visual cortex in 6 albinotic participants and 4 controls. In albinism, superimposed retinotopic representations of the contra- and ipsilateral visual hemifield were observed on the hemisphere contralateral to the stimulated eye. This was confirmed by the observation of bilateral pRFs during bilateral mapping. Hemifield mapping revealed similar pRF-sizes for both hemifield representations throughout V1 to V3. The typical increase of V1-sampling extent for V3 compared to V2 was not found for the albinotic participants. The similarity of the pRF-sizes for opposing visual hemifield representations highlights the equivalence of the two maps in the early visual cortex. The altered V1-sampling extent in V3 might indicate the adaptation of cortico-cortical connections to visual pathway abnormalities in albinism. These findings thus suggest that conservative developmental mechanisms are complemented by alterations of the extrastriate cortico-cortical connectivity.
Collapse
Affiliation(s)
- Khazar Ahmadi
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany
| | - Anne Herbik
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany
| | - Markus Wagner
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany
| | - Martin Kanowski
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| | - Hagen Thieme
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany
| | - Michael B Hoffmann
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
35
|
Eick CM, Ahmadi K, Sweeney-Reed CM, Hoffmann MB. Interocular transfer of visual memory - Influence of visual impairment and abnormalities of the optic chiasm. Neuropsychologia 2019; 129:171-178. [PMID: 30951737 DOI: 10.1016/j.neuropsychologia.2019.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022]
Abstract
Due to an increased crossing of the optic nerve fibers at the optic chiasm in albinism, the visual cortex receives largely monocular input from the contralateral eye. Here we investigated whether this obstruction of binocular integration at the cortical input stage also impacts on interocular information exchange at the high processing level of visual memory. Interocular transfer (IOT) of visual memory retrieval was tested psychophysically after monocular encoding in 8 albinotic participants and 24 healthy controls. The retrieval performance (hit rate, reaction time, d') was determined when using the same or different eye at encoding. To assess the effect of reduced visual acuity (VA) on recognition, we simulated interocular acuity differences (IOA) in two healthy control groups (each n = 8), i.e., with large (VA: 0.89 vs. 0.12) and small simulated interocular difference (VA: 0.25 vs. 0.12), with the latter matched to that observed in the albinotic participants (VA: 0.20 vs. 0.15). A significant decrease in retrieval performance was observed in controls with simulated strongly reduced VA in one eye (p < 0.0001). For the other conditions and groups, including the albinotic participants, no dependence on VA and no significant difference between using the same or different eye was observed. This indicates interocular transfer and hence interocular information exchange in human albinism. These findings thus provide insights into the scope of plasticity of binocular information processing and inter-hemispherical information flow.
Collapse
Affiliation(s)
- Charlotta M Eick
- Department of Ophthalmology, Otto-von-Guericke-University Magdeburg, Germany; Institute for Biology, Otto-von-Guericke-University Magdeburg, Germany; Biological Psychology and Cognitive Neuroscience, Friedrich-Schiller-University, Jena, Germany
| | - Khazar Ahmadi
- Department of Ophthalmology, Otto-von-Guericke-University Magdeburg, Germany
| | - Catherine M Sweeney-Reed
- Neurocybernetics and Rehabilitation, Department of Neurology, Otto-von-Guericke-University Magdeburg, Germany
| | - Michael B Hoffmann
- Department of Ophthalmology, Otto-von-Guericke-University Magdeburg, Germany; Center for Behavioural Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
36
|
Ather S, Proudlock FA, Welton T, Morgan PS, Sheth V, Gottlob I, Dineen RA. Aberrant visual pathway development in albinism: From retina to cortex. Hum Brain Mapp 2019; 40:777-788. [PMID: 30511784 PMCID: PMC6865554 DOI: 10.1002/hbm.24411] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 09/08/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022] Open
Abstract
Albinism refers to a group of genetic abnormalities in melanogenesis that are associated neuronal misrouting through the optic chiasm. We perform quantitative assessment of visual pathway structure and function in 23 persons with albinism (PWA) and 20 matched controls using optical coherence tomography (OCT), volumetric magnetic resonance imaging (MRI), diffusion tensor imaging and visual evoked potentials (VEP). PWA had a higher streamline decussation index (percentage of total tractography streamlines decussating at the chiasm) compared with controls (Z = -2.24, p = .025), and streamline decussation index correlated weakly with inter-hemispheric asymmetry measured using VEP (r = .484, p = .042). For PWA, a significant correlation was found between foveal development index and total number of streamlines (r = .662, p < .001). Significant positive correlations were found between peri-papillary retinal nerve fibre layer thickness and optic nerve (r = .642, p < .001) and tract (r = .663, p < .001) width. Occipital pole cortical thickness was 6.88% higher (Z = -4.10, p < .001) in PWA and was related to anterior visual pathway structures including foveal retinal pigment epithelium complex thickness (r = -.579, p = .005), optic disc (r = .478, p = .021) and rim areas (r = .597, p = .003). We were unable to demonstrate a significant relationship between OCT-derived foveal or optic nerve measures and MRI-derived chiasm size or streamline decussation index. Our novel tractographic demonstration of altered chiasmatic decussation in PWA corresponds to VEP measured cortical asymmetry and is consistent with chiasmatic misrouting in albinism. We also demonstrate a significant relationship between retinal pigment epithelium and visual cortex thickness indicating that retinal pigmentation defects in albinism lead to downstream structural reorganisation of the visual cortex.
