1
|
Xu J, Liu B, Shang G, Feng Z, Yang H, Chen Y, Yu X, Mao Z. Efficacy and Safety of Bilateral Deep Brain Stimulation (DBS) for Severe Alzheimer's Disease: A Comparative Analysis of Fornix Versus Basal Ganglia of Meynert. CNS Neurosci Ther 2025; 31:e70285. [PMID: 40243219 PMCID: PMC12004396 DOI: 10.1111/cns.70285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 01/15/2025] [Accepted: 02/07/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is a novel therapy for severe Alzheimer's disease (AD). However, there is an ongoing debate regarding the optimal target for DBS, particularly the fornix and the basal ganglia of Meynert (NBM). OBJECTIVE This study aimed to investigate the safety and efficacy of DBS for severe AD and to compare the fornix and the NBM as potential targets. METHODS We conducted a prospective, nonrandomized clinical study involving 20 patients with severe AD (MMSE score 0 to 10, CDR level 3) from January 2015 to August 2022, comprising 12 males and eight females, with a mean age of 59.05 ± 6.45 years. All patients underwent DBS treatment, among which 14 received bilateral fornix implantation, while six received bilateral implantation in the NBM. Electrical stimulation commenced 1 month postoperatively. We assessed the patients before surgery, followed by evaluations at 1 month, 3 months, 6 months, and 12 months poststimulation. Primary outcome measures focused on changes in cognitive function, assessed using the MMSE, MoCA, ADAS-Cog, and CDR scales. Secondary measures encompassed quality of life, caregiver burden, neuropsychiatric symptoms, and sleep disturbances, evaluated through the BI, FAQ, FIM, ZBI, NPI, HAMA, HAMD, and PSQI scales. RESULTS All patients tolerated DBS well, with no serious adverse effects reported. Early on, DBS significantly improved cognitive function and quality of life. Long-term benefits include the improvement of neuropsychiatric symptoms and sleep disorders and the alleviation of caregiver burden. Comparison between DBS targeting the NBM and fornix revealed no significant differences in overall scale scores. However, upon deeper analysis, NBM-DBS exhibited a more pronounced improvement in neuropsychiatric symptoms, particularly in NPI scores. CONCLUSION DBS is a potential therapeutic approach for severe AD, capable of improving patients' cognitive function, quality of life, and neuropsychiatric symptoms. Notably, NBM-DBS showed distinct advantages in ameliorating neuropsychiatric symptoms, providing valuable insights for clinically selecting the optimal DBS target. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT03115814.
Collapse
Affiliation(s)
- Junpeng Xu
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Bin Liu
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Guosong Shang
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | | | - Haonan Yang
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Yuhan Chen
- The First Clinical Medical College of Hebei North UniversityZhangjiakouChina
| | - Xinguang Yu
- Department of NeurosurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Zhiqi Mao
- Department of NeurosurgeryThe First Medical Center of Chinese PLA General HospitalBeijingChina
| |
Collapse
|
2
|
Venkatesh P, Lega B, Rubin M. Exploring Patient Perspectives: A Structured Interview Study on Deep Brain Stimulation as a Novel Treatment Approach for Mild Cognitive Impairment. AJOB Neurosci 2025; 16:70-81. [PMID: 39739372 DOI: 10.1080/21507740.2024.2438033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
INTRODUCTION Limited treatments for Mild Cognitive Impairment (MCI) highlight the need to explore innovations including Deep Brain Stimulation (DBS), with patient perspectives key to ethical protocol development. METHODS Seven MCI patients and four care partners were interviewed (Feb 2023-Jan 2024) about daily MCI challenges, desired treatment outcomes, and views on DBS. Thematic analysis following COREQ guidelines identified key themes. RESULTS DBS was a novel concept for all (7/7), and most expressed interest (6/7) despite concerns about invasiveness (6/7) and preference to exhaust medications first (4/7). Care partners (4/4) shared concerns about invasiveness and emphasized proven efficacy. Key deciding factors included the involved procedural risk (6/7), desired significant outcomes (6/7), and prior testing for MCI (7/7). Most participants (6/7) were hesitant to be the first to try DBS, while one was willing. CONCLUSION Patient and care partner insights on DBS for MCI are crucial for balancing innovation with ethical, patient-centered research.
Collapse
|
3
|
Kutscha N, Mahmutovic M, Bhusal B, Vu J, Chemlali C, Hansen SLJD, May MW, Knake S, Golestanirad L, Keil B. A deep brain stimulation-conditioned RF coil for 3T MRI. Magn Reson Med 2025; 93:1411-1426. [PMID: 39444303 DOI: 10.1002/mrm.30331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/20/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE To develop and test an MRI coil assembly for imaging deep brain stimulation (DBS) at 3 T with a reduced level of local specific absorption rate of RF fields near the implant. METHODS A mechanical rotatable linearly polarized birdcage transmitter outfitted with a 32-channel receive array was constructed. The coil performance and image quality were systematically evaluated using bench-level measurements and imaging performance tests, including SNR maps, array element noise correlation, and acceleration capabilities. Electromagnetic simulations and phantom experiments were performed with clinically relevant DBS device configurations to evaluate the reduction of specific absorption rate and temperature near the implant compared with a circular polarized body coil setup. RESULTS The linearly polarized birdcage coil features a block-shaped low electric field region to be co-aligned with the implanted DBS lead trajectory, while the close-fit receive array enables imaging with high SNR and enhanced encoding capabilities. CONCLUSION The 3T coil assembly, consisting of a rotating linear birdcage and a 32-channel close-fit receive array, showed DBS-conditioned imaging technology with substantially reduced heat generation at the DBS implants.
