1
|
Rodríguez-García ME, Carino-Escobar RI, Carrillo-Mora P, Hernandez-Arenas C, Ramirez-Nava AG, Pacheco-Gallegos MDR, Valdés-Cristerna R, Cantillo-Negrete J. Neuroplasticity changes in cortical activity, grey matter, and white matter of stroke patients after upper extremity motor rehabilitation via a brain-computer interface therapy program. J Neural Eng 2025; 22:026025. [PMID: 40064104 DOI: 10.1088/1741-2552/adbebf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 03/10/2025] [Indexed: 03/21/2025]
Abstract
Objective. Upper extremity (UE) motor function loss is one of the most impactful consequences of stroke. Recently, brain-computer interface (BCI) systems have been utilized in therapy programs to enhance UE motor recovery after stroke, widely attributed to neuroplasticity mechanisms. However, the effect that the BCI's closed-loop feedback can have in these programs is unclear. The aim of this study was to quantitatively assess and compare the neuroplasticity effects elicited in stroke patients by a UE motor rehabilitation BCI therapy and by its sham-BCI counterpart.Approach. Twenty patients were randomly assigned to either the experimental group (EG), who controlled the BCI system via UE motor intention, or the control group (CG), who received random feedback. The elicited neuroplasticity effects were quantified using asymmetry metrics derived from electroencephalography (EEG), functional magnetic resonance imaging (fMRI), and diffusion tensor imaging (DTI) data acquired before, at the middle, and at the end of the intervention, alongside UE sensorimotor function evaluations. These asymmetry indexes compare the affected and unaffected hemispheres and are robust to lesion location variability.Main results. Most patients from the EG presented brain activity lateralisation to one brain hemisphere, as described by EEG (8 patients) and fMRI (6 patients) metrics. Conversely, the CG showed less pronounced lateralisations, presenting primarily bilateral activity patterns. DTI metrics showed increased white matter integrity in half of the EG patients' unaffected hemisphere, and in all but 2 CG patients' affected hemisphere. Individual patient analysis suggested that lesion location was relevant since functional and structural lateralisations occurred towards different hemispheres depending on stroke site.Significance. This study shows that a BCI intervention can elicit more pronounced neuroplasticity-related lateralisations than a sham-BCI therapy. These findings could serve as future biomarkers, helping to better select patients and increasing the impact that a BCI intervention can achieve. Clinical trial: NCT04724824.
Collapse
Affiliation(s)
| | - Ruben I Carino-Escobar
- Division of Research in Clinical Neuroscience, Instituto Nacional de Rehabilitación 'Luis Guillermo Ibarra Ibarra', Mexico City 14389, Mexico
| | - Paul Carrillo-Mora
- Division of Research in Clinical Neuroscience, Instituto Nacional de Rehabilitación 'Luis Guillermo Ibarra Ibarra', Mexico City 14389, Mexico
| | - Claudia Hernandez-Arenas
- Division of Neurological Rehabilitation, Instituto Nacional de Rehabilitación 'Luis Guillermo Ibarra Ibarra', Mexico City 14389, Mexico
| | - Ana G Ramirez-Nava
- Division of Neurological Rehabilitation, Instituto Nacional de Rehabilitación 'Luis Guillermo Ibarra Ibarra', Mexico City 14389, Mexico
| | | | - Raquel Valdés-Cristerna
- Electrical Engineering Department, Universidad Autónoma Metropolitana Unidad Iztapalapa, Mexico City 09340, Mexico
| | - Jessica Cantillo-Negrete
- Technological Research Subdirection, Instituto Nacional de Rehabilitación 'Luis Guillermo Ibarra Ibarra', Mexico City 14389, Mexico
| |
Collapse
|
2
|
Omejc N, Stankovski T, Peskar M, Kalc M, Manganotti P, Gramann K, Dzeroski S, Marusic U. Cortico-Muscular Phase Connectivity During an Isometric Knee Extension Task in People with Early Parkinson's Disease. IEEE Trans Neural Syst Rehabil Eng 2025; PP:488-501. [PMID: 40030955 DOI: 10.1109/tnsre.2025.3527578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
INTRODUCTION Parkinson's disease (PD) is characterized by enhanced beta-band activity (13-30 Hz) in the motor control regions. Simultaneously, cortico-muscular (CM) connectivity in the beta-band during iso-metric contractions tends to decline with age, in various diseases, and under dual-task conditions. OBJECTIVE This study aimed to characterize electroencephalograph (EEG) and electromyograph (EMG) power spectra during a motor task, assess CM phase connectivity, and explore how these measures are modulated by an additional cognitive task. Specifically, we focused on the beta-band to explore the relationship between heightened beta amplitude and reduced beta CM connectivity. METHODOLOGY Early-stage people with PD and age-matched controls performed an isometric knee extension task, a cognitive task, and a combined dual task, while EEG (128ch) and EMG (2x32ch) were recorded. CM phase connectivity was assessed through phase coherence and a phase dynamics model. RESULTS The EEG power spectrum revealed no cohort differences in the beta-band. EMG also showed no differences up to 80 Hz. However, the combined EEG-EMG analysis uncovered reduced beta phase coherence in people with early PD during the motor task. CM phase coherence exhibited distinct scalp topography and frequency ranges compared to the EEG power spectrum, suggesting different mechanisms for pathological beta increase and CM connectivity. Additionally, phase dynamics modelling indicated stronger directional coupling from the cortex to the active muscle and less prominent phase coupling across people with PD. Despite high inter-individual variability, these metrics may prove useful for personalized assessments, particularly in people with heightened CM connectivity.
Collapse
|
3
|
Wang S, Purohit R, Van Criekinge T, Bhatt T. Neuromuscular Mechanisms of Motor Adaptation to Repeated Treadmill-Slip Perturbations During Stance in Healthy Young Adults. IEEE Trans Neural Syst Rehabil Eng 2024; 32:4207-4218. [PMID: 39441684 DOI: 10.1109/tnsre.2024.3485580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Treadmill-based repeated perturbation training (PBT) induces motor adaptation in reactive balance responses, thus lowering the risk of slip-induced falls. However, little evidence exists regarding intervention-induced changes in neuromuscular control underlying motor adaptation. Examining neuromuscular changes could be an important step in identifying key elements of adaptation and evaluating treadmill training protocols for fall prevention. Moreover, identifying the muscle synergies contributing to motor adaptation in young adults could lay the groundwork for comparison with high fall-risk populations. Thus, we aimed to investigate neuromuscular changes in reactive balance responses during stance slip-PBT. Lower limb electromyography (EMG) signals (4/leg) were recorded during ten repeated forward stance (slip-like) perturbations in twenty-six young adults. Muscle synergies were compared between early-training (slips 1-2) and late-training (slips 9-10) stages. Results showed that 5 different modes of synergies (named on dominant muscles: WTA, W , W , W , and W were recruited in both stages. 3 out of 5 synergies (WTA, W , and W showed a high similarity (r >0.97) in structure and activation between stages, whereas W and W showed a lower similarity (r <0.83) between the two stages, and the area of activation in WTA, the peak value of activation in W and the activation onset in W showed a reduction from early- to late-training stage (p <0.05). These results suggest that a block of stance slip-PBT resulted in modest changes in muscle synergies in young adults, which might explain the smaller changes seen in biomechanical variables. Future studies should examine neuromuscular changes in people at high risk of falls.
Collapse
|
4
|
Charalambous CC, Bowden MG, Liang JN, Kautz SA, Hadjipapas A. Alpha and beta/low-gamma frequency bands may have distinct neural origin and function during post-stroke walking. Exp Brain Res 2024; 242:2309-2327. [PMID: 39107522 DOI: 10.1007/s00221-024-06906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/31/2024] [Indexed: 08/11/2024]
Abstract
Plantarflexors provide propulsion during walking and receive input from both corticospinal and corticoreticulospinal tracts, which exhibit some frequency-specificity that allows potential differentiation of each tract's descending drive. Given that stroke may differentially affect each tract and impair the function of plantarflexors during walking; here, we examined this frequency-specificity and its relation to walking-specific measures during post-stroke walking. Fourteen individuals with chronic stroke walked on an instrumented treadmill at self-selected and fast walking speed (SSWS and FWS, respectively) while surface electromyography (sEMG) from soleus (SOL), lateral gastrocnemius (LG), and medial gastrocnemius (MG) and ground reaction forces (GRF) were collected. We calculated the intermuscular coherences (IMC; alpha, beta, and low-gamma bands between SOL-LG, SOL-MG, LG-MG) and propulsive impulse using sEMG and GRF, respectively. We examined the interlimb and intralimb IMC comparisons and their relationships with propulsive impulse and walking speed. Interlimb IMC comparisons revealed that beta LG-MG (SSWS) and low-gamma SOL-LG (FWS) IMCs were degraded on the paretic side. Intralimb IMC comparisons revealed that only alpha IMCs (both speeds) exhibited a statistically significant difference to random coherence. Further, alpha LG-MG IMC was positively correlated with propulsive impulse in the paretic limb (SSWS). Alpha and beta/low-gamma bands may have a differential functional role, which may be related to the frequency-specificity of the underlying descending drives. The persistence of alpha band in plantarflexors and its strong positive relationship with propulsive impulse suggests relative alteration of corticoreticulospinal tract after stroke. These findings imply the presence of frequency-specific descending drives to walking-specific muscles in chronic stroke.
Collapse
Affiliation(s)
- Charalambos C Charalambous
- Department of Neurology, Duke University School of Medicine, 40 Medicine Circle Box 3824, Durham, NC, 27710, USA.
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus.
- Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus.
- Department of Health Sciences and Research, Medical University of South Carolina, 77 President Street MSC 700, Charleston, SC, 29425, USA.
| | - Mark G Bowden
- Brooks Rehabilitation Clinical Research Center, 3901 S. University Blvd, Suite 101, Jacksonville, FL, 32216, USA
| | - Jing Nong Liang
- Department of Physical Therapy, University of Nevada, 4505 S Maryland Pkwy, Box 453029, Las Vegas, NV, 89154-3029, USA
| | - Steven A Kautz
- Department of Health Sciences and Research, Medical University of South Carolina, 77 President Street MSC 700, Charleston, SC, 29425, USA
- Department of Rehabilitation Sciences, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, 109 Bee St, Charleston, SC, 29401, USA
| | - Avgis Hadjipapas
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus
- Center for Neuroscience and Integrative Brain Research (CENIBRE), University of Nicosia Medical School, 21 Ilia Papakyriakou, Block C, Rm 202, 1700, Nicosia, Cyprus
| |
Collapse
|
5
|
Mottaz A, Savic B, Allaman L, Guggisberg AG. Neural correlates of motor learning: Network communication versus local oscillations. Netw Neurosci 2024; 8:714-733. [PMID: 39355447 PMCID: PMC11340994 DOI: 10.1162/netn_a_00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/18/2024] [Indexed: 10/03/2024] Open
Abstract
Learning new motor skills through training, also termed motor learning, is central for everyday life. Current training strategies recommend intensive task-repetitions aimed at inducing local activation of motor areas, associated with changes in oscillation amplitudes ("event-related power") during training. More recently, another neural mechanism was suggested to influence motor learning: modulation of functional connectivity (FC), that is, how much spatially separated brain regions communicate with each other before and during training. The goal of the present study was to compare the impact of these two neural processing types on motor learning. We measured EEG before, during, and after a finger-tapping task (FTT) in 20 healthy subjects. The results showed that training gain, long-term expertise (i.e., average motor performance), and consolidation were all predicted by whole-brain alpha- and beta-band FC at motor areas, striatum, and mediotemporal lobe (MTL). Local power changes during training did not predict any dependent variable. Thus, network dynamics seem more crucial than local activity for motor sequence learning, and training techniques should attempt to facilitate network interactions rather than local cortical activation.