Collapse
Affiliation(s)
- Sarim Ather
- Nuffield Department of Surgical SciencesUniversity of OxfordOxfordUnited Kingdom
| | - Frank Anthony Proudlock
- University of Leicester Ulverscroft Eye UnitRobert Kilpatrick Clinical Sciences BuildingLeicesterUnited Kingdom
| | - Thomas Welton
- Radiological Sciences, Division of Clinical NeuroscienceUniversity of Nottingham, Queen's Medical CentreNottinghamUnited Kingdom
- Sir Peter Mansfield Imaging Centre, University of NottinghamQueen's Medical CentreNottinghamUnited Kingdom
| | - Paul S. Morgan
- Sir Peter Mansfield Imaging Centre, University of NottinghamQueen's Medical CentreNottinghamUnited Kingdom
- Medical Physics and Clinical Engineering, Nottingham University Hospitals NHS TrustQueen's Medical CentreNottinghamUnited Kingdom
| | - Viral Sheth
- University of Leicester Ulverscroft Eye UnitRobert Kilpatrick Clinical Sciences BuildingLeicesterUnited Kingdom
| | - Irene Gottlob
- University of Leicester Ulverscroft Eye UnitRobert Kilpatrick Clinical Sciences BuildingLeicesterUnited Kingdom
| | - Rob A. Dineen
- Radiological Sciences, Division of Clinical NeuroscienceUniversity of Nottingham, Queen's Medical CentreNottinghamUnited Kingdom
- Sir Peter Mansfield Imaging Centre, University of NottinghamQueen's Medical CentreNottinghamUnited Kingdom
| |
Collapse
|
37
|
Dumoulin SO, Knapen T. How Visual Cortical Organization Is Altered by Ophthalmologic and Neurologic Disorders. Annu Rev Vis Sci 2018; 4:357-379. [DOI: 10.1146/annurev-vision-091517-033948] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Receptive fields are a core property of cortical organization. Modern neuroimaging allows routine access to visual population receptive fields (pRFs), enabling investigations of clinical disorders. Yet how the underlying neural circuitry operates is controversial. The controversy surrounds observations that measurements of pRFs can change in healthy adults as well as in patients with a range of ophthalmological and neurological disorders. The debate relates to the balance between plasticity and stability of the underlying neural circuitry. We propose that to move the debate forward, the field needs to define the implied mechanism. First, we review the pRF changes in both healthy subjects and those with clinical disorders. Then, we propose a computational model that describes how pRFs can change in healthy humans. We assert that we can correctly interpret the pRF changes in clinical disorders only if we establish the capabilities and limitations of pRF dynamics in healthy humans with mechanistic models that provide quantitative predictions.
