1
|
Liu Y, Whitfield TW, Bell GW, Guo R, Flamier A, Young RA, Jaenisch R. Exploring the complexity of MECP2 function in Rett syndrome. Nat Rev Neurosci 2025:10.1038/s41583-025-00926-1. [PMID: 40360671 DOI: 10.1038/s41583-025-00926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2025] [Indexed: 05/15/2025]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder that is mainly caused by mutations in the methyl-DNA-binding protein MECP2. MECP2 is an important epigenetic regulator that plays a pivotal role in neuronal gene regulation, where it has been reported to function as both a repressor and an activator. Despite extensive efforts in mechanistic studies over the past two decades, a clear consensus on how MECP2 dysfunction impacts molecular mechanisms and contributes to disease progression has not been reached. Here, we review recent insights from epigenomic, transcriptomic and proteomic studies that advance our understanding of MECP2 as an interacting hub for DNA, RNA and transcription factors, orchestrating diverse processes that are crucial for neuronal function. By discussing findings from different model systems, we identify crucial epigenetic details and cofactor interactions, enriching our understanding of the multifaceted roles of MECP2 in transcriptional regulation and chromatin structure. These mechanistic insights offer potential avenues for rational therapeutic design for RTT.
Collapse
Affiliation(s)
- Yi Liu
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - George W Bell
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Ruisi Guo
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Anthony Flamier
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Cooley Coleman JA, Moffitt BA, Bridges WC, Jones K, May M, Skinner C, Friez MJ, Skinner SA, Schwartz CE, Boccuto L. A novel approach to metabolic profiling in case models of MECP2-related disorders. Metab Brain Dis 2025; 40:124. [PMID: 39945871 PMCID: PMC11825590 DOI: 10.1007/s11011-025-01546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/26/2025] [Indexed: 02/16/2025]
Abstract
Genetic abnormalities of the MECP2 gene cause several conditions grouped under the umbrella term of MECP2-related disorders and characterized by a variety of phenotypes. We applied a functional approach to identify metabolic profiles in two patients with Rett syndrome (RTT) and one patient with MECP2 duplication syndrome (MRXSL). Such an approach is based on the Phenotype Mammalian Microarray (PM-M) technology, which is designed to assess the cellular production of energy in the presence of different compounds generating distinct metabolic environments. The findings in the three case models were compared versus 50 controls. Although the small number of samples prevented most results from reaching significant p-values when adjusted with the Benjamini-Hochberg correction, some interesting trends emerged. Some compounds indicated metabolic trends shared by the two conditions, like increased energy production in the presence of energy sources such as pectin, adenosine, and pyruvic acid, or decreased metabolic response to certain hormones. Other compounds showed opposite trends for the two disorders, like interleukin-1 beta (IL-1 beta), which caused decreased energy production in the RTT group but increased energy production in the patient with MRXSL. The response to IL-1 beta also offers valuable insights into the pathogenic mechanism and potential therapeutic approaches. The metabolic profiling of MECP2-related disorders bears a remarkable translational potential since it may be helpful to investigate the molecular abnormalities underlying the phenotypical variety in this spectrum of conditions, develop biomarkers for the identification of ideal candidates for treatments like the recently approved trofenatide, and identify potential targets for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
| | - Bridgette A Moffitt
- School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, 29634, USA
| | - William C Bridges
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Kelly Jones
- Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - Melanie May
- Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | | | | | | | | | - Luigi Boccuto
- Greenwood Genetic Center, Greenwood, SC, 29646, USA.
- School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
3
|
Vega-Hanna L, Casas-Alba D, Balsells S, Bolasell M, Rubio P, García-García A, García-García O, O’Callaghan M, Pascual-Alonso A, Armstrong J, MDS Group, Martinez-Monseny AF. MECP2 Duplication Syndrome: AI-Based Diagnosis, Severity Scale Development and Correlation with Clinical and Molecular Variables. Diagnostics (Basel) 2024; 15:10. [PMID: 39795538 PMCID: PMC11720083 DOI: 10.3390/diagnostics15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Background: MECP2 duplication syndrome (MDS) (MIM#300260) is a rare X-linked neurodevelopmental disorder. This study aims to (1) develop a specific clinical severity scale, (2) explore its correlation with clinical and molecular variables, and (3) automate diagnosis using the Face2gene platform. Methods: A retrospective study was conducted on genetically confirmed MDS patients who were evaluated at a pediatric hospital between 2012 and 2024. Epidemiological, clinical, and molecular data were collected. A standardized clinical questionnaire was collaboratively developed with input from physicians and parents. Patient photographs were used to train Face2Gene. Results: Thirty-five patients (0-24 years, 30 males) were included. Key features in males comprised intellectual disability (100%), hypotonia (93%), autism spectrum disorder (77%) and developmental regression (52%). Recurrent respiratory infections (79%), dysphagia (73%), constipation (73%) and gastroesophageal reflux (57%) were common. Seizures occurred in 53%, with 33% being treatment-refractory. The Face2Gene algorithm was successfully trained to identify MDS. A specific clinical severity scale (MECPDup) was developed and validated, correlating with the MBA (a scale developed for Rett syndrome). The MECPDup score was significantly higher in males (p < 0.001) and those with early death (p = 0.003). It showed significant positive correlations with age (p < 0.001) and duplication size (p = 0.044). Conclusions: This study expands the understanding of MDS through comprehensive clinical and molecular insights. The integration of AI-based facial recognition technology and the development of the MECPDup severity scale hold promise for enhancing diagnostic accuracy, monitoring disease progression, and evaluating treatment responses in individuals affected by MDS.
Collapse
Affiliation(s)
- Lourdes Vega-Hanna
- Genetics Department, Hospital Sant Joan de Déu, Member of ERN-ITHACA, 08950 Esplugues de Llobregat, Spain
| | - Dídac Casas-Alba
- Genetics Department, Hospital Sant Joan de Déu, Member of ERN-ITHACA, 08950 Esplugues de Llobregat, Spain
| | - Sol Balsells
- Statistics Department, Fundació de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Mercè Bolasell
- Genetics Department, Hospital Sant Joan de Déu, Member of ERN-ITHACA, 08950 Esplugues de Llobregat, Spain
| | - Patricia Rubio
- Genetics Department, Hospital Sant Joan de Déu, Member of ERN-ITHACA, 08950 Esplugues de Llobregat, Spain
| | - Ana García-García
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, 08950 Barcelona, Spain;
| | - Oscar García-García
- Servei d’Atenció Ambulatòria, Fundació Aspace Catalunya, 08038 Barcelona, Spain;
| | - Mar O’Callaghan
- Pediatric Neurology Department, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain;
| | | | - Judith Armstrong
- Genetics Department, Hospital Sant Joan de Déu, Member of ERN-ITHACA, 08950 Esplugues de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | | |
Collapse
|
4
|
Santistevan NJ, Ford CT, Gilsdorf CS, Grinblat Y. Behavioral and transcriptomic analyses of mecp2 function in zebrafish. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32981. [PMID: 38551133 DOI: 10.1002/ajmg.b.32981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 11/15/2024]
Abstract
Rett syndrome (RTT), a human neurodevelopmental disorder characterized by severe cognitive and motor impairments, is caused by dysfunction of the conserved transcriptional regulator Methyl-CpG-binding protein 2 (MECP2). Genetic analyses in mouse Mecp2 mutants, which exhibit key features of human RTT, have been essential for deciphering the mechanisms of MeCP2 function; nonetheless, our understanding of these complex mechanisms is incomplete. Zebrafish mecp2 mutants exhibit mild behavioral deficits but have not been analyzed in depth. Here, we combine transcriptomic and behavioral assays to assess baseline and stimulus-evoked motor responses and sensory filtering in zebrafish mecp2 mutants from 5 to 7 days post-fertilization (dpf). We show that zebrafish mecp2 function is required for normal thigmotaxis but is dispensable for gross movement, acoustic startle response, and sensory filtering (habituation and sensorimotor gating), and reveal a previously unknown role for mecp2 in behavioral responses to visual stimuli. RNA-seq analysis identified a large gene set that requires mecp2 function for correct transcription at 4 dpf, and pathway analysis revealed several pathways that require MeCP2 function in both zebrafish and mammals. These findings show that MeCP2's function as a transcriptional regulator is conserved across vertebrates and supports using zebrafish to complement mouse modeling in elucidating these conserved mechanisms.