Collapse
Affiliation(s)
- Anaïs Mottaz
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, University of Geneva, Switzerland
- SIB Text Mining Group, Swiss Institute of Bioinformatics, Carouge, Switzerland
- BiTeM Group, Information Sciences, HES-SO/HEG, Carouge, Switzerland
| | - Branislav Savic
- Division of Neurorehabilitation, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Leslie Allaman
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, University of Geneva, Switzerland
| | - Adrian G. Guggisberg
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, University of Geneva, Switzerland
- Division of Neurorehabilitation, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| |
Collapse
|
6
|
Ni X, Ieong L, Xiang M, Liu Y. Analysis of Wavelet Coherence in Calf Agonist-Antagonist Muscles during Dynamic Fatigue. Life (Basel) 2024; 14:1137. [PMID: 39337920 PMCID: PMC11433323 DOI: 10.3390/life14091137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Dynamic muscle fatigue during repetitive movements can lead to changes in communication between the central nervous system and peripheral muscles. This study investigated these changes by examining electromyogram (EMG) characteristics from agonist and antagonist muscles during a fatiguing task. Twenty-two healthy male university students (age: 22.92 ± 2.19 years) performed heel raises until fatigue. EMG signals from lateral gastrocnemius (GL) and tibialis anterior (TA) muscles were processed using synchrosqueezed wavelet transform (SST). Root mean square (RMS), mean frequency (MF), power across frequency ranges, wavelet coherence, and co-activation ratio were computed. During the initial 80% of the task, RMS and EMG power increased for both muscles, while MF declined. In the final 20%, GL parameters stabilized, but TA showed significant decreases. Beta and gamma intermuscular coherence increased upon reaching 60% of the task. Alpha coherence and co-activation ratio remained constant. Results suggest that the central nervous system adopts a differentiated control strategy for agonist and antagonist muscles during fatigue progression. Initially, a coordinated "common drive" mechanism enhances both muscle groups' activity. Later, despite continued increases in muscle activity, neural-muscular coupling remains stable. This asynchronous, differentiated control mechanism enhances our understanding of neuromuscular adaptations during fatigue, potentially contributing to the development of more targeted fatigue assessment and management strategies.
Collapse
Affiliation(s)
- Xindi Ni
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Loi Ieong
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Mai Xiang
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Ye Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
7
|
Balasubramanian P, De Leon RP, Snyder DB, Beardsley SA, Hyngstrom AS, Schmit BD. Altered Cortical Activity during a Finger Tap in People with Stroke. Brain Topogr 2024; 37:907-920. [PMID: 38722465 DOI: 10.1007/s10548-024-01049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/28/2024] [Indexed: 09/14/2024]
Abstract
This study describes electroencephalography (EEG) measurements during a simple finger movement in people with stroke to understand how temporal patterns of cortical activation and network connectivity align with prolonged muscle contraction at the end of a task. We investigated changes in the EEG temporal patterns in the beta band (13-26 Hz) of people with chronic stroke (N = 10, 7 F/3 M) and controls (N = 10, 7 F/3 M), during and after a cued movement of the index finger. We quantified the change in beta band EEG power relative to baseline as activation at each electrode and the change in task-based phase-locking value (tbPLV) and beta band task-based coherence (tbCoh) relative to baseline coherence as connectivity between EEG electrodes. Finger movements were associated with a decrease in beta power (event related desynchronization (ERD)) followed by an increase in beta power (event related resynchronization (ERS)). The ERS in the post task period was lower in the stroke group (7%), compared to controls (44%) (p < 0.001) and the transition from ERD to ERS was delayed in the stroke group (1.43 s) compared to controls (0.90 s) in the C3 electrode (p = 0.007). In the same post movement period, the stroke group maintained a heightened tbPLV (p = 0.030 for time to baseline of the C3:Fz electrode pair) and did not show the decrease in connectivity in electrode pair C3:Fz that was observed in controls (tbPLV: p = 0.006; tbCoh: p = 0.023). Our results suggest that delays in cortical deactivation patterns following movement coupled with changes in the time course of connectivity between the sensorimotor and frontal cortices in the stroke group might explain clinical observations of prolonged muscle activation in people with stroke. This prolonged activation might be attributed to the combination of cortical reorganization and changes to sensory feedback post-stroke.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Department of Biomedical Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA
| | - Roxanne P De Leon
- Department of Biomedical Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA
| | - Dylan B Snyder
- Department of Biomedical Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA
| | - Scott A Beardsley
- Department of Biomedical Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA
| | - Allison S Hyngstrom
- Department of Physical Therapy, Marquette University, Milwaukee, WI, 53201, USA
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA.
| |
Collapse
|
8
|
Vissani M, Bush A, Lipski WJ, Bullock L, Fischer P, Neudorfer C, Holt LL, Fiez JA, Turner RS, Richardson RM. Spike-phase coupling of subthalamic neurons to posterior opercular cortex predicts speech sound accuracy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.18.562969. [PMID: 37905141 PMCID: PMC10614892 DOI: 10.1101/2023.10.18.562969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Speech provides a rich context for understanding how cortical interactions with the basal ganglia contribute to unique human behaviors, but opportunities for direct intracranial recordings across cortical-basal ganglia networks are rare. We recorded electrocorticographic signals in the cortex synchronously with single units in the basal ganglia during awake neurosurgeries where subjects spoke syllable repetitions. We discovered that individual STN neurons have transient (200ms) spike-phase coupling (SPC) events with multiple cortical regions. The spike timing of STN neurons was coordinated with the phase of theta-alpha oscillations in the posterior supramarginal and superior temporal gyrus during speech planning and production. Speech sound errors occurred when this STN-cortical interaction was delayed. Our results suggest that the STN supports mechanisms of speech planning and auditory-sensorimotor integration during speech production that are required to achieve high fidelity of the phonological and articulatory representation of the target phoneme. These findings establish a framework for understanding cortical-basal ganglia interaction in other human behaviors, and additionally indicate that firing-rate based models are insufficient for explaining basal ganglia circuit behavior.
Collapse
|
9
|
Tamburro G, Bruña R, Fiedler P, De Fano A, Raeisi K, Khazaei M, Zappasodi F, Comani S. An Analytical Approach for Naturalistic Cooperative and Competitive EEG-Hyperscanning Data: A Proof-of-Concept Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:2995. [PMID: 38793851 PMCID: PMC11125252 DOI: 10.3390/s24102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
Investigating the neural mechanisms underlying both cooperative and competitive joint actions may have a wide impact in many social contexts of human daily life. An effective pipeline of analysis for hyperscanning data recorded in a naturalistic context with a cooperative and competitive motor task has been missing. We propose an analytical pipeline for this type of joint action data, which was validated on electroencephalographic (EEG) signals recorded in a proof-of-concept study on two dyads playing cooperative and competitive table tennis. Functional connectivity maps were reconstructed using the corrected imaginary part of the phase locking value (ciPLV), an algorithm suitable in case of EEG signals recorded during turn-based competitive joint actions. Hyperbrain, within-, and between-brain functional connectivity maps were calculated in three frequency bands (i.e., theta, alpha, and beta) relevant during complex motor task execution and were characterized with graph theoretical measures and a clustering approach. The results of the proof-of-concept study are in line with recent findings on the main features of the functional networks sustaining cooperation and competition, hence demonstrating that the proposed pipeline is promising tool for the analysis of joint action EEG data recorded during cooperation and competition using a turn-based motor task.
Collapse
Affiliation(s)
- Gabriella Tamburro
- Behavioral Imaging and Neural Dynamics Center, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.D.F.); (F.Z.); (S.C.)
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti–Pescara, 66100 Chieti, Italy; (K.R.); (M.K.)
| | - Ricardo Bruña
- Center for Cognitive and Computational Neuroscience (C3N), Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Department of Radiology, Rehabilitation and Physiotherapy, School of Medicine, Universidad Complutense de Madrid, IdISSC, 28040 Madrid, Spain
| | - Patrique Fiedler
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, 98693 Ilmenau, Germany
| | - Antonio De Fano
- Behavioral Imaging and Neural Dynamics Center, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.D.F.); (F.Z.); (S.C.)
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti–Pescara, 66100 Chieti, Italy; (K.R.); (M.K.)
| | - Khadijeh Raeisi
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti–Pescara, 66100 Chieti, Italy; (K.R.); (M.K.)
| | - Mohammad Khazaei
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti–Pescara, 66100 Chieti, Italy; (K.R.); (M.K.)
| | - Filippo Zappasodi
- Behavioral Imaging and Neural Dynamics Center, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.D.F.); (F.Z.); (S.C.)
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti–Pescara, 66100 Chieti, Italy; (K.R.); (M.K.)
- Institute for Advanced Biomedical Technologies, University “Gabriele d’Annunzio” of Chieti–Pescara, 66100 Chieti, Italy
| | - Silvia Comani
- Behavioral Imaging and Neural Dynamics Center, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.D.F.); (F.Z.); (S.C.)
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti–Pescara, 66100 Chieti, Italy; (K.R.); (M.K.)
| |
Collapse
|
10
|
Lin L, Qing W, Huang Y, Ye F, Rong W, Li W, Jiao J, Hu X. Comparison of Immediate Neuromodulatory Effects between Focal Vibratory and Electrical Sensory Stimulations after Stroke. Bioengineering (Basel) 2024; 11:286. [PMID: 38534560 DOI: 10.3390/bioengineering11030286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Focal vibratory stimulation (FVS) and neuromuscular electrical stimulation (NMES) are promising technologies for sensory rehabilitation after stroke. However, the differences between these techniques in immediate neuromodulatory effects on the poststroke cortex are not yet fully understood. In this research, cortical responses in persons with chronic stroke (n = 15) and unimpaired controls (n = 15) were measured by whole-brain electroencephalography (EEG) when FVS and NMES at different intensities were applied transcutaneously to the forearm muscles. Both FVS and sensory-level NMES induced alpha and beta oscillations in the sensorimotor cortex after stroke, significantly exceeding baseline levels (p < 0.05). These oscillations exhibited bilateral sensory deficiency, early adaptation, and contralesional compensation compared to the control group. FVS resulted in a significantly faster P300 response (p < 0.05) and higher theta oscillation (p < 0.05) compared to NMES. The beta desynchronization over the contralesional frontal-parietal area remained during NMES (p > 0.05), but it was significantly weakened during FVS (p < 0.05) after stroke. The results indicated that both FVS and NMES effectively activated the sensorimotor cortex after stroke. However, FVS was particularly effective in eliciting transient involuntary attention, while NMES primarily fostered the cortical responses of the targeted muscles in the contralesional motor cortex.
Collapse
Affiliation(s)
- Legeng Lin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Smart Ageing (RISA), The Hong Kong Polytechnic University, Hong Kong, China
| | - Wanyi Qing
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Smart Ageing (RISA), The Hong Kong Polytechnic University, Hong Kong, China
| | - Yanhuan Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Smart Ageing (RISA), The Hong Kong Polytechnic University, Hong Kong, China
| | - Fuqiang Ye
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Smart Ageing (RISA), The Hong Kong Polytechnic University, Hong Kong, China
| | - Wei Rong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Waiming Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jiao Jiao
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoling Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Smart Ageing (RISA), The Hong Kong Polytechnic University, Hong Kong, China
- University Research Facility in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong, China
- Joint Research Centre for Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Hong Kong, China
- Research Centre on Data Science and Artificial Intelligence, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
11
|
Sun J, Jia T, Lin PJ, Li Z, Ji L, Li C. Multiscale Canonical Coherence for Functional Corticomuscular Coupling Analysis. IEEE J Biomed Health Inform 2024; 28:812-822. [PMID: 37963005 DOI: 10.1109/jbhi.2023.3332657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Functional corticomuscular coupling (FCMC) probes multi-level information communication in the sensorimotor system. The canonical Coherence (caCOH) method has been leveraged to measure the FCMC between two multivariate signals within the single scale. In this paper, we propose the concept of multiscale canonical Coherence (MS-caCOH) to disentangle complex multi-layer information and extract coupling features in multivariate spaces from multiple scales. Then, we verified the reliability and effectiveness of MS-caCOH on two types of data sets, i.e., a synthetic multivariate data set and a real-world multivariate data set. Our simulation results showed that compared with caCOH, MS-caCOH enhanced coupling detection and achieved lower pattern recovery errors at multiple frequency scales. Further analysis on experimental data demonstrated that the proposed MS-caCOH method could also capture detailed multiscale spatial-frequency characteristics. This study leverages the multiscale analysis framework and multivariate method to give a new insight into corticomuscular coupling analysis.
Collapse
|
12
|
Ortega-Auriol P, Byblow WD, Besier T, McMorland AJC. Muscle synergies are associated with intermuscular coherence and cortico-synergy coherence in an isometric upper limb task. Exp Brain Res 2023; 241:2627-2643. [PMID: 37737925 PMCID: PMC10635925 DOI: 10.1007/s00221-023-06706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
To elucidate the underlying physiological mechanisms of muscle synergies, we investigated long-range functional connectivity by cortico-muscular (CMC), intermuscular (IMC) and cortico-synergy (CSC) coherence. Fourteen healthy participants executed an isometric upper limb task in synergy-tuned directions. Cortical activity was recorded using 32-channel electroencephalography (EEG) and muscle activity using 16-channel electromyography (EMG). Using non-negative matrix factorisation (NMF), we calculated muscle synergies from two different tasks. A preliminary multidirectional task was used to identify synergy-preferred directions (PDs). A subsequent coherence task, consisting of generating forces isometrically in the synergy PDs, was used to assess the functional connectivity properties of synergies. Overall, we were able to identify four different synergies from the multidirectional task. A significant alpha band IMC was consistently present in all extracted synergies. Moreover, IMC alpha band was higher between muscles with higher weights within a synergy. Interestingly, CSC alpha band was also significantly higher across muscles with higher weights within a synergy. In contrast, no significant CMC was found between the motor cortex area and synergy muscles. The presence of a shared input onto synergistic muscles within a synergy supports the idea of neurally derived muscle synergies that build human movement. Our findings suggest cortical modulation of some of the synergies and the consequential existence of shared input between muscles within cortically modulated synergies.