Collapse
Affiliation(s)
- Serge O. Dumoulin
- Spinoza Centre for Neuroimaging, 1105 BK Amsterdam, Netherlands
- Department of Experimental and Applied Psychology, VU University Amsterdam, 1181 BT Amsterdam, Netherlands
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS Utrecht, Netherlands
| | - Tomas Knapen
- Spinoza Centre for Neuroimaging, 1105 BK Amsterdam, Netherlands
- Department of Experimental and Applied Psychology, VU University Amsterdam, 1181 BT Amsterdam, Netherlands
| |
Collapse
|
38
|
Ahmadi K, Fracasso A, van Dijk JA, Kruijt C, van Genderen M, Dumoulin SO, Hoffmann MB. Altered organization of the visual cortex in FHONDA syndrome. Neuroimage 2018. [PMID: 29524626 DOI: 10.1016/j.neuroimage.2018.02.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A fundamental scheme in the organization of the early visual cortex is the retinotopic representation of the contralateral visual hemifield on each hemisphere. We determined the cortical organization in a novel congenital visual pathway disorder, FHONDA-syndrome, where the axons from the temporal retina abnormally cross to the contralateral hemisphere. Using ultra-high field fMRI at 7 T, the population receptive field (pRF) properties of the primary visual cortex were modeled for two affected individuals and two controls. The cortical activation in FHONDA was confined to the hemisphere contralateral to the stimulated eye. Each cortical location was found to contain a pRF in each visual hemifeld and opposing hemifields were represented as retinotopic cortical overlays of mirror-symmetrical locations across the vertical meridian. Since, the enhanced crossing of the retinal fibers at the optic chiasm observed in FHONDA has been previously assumed to be exclusive to the pigment-deficiency in albinism, our direct evidence of abnormal mapping in FHONDA highlights the independence of pigmentation and development of the visual cortex. These findings thus provide fundamental insights into the developmental mechanisms of the human visual system and underline the general relevance of the interplay of subcortical stability and cortical plasticity.
Collapse
Affiliation(s)
- Khazar Ahmadi
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany
| | - Alessio Fracasso
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands; Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands; Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands; Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QB, UK
| | - Jelle A van Dijk
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands; Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
| | - Charlotte Kruijt
- Bartiméus Diagnostic Center for Rare Visual Disorders, Zeist, The Netherlands; Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria van Genderen
- Bartiméus Diagnostic Center for Rare Visual Disorders, Zeist, The Netherlands; Department of Ophthalmology University Medical Center Utrecht, Utrecht, The Netherlands
| | - Serge O Dumoulin
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands; Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands; Department of Experimental and Applied Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Michael B Hoffmann
- Department of Ophthalmology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
39
|
Ultra-high field MRI: Advancing systems neuroscience towards mesoscopic human brain function. Neuroimage 2018; 168:345-357. [DOI: 10.1016/j.neuroimage.2017.01.028] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/06/2016] [Accepted: 01/12/2017] [Indexed: 01/26/2023] Open
|
40
|
Brown HDH, Woodall RL, Kitching RE, Baseler HA, Morland AB. Using magnetic resonance imaging to assess visual deficits: a review. Ophthalmic Physiol Opt 2017; 36:240-65. [PMID: 27112223 PMCID: PMC4855621 DOI: 10.1111/opo.12293] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/15/2016] [Indexed: 01/25/2023]
Abstract
Purpose Over the last two decades, magnetic resonance imaging (MRI) has been widely used in neuroscience research to assess both structure and function in the brain in health and disease. With regard to vision research, prior to the advent of MRI, researchers relied on animal physiology and human post‐mortem work to assess the impact of eye disease on visual cortex and connecting structures. Using MRI, researchers can non‐invasively examine the effects of eye disease on the whole visual pathway, including the lateral geniculate nucleus, striate and extrastriate cortex. This review aims to summarise research using MRI to investigate structural, chemical and functional effects of eye diseases, including: macular degeneration, retinitis pigmentosa, glaucoma, albinism, and amblyopia. Recent Findings Structural MRI has demonstrated significant abnormalities within both grey and white matter densities across both visual and non‐visual areas. Functional MRI studies have also provided extensive evidence of functional changes throughout the whole of the visual pathway following visual loss, particularly in amblyopia. MR spectroscopy techniques have also revealed several abnormalities in metabolite concentrations in both glaucoma and age‐related macular degeneration. GABA‐edited MR spectroscopy on the other hand has identified possible evidence of plasticity within visual cortex. Summary Collectively, using MRI to investigate the effects on the visual pathway following disease and dysfunction has revealed a rich pattern of results allowing for better characterisation of disease. In the future MRI will likely play an important role in assessing the impact of eye disease on the visual pathway and how it progresses over time.