Collapse
Affiliation(s)
- Nicolas Kutscha
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, TH-Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Mirsad Mahmutovic
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, TH-Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Bhumi Bhusal
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jasmine Vu
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
| | - Chaimaa Chemlali
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, TH-Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Sam-Luca J D Hansen
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, TH-Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Markus W May
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Susanne Knake
- Department of Neurology, Philipps-Universität Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg, Darmstadt, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH-Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Laleh Golestanirad
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, TH-Mittelhessen University of Applied Sciences, Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg, Darmstadt, Germany
- LOEWE Research Cluster for Advanced Medical Physics in Imaging and Therapy (ADMIT), TH-Mittelhessen University of Applied Sciences, Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
4
|
Perez FP, Walker B, Morisaki J, Kanakri H, Rizkalla M. Neurostimulation devices to treat Alzheimer's disease. EXPLORATION OF NEUROSCIENCE 2025; 4:100674. [PMID: 40084342 PMCID: PMC11904933 DOI: 10.37349/en.2025.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/14/2025] [Indexed: 03/16/2025]
Abstract
The use of neurostimulation devices for the treatment of Alzheimer's disease (AD) is a growing field. In this review, we examine the mechanism of action and therapeutic indications of these neurostimulation devices in the AD process. Rapid advancements in neurostimulation technologies are providing non-pharmacological relief to patients affected by AD pathology. Neurostimulation therapies include electrical stimulation that targets the circuitry-level connection in important brain areas such as the hippocampus to induce therapeutic neuromodulation of dysfunctional neural circuitry and electromagnetic field (EMF) stimulation that targets anti-amyloid molecular pathways to promote the degradation of beta-amyloid (Aβ). These devices target specific or diffuse cortical and subcortical brain areas to modulate neuronal activity at the electrophysiological or molecular pathway level, providing therapeutic effects for AD. This review attempts to determine the most effective and safe neurostimulation device for AD and provides an overview of potential and current clinical indications. Several EMF devices have shown a beneficial or harmful effect in cell cultures and animal models but not in AD human studies. These contradictory results may be related to the stimulation parameters of these devices, such as frequency, penetration depth, power deposition measured by specific absorption rate, time of exposure, type of cell, and tissue dielectric properties. Based on this, determining the optimal stimulation parameters for EMF devices in AD and understanding their mechanism of action is essential to promote their clinical application, our review suggests that repeated EMF stimulation (REMFS) is the most appropriate device for human AD treatments. Before its clinical application, it is necessary to consider the complicated and interconnected genetic and epigenetic effects of REMFS-biological system interaction. This will move forward the urgently needed therapy of EMF in human AD.
Collapse
Affiliation(s)
- Felipe P. Perez
- Department of Medicine, Division of General Internal Medicine and Geriatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brett Walker
- Department of Medicine, Division of General Internal Medicine and Geriatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jorge Morisaki
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Haitham Kanakri
- Department of Electrical and Computer Engineering, Purdue University, Indianapolis, IN 46202, USA
| | - Maher Rizkalla
- Department of Electrical and Computer Engineering, Purdue University, Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Xu J, Liu B, Feng Z, Yu X, Shang G, Liu Y, Sun Y, Yang H, Chen Y, Zhang Y, Mao Z. Deep brain stimulation versus nonsurgical treatment for severe Alzheimer's disease: A long-term retrospective cohort study. J Alzheimers Dis Rep 2024; 8:1677-1689. [PMID: 40034349 PMCID: PMC11863731 DOI: 10.1177/25424823241297852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/02/2024] [Indexed: 03/05/2025] Open
Abstract
Background Severe Alzheimer's disease (AD) is characterized by significant neuropsychiatric symptoms and sleep disorders, with limited effectiveness of conservative drug treatments. Deep brain stimulation (DBS) offers a potential alternative. Objective To evaluate the efficacy, safety, and long-term outcomes of DBS versus conservative treatment in patients with severe AD. Methods We retrospectively analyzed 40 patients with severe AD diagnosed at the People's Liberation Army General Hospital from 2015 to 2022. Twenty patients received DBS, and twenty received conservative treatment. Treatment effects were assessed using standardized scales at three- and twelve-months post-treatment. Primary outcomes included changes in cognitive function [Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Alzheimer's Disease Rating Scale-Cognitive subscale, Clinical Dementia Rating). Secondary outcomes included quality of life, sleep quality, neuropsychiatric symptoms, and caregiver burden (Barthel Index, Functional Activity Questionnaire, Functional Independence Measure (FIM), Neuropsychiatric Inventory (NPI), Hamilton Anxiety Rating Scale (HAM-A), Hamilton Depression Rating Scale (HAM-D), Pittsburgh Sleep Quality Index (PDQI), Zarit Burden Interview (ZBI)]. Results DBS patients showed significantly greater improvements in MMSE, MoCA, FIM, and ZBI scores than controls, suggesting improved cognitive function and quality of life, and reduced caregiver burden (p < 0.05). Notably, DBS significantly reduced HAM-A, HAM-D, and PSQI scores, and improved NPI scores more than controls, indicating significant amelioration of neuropsychiatric symptoms and sleep disorders (p < 0.05). Conclusions DBS is a safe and reversible treatment that potentially enhances cognitive function and quality of life in severe AD patients and alleviates caregiver burden. For the first time, we report that DBS also improves neuropsychiatric symptoms and sleep disorders, highlighting its clinical potential in AD.