Collapse
Affiliation(s)
- Nicholas J Santistevan
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
- Genetics Ph.D. Training Program, University of Wisconsin, Madison, Wisconsin, USA
| | - Colby T Ford
- School of Data Science, University of North Carolina, Charlotte, North Carolina, USA
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, North Carolina, USA
- Tuple, LLC, Charlotte, North Carolina, USA
| | - Cole S Gilsdorf
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
| | - Yevgenya Grinblat
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Peng T, Cui J, Ni Z, Tang Y, Cao X, Li S, Cheng X, Huang J. Methyl-CpG-binding protein 2 regulates CYP27A1-induced myometrial contraction during preterm labor. Mol Hum Reprod 2024; 30:gaae016. [PMID: 38704863 DOI: 10.1093/molehr/gaae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/25/2024] [Indexed: 05/07/2024] Open
Abstract
Persistent and intense uterine contraction is a risk factor for preterm labor. We previously found that methyl-CpG-binding protein 2 (MeCP2), as a target of infection-related microRNA miR-212-3p, may play an inhibitory role in regulating myometrium contraction. However, the molecular mechanisms by which MeCP2 regulates myometrial contraction are still unknown. In this study, we found that MeCP2 protein expression was lower in myometrial specimens obtained from preterm labor cases, compared to those obtained from term labor cases. Herein, using RNA sequence analysis of global gene expression in human uterine smooth muscle cells (HUSMCs) following siMeCP2, we show that MeCP2 silencing caused dysregulation of the cholesterol metabolism pathway. Notably, MeCP2 silencing resulted in the upregulation of CYP27A1, the key enzyme involved in regulating cholesterol homeostasis, in HUSMCs. Methylation-specific PCR, chromatin immunoprecipitation, and dual luciferase reporter gene technology indicated that MeCP2 could bind to the methylated CYP27A1 promoter region and repress its transcription. Administration of siCYP27A1 in a lipopolysaccharide (LPS)-induced preterm labor mouse model delayed the onset of preterm labor. Human preterm myometrium and the LPS-induced preterm labor mouse model both showed lower expression of MeCP2 and increased expression of CYP27A1. These results demonstrated that aberrant upregulation of CYP27A1 induced by MeCP2 silencing is one of the mechanisms facilitating inappropriate myometrial contraction. CYP27A1 could be exploited as a novel therapeutic target for preterm birth.
Collapse
Affiliation(s)
- Ting Peng
- Department of Obstetrics, Changning Maternity & Infant Health Hospital, East China Normal University, Shanghai, China
- Department of Obstetrics, Shanghai Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jiayan Cui
- Department of Pharmaceutical Sciences,Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ziyun Ni
- Department of Pharmaceutical Sciences,Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yao Tang
- Department of Obstetrics, Shanghai Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xiaojing Cao
- Department of Pharmaceutical Sciences,Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Sihan Li
- Department of Pharmaceutical Sciences,Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xixi Cheng
- Department of Obstetrics, Shanghai Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jin Huang
- Department of Pharmaceutical Sciences,Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
6
|
Banazadeh M, Abiri A, Poortaheri MM, Asnaashari L, Langarizadeh MA, Forootanfar H. Unexplored power of CRISPR-Cas9 in neuroscience, a multi-OMICs review. Int J Biol Macromol 2024; 263:130413. [PMID: 38408576 DOI: 10.1016/j.ijbiomac.2024.130413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/27/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The neuroscience and neurobiology of gene editing to enhance learning and memory is of paramount interest to the scientific community. The advancements of CRISPR system have created avenues to treat neurological disorders by means of versatile modalities varying from expression to suppression of genes and proteins. Neurodegenerative disorders have also been attributed to non-canonical DNA secondary structures by affecting neuron activity through controlling gene expression, nucleosome shape, transcription, translation, replication, and recombination. Changing DNA regulatory elements which could contribute to the fate and function of neurons are thoroughly discussed in this review. This study presents the ability of CRISPR system to boost learning power and memory, treat or cure genetically-based neurological disorders, and alleviate psychiatric diseases by altering the activity and the irritability of the neurons at the synaptic cleft through DNA manipulation, and also, epigenetic modifications using Cas9. We explore and examine how each different OMIC techniques can come useful when altering DNA sequences. Such insight into the underlying relationship between OMICs and cellular behaviors leads us to better neurological and psychiatric therapeutics by intelligently designing and utilizing the CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ardavan Abiri
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520, USA
| | | | - Lida Asnaashari
- Student Research Committee, Kerman Universiy of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Langarizadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
7
|
Guida N, Serani A, Sanguigno L, Mascolo L, Cuomo O, Fioriniello S, Marano D, Ragione FD, Anzilotti S, Brancaccio P, Molinaro P, Pignataro G, Annunziato L, Formisano L. Stroke Causes DNA Methylation at Ncx1 Heart Promoter in the Brain Via DNMT1/MeCP2/REST Epigenetic Complex. J Am Heart Assoc 2024; 13:e030460. [PMID: 38456444 PMCID: PMC11010005 DOI: 10.1161/jaha.123.030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/03/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND REST (Repressor-Element 1 [RE1]-silencing transcription factor) inhibits Na+/Ca2+exchanger-1 (Ncx1) transcription in neurons through the binding of RE1 site on brain promoter (Br) after stroke. We identified a new putative RE1 site in Ncx1 heart promoter (Ht) sequence (Ht-RE1) that participates in neuronal Ncx1 transcription. Because REST recruits DNA-methyltransferase-1 (DNMT1) and MeCP2 (methyl-CpG binding protein 2) on different neuronal genes, we investigated the role of this complex in Ncx1 transcriptional regulation after stroke. METHODS AND RESULTS Luciferase experiments performed in SH-SY5Y cells demonstrated that Br activity was selectively decreased by REST, whereas Ht activity was reduced by DNMT1, MeCP2, and REST. Notably, site-direct mutagenesis of Ht-RE1 prevented REST-dependent downregulation of Ncx1. Furthermore, in temporoparietal cortex of 8-week-old male wild-type mice (C57BL/6) subjected to transient middle cerebral artery occlusion, DNMT1, MeCP2, and REST binding to Ht promoter was increased, with a consequent DNA promoter hypermethylation. Intracerebroventricular injection of siREST prevented DNMT1/MeCP2 binding to Ht and Ncx1 downregulation, thus causing a reduction in stroke-induced damage. Consistently, in cortical neurons subjected to oxygen and glucose deprivation plus reoxygenation Ncx1 knockdown counteracted neuronal protection induced by the demethylating agent 5-azacytidine. For comparisons between 2 experimental groups, Student's t test was used, whereas for more than 2 experimental groups, 1-way ANOVA was used, followed by Tukey or Newman Keuls. Statistical significance was set at P<0.05. CONCLUSIONS If the results of this study are confirmed in humans, it could be asserted that DNMT1/MeCP2/REST complex disruption could be a new pharmacological strategy to reduce DNA methylation of Ht in the brain, ameliorating stroke damage.
Collapse
Affiliation(s)
- Natascia Guida
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Angelo Serani
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Luca Sanguigno
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Luigi Mascolo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Salvatore Fioriniello
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso"National Research Council of ItalyNapoliItaly
| | - Domenico Marano
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso"National Research Council of ItalyNapoliItaly
| | - Floriana Della Ragione
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso"National Research Council of ItalyNapoliItaly
| | | | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| | | | - Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine“Federico II” University of NaplesNaplesItaly
| |
Collapse
|
8
|
Lockman S, Genung M, Sheikholeslami K, Sher AA, Kroft D, Buist M, Olson CO, Toor B, Rastegar M. Transcriptional Inhibition of the Mecp2 Promoter by MeCP2E1 and MeCP2E2 Isoforms Suggests Negative Auto-Regulatory Feedback that can be Moderated by Metformin. J Mol Neurosci 2024; 74:14. [PMID: 38277073 DOI: 10.1007/s12031-023-02177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024]
Abstract
The epigenetic factor Methyl-CpG-Binding Protein 2 (MeCP2) is a nuclear protein that binds methylated DNA molecules (both 5-methylcytosine and 5-hydroxymethylcytosine) and controls gene transcription. MeCP2 is an important transcription factor that acts in a dose-dependent manner in the brain; thus, its optimal expression level in brain cells is important. As such, its deregulated expression, as well as gain- or loss-of-function mutation, lead to impaired neurodevelopment, and compromised structure and function of brain cells, particularly in neurons. Studies from others and us have characterized two well-recognized MeCP2 isoforms: MeCP2E1 and MeCP2E2. We have reported that in Daoy medulloblastoma brain cells, MeCP2E2 overexpression leads to MeCP2E1 protein degradation. Whether MeCP2 isoforms regulate the Mecp2 promoter regulatory elements remains unexplored. We previously showed that in Daoy cells, metformin (an anti-diabetic drug) induces MECP2E1 transcripts. However, possible impact of metformin on the Mecp2 promoter activity was not studied. Here, we generated stably transduced Daoy cell reporters to express EGFP driven by the Mecp2 promoter. Transduced cells were sorted into four EGFP-expressing groups (R4-to-R7) with different intensities of EGFP expression. Our results confirm that the Mecp2 promoter is active in Daoy cells, and that overexpression of either isoform inhibits the Mecp2 promoter activity, as detected by flow cytometry and luciferase reporter assays. Interestingly, metformin partially relieved the inhibitory effect of MeCP2E1 on the Mecp2 promoter, detected by flow cytometry. Taken together, our data provide important insight towards the regulation of MeCP2 isoforms at the promoter level, which might have biological relevance to the neurobiology of the brain.