Collapse
Affiliation(s)
- Pablo Ortega-Auriol
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand.
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| | - Winston D Byblow
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Thor Besier
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Angus J C McMorland
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Rahman M, Karwowski W, Sapkota N, Ismail L, Alhujailli A, Sumano RF, Hancock PA. Isometric Arm Forces Exerted by Females at Different Levels of Physical Comfort and Their EEG Signatures. Brain Sci 2023; 13:1027. [PMID: 37508959 PMCID: PMC10377375 DOI: 10.3390/brainsci13071027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
A variety of subjective measures have traditionally been used to assess the perception of physical exertion at work and related body responses. However, the current understanding of physical comfort experienced at work is very limited. The main objective of this study was first to investigate the magnitude of isometric arm forces exerted by females at different levels of physical comfort measured on a new comfort scale and, second, to assess their corresponding neural signatures expressed in terms of power spectral density (PSD). The study assessed PSDs of four major electroencephalography (EEG) frequency bands, focusing on the brain regions controlling motor and perceptual processing. The results showed statistically significant differences in exerted arm forces and the rate of perceived exertion at the various levels of comfort. Significant differences in power spectrum density at different physical comfort levels were found for the beta EEG band. Such knowledge can be useful in incorporating female users' force requirements in the design of consumer products, including tablets, laptops, and other hand-held information technology devices, as well as various industrial processes and work systems.
Collapse
Affiliation(s)
- Mahjabeen Rahman
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA
| | - Nabin Sapkota
- Department of Engineering Technology, Northwestern State University of Louisiana, Natchitoches, LA 71497, USA
| | - Lina Ismail
- Department of Industrial and Management Engineering, Arab Academy for Science, Technology, and Maritime Transport, Alexandria 2913, Egypt
| | - Ashraf Alhujailli
- Department of Management Science, Yanbu Industrial College, Yanbu 46452, Saudi Arabia
| | - Raul Fernandez Sumano
- Industrial Engineering Technology, Dunwoody College of Technology, Minneapolis, MN 55403, USA
| | - P A Hancock
- Department of Psychology, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
14
|
Khanjari Y, Arabameri E, Shahbazi M, Tahmasebi S, Bahrami F, Mobaien A. The simultaneous changes in motor performance and EEG patterns in beta band during learning dart throwing skill in dominant and non-dominant hand. Comput Methods Biomech Biomed Engin 2023; 26:127-137. [PMID: 35262437 DOI: 10.1080/10255842.2022.2048375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Background: Although changes in performance during the learning of various sports skills have been studied, however, how these changes at the brain level is still unknown. The aim of this study was to investigate simultaneous changes in motor performance and EEG patterns in beta band during learning dart throwing skill in dominant and non-dominant hand. Methodology: The samples consisted of 14 non-athlete students with an average age of 23 ± 2.5, which were divided into two group dominant hand (7) and non-dominant hand (7). Repeated measures ANOVA were used to measure data at the execution level and changes in EEG activity. Results: The results of this study at the performance level showed a significant reduction in the absolute error of dart throwing and at the same time at the brain level increased EEG activity in frontal and parietal-posterior regions along with decreased central area activity in acquisition and retention stages in both groups (P<.05). Also, there was a significant difference between the activity of EEG pattern in the dominant and non-dominant hand groups except for two channels AF3 and PO4 (P<.05). Conclusion: In general, the results of this study showed that along with relatively constant changes in performance during dart skill learning, relatively constant changes in EEG activity pattern occur, so that the concept of motor learning is also visible at the brain level. Also, the results of this study supported the existence of the different motor program for dominant and non-dominant hand control in the conditions of bilateral transfer control.
Collapse
Affiliation(s)
- Yaser Khanjari
- Department of motor behavior and sport psychology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Elahe Arabameri
- Department of motor behavior and sport psychology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Mehdi Shahbazi
- Department of motor behavior and sport psychology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Shahzad Tahmasebi
- Department of motor behavior and sport psychology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Fariba Bahrami
- Human Motor Control and Computational Neuroscience Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Ali Mobaien
- Biomedical Engineering Group, Faculty of Electrical Computer Engineering, Shiraz University, Shiraz, Iran (the Islamic Republic of)
| |
Collapse
|
15
|
Wolpaw JR, Kamesar A. Heksor: the central nervous system substrate of an adaptive behaviour. J Physiol 2022; 600:3423-3452. [PMID: 35771667 PMCID: PMC9545119 DOI: 10.1113/jp283291] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Over the past half-century, the largely hardwired central nervous system (CNS) of 1970 has become the ubiquitously plastic CNS of today, in which change is the rule not the exception. This transformation complicates a central question in neuroscience: how are adaptive behaviours - behaviours that serve the needs of the individual - acquired and maintained through life? It poses a more basic question: how do many adaptive behaviours share the ubiquitously plastic CNS? This question compels neuroscience to adopt a new paradigm. The core of this paradigm is a CNS entity with unique properties, here given the name heksor from the Greek hexis. A heksor is a distributed network of neurons and synapses that changes itself as needed to maintain the key features of an adaptive behaviour, the features that make the behaviour satisfactory. Through their concurrent changes, the numerous heksors that share the CNS negotiate the properties of the neurons and synapses that they all use. Heksors keep the CNS in a state of negotiated equilibrium that enables each heksor to maintain the key features of its behaviour. The new paradigm based on heksors and the negotiated equilibrium they create is supported by animal and human studies of interactions among new and old adaptive behaviours, explains otherwise inexplicable results, and underlies promising new approaches to restoring behaviours impaired by injury or disease. Furthermore, the paradigm offers new and potentially important answers to extant questions, such as the generation and function of spontaneous neuronal activity, the aetiology of muscle synergies, and the control of homeostatic plasticity.
Collapse
Affiliation(s)
- Jonathan R. Wolpaw
- National Centre for Adaptive NeurotechnologiesAlbany Stratton VA Medical CentreAlbanyNYUSA
- Department of Biomedical SciencesState University of New YorkAlbanyNYUSA
| | | |
Collapse
|
16
|
Mongold SJ, Piitulainen H, Legrand T, Ghinst MV, Naeije G, Jousmäki V, Bourguignon M. Temporally stable beta sensorimotor oscillations and cortico-muscular coupling underlie force steadiness. Neuroimage 2022; 261:119491. [PMID: 35908607 DOI: 10.1016/j.neuroimage.2022.119491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/29/2022] Open
Abstract
As humans, we seamlessly hold objects in our hands, and may even lose consciousness of these objects. This phenomenon raises the unsettled question of the involvement of the cerebral cortex, the core area for voluntary motor control, in dynamically maintaining steady muscle force. To address this issue, we measured magnetoencephalographic brain activity from healthy adults who maintained a steady pinch grip. Using a novel analysis approach, we uncovered fine-grained temporal modulations in the beta sensorimotor brain rhythm and its coupling with muscle activity, with respect to several aspects of muscle force (rate of increase/decrease or plateauing high/low). These modulations preceded changes in force features by ∼40 ms and possessed behavioral relevance, as less salient or absent modulation predicted a more stable force output. These findings have consequences for the existing theories regarding the functional role of cortico-muscular coupling, and suggest that steady muscle contractions are characterized by a stable rather than fluttering involvement of the sensorimotor cortex.
Collapse
Affiliation(s)
- Scott J Mongold
- Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Harri Piitulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Thomas Legrand
- Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Marc Vander Ghinst
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Service d'ORL et de chirurgie cervico-faciale, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Gilles Naeije
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Centre de Référence Neuromusculaire, Department of Neurology, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Veikko Jousmäki
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Aalto NeuroImaging, Aalto University School of Science, Espoo, Finland
| | - Mathieu Bourguignon
- Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; BCBL, Basque Center on Cognition, Brain and Language, 20009 San Sebastian, Spain
| |
Collapse
|
17
|
Li Z, Yi C, Chen C, Liu C, Zhang S, Li S, Gao D, Cheng L, Zhang X, Sun J, He Y, Xu P. Predicting individual muscle fatigue tolerance by resting-state EEG brain network. J Neural Eng 2022; 19. [PMID: 35901723 DOI: 10.1088/1741-2552/ac8502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/28/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Exercise-induced muscle fatigue is a complex physiological phenomenon involving the central and peripheral nervous systems, and fatigue tolerance varies across individuals. Various studies have emphasized the close relationships between muscle fatigue and the brain. However, the relationships between the resting-state electroencephalogram (rsEEG) brain network and individual muscle fatigue tolerance remain unexplored. APPROACH Eighteen elite water polo athletes took part in our experiment. Five-minute before- and after-fatigue-exercise rsEEG and fatiguing task (i.e., elbow flexion and extension) electromyography (EMG) data were recorded. Based on the graph theory, we constructed the before- and after-task rsEEG coherence network and compared the network differences between them. Then, the correlation between the before-fatigue rsEEG network properties and the EMG fatigue indexes when a subject cannot keep on exercising anymore was profiled. Finally, a prediction model based on the before-fatigue rsEEG network properties was established to predict fatigue tolerance. MAIN RESULTS Results of this study revealed the significant differences between the before- and after-exercise rsEEG brain network and found significant high correlations between before-exercise rsEEG network properties in the beta band and individual muscle fatigue tolerance. Finally, an efficient support vector regression (SVR) model based on the before-exercise rsEEG network properties in the beta band was constructed and achieved the accurate prediction of individual fatigue tolerance. Similar results were also revealed on another thirty-subject swimmer data set further demonstrating the reliability of predicting fatigue tolerance based on the rsEEG network. SIGNIFICANCE Our study investigates the relationship between the rsEEG brain network and individual muscle fatigue tolerance and provides a potential objective physiological biomarker for tolerance prediction and the regulation of muscle fatigue.
Collapse
Affiliation(s)
- Zhiwei Li
- Chengdu Sport University, No.2, Tiyuan Road, Wuhou District, Chengdu, 610041, CHINA
| | - Chanlin Yi
- University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, CHINA
| | - Chunli Chen
- University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, CHINA
| | - Chen Liu
- University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, CHINA
| | - Shu Zhang
- University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, CHINA
| | - Shunchang Li
- Chengdu Sport University, No.2, Tiyuan Road, Wuhou District, Chengdu, 610041, CHINA
| | - Dongrui Gao
- Chengdu University of Information Technology, No.24 Block 1, Xuefu Road, Chengdu, Sichuan, 610225, CHINA
| | - Liang Cheng
- Chengdu Sport University, No.2, Tiyuan Road, Wuhou District, Chengdu, 610041, CHINA
| | - Xiabing Zhang
- University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, CHINA
| | - Junzhi Sun
- Chengdu Sport University, No.2, Tiyuan Road, Wuhou District, Chengdu, 610041, CHINA
| | - Ying He
- Small Ball Department of Physical Education and Sport Sciences, Chengdu Sport University, No.2, Tiyuan Road, Wuhou District, Chengdu, 610041, CHINA
| | - Peng Xu
- University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, 611731, CHINA
| |
Collapse
|
18
|
Keser Z, Buchl SC, Seven NA, Markota M, Clark HM, Jones DT, Lanzino G, Brown RD, Worrell GA, Lundstrom BN. Electroencephalogram (EEG) With or Without Transcranial Magnetic Stimulation (TMS) as Biomarkers for Post-stroke Recovery: A Narrative Review. Front Neurol 2022; 13:827866. [PMID: 35273559 PMCID: PMC8902309 DOI: 10.3389/fneur.2022.827866] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/31/2022] [Indexed: 01/20/2023] Open
Abstract
Stroke is one of the leading causes of death and disability. Despite the high prevalence of stroke, characterizing the acute neural recovery patterns that follow stroke and predicting long-term recovery remains challenging. Objective methods to quantify and characterize neural injury are still lacking. Since neuroimaging methods have a poor temporal resolution, EEG has been used as a method for characterizing post-stroke recovery mechanisms for various deficits including motor, language, and cognition as well as predicting treatment response to experimental therapies. In addition, transcranial magnetic stimulation (TMS), a form of non-invasive brain stimulation, has been used in conjunction with EEG (TMS-EEG) to evaluate neurophysiology for a variety of indications. TMS-EEG has significant potential for exploring brain connectivity using focal TMS-evoked potentials and oscillations, which may allow for the system-specific delineation of recovery patterns after stroke. In this review, we summarize the use of EEG alone or in combination with TMS in post-stroke motor, language, cognition, and functional/global recovery. Overall, stroke leads to a reduction in higher frequency activity (≥8 Hz) and intra-hemispheric connectivity in the lesioned hemisphere, which creates an activity imbalance between non-lesioned and lesioned hemispheres. Compensatory activity in the non-lesioned hemisphere leads mostly to unfavorable outcomes and further aggravated interhemispheric imbalance. Balanced interhemispheric activity with increased intrahemispheric coherence in the lesioned networks correlates with improved post-stroke recovery. TMS-EEG studies reveal the clinical importance of cortical reactivity and functional connectivity within the sensorimotor cortex for motor recovery after stroke. Although post-stroke motor studies support the prognostic value of TMS-EEG, more studies are needed to determine its utility as a biomarker for recovery across domains including language, cognition, and hemispatial neglect. As a complement to MRI-based technologies, EEG-based technologies are accessible and valuable non-invasive clinical tools in stroke neurology.