Collapse
Affiliation(s)
- Junpeng Xu
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bin Liu
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | | | - Xinguang Yu
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Guosong Shang
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Liu
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | | | - Haonan Yang
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuhan Chen
- The First Clinical Medical College of Hebei North University, Zhangjiakou, China
| | - Yanyang Zhang
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhiqi Mao
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Wischnewski M, Shirinpour S, Alekseichuk I, Lapid MI, Nahas Z, Lim KO, Croarkin PE, Opitz A. Real-time TMS-EEG for brain state-controlled research and precision treatment: a narrative review and guide. J Neural Eng 2024; 21:061001. [PMID: 39442548 PMCID: PMC11528152 DOI: 10.1088/1741-2552/ad8a8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
Transcranial magnetic stimulation (TMS) modulates neuronal activity, but the efficacy of an open-loop approach is limited due to the brain state's dynamic nature. Real-time integration with electroencephalography (EEG) increases experimental reliability and offers personalized neuromodulation therapy by using immediate brain states as biomarkers. Here, we review brain state-controlled TMS-EEG studies since the first publication several years ago. A summary of experiments on the sensorimotor mu rhythm (8-13 Hz) shows increased cortical excitability due to TMS pulse at the trough and decreased excitability at the peak of the oscillation. Pre-TMS pulse mu power also affects excitability. Further, there is emerging evidence that the oscillation phase in theta and beta frequency bands modulates neural excitability. Here, we provide a guide for real-time TMS-EEG application and discuss experimental and technical considerations. We consider the effects of hardware choice, signal quality, spatial and temporal filtering, and neural characteristics of the targeted brain oscillation. Finally, we speculate on how closed-loop TMS-EEG potentially could improve the treatment of neurological and mental disorders such as depression, Alzheimer's, Parkinson's, schizophrenia, and stroke.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Psychology, Experimental Psychology, University of Groningen, Groningen, The Netherlands
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, United States of America
| | - Maria I Lapid
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, United States of America
| | - Ziad Nahas
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Kelvin O Lim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Paul E Croarkin
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, United States of America
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
7
|
Silemek B, Seifert F, Petzold J, Brühl R, Ittermann B, Winter L. Wirelessly interfacing sensor-equipped implants and MR scanners for improved safety and imaging. Magn Reson Med 2023; 90:2608-2626. [PMID: 37533167 DOI: 10.1002/mrm.29818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
PURPOSE To investigate a novel reduced RF heating method for imaging in the presence of active implanted medical devices (AIMDs) which employs a sensor-equipped implant that provides wireless feedback. METHODS The implant, consisting of a generator case and a lead, measures RF-inducedE $$ E $$ -fields at the implant tip using a simple sensor in the generator case and transmits these values wirelessly to the MR scanner. Based on the sensor signal alone, parallel transmission (pTx) excitation vectors were calculated to suppress tip heating and maintain image quality. A sensor-based imaging metric was introduced to assess the image quality. The methodology was studied at 7T in testbed experiments, and at a 3T scanner in an ASTM phantom containing AIMDs instrumented with six realistic deep brain stimulation (DBS) lead configurations adapted from patients. RESULTS The implant successfully measured RF-inducedE $$ E $$ -fields (Pearson correlation coefficient squared [R2 ] = 0.93) and temperature rises (R2 = 0.95) at the implant tip. The implant acquired the relevant data needed to calculate the pTx excitation vectors and transmitted them wirelessly to the MR scanner within a single shot RF sequence (<60 ms). Temperature rises for six realistic DBS lead configurations were reduced to 0.03-0.14 K for heating suppression modes compared to 0.52-3.33 K for the worst-case heating, while imaging quality remained comparable (five of six lead imaging scores were ≥0.80/1.00) to conventional circular polarization (CP) images. CONCLUSION Implants with sensors that can communicate with an MR scanner can substantially improve safety for patients in a fast and automated manner, easing the current burden for MR personnel.
Collapse
Affiliation(s)
- Berk Silemek
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Johannes Petzold
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Lukas Winter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| |
Collapse
|
8
|
Gerasimova SA, Beltyukova A, Fedulina A, Matveeva M, Lebedeva AV, Pisarchik AN. Living-Neuron-Based Autogenerator. SENSORS (BASEL, SWITZERLAND) 2023; 23:7016. [PMID: 37631552 PMCID: PMC10458024 DOI: 10.3390/s23167016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023]
Abstract
We present a novel closed-loop system designed to integrate biological and artificial neurons of the oscillatory type into a unified circuit. The system comprises an electronic circuit based on the FitzHugh-Nagumo model, which provides stimulation to living neurons in acute hippocampal mouse brain slices. The local field potentials generated by the living neurons trigger a transition in the FitzHugh-Nagumo circuit from an excitable state to an oscillatory mode, and in turn, the spikes produced by the electronic circuit synchronize with the living-neuron spikes. The key advantage of this hybrid electrobiological autogenerator lies in its capability to control biological neuron signals, which holds significant promise for diverse neuromorphic applications.
Collapse
Affiliation(s)
- Svetlana A. Gerasimova
- Department of Control Theory and System Dynamics, Neurotechnology Department, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Anna Beltyukova
- Department of Control Theory and System Dynamics, Neurotechnology Department, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Anastasia Fedulina
- Department of Control Theory and System Dynamics, Neurotechnology Department, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Maria Matveeva
- Department of Control Theory and System Dynamics, Neurotechnology Department, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Albina V. Lebedeva
- Department of Control Theory and System Dynamics, Neurotechnology Department, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Alexander N. Pisarchik
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
9
|
Meftah S, Gan J. Alzheimer's disease as a synaptopathy: Evidence for dysfunction of synapses during disease progression. Front Synaptic Neurosci 2023; 15:1129036. [PMID: 36970154 PMCID: PMC10033629 DOI: 10.3389/fnsyn.2023.1129036] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
The synapse has consistently been considered a vulnerable and critical target within Alzheimer's disease, and synapse loss is, to date, one of the main biological correlates of cognitive decline within Alzheimer's disease. This occurs prior to neuronal loss with ample evidence that synaptic dysfunction precedes this, in support of the idea that synaptic failure is a crucial stage within disease pathogenesis. The two main pathological hallmarks of Alzheimer's disease, abnormal aggregates of amyloid or tau proteins, have had demonstrable effects on synaptic physiology in animal and cellular models of Alzheimer's disease. There is also growing evidence that these two proteins may have a synergistic effect on neurophysiological dysfunction. Here, we review some of the main findings of synaptic alterations in Alzheimer's disease, and what we know from Alzheimer's disease animal and cellular models. First, we briefly summarize some of the human evidence to suggest that synapses are altered, including how this relates to network activity. Subsequently, animal and cellular models of Alzheimer's disease are considered, highlighting mouse models of amyloid and tau pathology and the role these proteins may play in synaptic dysfunction, either in isolation or examining how the two pathologies may interact in dysfunction. This specifically focuses on neurophysiological function and dysfunction observed within these animal models, typically measured using electrophysiology or calcium imaging. Following synaptic dysfunction and loss, it would be impossible to imagine that this would not alter oscillatory activity within the brain. Therefore, this review also discusses how this may underpin some of the aberrant oscillatory patterns seen in animal models of Alzheimer's disease and human patients. Finally, an overview of some key directions and considerations in the field of synaptic dysfunction in Alzheimer's disease is covered. This includes current therapeutics that are targeted specifically at synaptic dysfunction, but also methods that modulate activity to rescue aberrant oscillatory patterns. Other important future avenues of note in this field include the role of non-neuronal cell types such as astrocytes and microglia, and mechanisms of dysfunction independent of amyloid and tau in Alzheimer's disease. The synapse will certainly continue to be an important target within Alzheimer's disease for the foreseeable future.