Collapse
Affiliation(s)
| | | | | | - Heidi A Baseler
- Department of Psychology, University of York, York, UK.,Hull York Medical School, University of York, York, UK
| | - Antony B Morland
- Department of Psychology, University of York, York, UK.,Hull York Medical School, University of York, York, UK
| |
Collapse
|
41
|
Riquier AJ, Sollars SI. Microglia density decreases in the rat rostral nucleus of the solitary tract across development and increases in an age-dependent manner following denervation. Neuroscience 2017; 355:36-48. [PMID: 28478126 DOI: 10.1016/j.neuroscience.2017.04.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 04/17/2017] [Accepted: 04/24/2017] [Indexed: 01/04/2023]
Abstract
Microglia are critical for developmental pruning and immune response to injury, and are implicated in facilitating neural plasticity. The rodent gustatory system is highly plastic, particularly during development, and outcomes following nerve injury are more severe in developing animals. The mechanisms underlying developmental plasticity in the taste system are largely unknown, making microglia an attractive candidate. To better elucidate microglia's role in the taste system, we examined these cells in the rostral nucleus of the solitary tract (rNTS) during normal development and following transection of the chorda tympani taste nerve (CTX). Rats aged 5, 10, 25, or 50days received unilateral CTX or no surgery and were sacrificed four days later. Brain tissue was stained for Iba1 or CD68, and both the density and morphology of microglia were assessed on the intact and transected sides of the rNTS. We found that the intact rNTS of neonatal rats (9-14days) shows a high density of microglia, most of which appear reactive. By 29days of age, microglia density significantly decreased to levels not significantly different from adults and microglia morphology had matured, with most cells appearing ramified. CD68-negative microglia density increased following CTX and was most pronounced for juvenile and adult rats. Our results show that microglia density is highest during times of normal gustatory afferent pruning. Furthermore, the quantity of the microglia response is higher in the mature system than in neonates. These findings link increased microglia presence with instances of normal developmental and injury induced alterations in the rNTS.
Collapse
Affiliation(s)
- Andrew J Riquier
- Department of Psychology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Suzanne I Sollars
- Department of Psychology, University of Nebraska at Omaha, Omaha, NE 68182, USA.
| |
Collapse
|
42
|
Prieur DS, Rebsam A. Retinal axon guidance at the midline: Chiasmatic misrouting and consequences. Dev Neurobiol 2017; 77:844-860. [PMID: 27907266 DOI: 10.1002/dneu.22473] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/18/2016] [Accepted: 11/09/2016] [Indexed: 12/17/2022]
Abstract
The visual representation of the outside world relies on the appropriate connectivity between the eyes and the brain. Retinal ganglion cells are the sole neurons that send an axon from the retina to the brain, and thus the guidance decisions of retinal axons en route to their targets in the brain shape the neural circuitry that forms the basis of vision. Here, we focus on the choice made by retinal axons to cross or avoid the midline at the optic chiasm. This decision allows each brain hemisphere to receive inputs from both eyes corresponding to the same visual hemifield, and is thus crucial for binocular vision. In achiasmatic conditions, all retinal axons from one eye project to the ipsilateral brain hemisphere. In albinism, abnormal guidance of retinal axons at the optic chiasm leads to a change in the ratio of contralateral and ipsilateral projections with the consequence that each brain hemisphere receives inputs primarily from the contralateral eye instead of an almost equal distribution from both eyes in humans. In both cases, this misrouting of retinal axons leads to reduced visual acuity and poor depth perception. While this defect has been known for decades, mouse genetics have led to a better understanding of the molecular mechanisms at play in retinal axon guidance and at the origin of the guidance defect in albinism. In addition, fMRI studies on humans have now confirmed the anatomical and functional consequences of axonal misrouting at the chiasm that were previously only assumed from animal models. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 844-860, 2017.