Collapse
Affiliation(s)
- Sandhini Lockman
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Matthew Genung
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kimia Sheikholeslami
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Annan Ali Sher
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel Kroft
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Marjorie Buist
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Carl O Olson
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Brian Toor
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
9
|
Réthelyi JM, Vincze K, Schall D, Glennon J, Berkel S. The role of insulin/IGF1 signalling in neurodevelopmental and neuropsychiatric disorders - Evidence from human neuronal cell models. Neurosci Biobehav Rev 2023; 153:105330. [PMID: 37516219 DOI: 10.1016/j.neubiorev.2023.105330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/15/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Insulin and insulin-like growth factor 1 (IGF1) signalling play a central role in the development and maintenance of neurons in the brain, and human neurodevelopmental as well as neuropsychiatric disorders have been linked to impaired insulin and IGF1 signalling. This review focuses on the impairments of the insulin and IGF1 signalling cascade in the context of neurodevelopmental and neuropsychiatric disorders, based on evidence from human neuronal cell models. Clear evidence was obtained for impaired insulin and IGF1 receptor downstream signalling in neurodevelopmental disorders, while the evidence for its role in neuropsychiatric disorders was less substantial. Human neuronal model systems can greatly add to our knowledge about insulin/IGF1 signalling in the brain, its role in restoring dendritic maturity, and complement results from clinical studies and animal models. Moreover, they represent a useful model for the development of new therapeutic strategies. Further research is needed to systematically investigate the exact role of the insulin/IGF1 signalling cascades in neurodevelopmental and neuropsychiatric disorders, and to elucidate the respective therapeutic implications.
Collapse
Affiliation(s)
- János M Réthelyi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Katalin Vincze
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; Doctoral School of Mental Health Sciences, Semmelweis University, Budapest, Hungary
| | - Dorothea Schall
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Jeffrey Glennon
- Conway Institute of Biomedical and Biomolecular Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Simone Berkel
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany; Interdisciplinary Centre of Neurosciences (IZN), Heidelberg University, Germany.
| |
Collapse
|
10
|
Zhao Y, Qin F, Han S, Li S, Zhao Y, Wang H, Tian J, Cen X. MicroRNAs in drug addiction: Current status and future perspectives. Pharmacol Ther 2022; 236:108215. [DOI: 10.1016/j.pharmthera.2022.108215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022]
|
11
|
Bonefas KM, Iwase S. Soma-to-germline transformation in chromatin-linked neurodevelopmental disorders? FEBS J 2022; 289:2301-2317. [PMID: 34514717 PMCID: PMC8918023 DOI: 10.1111/febs.16196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/16/2021] [Accepted: 09/10/2021] [Indexed: 01/22/2023]
Abstract
Mutations in numerous chromatin regulators cause neurodevelopmental disorders (NDDs) with unknown mechanisms. Understandably, most research has focused on how chromatin regulators control gene expression that is directly relevant to brain development and function, such as synaptic genes. However, some NDD models surprisingly show ectopic expression of germline genes in the brain. These germline genes are usually expressed only in the primordial germ cells, testis, and ovaries for germ cell development and sexual reproduction. Such ectopic germline gene expression has been reported in several NDDs, including immunodeficiency, centromeric instability, facial anomalies syndrome 1; Kleefstra syndrome 1; MeCP2 duplication syndrome; and mental retardation, X-linked syndromic, Claes-Jensen type. The responsible genes, DNMT3B, G9A/GLP, MECP2, and KDM5C, all encode chromatin regulators for gene silencing. These mutations may therefore lead to germline gene derepression and, in turn, a severe identity crisis of brain cells-potentially interfering with normal brain development. Thus, the ectopic expression of germline genes is a unique hallmark defining this NDD subset and further implicates the importance of germline gene silencing during brain development. The functional impact of germline gene expression on brain development, however, remains undetermined. This perspective article explores how this apparent soma-to-germline transformation arises and how it may interfere with neurodevelopment through genomic instability and impaired sensory cilium formation. Furthermore, we also discuss how to test these hypotheses experimentally to ultimately determine the contribution of ectopic germline transcripts to chromatin-linked NDDs.
Collapse
Affiliation(s)
- Katherine M. Bonefas
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109,The University of Michigan Neuroscience Graduate Program,Corresponding authors: Please address correspondence to: , and
| | - Shigeki Iwase
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109,The University of Michigan Neuroscience Graduate Program,Corresponding authors: Please address correspondence to: , and
| |
Collapse
|
12
|
Loers G, Kleene R, Girbes Minguez M, Schachner M. The Cell Adhesion Molecule L1 Interacts with Methyl CpG Binding Protein 2 via Its Intracellular Domain. Int J Mol Sci 2022; 23:ijms23073554. [PMID: 35408913 PMCID: PMC8998178 DOI: 10.3390/ijms23073554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Cell adhesion molecule L1 regulates multiple cell functions, and L1 deficiency is linked to several neural diseases. Recently, we have identified methyl CpG binding protein 2 (MeCP2) as a potential binding partner of the intracellular L1 domain. By ELISA we show here that L1's intracellular domain binds directly to MeCP2 via the sequence motif KDET. Proximity ligation assay with cultured cerebellar and cortical neurons suggests a close association between L1 and MeCP2 in nuclei of neurons. Immunoprecipitation using MeCP2 antibodies and nuclear mouse brain extracts indicates that MeCP2 interacts with an L1 fragment of ~55 kDa (L1-55). Proximity ligation assay indicates that metalloproteases, β-site of amyloid precursor protein cleaving enzyme (BACE1) and ɣ-secretase, are involved in the generation of L1-55. Reduction in MeCP2 expression by siRNA decreases L1-dependent neurite outgrowth from cultured cortical neurons as well as the migration of L1-expressing HEK293 cells. Moreover, L1 siRNA, MeCP2 siRNA, or a cell-penetrating KDET-containing L1 peptide leads to reduced levels of myocyte enhancer factor 2C (Mef2c) mRNA and protein in cortical neurons, suggesting that the MeCP2/L1 interaction regulates Mef2c expression. Altogether, the present findings indicate that the interaction of the novel fragment L1-55 with MeCP2 affects L1-dependent functions, such as neurite outgrowth and neuronal migration.
Collapse
Affiliation(s)
- Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (G.L.); (R.K.); (M.G.M.)
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (G.L.); (R.K.); (M.G.M.)
| | - Maria Girbes Minguez
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (G.L.); (R.K.); (M.G.M.)
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
- Correspondence: ; Tel.: +1-848-445-1780
| |
Collapse
|
13
|
Li W. Excitation and Inhibition Imbalance in Rett Syndrome. Front Neurosci 2022; 16:825063. [PMID: 35250460 PMCID: PMC8894599 DOI: 10.3389/fnins.2022.825063] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
A loss of the excitation/inhibition (E/I) balance in the neural circuit has emerged as a common neuropathological feature in many neurodevelopmental disorders. Rett syndrome (RTT), a prevalent neurodevelopmental disorder that affects 1:10,000-15,000 women globally, is caused by loss-of-function mutations in the Methyl-CpG-binding Protein-2 (Mecp2) gene. E/I imbalance is recognized as the leading cellular and synaptic hallmark that is fundamental to diverse RTT neurological symptoms, including stereotypic hand movements, impaired motor coordination, breathing irregularities, seizures, and learning/memory dysfunctions. E/I balance in RTT is not homogeneously altered but demonstrates brain region and cell type specificity instead. In this review, I elaborate on the current understanding of the loss of E/I balance in a range of brain areas at molecular and cellular levels. I further describe how the underlying cellular mechanisms contribute to the disturbance of the proper E/I ratio. Last, I discuss current pharmacologic innervations for RTT and their role in modifying the E/I balance.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
14
|
Marballi K, MacDonald JL. Proteomic and transcriptional changes associated with MeCP2 dysfunction reveal nodes for therapeutic intervention in Rett syndrome. Neurochem Int 2021; 148:105076. [PMID: 34048843 PMCID: PMC8286335 DOI: 10.1016/j.neuint.2021.105076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/13/2021] [Accepted: 05/17/2021] [Indexed: 12/28/2022]
Abstract
Mutations in the methyl-CpG binding protein 2 (MECP2) gene cause Rett syndrome (RTT), an X-linked neurodevelopmental disorder predominantly impacting females. MECP2 is an epigenetic transcriptional regulator acting mainly to repress gene expression, though it plays multiple gene regulatory roles and has distinct molecular targets across different cell types and specific developmental stages. In this review, we summarize MECP2 loss-of-function associated transcriptome and proteome disruptions, delving deeper into the latter which have been comparatively severely understudied. These disruptions converge on multiple biochemical and cellular pathways, including those involved in synaptic function and neurodevelopment, NF-κB signaling and inflammation, and the vitamin D pathway. RTT is a complex neurological disorder characterized by myriad physiological disruptions, in both the central nervous system and peripheral systems. Thus, treating RTT will likely require a combinatorial approach, targeting multiple nodes within the interactomes of these cellular pathways. To this end, we discuss the use of dietary supplements and factors, namely, vitamin D and polyunsaturated fatty acids (PUFAs), as possible partial therapeutic agents given their demonstrated benefit in RTT and their ability to restore homeostasis to multiple disrupted cellular pathways simultaneously. Further unravelling the complex molecular alterations induced by MECP2 loss-of-function, and contextualizing them at the level of proteome homeostasis, will identify new therapeutic avenues for this complex disorder.