Collapse
Affiliation(s)
- Zafer Keser
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Samuel C. Buchl
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Nathan A. Seven
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Matej Markota
- Department of Psychiatry, Mayo Clinic, Rochester, MN, United States
| | - Heather M. Clark
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - David T. Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Giuseppe Lanzino
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States
| | - Robert D. Brown
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | | | | |
Collapse
|
19
|
Liu J, Wang J, Tan G, Sheng Y, Chang H, Xie Q, Liu H. Correlation Evaluation of Functional Corticomuscular Coupling With Abnormal Muscle Synergy After Stroke. IEEE Trans Biomed Eng 2021; 68:3261-3272. [PMID: 33764872 DOI: 10.1109/tbme.2021.3068997] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE While neuroplasticity and functional reorganization during motor recovery can be indirectly reflected and evaluated by functional corticomuscular coupling (fCMC), little work has been published regarding the cortical origin of abnormal muscle synergy and compensatory mechanism in the separation movement of stroke patients. METHODS In this study, we proposed to use extended partial directed coherence (ePDC) combined with an optimal spatial filtering approach to estimate fCMC in stroke patients and healthy controls, and further established muscle synergy model (MSM) to jointly explore the modulation mechanism between cortex and muscles. RESULTS Compared to healthy controls, stroke patients had significantly reduced coupling strength in both descending and ascending pathway. Moreover, the MSM were abnormal with high variability and low similarity in the separation stage of stroke patients. Further exploration of the positive relationship between fCMC characteristics and MSM parameters proved the possibility of using fCMC-MSM-based correlation indicator to evaluate abnormality of the cortical related synergy movement as well as the rehabilitation level of stroke patients. CONCLUSION We developed a computational procedure to evaluate the correlation between fCMC and MSM in stroke patients. SIGNIFICANCE This article provides a quantitative evaluation metrics based on fCMC to reveal the deficits during poststroke motor restoration and a promising approach to help patients correct abnormal movement habits, paving the way for neurophysiological assessment of neuromuscular control in conjunction with clinical scores.
Collapse
|
20
|
He S, Deli A, Fischer P, Wiest C, Huang Y, Martin S, Khawaldeh S, Aziz TZ, Green AL, Brown P, Tan H. Gait-Phase Modulates Alpha and Beta Oscillations in the Pedunculopontine Nucleus. J Neurosci 2021; 41:8390-8402. [PMID: 34413208 PMCID: PMC8496192 DOI: 10.1523/jneurosci.0770-21.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/21/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022] Open
Abstract
The pedunculopontine nucleus (PPN) is a reticular collection of neurons at the junction of the midbrain and pons, playing an important role in modulating posture and locomotion. Deep brain stimulation of the PPN has been proposed as an emerging treatment for patients with Parkinson's disease (PD) or multiple system atrophy (MSA) who have gait-related atypical parkinsonian syndromes. In this study, we investigated PPN activities during gait to better understand its functional role in locomotion. Specifically, we investigated whether PPN activity is rhythmically modulated by gait cycles during locomotion. PPN local field potential (LFP) activities were recorded from PD or MSA patients with gait difficulties during stepping in place or free walking. Simultaneous measurements from force plates or accelerometers were used to determine the phase within each gait cycle at each time point. Our results showed that activities in the alpha and beta frequency bands in the PPN LFPs were rhythmically modulated by the gait phase within gait cycles, with a higher modulation index when the stepping rhythm was more regular. Meanwhile, the PPN-cortical coherence was most prominent in the alpha band. Both gait phase-related modulation in the alpha/beta power and the PPN-cortical coherence in the alpha frequency band were spatially specific to the PPN and did not extend to surrounding regions. These results suggest that alternating PPN modulation may support gait control. Whether enhancing alternating PPN modulation by stimulating in an alternating fashion could positively affect gait control remains to be tested.SIGNIFICANCE STATEMENT The therapeutic efficacy of pedunculopontine nucleus (PPN) deep brain stimulation (DBS) and the extent to which it can improve quality of life are still inconclusive. Understanding how PPN activity is modulated by stepping or walking may offer insight into how to improve the efficacy of PPN DBS in ameliorating gait difficulties. Our study shows that PPN alpha and beta activity was modulated by the gait phase, and that this was most pronounced when the stepping rhythm was regular. It remains to be tested whether enhancing alternating PPN modulation by stimulating in an alternating fashion could positively affect gait control.
Collapse
Affiliation(s)
- Shenghong He
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford OX1 3TH, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Alceste Deli
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Petra Fischer
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford OX1 3TH, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Christoph Wiest
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford OX1 3TH, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Yongzhi Huang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China
| | - Sean Martin
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Saed Khawaldeh
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford OX1 3TH, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 7JX, United Kingdom
| | - Tipu Z Aziz
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Alexander L Green
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Peter Brown
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford OX1 3TH, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Huiling Tan
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford OX1 3TH, United Kingdom
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
21
|
Zhao Y, Yao J, Wu X, Chen L, Wang X, Zhang X, Hou W. Event-Related Beta EEG Changes Induced by Various Neuromuscular Electrical Stimulation: A Pilot Study. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1206-1212. [PMID: 34129499 DOI: 10.1109/tnsre.2021.3089478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous results demonstrated that neuromuscular electrical stimulation (NMES) with various configurations could induce different activity at both the central and peripheral levels. Although NMES generating different peripheral movements have been studied, it is still unclear whether the difference in NMES-induced cortical activity is due to movement- or stimulation- related differences. Because NMES-induced cortical activity impacts motor function recovery, it is essential to know when NMES with various configurations evoke the same movement, whether the induced cortical activity is still different. Four NMES configurations: 1) Eight-let Frequency Trains, 2) Doublet frequency trains (DFT), 3) Constant-frequency trains with narrow-pulse, and 4) wide-pulse, were delivered to the right biceps brachii muscle in nine healthy young adults. We adjusted the intensities of these NMES to evoke the same elbow flexion and compared the cortical activities over sensorimotor regions. Our results showed that the four NMES patterns induced different beta-band Event-Related Desynchronization (ERD), with the DFT providing the strongest ERD value given the same NMES-induced elbow flexion (p < 0.05). This difference is possibly due to NMES with different configuration activated in the amount of afferent proprioceptive fibers. Our pilot study suggests that the NMES-induced beta-band ERD may be an additional factor to consider when selecting the NMES configuration for a better motor function recovery.
Collapse
|
22
|
Houston M, Li X, Zhou P, Li S, Roh J, Zhang Y. Alterations in Muscle Networks in the Upper Extremity of Chronic Stroke Survivors. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1026-1034. [PMID: 33900919 DOI: 10.1109/tnsre.2021.3075907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Muscle networks describe the functional connectivity between muscles quantified through the decomposition of intermuscular coherence (IMC) to identify shared frequencies at which certain muscles are co-modulated by common neural input. Efforts have been devoted to characterizing muscle networks in healthy subjects but stroke-linked alterations to muscle networks remain unexplored. Muscle networks were assessed for eight key upper extremity muscles during isometric force generation in stroke survivors with mild, moderate, and severe impairment and compared against healthy controls to identify stroke-specificalterations in muscle connectivity. Coherence matrices were decomposed using non-negative matrix factorization. The variance accounted for thresholding was then assessed to identify the number of muscle networks. Results showed that the number of muscle networks decreased in stroke survivors compared to age-matched healthy controls (four networks in the healthy control group) as the severity of post-stroke motor impairment increased (three in the mild- and two in the moderate- and severe-strokegroups). Statistically significant reductions of IMC in the synergistic deltoid muscles in the alpha-band in stroke patients versus healthy controls ( p < 0.05) were identified. This study represents the first effort, to the best of our knowledge, to assess stroke-linked alterations in functional intermuscular connectivity using muscle network analysis. The findings revealed a pattern of alterations to muscle networks in stroke survivors compared to healthy controls, as a result of the loss of brain function associated with the stroke. These alterations in muscle networks reflected underlying pathophysiology. These findings can help better understand the motor impairment and motor control in stroke and may advance rehabilitation efforts for stroke by identifying the impaired neuromuscular coordination among multiple muscles in the frequency domain.
Collapse
|
23
|
Betti V, Della Penna S, de Pasquale F, Corbetta M. Spontaneous Beta Band Rhythms in the Predictive Coding of Natural Stimuli. Neuroscientist 2021; 27:184-201. [PMID: 32538310 PMCID: PMC7961741 DOI: 10.1177/1073858420928988] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The regularity of the physical world and the biomechanics of the human body movements generate distributions of highly probable states that are internalized by the brain in the course of a lifetime. In Bayesian terms, the brain exploits prior knowledge, especially under conditions when sensory input is unavailable or uncertain, to predictively anticipate the most likely outcome of upcoming stimuli and movements. These internal models, formed during development, yet still malleable in adults, continuously adapt through the learning of novel stimuli and movements.Traditionally, neural beta (β) oscillations are considered essential for maintaining sensorimotor and cognitive representations, and for temporal coding of expectations. However, recent findings show that fluctuations of β band power in the resting state strongly correlate between cortical association regions. Moreover, central (hub) regions form strong interactions over time with different brain regions/networks (dynamic core). β band centrality fluctuations of regions of the dynamic core predict global efficiency peaks suggesting a mechanism for network integration. Furthermore, this temporal architecture is surprisingly stable, both in topology and dynamics, during the observation of ecological natural visual scenes, whereas synthetic temporally scrambled stimuli modify it. We propose that spontaneous β rhythms may function as a long-term "prior" of frequent environmental stimuli and behaviors.
Collapse
Affiliation(s)
- Viviana Betti
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Stefania Della Penna
- Institute for Advanced Biomedical Technologies and Department of Neuroscience, Imaging and Clinical Sciences, “G. D’Annunzio” University, Chieti, Italy
| | | | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
- Department of Neurology, Radiology, and Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
24
|
Weakened Effective Connectivity Related to Electroacupuncture in Stroke Patients with Prolonged Flaccid Paralysis: An EEG Pilot Study. Neural Plast 2021; 2021:6641506. [PMID: 33777135 PMCID: PMC7969113 DOI: 10.1155/2021/6641506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/03/2021] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
Flaccid paralysis in the upper extremity is a severe motor impairment after stroke, which exists for weeks, months, or even years. Electroacupuncture treatment is one of the most widely used TCM therapeutic interventions for poststroke flaccid paralysis. However, the response to electroacupuncture in different durations of flaccid stage poststroke as well as in the topological configuration of the cortical network remains unclear. The objectives of this study are to explore the disruption of the cortical network in patients in different durations of flaccid stage and observe dynamic network reorganization during and after electroacupuncture. Resting-state networks were constructed from 18 subjects with flaccid upper extremity by partial directed coherence (PDC) analysis of multichannel EEG. They were allocated to three groups according to time after flaccid paralysis: the short-duration group (those with flaccidity for less than two months), the medium-duration group (those with flaccidity between two months and six months), and the long-duration group (those with flaccidity over six months). Compared with short-duration flaccid subjects, weakened effective connectivity was presented in medium-duration and long-duration groups before electroacupuncture. The long-duration group has no response in the cortical network during electroacupuncture. The global network measures of EEG data (sPDC, mPDC, and N) indicated that there was no significant difference among the three groups. These results suggested that the network connectivity reduced and weakly responded to electroacupuncture in patients with flaccid paralysis for over six months. These findings may help us to modulate the formulation of electroacupuncture treatment according to different durations of the flaccid upper extremity.