Collapse
Affiliation(s)
- Delphine S Prieur
- Institut National de la Santé et de la Recherche Médicale, UMR-S 839, Paris, 75005, France.,Université Pierre et Marie Curie, Paris, 75005, France.,Institut du Fer à Moulin, Paris, 75005, France
| | - Alexandra Rebsam
- Institut National de la Santé et de la Recherche Médicale, UMR-S 839, Paris, 75005, France.,Université Pierre et Marie Curie, Paris, 75005, France.,Institut du Fer à Moulin, Paris, 75005, France
| |
Collapse
|
43
|
Hemifield columns co-opt ocular dominance column structure in human achiasma. Neuroimage 2016; 164:59-66. [PMID: 28017921 DOI: 10.1016/j.neuroimage.2016.12.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/06/2016] [Accepted: 12/21/2016] [Indexed: 02/01/2023] Open
Abstract
In the absence of an optic chiasm, visual input to the right eye is represented in primary visual cortex (V1) in the right hemisphere, while visual input to the left eye activates V1 in the left hemisphere. Retinotopic mapping In V1 reveals that in each hemisphere left and right visual hemifield representations are overlaid (Hoffmann et al., 2012). To explain how overlapping hemifield representations in V1 do not impair vision, we tested the hypothesis that visual projections from nasal and temporal retina create interdigitated left and right visual hemifield representations in V1, similar to the ocular dominance columns observed in neurotypical subjects (Victor et al., 2000). We used high-resolution fMRI at 7T to measure the spatial distribution of responses to left- and right-hemifield stimulation in one achiasmic subject. T2-weighted 2D Spin Echo images were acquired at 0.8mm isotropic resolution. The left eye was occluded. To the right eye, a presentation of flickering checkerboards alternated between the left and right visual fields in a blocked stimulus design. The participant performed a demanding orientation-discrimination task at fixation. A general linear model was used to estimate the preference of voxels in V1 to left- and right-hemifield stimulation. The spatial distribution of voxels with significant preference for each hemifield showed interdigitated clusters which densely packed V1 in the right hemisphere. The spatial distribution of hemifield-preference voxels in the achiasmic subject was stable between two days of testing and comparable in scale to that of human ocular dominance columns. These results are the first in vivo evidence showing that visual hemifield representations interdigitate in achiasmic V1 following a similar developmental course to that of ocular dominance columns in V1 with intact optic chiasm.
Collapse
|
44
|
Welton T, Ather S, Proudlock FA, Gottlob I, Dineen RA. Altered whole-brain connectivity in albinism. Hum Brain Mapp 2016; 38:740-752. [PMID: 27684406 DOI: 10.1002/hbm.23414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 12/15/2022] Open
Abstract
Albinism is a group of congenital disorders of the melanin synthesis pathway. Multiple ocular, white matter and cortical abnormalities occur in albinism, including a greater decussation of nerve fibres at the optic chiasm, foveal hypoplasia and nystagmus. Despite this, visual perception is largely preserved. It was proposed that this may be attributable to reorganisation among cerebral networks, including an increased interhemispheric connectivity of the primary visual areas. A graph-theoretic model was applied to explore brain connectivity networks derived from resting-state functional and diffusion-tensor magnetic resonance imaging data in 23 people with albinism and 20 controls. They tested for group differences in connectivity between primary visual areas and in summary network organisation descriptors. Main findings were supplemented with analyses of control regions, brain volumes and white matter microstructure. Significant functional interhemispheric hyperconnectivity of the primary visual areas in the albinism group were found (P = 0.012). Tests of interhemispheric connectivity based on the diffusion-tensor data showed no significant group difference (P = 0.713). Second, it was found that a range of functional whole-brain network metrics were abnormal in people with albinism, including the clustering coefficient (P = 0.005), although this may have been driven partly by overall differences in connectivity, rather than reorganisation. Based on the results, it was suggested that changes occur in albinism at the whole-brain level, and not just within the visual processing pathways. It was proposed that their findings may reflect compensatory adaptations to increased chiasmic decussation, foveal hypoplasia and nystagmus. Hum Brain Mapp 38:740-752, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thomas Welton
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Room W/B 1441, Queen's Medical Centre, Derby Road, Nottingham, NG7 2UH, United Kingdom
| | - Sarim Ather
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Room W/B 1441, Queen's Medical Centre, Derby Road, Nottingham, NG7 2UH, United Kingdom.,Leicester Royal Infirmary, Ulverscroft Eye Unit, Ophthalmology, University of Leicester, Knighton Street Offices, Leicester, LE2 7LX, United Kingdom
| | - Frank A Proudlock
- Leicester Royal Infirmary, Ulverscroft Eye Unit, Ophthalmology, University of Leicester, Knighton Street Offices, Leicester, LE2 7LX, United Kingdom
| | - Irene Gottlob
- Leicester Royal Infirmary, Ulverscroft Eye Unit, Ophthalmology, University of Leicester, Knighton Street Offices, Leicester, LE2 7LX, United Kingdom
| | - Robert A Dineen
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Room W/B 1441, Queen's Medical Centre, Derby Road, Nottingham, NG7 2UH, United Kingdom
| |
Collapse
|
45
|
Fracasso A, Koenraads Y, Porro GL, Dumoulin SO. Bilateral population receptive fields in congenital hemihydranencephaly. Ophthalmic Physiol Opt 2016; 36:324-334. [PMID: 27112226 DOI: 10.1111/opo.12294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/22/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE Congenital hemihydranencephaly (HH) is a very rare disorder characterised by prenatal near-complete unilateral loss of the cerebral cortex. We investigated a patient affected by congenital right HH whose visual field extended significantly into the both visual hemifields, suggesting a reorganisation of the remaining left visual hemisphere. We examined the early visual cortex reorganisation using functional MRI (7T) and population receptive field (pRF) modelling. METHODS Data were acquired by means of a 7T MRI while the patient affected by HH viewed conventional population receptive field mapping stimuli. Two possible pRF reorganisation schemes were evaluated: where every cortical location processed information from either (i) a single region of the visual field or (ii) from two bilateral regions of the visual field. RESULTS In the patient affected by HH, bilateral pRFs in single cortical locations of the remaining hemisphere were found. In addition, using this specific pRF reorganisation scheme, the biologically known relationship between pRF size and eccentricity was found. CONCLUSIONS Bilateral pRFs were found in the remaining left hemisphere of the patient affected by HH, indicating reorganisation of intra-cortical wiring of the early visual cortex and confirming brain plasticity and reorganisation after an early cerebral damage in humans.