Collapse
Affiliation(s)
- Soraya Meftah
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jian Gan
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Gebodh N, Miskovic V, Laszlo S, Datta A, Bikson M. A Scalable Framework for Closed-Loop Neuromodulation with Deep Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524615. [PMID: 36712027 PMCID: PMC9882307 DOI: 10.1101/2023.01.18.524615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Closed-loop neuromodulation measures dynamic neural or physiological activity to optimize interventions for clinical and nonclinical behavioral, cognitive, wellness, attentional, or general task performance enhancement. Conventional closed-loop stimulation approaches can contain biased biomarker detection (decoders and error-based triggering) and stimulation-type application. We present and verify a novel deep learning framework for designing and deploying flexible, data-driven, automated closed-loop neuromodulation that is scalable using diverse datasets, agnostic to stimulation technology (supporting multi-modal stimulation: tACS, tDCS, tFUS, TMS), and without the need for personalized ground-truth performance data. Our approach is based on identified periods of responsiveness - detected states that result in a change in performance when stimulation is applied compared to no stimulation. To demonstrate our framework, we acquire, analyze, and apply a data-driven approach to our open sourced GX dataset, which includes concurrent physiological (ECG, EOG) and neuronal (EEG) measures, paired with continuous vigilance/attention-fatigue tracking, and High-Definition transcranial electrical stimulation (HD-tES). Our framework's decision process for intervention application identified 88.26% of trials as correct applications, showed potential improvement with varying stimulation types, or missed opportunities to stimulate, whereas 11.25% of trials were predicted to stimulate at inopportune times. With emerging datasets and stimulation technologies, our unifying and integrative framework; leveraging deep learning (Convolutional Neural Networks - CNNs); demonstrates the adaptability and feasibility of automated multimodal neuromodulation for both clinical and nonclinical applications.
Collapse
Affiliation(s)
- Nigel Gebodh
- The Department of Biomedical Engineering, The City College of New York, The City University of New York, New York USA
| | | | | | | | - Marom Bikson
- The Department of Biomedical Engineering, The City College of New York, The City University of New York, New York USA
| |
Collapse
|
11
|
Gupta A, Vardalakis N, Wagner FB. Neuroprosthetics: from sensorimotor to cognitive disorders. Commun Biol 2023; 6:14. [PMID: 36609559 PMCID: PMC9823108 DOI: 10.1038/s42003-022-04390-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Neuroprosthetics is a multidisciplinary field at the interface between neurosciences and biomedical engineering, which aims at replacing or modulating parts of the nervous system that get disrupted in neurological disorders or after injury. Although neuroprostheses have steadily evolved over the past 60 years in the field of sensory and motor disorders, their application to higher-order cognitive functions is still at a relatively preliminary stage. Nevertheless, a recent series of proof-of-concept studies suggest that electrical neuromodulation strategies might also be useful in alleviating some cognitive and memory deficits, in particular in the context of dementia. Here, we review the evolution of neuroprosthetics from sensorimotor to cognitive disorders, highlighting important common principles such as the need for neuroprosthetic systems that enable multisite bidirectional interactions with the nervous system.
Collapse
Affiliation(s)
- Ankur Gupta
- grid.462010.1Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | | - Fabien B. Wagner
- grid.462010.1Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
12
|
Haeusermann T, Lechner CR, Fong KC, Sideman AB, Jaworska A, Chiong W, Dohan D. Closed-Loop Neuromodulation and Self-Perception in Clinical Treatment of Refractory Epilepsy. AJOB Neurosci 2023; 14:32-44. [PMID: 34473932 PMCID: PMC9007331 DOI: 10.1080/21507740.2021.1958100] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background: Newer "closed-loop" neurostimulation devices in development could, in theory, induce changes to patients' personalities and self-perceptions. Empirically, however, only limited data of patient and family experiences exist. Responsive neurostimulation (RNS) as a treatment for refractory epilepsy is the first approved and commercially available closed-loop brain stimulation system in clinical practice, presenting an opportunity to observe how conceptual neuroethical concerns manifest in clinical treatment.Methods: We conducted ethnographic research at a single academic medical center with an active RNS treatment program and collected data via direct observation of clinic visits and in-depth interviews with 12 patients and their caregivers. We used deductive and inductive analyses to identify the relationship between these devices and patient changes in personality and self-perception.Results: Participants generally did not attribute changes in patients' personalities or self-perception to implantation of or stimulation using RNS. They did report that RNS affected patients' experiences and conceptions of illness. In particular, the capacity to store and display electrophysiological data produced a common frame of reference and a shared vocabulary among patients and clinicians.Discussion: Empirical experiences of a clinical population being treated with closed-loop neuromodulation do not corroborate theoretical concerns about RNS devices described by neuroethicists and technology developers. However, closed-loop devices demonstrated an ability to change illness experiences. Even without altering identify and self-perception, they provided new cultural tools and metaphors for conceiving of epilepsy as an illness and of the process of diagnosis and treatment. These findings call attention to the need to situate neuroethical concerns in the broader contexts of patients' illness experiences and social circumstances.
Collapse
|
13
|
Luo Y, Sun Y, Wen H, Wang X, Zheng X, Ge H, Yin Y, Wu X, Li W, Hou W. Deep brain stimulation of the entorhinal cortex modulates CA1 theta-gamma oscillations in mouse models of preclinical Alzheimer's disease. Biocybern Biomed Eng 2023. [DOI: 10.1016/j.bbe.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Li R, Zhang C, Rao Y, Yuan TF. Deep brain stimulation of fornix for memory improvement in Alzheimer's disease: A critical review. Ageing Res Rev 2022; 79:101668. [PMID: 35705176 DOI: 10.1016/j.arr.2022.101668] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/16/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Memory reflects the brain function in encoding, storage and retrieval of the data or information, which is a fundamental ability for any live organism. The development of approaches to improve memory attracts much attention due to the underlying mechanistic insight and therapeutic potential to treat neurodegenerative diseases with memory loss, such as Alzheimer's disease (AD). Deep brain stimulation (DBS), a reversible, adjustable, and non-ablative therapy, has been shown to be safe and effective in many clinical trials for neurodegenerative and neuropsychiatric disorders. Among all potential regions with access to invasive electrodes, fornix is considered as it is the major afferent and efferent connection of the hippocampus known to be closely associated with learning and memory. Indeed, clinical trials have demonstrated that fornix DBS globally improved cognitive function in a subset of patients with AD, indicating fornix can serve as a potential target for neurosurgical intervention in treating memory impairment in AD. The present review aims to provide a better understanding of recent progresses in the application of fornix DBS for ameliorating memory impairments in AD patients.