Collapse
|
25
|
Calabrò RS, Billeri L, Ciappina F, Balletta T, Porcari B, Cannavò A, Pignolo L, Manuli A, Naro A. Toward improving functional recovery in spinal cord injury using robotics: a pilot study focusing on ankle rehabilitation. Expert Rev Med Devices 2021; 19:83-95. [PMID: 33616471 DOI: 10.1080/17434440.2021.1894125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Conventional physical therapy interventions are strongly recommended to improve ambulation potential and upright mobility in persons with incomplete spinal cord injury (iSCI). Ankle rehabilitation plays a significant role, as it aims to stem drop foot consequences.Research question: This pilot study aimed to assess the neurophysiological underpinnings of robot-aided ankle rehabilitation (using a platform robot) compared to conventional physiotherapy and its efficacy in improving gait performance and balance in persons with iSCI.Methods: Ten individuals with subacute/chronic iSCI (six males and four females, 39 ± 13 years, time since injury 8 ± 4 months, ASIA impairment scale grade C-D) were provided with one-month intensive training for robot-aided ankle rehabilitation (24 sessions, 1 h daily, six times a week). Clinical (10-Meter Walk Test (10MWT), 6-Minute Walk Test (6MWT), and Timed Up and Go test (TUG)), and electrophysiological aftereffects (surface-EMG from tibialis anterior and medial gastrocnemius muscles to estimate muscle activation patterns; and corticomuscular coherence-CMC-to assess functional synchronization between sensorimotor cortex and muscles, i.e. the functional integrity of corticospinal output) were assessed at baseline (PRE) and after the trial completion (POST). The experimental group (EG) data were compared with those coming from a retrospective control group (CG; n = 10) matched for clinical-demographic characteristics, who previously underwent conventional ankle rehabilitation.Results: the EG achieved a greater improvement in balance and gait as compared to the CG (TUG EG from 70 ± 18 to 45 ± 15 s, p = 0.002; CG from 68 ± 21 to 48 ± 18 s, p = 0.01; group-comparison p = 0.001; 10MWT EG from 0.43 ± 0.11 to 0.51 ± 0.09 m/s, p = 0.006; CG from 0.4 ± 0.13 to 0.45 ± 0.12, p = 0.01; group-comparison p = 0.006; 6 MWT EG from 231 ± 13 to 274 ± 15 m, p < 0.001; CG from 236 ± 13 to 262 ± 15 m, p = 0.003; group-comparison p = 0.01). Furthermore, the EG showed a retraining of muscle activation (an increase within proper movements, with a reduction of co-contractions) and CMC (beta frequency increase within proper movements, i.e. in a framework of preserved motor coordination). The improvements in CMC, gait, balance, and muscle activation were not correlated with each other.Conclusions: Robot-aided ankle rehabilitation improved gait performance by selectively ameliorating CMC, muscle activation patterns, and, lastly, gait balance and speed. Despite CMC, gait, balance, and muscle activation were not correlated, this pilot study suggests that robot-aided ankle rehabilitation may favor a better communication between above-SCI and below-SCI structures. This communication improvement may depend on a more synchronized corticospinal output (as per CMC increase) and a better responsiveness of below-SCI motorneurons to corticospinal output (as per specific and ankle movement focused muscle activation increases at the surface EMG), thus favoring greater recruitment of spinal motor units and, ultimately, improving muscle activation pattern and strength.Significance: Adopting robot-aided ankle rehabilitation protocols for persons with iSCI in the subacute/chronic phase may allow achieving a clinically significant improvement in gait performance.
Collapse
Affiliation(s)
| | - Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | - Tina Balletta
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Bruno Porcari
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | | | | | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| |
Collapse
|
26
|
Insausti-Delgado A, López-Larraz E, Omedes J, Ramos-Murguialday A. Intensity and Dose of Neuromuscular Electrical Stimulation Influence Sensorimotor Cortical Excitability. Front Neurosci 2021; 14:593360. [PMID: 33519355 PMCID: PMC7845652 DOI: 10.3389/fnins.2020.593360] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Neuromuscular electrical stimulation (NMES) of the nervous system has been extensively used in neurorehabilitation due to its capacity to engage the muscle fibers, improving muscle tone, and the neural pathways, sending afferent volleys toward the brain. Although different neuroimaging tools suggested the capability of NMES to regulate the excitability of sensorimotor cortex and corticospinal circuits, how the intensity and dose of NMES can neuromodulate the brain oscillatory activity measured with electroencephalography (EEG) is still unknown to date. We quantified the effect of NMES parameters on brain oscillatory activity of 12 healthy participants who underwent stimulation of wrist extensors during rest. Three different NMES intensities were included, two below and one above the individual motor threshold, fixing the stimulation frequency to 35 Hz and the pulse width to 300 μs. Firstly, we efficiently removed stimulation artifacts from the EEG recordings. Secondly, we analyzed the effect of amplitude and dose on the sensorimotor oscillatory activity. On the one hand, we observed a significant NMES intensity-dependent modulation of brain activity, demonstrating the direct effect of afferent receptor recruitment. On the other hand, we described a significant NMES intensity-dependent dose-effect on sensorimotor activity modulation over time, with below-motor-threshold intensities causing cortical inhibition and above-motor-threshold intensities causing cortical facilitation. Our results highlight the relevance of intensity and dose of NMES, and show that these parameters can influence the recruitment of the sensorimotor pathways from the muscle to the brain, which should be carefully considered for the design of novel neuromodulation interventions based on NMES.
Collapse
Affiliation(s)
- Ainhoa Insausti-Delgado
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- International Max Planck Research School (IMPRS) for Cognitive and Systems Neuroscience, Tübingen, Germany
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Eduardo López-Larraz
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Bitbrain, Zaragoza, Spain
| | - Jason Omedes
- Instituto de Investigación en Ingeniería de Aragón (I3A), Zaragoza, Spain
- Departamento de Informática e Ingeniería de Sistemas (DIIS), University of Zaragoza, Zaragoza, Spain
| | - Ander Ramos-Murguialday
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Neurotechnology Laboratory, TECNALIA, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| |
Collapse
|
27
|
Tomassini A, Maris E, Hilt P, Fadiga L, D’Ausilio A. Visual detection is locked to the internal dynamics of cortico-motor control. PLoS Biol 2020; 18:e3000898. [PMID: 33079930 PMCID: PMC7598921 DOI: 10.1371/journal.pbio.3000898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/30/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Movements overtly sample sensory information, making sensory analysis an active-sensing process. In this study, we show that visual information sampling is not just locked to the (overt) movement dynamics but to the internal (covert) dynamics of cortico-motor control. We asked human participants to perform continuous isometric contraction while detecting unrelated and unpredictable near-threshold visual stimuli. The motor output (force) shows zero-lag coherence with brain activity (recorded via electroencephalography) in the beta-band, as previously reported. In contrast, cortical rhythms in the alpha-band systematically forerun the motor output by 200 milliseconds. Importantly, visual detection is facilitated when cortico-motor alpha (not beta) synchronization is enhanced immediately before stimulus onset, namely, at the optimal phase relationship for sensorimotor communication. These findings demonstrate an ongoing coupling between visual sampling and motor control, suggesting the operation of an internal and alpha-cycling visuomotor loop.
Collapse
Affiliation(s)
- Alice Tomassini
- Istituto Italiano di Tecnologia, Center for Translational Neurophysiology of Speech and Communication (CTNSC), Ferrara, Italy
- * E-mail:
| | - Eric Maris
- Radboud University, Donders Institute for Brain, Cognition and Behavior, Centre for Cognition (DCC), Nijmegen, The Netherlands
| | - Pauline Hilt
- Istituto Italiano di Tecnologia, Center for Translational Neurophysiology of Speech and Communication (CTNSC), Ferrara, Italy
| | - Luciano Fadiga
- Istituto Italiano di Tecnologia, Center for Translational Neurophysiology of Speech and Communication (CTNSC), Ferrara, Italy
- Università di Ferrara, Dipartimento di Scienze Biomediche e Chirurgico Specialistiche, Ferrara, Italy
| | - Alessandro D’Ausilio
- Istituto Italiano di Tecnologia, Center for Translational Neurophysiology of Speech and Communication (CTNSC), Ferrara, Italy
- Università di Ferrara, Dipartimento di Scienze Biomediche e Chirurgico Specialistiche, Ferrara, Italy
| |
Collapse
|
28
|
Zhang X, Li H, Xie T, Liu Y, Chen J, Long J. Movement speed effects on beta-band oscillations in sensorimotor cortex during voluntary activity. J Neurophysiol 2020; 124:352-359. [PMID: 32579410 DOI: 10.1152/jn.00238.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Beta-band oscillations are a dominant feature in the sensorimotor system, which includes movement-related beta desynchronization (MRBD) during the preparation and execution phases of movement and postmovement beta synchronization (PMBS) on movement cessation. Many studies have linked this rhythm to motor functions. However, its associations to the movement speed are still unclear. We make a hypothesis that PMBS will be modulated with increasing of movement speeds. We assessed the MRBD and PMBS during isotonic slower self-paced and ballistic movements with 15 healthy subjects. Furthermore, we conduct an additional control experiment with the isometric contraction with two levels of forces to match those in the isotonic slower self-paced and ballistic movements separately. We found that the amplitude of PMBS but not MRBD in motor cortex is modulated by the speed during voluntary movement. PMBS was positively correlated with movement speed and acceleration through the partial correlation analysis. However, there were no changes in the PMBS and MRBD during the isometric contraction with two levels of forces. These results demonstrate a different function of PMBS and MRBD to the movement speed during voluntary activity and suggest that the movement speed would affect the amplitude of PMBS.NEW & NOTEWORTHY Beta-band oscillations are a dominant feature in the sensorimotor system that associate to the motor function. We found that the movement-related postmovement beta synchronization (PMBS) over the contralateral sensorimotor cortex was positively correlated with the speed of a voluntary movement, but the movement-related beta desynchronization (MRBD) was not. Our results show a differential response of the PMBS and MRBD to the movement speed during voluntary movement.
Collapse
Affiliation(s)
- Xiangzi Zhang
- College of Information Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Hualiang Li
- Guangdong Power Grid Corporation, Guangzhou, Guangdong, China
| | - Tingjun Xie
- Guangdong Power Grid Corporation, Guangzhou, Guangdong, China
| | - Yuzhong Liu
- Guangdong Power Grid Corporation, Guangzhou, Guangdong, China
| | - Juan Chen
- School of Psychology, Center for the Study of Applied Psychology, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong Province, China.,Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China
| | - Jinyi Long
- College of Information Science and Technology, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Burianová H, Marstaller L, Rich AN, Williams MA, Savage G, Ryan M, Sowman PF. Motor neuroplasticity: A MEG-fMRI study of motor imagery and execution in healthy ageing. Neuropsychologia 2020; 146:107539. [PMID: 32629033 DOI: 10.1016/j.neuropsychologia.2020.107539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/08/2020] [Accepted: 06/19/2020] [Indexed: 10/23/2022]
Abstract
Age-related decline in motor function is associated with over-activation of the sensorimotor circuitry. Using a multimodal MEG-fMRI paradigm, we investigated whether this neural over-recruitment in old age would be related to changes in movement-related beta desynchronization (MRBD), a correlate of the inhibitory neurotransmitter γ-aminobutyric acid (GABA), and whether it would characterize compensatory recruitment or a reduction in neural specialization (dedifferentiation). We used MEG to assess age-related changes in beta band oscillations in primary motor cortices, fMRI to localize age-related changes in brain activity, and the Finger Configuration Task to measure task performance during overt and covert motor processing: motor execution (ME) and motor imagery (MI). The results are threefold: first, showing age-related neuroplasticity during ME of older adults, compared to young adults, as evidenced by increased MRBD in motor cortices and over-recruitment of sensorimotor areas; second, showing similar age-related neuroplastic changes during MI; and finally, showing signs of dedifferentiation during ME in older adults whose performance negatively correlated with connectivity to bilateral primary motor cortex. Together, these findings demonstrate that elevated MRBD levels, reflecting greater GABAergic inhibitory activity, and over-activation of the sensorimotor network during ME may not be compensatory, but rather might reflect an age-related decline of the quality of the underlying neural signal.