Collapse
Affiliation(s)
- Alessio Fracasso
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
- Department of Radiology, Imaging Division, University Medical Centre, Utrecht, The Netherlands
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
| | - Yvonne Koenraads
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Giorgio L Porro
- Department of Ophthalmology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Serge O Dumoulin
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Bao P, Purington CJ, Tjan BS. Using an achiasmic human visual system to quantify the relationship between the fMRI BOLD signal and neural response. eLife 2015; 4. [PMID: 26613411 PMCID: PMC4764551 DOI: 10.7554/elife.09600] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/26/2015] [Indexed: 12/15/2022] Open
Abstract
Achiasma in humans causes gross mis-wiring of the retinal-fugal projection, resulting in overlapped cortical representations of left and right visual hemifields. We show that in areas V1-V3 this overlap is due to two co-located but non-interacting populations of neurons, each with a receptive field serving only one hemifield. Importantly, the two populations share the same local vascular control, resulting in a unique organization useful for quantifying the relationship between neural and fMRI BOLD responses without direct measurement of neural activity. Specifically, we can non-invasively double local neural responses by stimulating both neuronal populations with identical stimuli presented symmetrically across the vertical meridian to both visual hemifields, versus one population by stimulating in one hemifield. Measurements from a series of such doubling experiments show that the amplitude of BOLD response is proportional to approximately 0.5 power of the underlying neural response. Reanalyzing published data shows that this inferred relationship is general.
Collapse
Affiliation(s)
- Pinglei Bao
- Neuroscience Graduate Program, University of Southern California, Los Angeles, United States
| | - Christopher J Purington
- School of Optometry, University of California, Berkeley, Berkeley, CA, United States.,Vision Science Graduate Program, University of California, Berkeley, Berkeley, United States.,Department of Psychology, University of Southern California, Los Angeles, CA, United States
| | - Bosco S Tjan
- Neuroscience Graduate Program, University of Southern California, Los Angeles, United States.,Department of Psychology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
47
|
Morland AB. Organization of the Central Visual Pathways Following Field Defects Arising from Congenital, Inherited, and Acquired Eye Disease. Annu Rev Vis Sci 2015; 1:329-350. [PMID: 28532373 DOI: 10.1146/annurev-vision-082114-035600] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visual field defects that arise from eye disease are increasing as human life spans lengthen. The consequences of visual field defects on the central visual pathways are important to assess, particularly in light of potential treatments of eye disease that restore function to the retina. For individuals with field defects arising from congenital eye disease, primary visual cortex (V1) appears to remap, whereas this form of reorganization is not present in individuals with field defects that arise later in life as a result of inherited or acquired eye disease. However, research has revealed that the areas of V1 that normally map the visual field defect are active under specific circumstances. This review attempts to resolve whether or not this activity reflects reorganization of the central visual pathways. Alongside the measures of function are measures of anatomical properties of the human visual pathway, which demonstrate transneuronal degeneration in individuals with eye disease. These results are concerning because degeneration of the central visual pathways may ultimately limit the success of sight-restoring treatments of eye disease.
Collapse
Affiliation(s)
- Antony B Morland
- Department of Psychology, University of York, York YO10 5DD, United Kingdom;
| |
Collapse
|