Collapse
Affiliation(s)
- Ketan Marballi
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, USA
| | - Jessica L MacDonald
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
15
|
Huang J, Zhang F, Su M, Li J, Yi W, Hou L, Yang S, Liu J, Zhang H, Ma T, Wu D. MeCP2 prevents age-associated cognitive decline via restoring synaptic plasticity in a senescence-accelerated mouse model. Aging Cell 2021; 20:e13451. [PMID: 34363729 PMCID: PMC8441320 DOI: 10.1111/acel.13451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/02/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Age‐related cognitive decline in neurodegenerative diseases, such as Alzheimer's disease (AD), is associated with the deficits of synaptic plasticity. Therefore, exploring promising targets to enhance synaptic plasticity in neurodegenerative disorders is crucial. It has been demonstrated that methyl‐CpG binding protein 2 (MeCP2) plays a vital role in neuronal development and MeCP2 malfunction causes various neurodevelopmental disorders. However, the role of MeCP2 in neurodegenerative diseases has been less reported. In the study, we found that MeCP2 expression in the hippocampus was reduced in the hippocampus of senescence‐accelerated mice P8 (SAMP8) mice. Overexpression of hippocampal MeCP2 could elevate synaptic plasticity and cognitive function in SAMP8 mice, while knockdown of MeCP2 impaired synaptic plasticity and cognitive function in senescence accelerated‐resistant 1 (SAMR1) mice. MeCP2‐mediated regulation of synaptic plasticity may be associated with CREB1 pathway. These results suggest that MeCP2 plays a vital role in age‐related cognitive decline by regulating synaptic plasticity and indicate that MeCP2 may be promising targets for the treatment of age‐related cognitive decline in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jin‐Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy Pharmacy School of Xuzhou Medical University Xuzhou China
| | - Fan Zhang
- Scientific research center of traditional Chinese medicine Guangxi University of Chinese Medicine Nanning China
| | - Min Su
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy Pharmacy School of Xuzhou Medical University Xuzhou China
| | - Jiaxin Li
- Institute for Stem Cell and Neural Regeneration School of Pharmacy Nanjing Medical University Nanjing China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing China
| | - Wen Yi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy Pharmacy School of Xuzhou Medical University Xuzhou China
| | - Li‐Xiang Hou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy Pharmacy School of Xuzhou Medical University Xuzhou China
| | - Si‐Man Yang
- Scientific research center of traditional Chinese medicine Guangxi University of Chinese Medicine Nanning China
| | - Jin‐Yuan Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy Pharmacy School of Xuzhou Medical University Xuzhou China
| | - Hao‐An Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy Pharmacy School of Xuzhou Medical University Xuzhou China
| | - Tengfei Ma
- Institute for Stem Cell and Neural Regeneration School of Pharmacy Nanjing Medical University Nanjing China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing China
| | - Deng‐Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy Pharmacy School of Xuzhou Medical University Xuzhou China
| |
Collapse
|
16
|
Wei B, Xiao GR, Wu CL, Xu YQ. HAGLR promotes neuron differentiation through the miR-130a-3p-MeCP2 axis. Open Med (Wars) 2021; 16:1121-1131. [PMID: 34430707 PMCID: PMC8345017 DOI: 10.1515/med-2021-0301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disease. Currently, the molecular mechanisms underlying the progressions of PD are not fully understood. The human neuroblastoma cell line SH-SY5Y has been widely used as an in vitro model for PD. This study aims to investigate the molecular mechanisms of the non-coding RNA-mediated SH-SY5Y differentiation induced by retinoic acid (RA). By microArray analysis, lncRNA HAGLR was observed to be significantly upregulated during the RA-induced SH-SY5Y differentiation. Silencing HAGLR blocked the RA-induced SH-SY5Y differentiation. Moreover, bioinformatical analysis illustrated that miR-130a-3p contains binding sites for HAGLR. The RNA-pull down assay and luciferase assay demonstrated that HAGLR functioned as a ceRNA of miR-130a-3p in SH-SY5Y cells. Overexpression of miR-130a-3p effectively inhibited SH-SY5Y differentiation. We identified MeCP2, a vital molecule in neuronal diseases, to be a direct target of miR-130a-3p in SH-SY5Y cells by western blot and luciferase assays. The rescue experiments verified that recovery of miR-130a-3p in HAGLR-overexpressing SH-SY5Y cells could successfully overcome the RA-induced SH-SY5Y differentiation by targeting MeCP2. In summary, this study reveals a potential molecular mechanism for the lncRNA-HAGLR-promoted in vitro neuron differentiation by targeting the miR-130a-3p-MeCP2 axis, contributing to the understanding of the pathogenesis and progression of PD.
Collapse
Affiliation(s)
- Bo Wei
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Gui-Rong Xiao
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Cheng-Long Wu
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Yi-Qin Xu
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| |
Collapse
|
17
|
Carstens KE, Lustberg DJ, Shaughnessy EK, McCann KE, Alexander GM, Dudek SM. Perineuronal net degradation rescues CA2 plasticity in a mouse model of Rett syndrome. J Clin Invest 2021; 131:e137221. [PMID: 34228646 DOI: 10.1172/jci137221] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
Perineuronal nets (PNNs), a specialized form of extracellular matrix, are abnormal in the brains of people with Rett syndrome (RTT). We previously reported that PNNs function to restrict synaptic plasticity in hippocampal area CA2, which is unusually resistant to long-term potentiation (LTP) and has been linked to social learning in mice. Here we report that PNNs appear elevated in area CA2 of the hippocampus of an individual with RTT and that PNNs develop precociously and remain elevated in area CA2 of a mouse model of RTT (Mecp2-null). Further, we provide evidence that LTP could be induced at CA2 synapses prior to PNN maturation (postnatal day 8-11) in wild-type mice and that this window of plasticity was prematurely restricted at CA2 synapses in Mecp2-null mice. Degrading PNNs in Mecp2-null hippocampus was sufficient to rescue the premature disruption of CA2 plasticity. We identified several molecular targets that were altered in the developing Mecp2-null hippocampus that may explain aberrant PNNs and CA2 plasticity, and we discovered that CA2 PNNs are negatively regulated by neuronal activity. Collectively, our findings demonstrate that CA2 PNN development is regulated by Mecp2 and identify a window of hippocampal plasticity that is disrupted in a mouse model of RTT.
Collapse
|
18
|
Unterman I, Bloch I, Cazacu S, Kazimirsky G, Ben-Zeev B, Berman BP, Brodie C, Tabach Y. Expanding the MECP2 network using comparative genomics reveals potential therapeutic targets for Rett syndrome. eLife 2021; 10:e67085. [PMID: 34355696 PMCID: PMC8346285 DOI: 10.7554/elife.67085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Inactivating mutations in the Methyl-CpG Binding Protein 2 (MECP2) gene are the main cause of Rett syndrome (RTT). Despite extensive research into MECP2 function, no treatments for RTT are currently available. Here, we used an evolutionary genomics approach to construct an unbiased MECP2 gene network, using 1028 eukaryotic genomes to prioritize proteins with strong co-evolutionary signatures with MECP2. Focusing on proteins targeted by FDA-approved drugs led to three promising targets, two of which were previously linked to MECP2 function (IRAK, KEAP1) and one that was not (EPOR). The drugs targeting these three proteins (Pacritinib, DMF, and EPO) were able to rescue different phenotypes of MECP2 inactivation in cultured human neural cell types, and appeared to converge on Nuclear Factor Kappa B (NF-κB) signaling in inflammation. This study highlights the potential of comparative genomics to accelerate drug discovery, and yields potential new avenues for the treatment of RTT.