Collapse
Affiliation(s)
- Hana Burianová
- Department of Psychology, Swansea University, Swansea, United Kingdom; Centre for Advanced Imaging, University of Queensland, Brisbane, Australia; ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia.
| | - Lars Marstaller
- Department of Psychology, Swansea University, Swansea, United Kingdom; Centre for Advanced Imaging, University of Queensland, Brisbane, Australia; ARC Science of Learning Research Centre, University of Queensland, Brisbane, Australia
| | - Anina N Rich
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia; Department of Cognitive Science, Macquarie University, Sydney, Australia; Perception in Action Research Centre, Faculty of Human Sciences, Macquarie University, Sydney, Australia
| | - Mark A Williams
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia; Department of Cognitive Science, Macquarie University, Sydney, Australia; Perception in Action Research Centre, Faculty of Human Sciences, Macquarie University, Sydney, Australia
| | - Greg Savage
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia; Department of Psychology, Macquarie University, Sydney, Australia
| | - Margaret Ryan
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia
| | - Paul F Sowman
- ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, Sydney, Australia; Department of Cognitive Science, Macquarie University, Sydney, Australia; Perception in Action Research Centre, Faculty of Human Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
30
|
Oya T, Takei T, Seki K. Distinct sensorimotor feedback loops for dynamic and static control of primate precision grip. Commun Biol 2020; 3:156. [PMID: 32242085 PMCID: PMC7118171 DOI: 10.1038/s42003-020-0861-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 02/25/2020] [Indexed: 11/09/2022] Open
Abstract
Volitional limb motor control involves dynamic and static muscle actions. It remains elusive how such distinct actions are controlled through separated or shared neural circuits. Here we explored the potential separation for dynamic and static controls in primate hand actions, by investigating the neuronal coherence between local field potentials (LFPs) of the spinal cord and the forelimb electromyographic activity (EMGs), and LFPs of the motor cortex and the EMGs during the performance of a precision grip in macaque monkeys. We observed the emergence of beta-range coherence with EMGs at spinal cord and motor cortex in the separated phases; spinal coherence during the grip phase and cortical coherence during the hold phase. Further, both of the coherences were influenced by bidirectional interactions with reasonable latencies as beta oscillatory cycles. These results indicate that dedicated feedback circuits comprising spinal and cortical structures underlie dynamic and static controls of dexterous hand actions.
Collapse
Affiliation(s)
- Tomomichi Oya
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Developmental Physiology, National Institute for Physiological Science, Aichi, Japan
| | - Tomohiko Takei
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Developmental Physiology, National Institute for Physiological Science, Aichi, Japan.,Department of Physiology and Neurobiology, Graduate School of Medicine/The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
| | - Kazuhiko Seki
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan. .,Department of Developmental Physiology, National Institute for Physiological Science, Aichi, Japan.
| |
Collapse
|
31
|
Kadone H, Kubota S, Abe T, Noguchi H, Miura K, Koda M, Shimizu Y, Hada Y, Sankai Y, Suzuki K, Yamazaki M. Muscular Activity Modulation During Post-operative Walking With Hybrid Assistive Limb (HAL) in a Patient With Thoracic Myelopathy Due to Ossification of Posterior Longitudinal Ligament: A Case Report. Front Neurol 2020; 11:102. [PMID: 32296380 PMCID: PMC7136555 DOI: 10.3389/fneur.2020.00102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/29/2020] [Indexed: 01/02/2023] Open
Abstract
Disorders of the central nervous system sometimes cause severe sensory motor paralysis accompanied by gait impairment. Recently, there are several reports on the effectiveness of robot-assisted gait training for patients experiencing these issues. The purpose of this case report was to assess the neuromechanical effect of a wearable robot suit HAL (Hybrid Assistive Limb) during post-operative gait training in a patient with gait impairment due to compressive myelopathy caused by ossification of the posterior longitudinal ligament (OPLL). For this purpose, we compared lower limb muscular activities while the patient was walking with and without the robot through a course of treatment sessions by (i) gait phase-dependent muscle usage analysis, (ii) muscle synergy analysis, and (iii) muscle network analysis. The results show (i) enhanced activity of the extensor muscles for weight-bearing in the initial sessions by using HAL and reduced knee extensor and increased hip extensor activations for achieving larger steps and faster gait in the later sessions; (ii) involvement of a greater number of synergies during walking with HAL than without HAL; and (iii) modulated muscle network property during walking with HAL remaining until the next HAL session. The patient's gait was improved after completing HAL sessions, acquiring close to normal joint profile with greater range of joint movement, faster walking speed, and larger step length. We discuss that the muscular activity modulation during walking with HAL suggests altered control of the muscles by the central nervous system during post-operative walking. Activity-dependent sensorimotor augmentation by HAL is discussed in the context of recovery of gait control by the central nervous system. The relationship between the altered control and the achieved gait recovery requires further investigation.
Collapse
Affiliation(s)
- Hideki Kadone
- Center for Innovative Medicine and Engineering, University of Tsukuba Hospital, Tsukuba, Japan
- Center for Cybernics Research, University of Tsukuba, Tsukuba, Japan
| | - Shigeki Kubota
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tetsuya Abe
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Noguchi
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kousei Miura
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Rehabilitation Medicine, University of Tsukuba Hospital, Tsukuba, Japan
| | - Masao Koda
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yukiyo Shimizu
- Department of Rehabilitation Medicine, University of Tsukuba Hospital, Tsukuba, Japan
| | - Yasushi Hada
- Department of Rehabilitation Medicine, University of Tsukuba Hospital, Tsukuba, Japan
| | - Yoshiyuki Sankai
- Center for Cybernics Research, University of Tsukuba, Tsukuba, Japan
| | - Kenji Suzuki
- Center for Cybernics Research, University of Tsukuba, Tsukuba, Japan
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
32
|
Zhuang M, Wu Q, Wan F, Hu Y. State-of-the-art non-invasive brain–computer interface for neural rehabilitation: A review. JOURNAL OF NEURORESTORATOLOGY 2020. [DOI: 10.26599/jnr.2020.9040001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Brain–computer interface (BCI) is a novel communication method between brain and machine. It enables signals from the human brain to influence or control external devices. Currently, much research interest is focused on the BCI-based neural rehabilitation of patients with motor and cognitive diseases. Over the decades, BCI has become an alternative treatment for motor and cognitive rehabilitation. Previous studies demonstrated the usefulness of BCI intervention in restoring motor function and recovery of the damaged brain. Electroencephalogram (EEG)-based BCI intervention could cast light on the mechanisms underlying neuroplasticity during upper limb recovery by providing feedback to the damaged brain. BCI could act as a useful tool to aid patients with daily communication and basic movement in severe motor loss cases like amyotrophic lateral sclerosis (ALS). Furthermore, recent findings have reported the therapeutic efficacy of BCI in people suffering from other diseases with different levels of motor impairment such as spastic cerebral palsy, neuropathic pain, etc. Besides motor functional recovery, BCI also plays its role in improving the behavior of patients with cognitive diseases like attention-deficit/hyperactivity disorder (ADHD). The BCI-based neurofeedback training is focused on either reducing the ratio of theta and beta rhythm, or enabling the patients to regulate their own slow cortical potentials, and both have made progress in increasing attention and alertness. With summary of several clinical studies with strong evidence, we present cutting edge results from the clinical application of BCI in motor and cognitive diseases, including stroke, spinal cord injury, ALS, and ADHD.
Collapse
|
33
|
Zandvoort CS, van Dieën JH, Dominici N, Daffertshofer A. The human sensorimotor cortex fosters muscle synergies through cortico-synergy coherence. Neuroimage 2019; 199:30-37. [PMID: 31121297 DOI: 10.1016/j.neuroimage.2019.05.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/27/2019] [Accepted: 05/16/2019] [Indexed: 11/17/2022] Open
Abstract
In neuromotor control, the dimensionality of complex muscular activation patterns is effectively reduced through the emergence of muscle synergies. Muscle synergies are tailored to task-specific biomechanical needs. Traditionally, they are considered as low-dimensional neural output of the spinal cord and as such their coherent cortico-muscular pathways have remained underexplored in humans. We investigated whether muscle synergies have a higher-order origin, especially, whether they are manifest in the cortical motor network. We focused on cortical muscle synergy representations involved in balance control and examined changes in cortico-synergy coherence accompanying short-term balance training. We acquired electromyography and electro-encephalography and reconstructed cortical source activity using adaptive spatial filters. The latter were based on three muscle synergies decomposed from the activity of nine unilateral leg muscles using non-negative matrix factorization. The corresponding cortico-synergy coherence displayed phase-locked activity at the Piper rhythm, i.e., cortico-spinal synchronization around 40 Hz. Our study revealed the presence of muscle synergies in the motor cortex, in particular, in the paracentral lobule, known for the representation of lower extremities. We conclude that neural oscillations synchronize between the motor cortex and spinal motor neuron pools signifying muscle synergies. The corresponding cortico-synergy coherence around the Piper rhythm decreases with training-induced balance improvement.
Collapse
Affiliation(s)
- Coen S Zandvoort
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Institute for Brain and Behavior Amsterdam & Amsterdam Movement Sciences, the Netherlands
| | - Jaap H van Dieën
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Institute for Brain and Behavior Amsterdam & Amsterdam Movement Sciences, the Netherlands
| | - Nadia Dominici
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Institute for Brain and Behavior Amsterdam & Amsterdam Movement Sciences, the Netherlands
| | - Andreas Daffertshofer
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Institute for Brain and Behavior Amsterdam & Amsterdam Movement Sciences, the Netherlands.
| |
Collapse
|
34
|
Carino-Escobar RI, Carrillo-Mora P, Valdés-Cristerna R, Rodriguez-Barragan MA, Hernandez-Arenas C, Quinzaños-Fresnedo J, Galicia-Alvarado MA, Cantillo-Negrete J. Longitudinal Analysis of Stroke Patients' Brain Rhythms during an Intervention with a Brain-Computer Interface. Neural Plast 2019; 2019:7084618. [PMID: 31110515 PMCID: PMC6487113 DOI: 10.1155/2019/7084618] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/13/2019] [Accepted: 03/25/2019] [Indexed: 11/17/2022] Open
Abstract
Stroke is a leading cause of motor disability worldwide. Upper limb rehabilitation is particularly challenging since approximately 35% of patients recover significant hand function after 6 months of the stroke's onset. Therefore, new therapies, especially those based on brain-computer interfaces (BCI) and robotic assistive devices, are currently under research. Electroencephalography (EEG) acquired brain rhythms in alpha and beta bands, during motor tasks, such as motor imagery/intention (MI), could provide insight of motor-related neural plasticity occurring during a BCI intervention. Hence, a longitudinal analysis of subacute stroke patients' brain rhythms during a BCI coupled to robotic device intervention was performed in this study. Data of 9 stroke patients were acquired across 12 sessions of the BCI intervention. Alpha and beta event-related desynchronization/synchronization (ERD/ERS) trends across sessions and their association with time since stroke onset and clinical upper extremity recovery were analyzed, using correlation and linear stepwise regression, respectively. More EEG channels presented significant ERD/ERS trends across sessions related with time since stroke onset, in beta, compared to alpha. Linear models implied a moderate relationship between alpha rhythms in frontal, temporal, and parietal areas with upper limb motor recovery and suggested a strong association between beta activity in frontal, central, and parietal regions with upper limb motor recovery. Higher association of beta with both time since stroke onset and upper limb motor recovery could be explained by beta relation with closed-loop communication between the sensorimotor cortex and the paralyzed upper limb, and alpha being probably more associated with motor learning mechanisms. The association between upper limb motor recovery and beta activations reinforces the hypothesis that broader regions of the cortex activate during movement tasks as a compensatory mechanism in stroke patients with severe motor impairment. Therefore, EEG across BCI interventions could provide valuable information for prognosis and BCI cortical activity targets.
Collapse
Affiliation(s)
- Ruben I. Carino-Escobar
- Electrical Engineering Department, Universidad Autónoma Metropolitana Unidad Iztapalapa, Mexico City 09340, Mexico
- Division of Research in Medical Engineering, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico
| | - Paul Carrillo-Mora
- Neuroscience Division, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico
| | - Raquel Valdés-Cristerna
- Electrical Engineering Department, Universidad Autónoma Metropolitana Unidad Iztapalapa, Mexico City 09340, Mexico
| | - Marlene A. Rodriguez-Barragan
- Division of Neurological Rehabilitation, “Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico
| | - Claudia Hernandez-Arenas
- Division of Neurological Rehabilitation, “Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico
| | - Jimena Quinzaños-Fresnedo
- Division of Neurological Rehabilitation, “Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico
| | - Marlene A. Galicia-Alvarado
- Department of Electrodiagnostic, .