Collapse
Affiliation(s)
- Ruofan Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanxia Rao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Laboratory Animal Science, Fudan University, China.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Farkhondeh Tale Navi F, Heysieattalab S, Ramanathan DS, Raoufy MR, Nazari MA. Closed-loop Modulation of the Self-regulating Brain: A Review on Approaches, Emerging Paradigms, and Experimental Designs. Neuroscience 2022; 483:104-126. [PMID: 34902494 DOI: 10.1016/j.neuroscience.2021.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/27/2022]
Abstract
Closed-loop approaches, setups, and experimental designs have been applied within the field of neuroscience to enhance the understanding of basic neurophysiology principles (closed-loop neuroscience; CLNS) and to develop improved procedures for modulating brain circuits and networks for clinical purposes (closed-loop neuromodulation; CLNM). The contents of this review are thus arranged into the following sections. First, we describe basic research findings that have been made using CLNS. Next, we provide an overview of the application, rationale, and therapeutic aspects of CLNM for clinical purposes. Finally, we summarize methodological concerns and critics in clinical practice of neurofeedback and novel applications of closed-loop perspective and techniques to improve and optimize its experiments. Moreover, we outline the theoretical explanations and experimental ideas to test animal models of neurofeedback and discuss technical issues and challenges associated with implementing closed-loop systems. We hope this review is helpful for both basic neuroscientists and clinical/ translationally-oriented scientists interested in applying closed-loop methods to improve mental health and well-being.
Collapse
Affiliation(s)
- Farhad Farkhondeh Tale Navi
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Soomaayeh Heysieattalab
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | | | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Ali Nazari
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Storch S, Samantzis M, Balbi M. Driving Oscillatory Dynamics: Neuromodulation for Recovery After Stroke. Front Syst Neurosci 2021; 15:712664. [PMID: 34366801 PMCID: PMC8339272 DOI: 10.3389/fnsys.2021.712664] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/21/2021] [Indexed: 12/18/2022] Open
Abstract
Stroke is a leading cause of death and disability worldwide, with limited treatments being available. However, advances in optic methods in neuroscience are providing new insights into the damaged brain and potential avenues for recovery. Direct brain stimulation has revealed close associations between mental states and neuroprotective processes in health and disease, and activity-dependent calcium indicators are being used to decode brain dynamics to understand the mechanisms underlying these associations. Evoked neural oscillations have recently shown the ability to restore and maintain intrinsic homeostatic processes in the brain and could be rapidly deployed during emergency care or shortly after admission into the clinic, making them a promising, non-invasive therapeutic option. We present an overview of the most relevant descriptions of brain injury after stroke, with a focus on disruptions to neural oscillations. We discuss the optical technologies that are currently used and lay out a roadmap for future studies needed to inform the next generation of strategies to promote functional recovery after stroke.
Collapse
Affiliation(s)
- Sven Storch
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Montana Samantzis
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Matilde Balbi
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Takeuchi Y, Nagy AJ, Barcsai L, Li Q, Ohsawa M, Mizuseki K, Berényi A. The Medial Septum as a Potential Target for Treating Brain Disorders Associated With Oscillopathies. Front Neural Circuits 2021; 15:701080. [PMID: 34305537 PMCID: PMC8297467 DOI: 10.3389/fncir.2021.701080] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
The medial septum (MS), as part of the basal forebrain, supports many physiological functions, from sensorimotor integration to cognition. With often reciprocal connections with a broad set of peers at all major divisions of the brain, the MS orchestrates oscillatory neuronal activities throughout the brain. These oscillations are critical in generating sensory and emotional salience, locomotion, maintaining mood, supporting innate anxiety, and governing learning and memory. Accumulating evidence points out that the physiological oscillations under septal influence are frequently disrupted or altered in pathological conditions. Therefore, the MS may be a potential target for treating neurological and psychiatric disorders with abnormal oscillations (oscillopathies) to restore healthy patterns or erase undesired ones. Recent studies have revealed that the patterned stimulation of the MS alleviates symptoms of epilepsy. We discuss here that stimulus timing is a critical determinant of treatment efficacy on multiple time scales. On-demand stimulation may dramatically reduce side effects by not interfering with normal physiological functions. A precise pattern-matched stimulation through adaptive timing governed by the ongoing oscillations is essential to effectively terminate pathological oscillations. The time-targeted strategy for the MS stimulation may provide an effective way of treating multiple disorders including Alzheimer's disease, anxiety/fear, schizophrenia, and depression, as well as pain.
Collapse
Affiliation(s)
- Yuichi Takeuchi
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Anett J. Nagy
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Lívia Barcsai
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Qun Li
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Masahiro Ohsawa
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kenji Mizuseki
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Antal Berényi
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
- Neurocybernetics Excellence Center, University of Szeged, Szeged, Hungary
- HCEMM-USZ Magnetotherapeutics Research Group, University of Szeged, Szeged, Hungary
- Neuroscience Institute, New York University, New York, NY, United States
| |
Collapse
|
18
|
Stoiljkovic M, Horvath TL, Hajós M. Therapy for Alzheimer's disease: Missing targets and functional markers? Ageing Res Rev 2021; 68:101318. [PMID: 33711510 PMCID: PMC8131215 DOI: 10.1016/j.arr.2021.101318] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022]
Abstract
The development of the next generation therapy for Alzheimer's disease (AD) presents a huge challenge given the number of promising treatment candidates that failed in trials, despite recent advancements in understanding of genetic, pathophysiologic and clinical characteristics of the disease. This review reflects some of the most current concepts and controversies in developing disease-modifying and new symptomatic treatments. It elaborates on recent changes in the AD research strategy for broadening drug targets, and potentials of emerging non-pharmacological treatment interventions. Established and novel biomarkers are discussed, including emerging cerebrospinal fluid and plasma biomarkers reflecting tau pathology, neuroinflammation and neurodegeneration. These fluid biomarkers together with neuroimaging findings can provide innovative objective assessments of subtle changes in brain reflecting disease progression. A particular emphasis is given to neurophysiological biomarkers which are well-suited for evaluating the brain overall neural network integrity and function. Combination of multiple biomarkers, including target engagement and outcome biomarkers will empower translational studies and facilitate successful development of effective therapies.