Collapse
Affiliation(s)
- Irene Unterman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-CanadaJerusalemIsrael
| | - Idit Bloch
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-CanadaJerusalemIsrael
| | - Simona Cazacu
- Hermelin Brain Tumor Center, Henry Ford HospitalDetroitUnited States
| | - Gila Kazimirsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| | - Bruria Ben-Zeev
- Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical CenterRamat GanIsrael
| | - Benjamin P Berman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-CanadaJerusalemIsrael
| | - Chaya Brodie
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-GanIsrael
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-CanadaJerusalemIsrael
| |
Collapse
|
19
|
Pietropaolo V, Prezioso C, Moens U. Role of Virus-Induced Host Cell Epigenetic Changes in Cancer. Int J Mol Sci 2021; 22:ijms22158346. [PMID: 34361112 PMCID: PMC8346956 DOI: 10.3390/ijms22158346] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor viruses human T-lymphotropic virus 1 (HTLV-1), hepatitis C virus (HCV), Merkel cell polyomavirus (MCPyV), high-risk human papillomaviruses (HR-HPVs), Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpes virus (KSHV) and hepatitis B virus (HBV) account for approximately 15% of all human cancers. Although the oncoproteins of these tumor viruses display no sequence similarity to one another, they use the same mechanisms to convey cancer hallmarks on the infected cell. Perturbed gene expression is one of the underlying mechanisms to induce cancer hallmarks. Epigenetic processes, including DNA methylation, histone modification and chromatin remodeling, microRNA, long noncoding RNA, and circular RNA affect gene expression without introducing changes in the DNA sequence. Increasing evidence demonstrates that oncoviruses cause epigenetic modifications, which play a pivotal role in carcinogenesis. In this review, recent advances in the role of host cell epigenetic changes in virus-induced cancers are summarized.
Collapse
Affiliation(s)
- Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy;
- Correspondence: (V.P.); (U.M.)
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy;
- IRCSS San Raffaele Roma, Microbiology of Chronic Neuro-Degenerative Pathologies, 00161 Rome, Italy
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
- Correspondence: (V.P.); (U.M.)
| |
Collapse
|
20
|
Mozolewski P, Jeziorek M, Schuster CM, Bading H, Frost B, Dobrowolski R. The role of nuclear Ca2+ in maintaining neuronal homeostasis and brain health. J Cell Sci 2021; 134:jcs254904. [PMID: 33912918 PMCID: PMC8084578 DOI: 10.1242/jcs.254904] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nuclear Ca2+ has emerged as one of the most potent mediators of the dialogue between neuronal synapses and the nucleus that regulates heterochromatin states, transcription factor activity, nuclear morphology and neuronal gene expression induced by synaptic activity. Recent studies underline the importance of nuclear Ca2+ signaling in long-lasting, activity-induced adaptation and maintenance of proper brain function. Diverse forms of neuroadaptation require transient nuclear Ca2+ signaling and cyclic AMP-responsive element-binding protein (CREB1, referred to here as CREB) as its prime target, which works as a tunable switch to drive and modulate specific gene expression profiles associated with memory, pain, addiction and neuroprotection. Furthermore, a reduction of nuclear Ca2+ levels has been shown to be neurotoxic and a causal factor driving the progression of neurodegenerative disorders, as well as affecting neuronal autophagy. Because of its central role in the brain, deficits in nuclear Ca2+ signaling may underlie a continuous loss of neuroprotection in the aging brain, contributing to the pathophysiology of Alzheimer's disease. In this Review, we discuss the principles of the 'nuclear calcium hypothesis' in the context of human brain function and its role in controlling diverse forms of neuroadaptation and neuroprotection. Furthermore, we present the most relevant and promising perspectives for future studies.
Collapse
Affiliation(s)
- Pawel Mozolewski
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Maciej Jeziorek
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Christoph M. Schuster
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, INF 345 and INF 366, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, INF 345 and INF 366, 69120 Heidelberg, Germany
| | - Bess Frost
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health, San Antonio, San Antonio, TX 78229, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, San Antonio, TX 78229, USA
| | - Radek Dobrowolski
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health, San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
21
|
Gomes AR, Fernandes TG, Cabral JM, Diogo MM. Modeling Rett Syndrome with Human Pluripotent Stem Cells: Mechanistic Outcomes and Future Clinical Perspectives. Int J Mol Sci 2021; 22:3751. [PMID: 33916879 PMCID: PMC8038474 DOI: 10.3390/ijms22073751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/23/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the gene encoding the methyl-CpG-binding protein 2 (MeCP2). Among many different roles, MeCP2 has a high phenotypic impact during the different stages of brain development. Thus, it is essential to intensively investigate the function of MeCP2, and its regulated targets, to better understand the mechanisms of the disease and inspire the development of possible therapeutic strategies. Several animal models have greatly contributed to these studies, but more recently human pluripotent stem cells (hPSCs) have been providing a promising alternative for the study of RTT. The rapid evolution in the field of hPSC culture allowed first the development of 2D-based neuronal differentiation protocols, and more recently the generation of 3D human brain organoid models, a more complex approach that better recapitulates human neurodevelopment in vitro. Modeling RTT using these culture platforms, either with patient-specific human induced pluripotent stem cells (hiPSCs) or genetically-modified hPSCs, has certainly contributed to a better understanding of the onset of RTT and the disease phenotype, ultimately allowing the development of high throughput drugs screening tests for potential clinical translation. In this review, we first provide a brief summary of the main neurological features of RTT and the impact of MeCP2 mutations in the neuropathophysiology of this disease. Then, we provide a thorough revision of the more recent advances and future prospects of RTT modeling with human neural cells derived from hPSCs, obtained using both 2D and organoids culture systems, and its contribution for the current and future clinical trials for RTT.
Collapse
Affiliation(s)
- Ana Rita Gomes
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.R.G.); (T.G.F.); (J.M.S.C.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.R.G.); (T.G.F.); (J.M.S.C.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim M.S. Cabral
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.R.G.); (T.G.F.); (J.M.S.C.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Maria Margarida Diogo
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.R.G.); (T.G.F.); (J.M.S.C.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
22
|
Lucock M. Vitamin-related phenotypic adaptation to exposomal factors: The folate-vitamin D-exposome triad. Mol Aspects Med 2021; 87:100944. [PMID: 33551238 DOI: 10.1016/j.mam.2021.100944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/02/2021] [Accepted: 01/25/2021] [Indexed: 12/16/2022]
Abstract
The biological role of two key vitamins, folic acid and vitamin D is so fundamental to life processes, it follows that their UV sensitivity, dietary abundance (both key exposomal factors) and variability in dependent genes will modify their functional efficacy, particularly in the context of maintaining the integrity and function of genome and epigenome. This article therefore examines folate and vitamin D-related phenotypic adaptation to environmental factors which vary across the human life cycle as well as over an evolutionary time-scale. Molecular mechanisms, key nutrigenomic factors, phenotypic maladaptation and evolutionary models are discussed.
Collapse
Affiliation(s)
- Mark Lucock
- School of Environmental & Life Sciences, University of Newcastle, PO Box 127, Brush Rd, Ourimbah, NSW, 2258, Australia.
| |
Collapse
|
23
|
Altamirano AE, Wilson CG. An overview of developmental dysregulation of autonomic control in infants. Birth Defects Res 2021; 113:864-871. [PMID: 33421331 DOI: 10.1002/bdr2.1855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 11/30/2020] [Indexed: 11/10/2022]
Abstract
In this short review, we provide an overview of developmental disorders causing autonomic nervous system dysregulation. We briefly discuss perinatal conditions that adversely impact developmental outcomes including apnea of prematurity, sudden infant death syndrome, and Rett syndrome. We provide a brief clinical description, an overview of known or hypothesized mechanisms for the disorder, and current standard of practice for treatment of each condition. Additionally, we consider preventative measures and complications of these disorders to provide further insight into the pathogenesis of specific autonomic dysregulation in neonates. The goal of this short review is to provide an updated understanding of the impact of autonomic dysregulation on development of brainstem circuits and to briefly highlight promising future treatment options and controversies.
Collapse
Affiliation(s)
- Adulzir E Altamirano
- Center for Health Disparities, Loma Linda University, Loma Linda, California, USA.,Lawrence D. Longo, M.D. Center for Perinatal Biology, Loma Linda, California, USA
| | - Christopher G Wilson
- Lawrence D. Longo, M.D. Center for Perinatal Biology, Loma Linda, California, USA
| |
Collapse
|
24
|
Sabitha KR, Shetty AK, Upadhya D. Patient-derived iPSC modeling of rare neurodevelopmental disorders: Molecular pathophysiology and prospective therapies. Neurosci Biobehav Rev 2020; 121:201-219. [PMID: 33370574 DOI: 10.1016/j.neubiorev.2020.12.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
The pathological alterations that manifest during the early embryonic development due to inherited and acquired factors trigger various neurodevelopmental disorders (NDDs). Besides major NDDs, there are several rare NDDs, exhibiting specific characteristics and varying levels of severity triggered due to genetic and epigenetic anomalies. The rarity of subjects, paucity of neural tissues for detailed analysis, and the unavailability of disease-specific animal models have hampered detailed comprehension of rare NDDs, imposing heightened challenge to the medical and scientific community until a decade ago. The generation of functional neurons and glia through directed differentiation protocols for patient-derived iPSCs, CRISPR/Cas9 technology, and 3D brain organoid models have provided an excellent opportunity and vibrant resource for decoding the etiology of brain development for rare NDDs caused due to monogenic as well as polygenic disorders. The present review identifies cellular and molecular phenotypes demonstrated from patient-derived iPSCs and possible therapeutic opportunities identified for these disorders. New insights to reinforce the existing knowledge of the pathophysiology of these disorders and prospective therapeutic applications are discussed.