National Institute of Rehabilitation, “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico
| | - Jessica Cantillo-Negrete
- Division of Research in Medical Engineering, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, Mexico City 14389, Mexico
| |
Collapse
|
35
|
Corbet T, Iturrate I, Pereira M, Perdikis S, Millán JDR. Sensory threshold neuromuscular electrical stimulation fosters motor imagery performance. Neuroimage 2018; 176:268-276. [DOI: 10.1016/j.neuroimage.2018.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 01/15/2023] Open
|
36
|
Spatio-temporal dynamics of cortical drive to human subthalamic nucleus neurons in Parkinson's disease. Neurobiol Dis 2018; 112:49-62. [PMID: 29307661 PMCID: PMC5821899 DOI: 10.1016/j.nbd.2018.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/30/2017] [Accepted: 01/03/2018] [Indexed: 11/24/2022] Open
Abstract
Pathological synchronisation of beta frequency (12–35 Hz) oscillations between the subthalamic nucleus (STN) and cerebral cortex is thought to contribute to motor impairment in Parkinson's disease (PD). For this cortico-subthalamic oscillatory drive to be mechanistically important, it must influence the firing of STN neurons and, consequently, their downstream targets. Here, we examined the dynamics of synchronisation between STN LFPs and units with multiple cortical areas, measured using frontal ECoG, midline EEG and lateral EEG, during rest and movement. STN neurons lagged cortical signals recorded over midline (over premotor cortices) and frontal (over prefrontal cortices) with stable time delays, consistent with strong corticosubthalamic drive, and many neurons maintained these dynamics during movement. In contrast, most STN neurons desynchronised from lateral EEG signals (over primary motor cortices) during movement and those that did not had altered phase relations to the cortical signals. The strength of synchronisation between STN units and midline EEG in the high beta range (25–35 Hz) correlated positively with the severity of akinetic-rigid motor symptoms across patients. Together, these results suggest that sustained synchronisation of STN neurons to premotor-cortical beta oscillations play an important role in disrupting the normal coding of movement in PD. Multi-channel EEG with coincident STN single unit and local field potential recordings Variable time delays between beta oscillations in different cortical areas and STN neurons. Frontal/premotor cortical areas have most stable oscillatory synchronisation with STN neurons. Correlation between cortico-subthalamic beta-frequency synchronisation and clinical scores in PD.
Collapse
|
37
|
MEG Insight into the Spectral Dynamics Underlying Steady Isometric Muscle Contraction. J Neurosci 2017; 37:10421-10437. [PMID: 28951449 PMCID: PMC5656995 DOI: 10.1523/jneurosci.0447-17.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 08/20/2017] [Accepted: 09/14/2017] [Indexed: 12/01/2022] Open
Abstract
To gain fundamental knowledge on how the brain controls motor actions, we studied in detail the interplay between MEG signals from the primary sensorimotor (SM1) cortex and the contraction force of 17 healthy adult humans (7 females, 10 males). SM1 activity was coherent at ∼20 Hz with surface electromyogram (as already extensively reported) but also with contraction force. In both cases, the effective coupling was dominant in the efferent direction. Across subjects, the level of ∼20 Hz coherence between cortex and periphery positively correlated with the “burstiness” of ∼20 Hz SM1 (Pearson r ≈ 0.65) and peripheral fluctuations (r ≈ 0.9). Thus, ∼20 Hz coherence between cortex and periphery is tightly linked to the presence of ∼20 Hz bursts in SM1 and peripheral activity. However, the very high correlation with peripheral fluctuations suggests that the periphery is the limiting factor. At frequencies <3 Hz, both SM1 signals and ∼20 Hz SM1 envelope were coherent with both force and its absolute change rate. The effective coupling dominated in the efferent direction between (1) force and the ∼20 Hz SM1 envelope and (2) the absolute change rate of the force and SM1 signals. Together, our data favor the view that ∼20 Hz coherence between cortex and periphery during isometric contraction builds on the presence of ∼20 Hz SM1 oscillations and needs not rely on feedback from the periphery. They also suggest that effective cortical proprioceptive processing operates at <3 Hz frequencies, even during steady isometric contractions. SIGNIFICANCE STATEMENT Accurate motor actions are made possible by continuous communication between the cortex and spinal motoneurons, but the neurophysiological basis of this communication is poorly understood. Using MEG recordings in humans maintaining steady isometric muscle contractions, we found evidence that the cortex sends population-level motor commands that tend to structure according to the ∼20 Hz sensorimotor rhythm, and that it dynamically adapts these commands based on the <3 Hz fluctuations of proprioceptive feedback. To our knowledge, this is the first report to give a comprehensive account of how the human brain dynamically handles the flow of proprioceptive information and converts it into appropriate motor command to keep the contraction force steady.
Collapse
|
38
|
Laine CM, Valero-Cuevas FJ. Intermuscular coherence reflects functional coordination. J Neurophysiol 2017; 118:1775-1783. [PMID: 28659460 DOI: 10.1152/jn.00204.2017] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
Coherence analysis has the ability to identify the presence of common descending drive shared by motor unit pools and reveals its spectral properties. However, the link between spectral properties of shared neural drive and functional interactions among muscles remains unclear. We assessed shared neural drive between muscles of the thumb and index finger while participants executed two mechanically distinct precision pinch tasks, each requiring distinct functional coordination among muscles. We found that shared neural drive was systematically reduced or enhanced at specific frequencies of interest (~10 and ~40 Hz). While amplitude correlations between surface EMG signals also exhibited changes across tasks, only their coherence has strong physiological underpinnings indicative of neural binding. Our results support the use of intermuscular coherence as a tool to detect when coactivated muscles are members of a functional group or synergy of neural origin. Furthermore, our results demonstrate the advantages of considering neural binding at 10, ~20, and >30 Hz, as indicators of task-dependent neural coordination strategies.NEW & NOTEWORTHY It is often unclear whether correlated activity among muscles reflects their neural binding or simply reflects the constraints defining the task. Using the fact that high-frequency coherence between EMG signals (>6 Hz) is thought to reflect shared neural drive, we demonstrate that coherence analysis can reveal the neural origin of distinct muscle coordination patterns required by different tasks.
Collapse
Affiliation(s)
- Christopher M Laine
- Brain-Body Dynamics Laboratory, Department of Biomedical Engineering, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California
| | - Francisco J Valero-Cuevas
- Brain-Body Dynamics Laboratory, Department of Biomedical Engineering, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California
| |
Collapse
|
39
|
Alavash M, Daube C, Wöstmann M, Brandmeyer A, Obleser J. Large-scale network dynamics of beta-band oscillations underlie auditory perceptual decision-making. Netw Neurosci 2017; 1:166-191. [PMID: 29911668 PMCID: PMC5988391 DOI: 10.1162/netn_a_00009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/01/2017] [Indexed: 11/24/2022] Open
Abstract
Perceptual decisions vary in the speed at which we make them. Evidence suggests that translating sensory information into perceptual decisions relies on distributed interacting neural populations, with decision speed hinging on power modulations of the neural oscillations. Yet the dependence of perceptual decisions on the large-scale network organization of coupled neural oscillations has remained elusive. We measured magnetoencephalographic signals in human listeners who judged acoustic stimuli composed of carefully titrated clouds of tone sweeps. These stimuli were used in two task contexts, in which the participants judged the overall pitch or direction of the tone sweeps. We traced the large-scale network dynamics of the source-projected neural oscillations on a trial-by-trial basis using power-envelope correlations and graph-theoretical network discovery. In both tasks, faster decisions were predicted by higher segregation and lower integration of coupled beta-band (∼16-28 Hz) oscillations. We also uncovered the brain network states that promoted faster decisions in either lower-order auditory or higher-order control brain areas. Specifically, decision speed in judging the tone sweep direction critically relied on the nodal network configurations of anterior temporal, cingulate, and middle frontal cortices. Our findings suggest that global network communication during perceptual decision-making is implemented in the human brain by large-scale couplings between beta-band neural oscillations.
Collapse
Affiliation(s)
- Mohsen Alavash
- Department of Psychology, University of Lübeck, Germany
- Max Planck Research Group “Auditory Cognition,” Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christoph Daube
- Max Planck Research Group “Auditory Cognition,” Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Malte Wöstmann
- Department of Psychology, University of Lübeck, Germany
- Max Planck Research Group “Auditory Cognition,” Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Alex Brandmeyer
- Max Planck Research Group “Auditory Cognition,” Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Germany
- Max Planck Research Group “Auditory Cognition,” Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
40
|
Reyes A, Laine CM, Kutch JJ, Valero-Cuevas FJ. Beta Band Corticomuscular Drive Reflects Muscle Coordination Strategies. Front Comput Neurosci 2017; 11:17. [PMID: 28420975 PMCID: PMC5378725 DOI: 10.3389/fncom.2017.00017] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/10/2017] [Indexed: 12/11/2022] Open
Abstract
During force production, hand muscle activity is known to be coherent with activity in primary motor cortex, specifically in the beta-band (15–30 Hz) frequency range. It is not clear, however, if this coherence reflects the control strategy selected by the nervous system for a given task, or if it instead reflects an intrinsic property of cortico-spinal communication. Here, we measured corticomuscular and intermuscular coherence between muscles of index finger and thumb while a two-finger pinch grip of identical net force was applied to objects which were either stable (allowing synergistic activation of finger muscles) or unstable (requiring individuated finger control). We found that beta-band corticomuscular coherence with the first dorsal interosseous (FDI) and abductor pollicis brevis (APB) muscles, as well as their beta-band coherence with each other, was significantly reduced when individuated control of the thumb and index finger was required. We interpret these findings to show that beta-band coherence is reflective of a synergistic control strategy in which the cortex binds task-related motor neurons into functional units.
Collapse
Affiliation(s)
- Alexander Reyes
- Brain-Body Dynamics Lab, Department of Biomedical Engineering, University of Southern CaliforniaLos Angeles, CA, USA
| | - Christopher M Laine
- Brain-Body Dynamics Lab, Department of Biomedical Engineering, University of Southern CaliforniaLos Angeles, CA, USA
| | - Jason J Kutch
- Applied Mathematical Physiology Lab, Division of Biokinesiology and Physical Therapy, University of Southern CaliforniaLos Angeles, CA, USA
| | - Francisco J Valero-Cuevas
- Brain-Body Dynamics Lab, Department of Biomedical Engineering, University of Southern CaliforniaLos Angeles, CA, USA
| |
Collapse
|
41
|
Bauer R, Gharabaghi A. Constraints and Adaptation of Closed-Loop Neuroprosthetics for Functional Restoration. Front Neurosci 2017; 11:111. [PMID: 28348511 PMCID: PMC5346545 DOI: 10.3389/fnins.2017.00111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 02/21/2017] [Indexed: 01/08/2023] Open
Abstract
Closed-loop neuroprosthetics aim to compensate for lost function, e.g., by controlling external devices such as prostheses or wheelchairs. Such assistive approaches seek to maximize speed and classification accuracy for high-dimensional control. More recent approaches use similar technology, but aim to restore lost motor function in the long term. To achieve this goal, restorative neuroprosthetics attempt to facilitate motor re-learning and to strengthen damaged and/or alternative neural connections on the basis of neurofeedback training within rehabilitative environments. Such a restorative approach requires reinforcement learning of self-modulated brain activity which is considered to be beneficial for functional rehabilitation, e.g., improvement of β-power modulation over sensorimotor areas for post-stroke movement restoration. Patients with motor impairments, however, may also have a compromised ability for motor task-related regulation of the targeted brain activity. This would affect the estimation of feature weights and hence the classification accuracy of the feedback device. This, in turn, can frustrate the patients and compromise their motor learning. Furthermore, the feedback training may even become erroneous when unconstrained classifier adaptation-which is often used in assistive approaches-is also applied in this rehabilitation context. In conclusion, the conceptual switch from assistance toward restoration necessitates a methodological paradigm shift from classification accuracy toward instructional efficiency. Furthermore, a constrained feature space, a priori regularized feature weights, and difficulty adaptation present key elements of restorative brain interfaces. These factors need, therefore, to be addressed within a therapeutic framework to facilitate reinforcement learning of brain self-regulation for restorative purposes.
Collapse
Affiliation(s)
- Robert Bauer
- Division of Functional and Restorative Neurosurgery, Centre for Integrative Neuroscience, Eberhard Karls University TuebingenTuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, Centre for Integrative Neuroscience, Eberhard Karls University TuebingenTuebingen, Germany
| |
Collapse
|
42
|
Gharabaghi A. What Turns Assistive into Restorative Brain-Machine Interfaces? Front Neurosci 2016; 10:456. [PMID: 27790085 PMCID: PMC5061808 DOI: 10.3389/fnins.2016.00456] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 09/21/2016] [Indexed: 12/18/2022] Open
Abstract
Brain-machine interfaces (BMI) may support motor impaired patients during activities of daily living by controlling external devices such as prostheses (assistive BMI). Moreover, BMIs are applied in conjunction with robotic orthoses for rehabilitation of lost motor function via neurofeedback training (restorative BMI). Using assistive BMI in a rehabilitation context does not automatically turn them into restorative devices. This perspective article suggests key features of restorative BMI and provides the supporting evidence: In summary, BMI may be referred to as restorative tools when demonstrating subsequently (i) operant learning and progressive evolution of specific brain states/dynamics, (ii) correlated modulations of functional networks related to the therapeutic goal, (iii) subsequent improvement in a specific task, and (iv) an explicit correlation between the modulated brain dynamics and the achieved behavioral gains. Such findings would provide the rationale for translating BMI-based interventions into clinical settings for reinforcement learning and motor rehabilitation following stroke.