Collapse
Affiliation(s)
- Milan Stoiljkovic
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA; Department of Pharmacology, University of Nis School of Medicine, Nis, Serbia.
| | - Tamas L Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Mihály Hajós
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA; Cognito Therapeutics, Cambridge, MA, 02138, USA
| |
Collapse
|
19
|
Okonogi T, Sasaki T. Theta-Range Oscillations in Stress-Induced Mental Disorders as an Oscillotherapeutic Target. Front Behav Neurosci 2021; 15:698753. [PMID: 34177486 PMCID: PMC8219864 DOI: 10.3389/fnbeh.2021.698753] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Emotional behavior and psychological disorders are expressed through coordinated interactions across multiple brain regions. Brain electrophysiological signals are composed of diverse neuronal oscillations, representing cell-level to region-level neuronal activity patterns, and serve as a biomarker of mental disorders. Here, we review recent observations from rodents demonstrating how neuronal oscillations in the hippocampus, amygdala, and prefrontal cortex are engaged in emotional behavior and altered by psychiatric changes such as anxiety and depression. In particular, we focus mainly on theta-range (4–12 Hz) oscillations, including several distinct oscillations in this frequency range. We then discuss therapeutic possibilities related to controlling such mental disease-related neuronal oscillations to ameliorate psychiatric symptoms and disorders in rodents and humans.
Collapse
Affiliation(s)
- Toya Okonogi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Luo Y, Sun Y, Tian X, Zheng X, Wang X, Li W, Wu X, Shu B, Hou W. Deep Brain Stimulation for Alzheimer's Disease: Stimulation Parameters and Potential Mechanisms of Action. Front Aging Neurosci 2021; 13:619543. [PMID: 33776742 PMCID: PMC7990787 DOI: 10.3389/fnagi.2021.619543] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/19/2021] [Indexed: 12/19/2022] Open
Abstract
Deep brain stimulation (DBS) is a neurosurgical technique that regulates neuron activity by using internal pulse generators to electrodes in specific target areas of the brain. As a blind treatment, DBS is widely used in the field of mental and neurological diseases, although its mechanism of action is still unclear. In the past 10 years, DBS has shown a certain positive effect in animal models and patients with Alzheimer's disease (AD), but there are also different results that may be related to the stimulation parameters of DBS. Based on this, determining the optimal stimulation parameters for DBS in AD and understanding its mechanism of action are essential to promote the clinical application of DBS in AD. This review aims to explore the therapeutic effect of DBS in AD, and to analyze its stimulation parameters and potential mechanism of action. The keywords "Deep brain stimulation" and "Alzheimer's Disease" were used for systematic searches in the literature databases of Web of Science and PubMed (from 1900 to September 29, 2020). All human clinical studies and animal studies were reported in English, including individual case studies and long-term follow-up studies, were included. These studies described the therapeutic effects of DBS in AD. The results included 16 human clinical studies and 14 animal studies, of which 28 studies clearly demonstrated the positive effect of DBS in AD. We analyzed the current stimulation parameters of DBS in AD from stimulation target, stimulation frequency, stimulation start time, stimulation duration, unilateral/bilateral treatment and current intensity, etc., and we also discussed its potential mechanism of action from multiple aspects, including regulating related neural networks, promoting nerve oscillation, reducing β-amyloid and tau levels, reducing neuroinflammation, regulating the cholinergic system, inducing the synthesis of nerve growth factor.
Collapse
Affiliation(s)
- Yinpei Luo
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Yuwei Sun
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Xuelong Tian
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Xiaolin Zheng
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Xing Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Weina Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoying Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Bin Shu
- Department of Rehabilitation Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Wensheng Hou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| |
Collapse
|
21
|
Subramaniam S, Blake DT, Constantinidis C. Cholinergic Deep Brain Stimulation for Memory and Cognitive Disorders. J Alzheimers Dis 2021; 83:491-503. [PMID: 34334401 PMCID: PMC8543284 DOI: 10.3233/jad-210425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/20/2022]
Abstract
Memory and cognitive impairment as sequelae of neurodegeneration in Alzheimer's disease and age-related dementia are major health issues with increasing social and economic burden. Deep brain stimulation (DBS) has emerged as a potential treatment to slow or halt progression of the disease state. The selection of stimulation target is critical, and structures that have been targeted for memory and cognitive enhancement include the Papez circuit, structures projecting to the frontal lobe such as the ventral internal capsule, and the cholinergic forebrain. Recent human clinical and animal model results imply that DBS of the nucleus basalis of Meynert can induce a therapeutic modulation of neuronal activity. Benefits include enhanced activity across the cortical mantle, and potential for amelioration of neuropathological mechanisms associated with Alzheimer's disease. The choice of stimulation parameters is also critical. High-frequency, continuous stimulation is used for movement disorders as a way of inhibiting their output; however, no overexcitation has been hypothesized in Alzheimer's disease and lower stimulation frequency or intermittent patterns of stimulation (periods of stimulation interleaved with periods of no stimulation) are likely to be more effective for stimulation of the cholinergic forebrain. Efficacy and long-term tolerance in human patients remain open questions, though the cumulative experience gained by DBS for movement disorders provides assurance for the safety of the procedure.