Collapse
Affiliation(s)
- K R Sabitha
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
25
|
Peters SU, Fu C, Marsh ED, Benke TA, Suter B, Skinner SA, Lieberman DN, Standridge S, Jones M, Beisang A, Feyma T, Heydeman P, Ryther R, Glaze DG, Percy AK, Neul JL. Phenotypic features in MECP2 duplication syndrome: Effects of age. Am J Med Genet A 2020; 185:362-369. [PMID: 33170557 DOI: 10.1002/ajmg.a.61956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/09/2020] [Accepted: 10/17/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND MECP2 Duplication syndrome (MDS) is a rare X-linked genomic disorder that is caused by interstitial chromosomal duplications at Xq28 encompassing the MECP2 gene. Although phenotypic features in MDS have been described, there is a limited understanding of the range of severity of these features, and how they evolve with age. METHODS The cross-sectional results of N = 69 participants (ages 6 months-33 years) enrolled in a natural history study of MDS are presented. Clinical severity was assessed using a clinician-report measure as well as a parent-report measure. Data was also gathered related to the top 3 concerns of parents as selected from the most salient symptoms related to MDS. The Child Health Questionnaire was also utilized to obtain parental reports of each child's quality of life to establish disease burden. RESULTS The results of linear regression from the clinician-reported measure show that overall clinical severity scores, motor dysfunction, and functional skills are significantly worse with increasing age. Top concerns rated by parents included lack of effective communication, abnormal walking/balance issues, constipation, and seizures. Higher levels of clinical severity were also related to lower physical health quality of life scores as reported by parents. CONCLUSIONS The data suggest that increasing levels of clinical severity are noted with older age, and this is primarily attributable to motor dysfunction, and functional skills. The results provide an important foundation for creating an MDS-specific severity scale highlighting the most important domains to target for treatment trials and will help clinicians and researchers define clinically meaningful changes.
Collapse
Affiliation(s)
- Sarika U Peters
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cary Fu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eric D Marsh
- Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tim A Benke
- University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | | | | | | - Mary Jones
- Oakland Children's Hospital, Oakland, California, USA
| | - Arthur Beisang
- Gilette Children's Specialty Healthcare, Saint Paul, Minnesota, USA
| | - Timothy Feyma
- Gilette Children's Specialty Healthcare, Saint Paul, Minnesota, USA
| | | | - Robin Ryther
- Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Alan K Percy
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeffrey L Neul
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
26
|
Sandweiss AJ, Brandt VL, Zoghbi HY. Advances in understanding of Rett syndrome and MECP2 duplication syndrome: prospects for future therapies. Lancet Neurol 2020; 19:689-698. [PMID: 32702338 DOI: 10.1016/s1474-4422(20)30217-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 01/07/2023]
Abstract
The X-linked gene encoding MECP2 is involved in two severe and complex neurodevelopmental disorders. Loss of function of the MeCP2 protein underlies Rett syndrome, whereas duplications of the MECP2 locus cause MECP2 duplication syndrome. Research on the mechanisms by which MeCP2 exerts effects on gene expression in neurons, studies of animal models bearing different disease-causing mutations, and more in-depth observations of clinical presentations have clarified some issues even as they have raised further questions. Yet there is enough evidence so far to suggest possible approaches to therapy for these two diseases that could go beyond attempting to address specific signs and symptoms (of which there are many) and instead target the pathophysiology underlying MECP2 disorders. Further work could bring antisense oligonucleotides, deep brain stimulation, and gene therapy into the clinic within the next decade or so.
Collapse
Affiliation(s)
- Alexander J Sandweiss
- Department of Pediatrics, Section of Neurology and Developmental Neurosciences, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Vicky L Brandt
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Huda Y Zoghbi
- Department of Pediatrics, Section of Neurology and Developmental Neurosciences, Baylor College of Medicine, Houston, TX, USA; Howard Hughes Medical Institute, and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
27
|
Zhang BY, Chang PY, Zhu QS, Zhu YH, Saijilafu. Decoding epigenetic codes: new frontiers in exploring recovery from spinal cord injury. Neural Regen Res 2020; 15:1613-1622. [PMID: 32209760 PMCID: PMC7437595 DOI: 10.4103/1673-5374.276323] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 09/21/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury that results in severe neurological disability is often incurable. The poor clinical outcome of spinal cord injury is mainly caused by the failure to reconstruct the injured neural circuits. Several intrinsic and extrinsic determinants contribute to this inability to reconnect. Epigenetic regulation acts as the driving force for multiple pathological and physiological processes in the central nervous system by modulating the expression of certain critical genes. Recent studies have demonstrated that post-SCI alteration of epigenetic landmarks is strongly associated with axon regeneration, glial activation and neurogenesis. These findings not only establish a theoretical foundation for further exploration of spinal cord injury, but also provide new avenues for the clinical treatment of spinal cord injury. This review focuses on the epigenetic regulation in axon regeneration and secondary spinal cord injury. Together, these discoveries are a selection of epigenetic-based prognosis biomarkers and attractive therapeutic targets in the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Bo-Yin Zhang
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Peng-Yu Chang
- Department of Radiotherapy, The First Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qing-San Zhu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yu-Hang Zhu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Saijilafu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
28
|
Girbes Minguez M, Wolters-Eisfeld G, Lutz D, Buck F, Schachner M, Kleene R. The cell adhesion molecule L1 interacts with nuclear proteins via its intracellular domain. FASEB J 2020; 34:9869-9883. [PMID: 32533745 DOI: 10.1096/fj.201902242r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 02/05/2023]
Abstract
Proteolytic cleavage of the cell adhesion molecule L1 (L1) in brain tissue and in cultured cerebellar neurons results in the generation and nuclear import of a 30 kDa fragment comprising most of L1's C-terminal, intracellular domain. In search of molecules that interact with this domain, we performed affinity chromatography with the recombinant intracellular L1 domain and a nuclear extract from mouse brains, and identified potential nuclear L1 binding partners involved in transcriptional regulation, RNA processing and transport, DNA repair, chromatin remodeling, and nucleocytoplasmic transport. By co-immunoprecipitation and enzyme-linked immunosorbent assay using recombinant proteins, we verified the direct interaction between L1 and the nuclear binding partners non-POU domain containing octamer-binding protein and splicing factor proline/glutamine-rich. The proximity ligation assay confirmed this close interaction in cultures of cerebellar granule cells. Our findings suggest that L1 fragments regulate multiple nuclear functions in the nervous system. We discuss possible physiological and pathological roles of these interactions in regulation of chromatin structure, gene expression, RNA processing, and DNA repair.
Collapse
Affiliation(s)
- Maria Girbes Minguez
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Gerrit Wolters-Eisfeld
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - David Lutz
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Buck
- Zentrum für Diagnostik, Institut für Klinische Chemie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
29
|
Li X, Li X, He S, Zhao M. MeCP2-421-mediated RPE epithelial-mesenchymal transition and its relevance to the pathogenesis of proliferative vitreoretinopathy. J Cell Mol Med 2020; 24:9420-9427. [PMID: 32638535 PMCID: PMC7417696 DOI: 10.1111/jcmm.15602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/13/2020] [Indexed: 12/17/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) is a blinding eye disease. Epithelial‐mesenchymal transition (EMT) of RPE cells plays an important role in the pathogenesis of PVR. In the current study, we sought to investigate the role of the methyl‐CpG‐binding protein 2 (MeCP2), especially P‐MeCP2‐421 in the pathogenesis of PVR. The expressions of P‐MeCP2‐421, P‐MeCP2‐80, PPAR‐γ and the double labelling of P‐MeCP2‐421 with α‐SMA, cytokeratin, TGF‐β and PPAR‐γ in human PVR membranes were analysed by immunohistochemistry. The effect of knocking down MeCP2 using siRNA on the expressions of α‐SMA, phospho‐Smad2/3, collagen I, fibronectin and PPAR‐γ; the expression of α‐SMA stimulated by recombinant MeCP2 in ARPE‐19; and the effect of TGF‐β and 5‐AZA treatment on PPAR‐γ expression were analysed by Western blot. Chromatin immunoprecipitation was used to determine the binding of MeCP2 to TGF‐β. Our results showed that P‐MeCP2‐421 was highly expressed in PVR membranes and was double labelled with α‐SMA, cytokeratin and TGF‐β, knocking down MeCP2 inhibited the activation of Smad2/3 and the expression of collagen I and fibronectin induced by TGF‐β. TGF‐β inhibited the expression of PPAR‐γ, silence of MeCP2 by siRNA or using MeCP2 inhibitor (5‐AZA) increased the expression of PPAR‐γ. α‐SMA was up‐regulated by the treatment of recombinant MeCP2. Importantly, we found that MeCP2 bound to TGF‐β as demonstrated by Chip assay. The results suggest that MeCP2 especially P‐MeCP2‐421 may play a significant role in the pathogenesis of PVR and targeting MeCP2 may be a potential therapeutic approach for the treatment of PVR.