Collapse
Affiliation(s)
- Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tuebingen, Germany
| |
Collapse
|
43
|
Flash T, Bizzi E. Cortical circuits and modules in movement generation: experiments and theories. Curr Opin Neurobiol 2016; 41:174-178. [PMID: 27736649 DOI: 10.1016/j.conb.2016.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 01/07/2023]
Abstract
Here we review recent studies of the cortical circuits subserving the control of posture and movement. This topic is addressed from neurophysiological and evolutionary perspectives describing recent advancements achieved through experimental studies in humans and non-human primates. We also describe current debates and controversies concerning motor mapping within the motor cortex and the different computational approaches aimed at resolving the mystery around motor representations and computations. In recent years there is growing interest in the possibly modular organization of motor representations and dynamical processes and the potential of such studies to provide new clues into motor information processing. Hence this review focuses on motor modularity, highlighting the new research directions inspired by empirical findings and theoretical models developed within the last several years.
Collapse
Affiliation(s)
- Tamar Flash
- Dept of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Emilio Bizzi
- McGovern Institute and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| |
Collapse
|
44
|
Maezawa H. Cortico-muscular communication for motor control of the tongue in humans: A review. J Oral Biosci 2016. [DOI: 10.1016/j.job.2016.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Raco V, Bauer R, Tharsan S, Gharabaghi A. Combining TMS and tACS for Closed-Loop Phase-Dependent Modulation of Corticospinal Excitability: A Feasibility Study. Front Cell Neurosci 2016; 10:143. [PMID: 27252625 PMCID: PMC4879130 DOI: 10.3389/fncel.2016.00143] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/12/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The corticospinal excitability indexed by motor evoked potentials (MEPs) following transcranial magnetic stimulation (TMS) of the sensorimotor cortex is characterized by large variability. The instantaneous phase of cortical oscillations at the time of the stimulation has been suggested as a possible source of this variability. To explore this hypothesis, a specific phase needs to be targeted by TMS pulses with high temporal precision. OBJECTIVE The aim of this feasibility study was to introduce a methodology capable of exploring the effects of phase-dependent stimulation by the concurrent application of alternating current stimulation (tACS) and TMS. METHOD We applied online calibration and closed-loop TMS to target four specific phases (0°, 90°, 180° and 270°) of simultaneous 20 Hz tACS over the primary motor cortex (M1) of seven healthy subjects. RESULT The integrated stimulation system was capable of hitting the target phase with high precision (SD ± 2.05 ms, i.e., ± 14.45°) inducing phase-dependent MEP modulation with a phase lag (CI95% = -40.37° to -99.61°) which was stable across subjects (p = 0.001). CONCLUSION The combination of different neuromodulation techniques facilitates highly specific brain state-dependent stimulation, and may constitute a valuable tool for exploring the physiological and therapeutic effect of phase-dependent stimulation, e.g., in the context of neurorehabilitation.
Collapse
Affiliation(s)
- Valerio Raco
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tübingen Baden-Württemberg, Germany
| | - Robert Bauer
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tübingen Baden-Württemberg, Germany
| | - Srikandarajah Tharsan
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tübingen Baden-Württemberg, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tübingen Baden-Württemberg, Germany
| |
Collapse
|
46
|
Royter V, Gharabaghi A. Brain State-Dependent Closed-Loop Modulation of Paired Associative Stimulation Controlled by Sensorimotor Desynchronization. Front Cell Neurosci 2016; 10:115. [PMID: 27242429 PMCID: PMC4861730 DOI: 10.3389/fncel.2016.00115] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/20/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pairing peripheral electrical stimulation (ES) and transcranial magnetic stimulation (TMS) increases corticospinal excitability when applied with a specific temporal pattern. When the two stimulation techniques are applied separately, motor imagery (MI)-related oscillatory modulation amplifies both ES-related cortical effects-sensorimotor event-related desynchronization (ERD), and TMS-induced peripheral responses-motor-evoked potentials (MEP). However, the influence of brain self-regulation on the associative pairing of these stimulation techniques is still unclear. OBJECTIVE The aim of this pilot study was to investigate the effects of MI-related ERD during associative ES and TMS on subsequent corticospinal excitability. METHOD The paired application of functional electrical stimulation (FES) of the extensor digitorum communis (EDC) muscle and subsequent single-pulse TMS (110% resting motor threshold (RMT)) of the contralateral primary motor cortex (M1) was controlled by beta-band (16-22 Hz) ERD during MI of finger extension and applied within a brain-machine interface environment in six healthy subjects. Neural correlates were probed by acquiring the stimulus-response curve (SRC) of both MEP peak-to-peak amplitude and area under the curve (AUC) before and after the intervention. RESULT The application of approximately 150 pairs of associative FES and TMS resulted in a significant increase of MEP amplitudes and AUC, indicating that the induced increase of corticospinal excitability was mediated by the recruitment of additional neuronal pools. MEP increases were brain state-dependent and correlated with beta-band ERD, but not with the background EDC muscle activity; this finding was independent of the FES intensity applied. CONCLUSION These results could be relevant for developing closed-loop therapeutic approaches such as the application of brain state-dependent, paired associative stimulation (PAS) in the context of neurorehabilitation.
Collapse
Affiliation(s)
- Vladislav Royter
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, and Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen Tuebingen, Germany
| |
Collapse
|
47
|
Kraus D, Naros G, Bauer R, Khademi F, Leão MT, Ziemann U, Gharabaghi A. Brain State-Dependent Transcranial Magnetic Closed-Loop Stimulation Controlled by Sensorimotor Desynchronization Induces Robust Increase of Corticospinal Excitability. Brain Stimul 2016; 9:415-424. [DOI: 10.1016/j.brs.2016.02.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 02/01/2016] [Accepted: 02/10/2016] [Indexed: 10/22/2022] Open
|
48
|
Naros G, Naros I, Grimm F, Ziemann U, Gharabaghi A. Reinforcement learning of self-regulated sensorimotor β-oscillations improves motor performance. Neuroimage 2016; 134:142-152. [PMID: 27046109 DOI: 10.1016/j.neuroimage.2016.03.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/29/2016] [Accepted: 03/07/2016] [Indexed: 10/22/2022] Open
Abstract
Self-regulation of sensorimotor oscillations is currently researched in neurorehabilitation, e.g. for priming subsequent physiotherapy in stroke patients, and may be modulated by neurofeedback or transcranial brain stimulation. It has still to be demonstrated, however, whether and under which training conditions such brain self-regulation could also result in motor gains. Thirty-two right-handed, healthy subjects participated in a three-day intervention during which they performed 462 trials of kinesthetic motor-imagery while a brain-robot interface (BRI) turned event-related β-band desynchronization of the left sensorimotor cortex into the opening of the right hand by a robotic orthosis. Different training conditions were compared in a parallel-group design: (i) adaptive classifier thresholding and contingent feedback, (ii) adaptive classifier thresholding and non-contingent feedback, (iii) non-adaptive classifier thresholding and contingent feedback, and (iv) non-adaptive classifier thresholding and non-contingent feedback. We studied the task-related cortical physiology with electroencephalography and the behavioral performance in a subsequent isometric motor task. Contingent neurofeedback and adaptive classifier thresholding were critical for learning brain self-regulation which, in turn, led to behavioral gains after the intervention. The acquired skill for sustained sensorimotor β-desynchronization correlated significantly with subsequent motor improvement. Operant learning of brain self-regulation with a BRI may offer a therapeutic perspective for severely affected stroke patients lacking residual hand function.
Collapse
Affiliation(s)
- G Naros
- Division of Functional and Restorative Neurosurgery, University of Tuebingen, Germany.
| | - I Naros
- Division of Functional and Restorative Neurosurgery, University of Tuebingen, Germany; Centre for Integrative Neuroscience, University of Tuebingen, Germany
| | - F Grimm
- Division of Functional and Restorative Neurosurgery, University of Tuebingen, Germany; Centre for Integrative Neuroscience, University of Tuebingen, Germany
| | - U Ziemann
- Department of Neurology and Stroke, University of Tuebingen, Germany; Hertie Institute for Clinical Brain Research, University of Tuebingen, Germany
| | - A Gharabaghi
- Division of Functional and Restorative Neurosurgery, University of Tuebingen, Germany; Centre for Integrative Neuroscience, University of Tuebingen, Germany.
| |
Collapse
|
49
|
Fast Oscillatory Commands from the Motor Cortex Can Be Decoded by the Spinal Cord for Force Control. J Neurosci 2016; 35:13687-97. [PMID: 26446221 DOI: 10.1523/jneurosci.1950-15.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Oscillations in the beta and gamma bands (13-30 Hz; 35-70 Hz) have often been observed in motor cortical outputs that reach the spinal cord, acting on motoneurons and interneurons. However, the frequencies of these oscillations are above the muscle force frequency range. A current view is that the transformation of the motoneuron pool inputs into force is linear. For this reason possible roles for these oscillations are unclear, since if this transformation is linear, the high frequencies in the motoneuron inputs (e.g., 20 Hz from pyramidal tract neurons) would be filtered out by the muscle and have no effect on force control. A biologically inspired mathematical model of the neuromuscular system was used to investigate the impact of high-frequency cortical oscillatory activity on force control. The model simulation results evidenced that a typical motoneuron pool has a nonlinear behavior that enables the decoding of a high-frequency oscillatory input. An input at a single frequency (e.g., beta band) leads to an increase in the steady-state force generated by the muscle. When the input oscillation was amplitude modulated at a given low frequency, the force oscillated at this frequency. In both cases, the mechanism relies on the recruitment and derecruitment of motor units in response to the oscillatory descending drive. Therefore, the results from this study suggest a potential role in force control for cortical oscillations at frequencies at or above the beta band, despite the low-pass behavior of the muscles. SIGNIFICANCE STATEMENT The role of cortical oscillations in motor control has been a long-standing question, one view being that they are an epiphenomenon. Fast oscillations are known to reach the spinal cord, and hence they have been thought to affect muscle behavior. However, experimental limitations have hampered further advances to explain how they could influence muscle force. An approach for such a challenge was adopted in the present research: to study the problem through computer simulations of an advanced biologically compatible mathematical model. Using such a model, we found that the well-known mechanism of recruitment and derecruitment of the spinal cord motoneurons can allow the muscle to respond to cortical oscillations, suggesting that these oscillations are not epiphenomena in motor control.
Collapse
|
50
|
Scharinger M, Monahan PJ, Idsardi WJ. Linguistic category structure influences early auditory processing: Converging evidence from mismatch responses and cortical oscillations. Neuroimage 2016; 128:293-301. [PMID: 26780574 DOI: 10.1016/j.neuroimage.2016.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 12/30/2015] [Accepted: 01/02/2016] [Indexed: 10/22/2022] Open
Abstract
While previous research has established that language-specific knowledge influences early auditory processing, it is still controversial as to what aspects of speech sound representations determine early speech perception. Here, we propose that early processing primarily depends on information propagated top-down from abstractly represented speech sound categories. In particular, we assume that mid-vowels (as in 'bet') exert less top-down effects than the high-vowels (as in 'bit') because of their less specific (default) tongue height position as compared to either high- or low-vowels (as in 'bat'). We tested this assumption in a magnetoencephalography (MEG) study where we contrasted mid- and high-vowels, as well as the low- and high-vowels in a passive oddball paradigm. Overall, significant differences between deviants and standards indexed reliable mismatch negativity (MMN) responses between 200 and 300ms post-stimulus onset. MMN amplitudes differed in the mid/high-vowel contrasts and were significantly reduced when a mid-vowel standard was followed by a high-vowel deviant, extending previous findings. Furthermore, mid-vowel standards showed reduced oscillatory power in the pre-stimulus beta-frequency band (18-26Hz), compared to high-vowel standards. We take this as converging evidence for linguistic category structure to exert top-down influences on auditory processing. The findings are interpreted within the linguistic model of underspecification and the neuropsychological predictive coding framework.
Collapse
Affiliation(s)
- Mathias Scharinger
- Department of Language and Literature, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany; Department of Linguistics, University of Maryland, College Park, MD, USA; Biological incl. Cognitive Psychology, Institute for Psychology, University of Leipzig, Germany.
| | - Philip J Monahan
- Centre for French and Linguistics, University of Toronto Scarborough, Canada; Department of Linguistics, University of Toronto, Canada
| | - William J Idsardi
- Department of Linguistics, University of Maryland, College Park, MD, USA
| |
Collapse
|