Collapse
Affiliation(s)
- Saravanan Subramaniam
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - David T. Blake
- Brain and Behavior Discovery Institute, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Christos Constantinidis
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
22
|
Yuan TF, Li WG, Zhang C, Wei H, Sun S, Xu NJ, Liu J, Xu TL. Targeting neuroplasticity in patients with neurodegenerative diseases using brain stimulation techniques. Transl Neurodegener 2020; 9:44. [PMID: 33280613 PMCID: PMC7720463 DOI: 10.1186/s40035-020-00224-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 11/19/2020] [Indexed: 01/17/2023] Open
Abstract
Deficits in synaptic transmission and plasticity are thought to contribute to the pathophysiology of Alzheimer’s disease (AD) and Parkinson’s disease (PD). Several brain stimulation techniques are currently available to assess or modulate human neuroplasticity, which could offer clinically useful interventions as well as quantitative diagnostic and prognostic biomarkers. In this review, we discuss several brain stimulation techniques, with a special emphasis on transcranial magnetic stimulation and deep brain stimulation (DBS), and review the results of clinical studies that applied these techniques to examine or modulate impaired neuroplasticity at the local and network levels in patients with AD or PD. The impaired neuroplasticity can be detected in patients at the earlier and later stages of both neurodegenerative diseases. However, current brain stimulation techniques, with a notable exception of DBS for PD treatment, cannot serve as adequate clinical tools to assist in the diagnosis, treatment, or prognosis of individual patients with AD or PD. Targeting the impaired neuroplasticity with improved brain stimulation techniques could offer a powerful novel approach for the treatment of AD and PD.
Collapse
Affiliation(s)
- Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China
| | - Wei-Guang Li
- Center for Brain Science, Shanghai Children's Medical Center, and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chencheng Zhang
- Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongjiang Wei
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Suya Sun
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Nan-Jie Xu
- Center for Brain Science, Shanghai Children's Medical Center, and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Tian-Le Xu
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
23
|
Wilson CA, Fouda S, Sakata S. Effects of optogenetic stimulation of basal forebrain parvalbumin neurons on Alzheimer's disease pathology. Sci Rep 2020; 10:15456. [PMID: 32963298 PMCID: PMC7508947 DOI: 10.1038/s41598-020-72421-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Neuronal activity can modify Alzheimer's disease pathology. Overexcitation of neurons can facilitate disease progression whereas the induction of cortical gamma oscillations can reduce amyloid load and improve cognitive functions in mouse models. Although previous studies have induced cortical gamma oscillations by either optogenetic activation of cortical parvalbumin-positive (PV+) neurons or sensory stimuli, it is still unclear whether other approaches to induce gamma oscillations can also be beneficial. Here we show that optogenetic activation of PV+ neurons in the basal forebrain (BF) increases amyloid burden, rather than reducing it. We applied 40 Hz optical stimulation in the BF by expressing channelrhodopsin-2 (ChR2) in PV+ neurons of 5xFAD mice. After 1-h induction of cortical gamma oscillations over three days, we observed the increase in the concentration of amyloid-β42 in the frontal cortical region, but not amyloid-β40. Amyloid plaques were accumulated more in the medial prefrontal cortex and the septal nuclei, both of which are targets of BF PV+ neurons. These results suggest that beneficial effects of cortical gamma oscillations on Alzheimer's disease pathology can depend on the induction mechanisms of cortical gamma oscillations.
Collapse
Affiliation(s)
- Caroline A Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Sarah Fouda
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| |
Collapse
|
24
|
Mankin EA, Fried I. Modulation of Human Memory by Deep Brain Stimulation of the Entorhinal-Hippocampal Circuitry. Neuron 2020; 106:218-235. [PMID: 32325058 DOI: 10.1016/j.neuron.2020.02.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/13/2020] [Accepted: 01/27/2020] [Indexed: 01/02/2023]
Abstract
Neurological disorders affecting human memory present a major scientific, medical, and societal challenge. Direct or indirect deep brain stimulation (DBS) of the entorhinal-hippocampal system, the brain's major memory hub, has been studied in people with epilepsy or Alzheimer's disease, intending to enhance memory performance or slow memory decline. Variability in the spatiotemporal parameters of stimulation employed to date notwithstanding, it is likely that future DBS for memory will employ closed-loop, nuanced approaches that are synergistic with native physiological processes. The potential for editing human memory-decoding, enhancing, incepting, or deleting specific memories-suggests exciting therapeutic possibilities but also raises considerable ethical concerns.
Collapse
Affiliation(s)
- Emily A Mankin
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Itzhak Fried
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA; Tel Aviv Medical Center and Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
25
|
Benear SL, Ngo CT, Olson IR. Dissecting the Fornix in Basic Memory Processes and Neuropsychiatric Disease: A Review. Brain Connect 2020; 10:331-354. [PMID: 32567331 DOI: 10.1089/brain.2020.0749] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: The fornix is the primary axonal tract of the hippocampus, connecting it to modulatory subcortical structures. This review reveals that fornix damage causes cognitive deficits that closely mirror those resulting from hippocampal lesions. Methods: We reviewed the literature on the fornix, spanning non-human animal lesion research, clinical case studies of human patients with fornix damage, as well as diffusion-weighted imaging (DWI) work that evaluates fornix microstructure in vivo. Results: The fornix is essential for memory formation because it serves as the conduit for theta rhythms and acetylcholine, as well as providing mnemonic representations to deep brain structures that guide motivated behavior, such as when and where to eat. In rodents and non-human primates, fornix lesions lead to deficits in conditioning, reversal learning, and navigation. In humans, damage to the fornix manifests as anterograde amnesia. DWI research reveals that the fornix plays a key role in mild cognitive impairment and Alzheimer's Disease, and can potentially predict conversion from the former to the latter. Emerging DWI findings link perturbations in this structure to schizophrenia, mood disorders, and eating disorders. Cutting-edge research has investigated how deep brain stimulation of the fornix can potentially attenuate memory loss, control epileptic seizures, and even improve mood. Conclusions: The fornix is essential to a fully functioning memory system and is implicated in nearly all neurological functions that rely on the hippocampus. Future research needs to use optimized DWI methods to study the fornix in vivo, which we discuss, given the difficult nature of fornix reconstruction. Impact Statement The fornix is a white matter tract that connects the hippocampus to several subcortical brain regions and is pivotal for episodic memory functioning. Functionally, the fornix transmits essential neurotransmitters, as well as theta rhythms, to the hippocampus. In addition, it is the conduit by which memories guide decisions. The fornix is biomedically important because lesions to this tract result in irreversible anterograde amnesia. Research using in vivo imaging methods has linked fornix pathology to cognitive aging, mild cognitive impairment, psychosis, epilepsy, and, importantly, Alzheimer's Disease.