Collapse
Affiliation(s)
- Xiaohua Li
- Henan Provincial People's Hospital, Zhengzhou, China.,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, China.,People's Hospital of Zhengzhou University, Zhengzhou, China.,People's Hospital of Henan University, Zhengzhou, China
| | - Xue Li
- Henan Provincial People's Hospital, Zhengzhou, China.,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, China.,People's Hospital of Zhengzhou University, Zhengzhou, China.,People's Hospital of Henan University, Zhengzhou, China
| | - Shikun He
- Ophthalmology Optometry Centre, Peking University People's Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China.,Departments of Pathology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mingwei Zhao
- Ophthalmology Optometry Centre, Peking University People's Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| |
Collapse
|
30
|
Pascual-Alonso A, Blasco L, Vidal S, Gean E, Rubio P, O'Callaghan M, Martínez-Monseny AF, Castells AA, Xiol C, Català V, Brandi N, Pacheco P, Ros C, Del Campo M, Guillén E, Ibañez S, Sánchez MJ, Lapunzina P, Nevado J, Santos F, Lloveras E, Ortigoza-Escobar JD, Tejada MI, Maortua H, Martínez F, Orellana C, Roselló M, Mesas MA, Obón M, Plaja A, Fernández-Ramos JA, Tizzano E, Marín R, Peña-Segura JL, Alcántara S, Armstrong J. Molecular characterization of Spanish patients with MECP2 duplication syndrome. Clin Genet 2020; 97:610-620. [PMID: 32043567 DOI: 10.1111/cge.13718] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/16/2022]
Abstract
MECP2 duplication syndrome (MDS) is an X-linked neurodevelopmental disorder characterized by a severe to profound intellectual disability, early onset hypotonia and diverse psycho-motor and behavioural features. To date, fewer than 200 cases have been published. We report the clinical and molecular characterization of a Spanish MDS cohort that included 19 boys and 2 girls. Clinical suspicions were confirmed by array comparative genomic hybridization and multiplex ligation-dependent probe amplification (MLPA). Using, a custom in-house MLPA assay, we performed a thorough study of the minimal duplicated region, from which we concluded a complete duplication of both MECP2 and IRAK1 was necessary for a correct MDS diagnosis, as patients with partial MECP2 duplications lacked some typical clinical traits present in other MDS patients. In addition, the duplication location may be related to phenotypic severity. This observation may provide a new approach for genotype-phenotype correlations, and thus more personalized genetic counselling.
Collapse
Affiliation(s)
- Ainhoa Pascual-Alonso
- Fundación San Juan de Dios, Servicio de Medicina Genética y Molecular, Barcelona, Spain
| | - Laura Blasco
- Fundación San Juan de Dios, Servicio de Medicina Genética y Molecular, Barcelona, Spain
| | - Silvia Vidal
- Fundación San Juan de Dios, Servicio de Medicina Genética y Molecular, Barcelona, Spain
| | - Esther Gean
- Departamento de Medicina Genética y Molecular, Hospital Universitario San Juan de Dios, Barcelona, Spain
| | - Patricia Rubio
- Departamento de Medicina Genética y Molecular, Hospital Universitario San Juan de Dios, Barcelona, Spain
| | - Mar O'Callaghan
- Departamento de Neurología Pediátrica, Hospital Universitario San Juan de Dios, Barcelona, Spain
| | - Antonio F Martínez-Monseny
- Departamento de Medicina Genética y Molecular, Hospital Universitario San Juan de Dios, Barcelona, Spain
| | - Alba Aina Castells
- Fundación San Juan de Dios, Servicio de Medicina Genética y Molecular, Barcelona, Spain.,Neural Development Lab, Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, IDIBELL, l'Hospitalet de Llobregat, Barcelona, Spain
| | - Clara Xiol
- Fundación San Juan de Dios, Servicio de Medicina Genética y Molecular, Barcelona, Spain
| | - Vicenç Català
- Unitad de Biología Celular y Genética Médica, Departament of BCFyI, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Nuria Brandi
- Servicio de Medicina Genètica i Molecular, Hospital Universitario San Juan de Dios, Barcelona, Spain
| | - Paola Pacheco
- Servicio de Medicina Genètica i Molecular, Hospital Universitario San Juan de Dios, Barcelona, Spain
| | - Carlota Ros
- Servicio de Medicina Genètica i Molecular, Hospital Universitario San Juan de Dios, Barcelona, Spain
| | - Miguel Del Campo
- Pediatrics, Genetic Epidemiology, Hospital Valle Hebrón, Barcelona, Spain
| | - Encarna Guillén
- Unidad de Genética, Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Salva Ibañez
- Unidad de Genética, Hospital Virgen de la Arrixaca, Murcia, Spain
| | - María J Sánchez
- Unidad de Genética, Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular, Hospital Universitario La Paz, Madrid, Spain.,CIBERER (Biomedical Network Research Center for Rare Diseases), Instituto de Salud Carlos III, Madrid, Spain
| | - Julián Nevado
- Instituto de Genética Médica y Molecular, Hospital Universitario La Paz, Madrid, Spain.,CIBERER (Biomedical Network Research Center for Rare Diseases), Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Santos
- Instituto de Genética Médica y Molecular, Hospital Universitario La Paz, Madrid, Spain
| | | | - Juan D Ortigoza-Escobar
- Departamento de Neurología Pediátrica, Hospital Universitario San Juan de Dios, Barcelona, Spain
| | - María I Tejada
- CIBERER (Biomedical Network Research Center for Rare Diseases), Instituto de Salud Carlos III, Madrid, Spain.,Laboratorio de Genética Molecular, Servicio de Genética, Instituto de Investigación Sanitaria Biocruces, Hospital Universitario de Cruces, Barakaldo, Spain
| | - Hiart Maortua
- CIBERER (Biomedical Network Research Center for Rare Diseases), Instituto de Salud Carlos III, Madrid, Spain.,Laboratorio de Genética Molecular, Servicio de Genética, Instituto de Investigación Sanitaria Biocruces, Hospital Universitario de Cruces, Barakaldo, Spain
| | - Francisco Martínez
- Unidad de Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Carmen Orellana
- Unidad de Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Mónica Roselló
- Unidad de Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - María Obón
- Area de Genètica Clínica i Consell Genètic, Laboratoris ICS, Girona, Spain
| | - Alberto Plaja
- Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | - Eduardo Tizzano
- Area Genética Clínica y Molecular, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Rosario Marín
- Hospital Universitario Puerta del Mar Unidad de Genética, Cádiz, Spain
| | - José L Peña-Segura
- Unidad de Neuropediatría, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Soledad Alcántara
- Neural Development Lab, Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, IDIBELL, l'Hospitalet de Llobregat, Barcelona, Spain
| | - Judith Armstrong
- Servicio de Medicina Genètica i Molecular, Hospital Universitario San Juan de Dios, Barcelona, Spain.,CIBERER (Biomedical Network Research Center for Rare Diseases), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
31
|
Ribeiro MC, MacDonald JL. Sex differences in Mecp2-mutant Rett syndrome model mice and the impact of cellular mosaicism in phenotype development. Brain Res 2020; 1729:146644. [PMID: 31904347 DOI: 10.1016/j.brainres.2019.146644] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/08/2019] [Accepted: 12/31/2019] [Indexed: 12/29/2022]
Abstract
There is currently no effective treatment for Rett syndrome (RTT), a severe X-linked progressive neurodevelopmental disorder caused by mutations in the transcriptional regulator MECP2. Because MECP2 is subjected to X-inactivation, most affected individuals are female heterozygotes who display cellular mosaicism for normal and mutant MECP2. Males who are hemizygous for mutant MECP2 are more severely affected than heterozygous females and rarely survive. Mecp2 loss-of-function is less severe in mice, however, and male hemizygous null mice not only survive until adulthood, they have been the most commonly studied model system. Although heterozygous female mice better recapitulate human RTT, they have not been as thoroughly characterized. This is likely because of the added experimental challenges that they present, including delayed and more variable phenotypic progression and cellular mosaicism due to X-inactivation. In this review, we compare phenotypes of Mecp2 heterozygous female mice and male hemizygous null mouse models. Further, we discuss the complexities that arise from the many cell-type and tissue-type specific roles of MeCP2, as well as the combination of cell-autonomous and non-cell-autonomous disruptions that result from Mecp2 loss-of-function. This is of particular importance in the context of the female heterozygous brain, composed of a mixture of MeCP2+ and MeCP2- cells, the ratio of which can alter RTT phenotypes in the case of skewed X-inactivation. The goal of this review is to provide a clearer understanding of the pathophysiological differences between the mouse models, which is an essential consideration in the design of future pre-clinical studies.
Collapse
Affiliation(s)
- Mayara C Ribeiro
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States
| | - Jessica L MacDonald
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States.
| |
Collapse
|
32
|
Hettiarachchi D, Neththikumara NF, Pathirana BAPS, Dissanayake VHW. Variant Profile of MECP2 Gene in Sri Lankan Patients with Rett Syndrome. J Autism Dev Disord 2019; 50:118-126. [DOI: 10.1007/s10803-019-04230-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Patsouras M, Karagianni P, Kogionou P, Vlachoyiannopoulos P. Differential CpG methylation of the promoter of interleukin 8 and the first intron of tissue factor in Antiphospholipid syndrome. J Autoimmun 2019; 102:159-166. [DOI: 10.1016/j.jaut.2019.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 02/07/2023]
|
34
|
Tang X, Drotar J, Li K, Clairmont CD, Brumm AS, Sullins AJ, Wu H, Liu XS, Wang J, Gray NS, Sur M, Jaenisch R. Pharmacological enhancement of KCC2 gene expression exerts therapeutic effects on human Rett syndrome neurons and Mecp2 mutant mice. Sci Transl Med 2019; 11:eaau0164. [PMID: 31366578 PMCID: PMC8140401 DOI: 10.1126/scitranslmed.aau0164] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 04/14/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the methyl CpG binding protein 2 (MECP2) gene. There are currently no approved treatments for RTT. The expression of K+/Cl- cotransporter 2 (KCC2), a neuron-specific protein, has been found to be reduced in human RTT neurons and in RTT mouse models, suggesting that KCC2 might play a role in the pathophysiology of RTT. To develop neuron-based high-throughput screening (HTS) assays to identify chemical compounds that enhance the expression of the KCC2 gene, we report the generation of a robust high-throughput drug screening platform that allows for the rapid assessment of KCC2 gene expression in genome-edited human reporter neurons. From an unbiased screen of more than 900 small-molecule chemicals, we have identified a group of compounds that enhance KCC2 expression termed KCC2 expression-enhancing compounds (KEECs). The identified KEECs include U.S. Food and Drug Administration-approved drugs that are inhibitors of the fms-like tyrosine kinase 3 (FLT3) or glycogen synthase kinase 3β (GSK3β) pathways and activators of the sirtuin 1 (SIRT1) and transient receptor potential cation channel subfamily V member 1 (TRPV1) pathways. Treatment with hit compounds increased KCC2 expression in human wild-type (WT) and isogenic MECP2 mutant RTT neurons, and rescued electrophysiological and morphological abnormalities of RTT neurons. Injection of KEEC KW-2449 or piperine in Mecp2 mutant mice ameliorated disease-associated respiratory and locomotion phenotypes. The small-molecule compounds described in our study may have therapeutic effects not only in RTT but also in other neurological disorders involving dysregulation of KCC2.
Collapse
Affiliation(s)
- Xin Tang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Jesse Drotar
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Keji Li
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | - Austin J Sullins
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hao Wu
- Fulcrum Therapeutics, Cambridge, MA 02139, USA
| | | | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
35
|
Brain-enriched microRNAs circulating in plasma as novel biomarkers for Rett syndrome. PLoS One 2019; 14:e0218623. [PMID: 31291284 PMCID: PMC6619658 DOI: 10.1371/journal.pone.0218623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder caused by mutations in the X-linked gene MECP2 (methyl-CpG-binding protein 2). Minimally invasive and accurate biomarkers of disease progression and treatment response could facilitate screening of therapeutic compounds in animal models, enrollment of better-defined participants into clinical trials, and treatment monitoring. In this study, we used a targeted approach based on analysis of brain-enriched microRNAs (miRNAs) circulating in plasma to identify miRNA biomarkers of RTT using Mecp2-mutant mice as a model system and human plasma samples. An “miRNA pair” approach, i.e. the ratio between two miRNAs, was used for data normalization. Specific miRNA pairs and their combinations (classifiers) analyzed in plasma differentiated wild-type from Mecp2 male and female mice with >90% accuracy. Individual miRNA pairs were more effective in distinguishing male (homozygous) animals than female (heterozygous) animals, suggesting that disease severity correlated with the levels of the miRNA biomarkers. In the human study, 30 RTT patients were compared with age-matched controls. The results of this study showed that miRNA classifiers were able to differentiate RTT patients from controls with 85–100% sensitivity. In addition, a comparison of various age groups demonstrated that the dynamics in levels of miRNAs appear to be associated with disease development (involvement of liver, muscle and lipid metabolism in the pathology). Importantly, certain miRNA biomarker pairs were common to both the animal models and human subjects, indicating the similarity between the underlying pathological processes. The data generated in this feasibility study suggest that circulating miRNAs have the potential to be developed as markers of RTT progression and treatment response. Larger clinical studies are needed to further evaluate the findings presented here.
Collapse
|
36
|
Peters SU, Fu C, Suter B, Marsh E, Benke TA, Skinner SA, Lieberman DN, Standridge S, Jones M, Beisang A, Feyma T, Heydeman P, Ryther R, Kaufmann WE, Glaze DG, Neul JL, Percy AK. Characterizing the phenotypic effect of Xq28 duplication size in MECP2 duplication syndrome. Clin Genet 2019; 95:575-581. [PMID: 30788845 DOI: 10.1111/cge.13521] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 12/11/2022]
Abstract
Individuals with methyl CpG binding protein 2 (MECP2) duplication syndrome (MDS) have varying degrees of severity in their mobility, hand use, developmental skills, and susceptibility to infections. In the present study, we examine the relationship between duplication size, gene content, and overall phenotype in MDS using a clinical severity scale. Other genes typically duplicated within Xq28 (eg, GDI1, RAB39B, FLNA) are associated with distinct clinical features independent of MECP2. We additionally compare the phenotype of this cohort (n = 48) to other reported cohorts with MDS. Utilizing existing indices of clinical severity in Rett syndrome, we found that larger duplication size correlates with higher severity in total clinical severity scores (r = 0.36; P = 0.02), and in total motor behavioral assessment inventory scores (r = 0.31; P = 0.05). Greater severity was associated with having the RAB39B gene duplicated, although most of these participants also had large duplications. Results suggest that developmental delays in the first 6 months of life, hypotonia, vasomotor disturbances, constipation, drooling, and bruxism are common in MDS. This is the first study to show that duplication size is related to clinical severity. Future studies should examine whether large duplications which do not encompass RAB39B also contribute to clinical severity. Results also suggest the need for creating an MDS specific severity scale.
Collapse
Affiliation(s)
- Sarika U Peters
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cary Fu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Bernhard Suter
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Eric Marsh
- Division of Neurology and Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Timothy A Benke
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | | | - David N Lieberman
- Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
| | - Shannon Standridge
- Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Mary Jones
- Department of Pediatrics, UCSF Benioff Children's Hospital, Oakland, California
| | - Arthur Beisang
- Department of Pediatrics, Gilette Children's Specialty Healthcare, Saint Paul, Minnesota
| | - Timothy Feyma
- Department of Pediatrics, Gilette Children's Specialty Healthcare, Saint Paul, Minnesota
| | - Peter Heydeman
- Department of Pediatrics, Rush University Medical Center, Chicago, Illinois
| | - Robin Ryther
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | | | - Daniel G Glaze
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Jeffrey L Neul
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alan K Percy
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
37
|
Consequences of prenatal exposure to valproic acid in the socially monogamous prairie voles. Sci Rep 2019; 9:2453. [PMID: 30792426 PMCID: PMC6385222 DOI: 10.1038/s41598-019-39014-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/10/2019] [Indexed: 12/03/2022] Open
Abstract
Environmental risk factors contribute to autism spectrum disorders (ASD) etiology. In particular, prenatal exposure to the highly teratogenic anticonvulsant valproic acid (VPA) significantly increases ASD prevalence. Although significant discoveries on the embryopathology of VPA have been reported, its effects on the ability to form enduring social attachment—characteristic of ASD but uncommonly displayed by rats and mice—remains unknown. We aimed to examine the effects of prenatal VPA exposure in the social, monogamous prairie voles (Microtus ochrogaster). Compared to prenatal vehicle-exposed controls, prenatal VPA-exposed prairie voles had lower body weight throughout postnatal development, engaged in fewer social affiliative behaviors in a familial context, exhibited less social interactions with novel conspecifics, and showed enhanced anxiety-like behavior. Along these behavioral deficits, prenatal VPA exposure downregulated prefrontal cortex vasopressin receptor (V1aR) and methyl CpG-binding protein 2 (MeCP2) mRNA expression, but did not alter spine density in adults. Remarkably, adult social bonding behaviors, such as partner preference formation and selective aggression, were not disrupted by prenatal VPA exposure. Collectively, these studies suggest that, in this animal model, VPA alters only certain behavioral domains such as sex-naive anxiety and affiliative behaviors, but does not alter other domains such as social bonding with opposite sex individuals.
Collapse
|
38
|
Curcumin restores hepatic epigenetic changes in propylthiouracil(PTU) Induced hypothyroid male rats: A study on DNMTs, MBDs, GADD45a, C/EBP-β and PCNA. Food Chem Toxicol 2019; 123:169-180. [DOI: 10.1016/j.fct.2018.10.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 10/10/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
|