Collapse
Affiliation(s)
- Susan L Benear
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Chi T Ngo
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ingrid R Olson
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Takeuchi Y, Berényi A. Oscillotherapeutics - Time-targeted interventions in epilepsy and beyond. Neurosci Res 2020; 152:87-107. [PMID: 31954733 DOI: 10.1016/j.neures.2020.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 02/09/2023]
Abstract
Oscillatory brain activities support many physiological functions from motor control to cognition. Disruptions of the normal oscillatory brain activities are commonly observed in neurological and psychiatric disorders including epilepsy, Parkinson's disease, Alzheimer's disease, schizophrenia, anxiety/trauma-related disorders, major depressive disorders, and drug addiction. Therefore, these disorders can be considered as common oscillation defects despite having distinct behavioral manifestations and genetic causes. Recent technical advances of neuronal activity recording and analysis have allowed us to study the pathological oscillations of each disorder as a possible biomarker of symptoms. Furthermore, recent advances in brain stimulation technologies enable time- and space-targeted interventions of the pathological oscillations of both neurological disorders and psychiatric disorders as possible targets for regulating their symptoms.
Collapse
Affiliation(s)
- Yuichi Takeuchi
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary; Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| | - Antal Berényi
- MTA-SZTE 'Momentum' Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, 6720, Hungary; HCEMM-SZTE Magnetotherapeutics Research Group, University of Szeged, Szeged, 6720, Hungary; Neuroscience Institute, New York University, New York, NY 10016, USA.
| |
Collapse
|
27
|
Jakobs M, Lee DJ, Lozano AM. Modifying the progression of Alzheimer's and Parkinson's disease with deep brain stimulation. Neuropharmacology 2019; 171:107860. [PMID: 31765650 DOI: 10.1016/j.neuropharm.2019.107860] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022]
Abstract
At times of an aging population and increasing prevalence of neurodegenerative disorders, effective medical treatments remain limited. Therefore, there is an urgent need for new therapies to treat Alzheimer's disease (AD). Deep brain stimulation (DBS) is thought to address the neuronal network dysfunction of this disorder and may offer new therapeutic options. Preliminary evidence suggests that DBS of the fornix may have effects on cognitive decline, brain glucose metabolism, hippocampal volume and cortical grey matter volume in certain patients with mild AD. Rodent studies have shown that increase of cholinergic neurotransmitters, hippocampal neurogenesis, synaptic plasticity and reduction of amyloid plaques are associated with DBS. Currently a large phase III study of fornix DBS is assessing efficacy in patients with mild AD aged 65 years and older. The Nucleus basalis of Meynert has also been explored in a phase I study in of mild to moderate AD and was tolerated well regardless of the lack of benefit. Being an established therapy for Parkinson's Disease (PD), DBS may exert some disease-modifying traits rather than being a purely symptomatic treatment. There is evidence of dopaminergic neuroprotection in animal models and some suggestion that DBS may influence the natural progression of the disorder. Neuromodulation may possibly have beneficial effects on course of different neurodegenerative disorders compared to medical therapy alone. For dementias, functional neurosurgery may provide an adjunctive option in patient care. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Martin Jakobs
- Department of Neurosurgery, Division of Stereotactic Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Darrin J Lee
- Department of Neurosurgery, University of Southern California, Los Angeles, CA, USA
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
28
|
Cutsuridis V. Memory Prosthesis: Is It Time for a Deep Neuromimetic Computing Approach? Front Neurosci 2019; 13:667. [PMID: 31333399 PMCID: PMC6624412 DOI: 10.3389/fnins.2019.00667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/11/2019] [Indexed: 11/13/2022] Open
Abstract
Memory loss, one of the most dreaded afflictions of the human condition, presents considerable burden on the world's health care system and it is recognized as a major challenge in the elderly. There are only a few neuromodulation treatments for memory dysfunctions. Open loop deep brain stimulation is such a treatment for memory improvement, but with limited success and conflicting results. In recent years closed-loop neuroprosthesis systems able to simultaneously record signals during behavioral tasks and generate with the use of internal neural factors the precise timing of stimulation patterns are presented as attractive alternatives and show promise in memory enhancement and restoration. A few such strides have already been made in both animals and humans, but with limited insights into their mechanisms of action. Here, I discuss why a deep neuromimetic computing approach linking multiple levels of description, mimicking the dynamics of brain circuits, interfaced with recording and stimulating electrodes could enhance the performance of current memory prosthesis systems, shed light into the neurobiology of learning and memory and accelerate the progress of memory prosthesis research. I propose what the necessary components (nodes, structure, connectivity, learning rules, and physiological responses) of such a deep neuromimetic model should be and what type of data are required to train/test its performance, so it can be used as a true substitute of damaged brain areas capable of restoring/enhancing their missing memory formation capabilities. Considerations to neural circuit targeting, tissue interfacing, electrode placement/implantation, and multi-network interactions in complex cognition are also provided.
Collapse
|
29
|
Effects of Inducing Gamma Oscillations in Hippocampal Subregions DG, CA3, and CA1 on the Potential Alleviation of Alzheimer's Disease-Related Pathology: Computer Modeling and Simulations. ENTROPY 2019; 21:e21060587. [PMID: 33267301 PMCID: PMC7515076 DOI: 10.3390/e21060587] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 12/02/2022]
Abstract
The aim of this study was to evaluate the possibility of the gamma oscillation function (40–130 Hz) to reduce Alzheimer’s disease related pathology in a computer model of the hippocampal network dentate gyrus, CA3, and CA1 (DG-CA3-CA1) regions. Methods: Computer simulations were made for a pathological model in which Alzheimer’s disease was simulated by synaptic degradation in the hippocampus. Pathology modeling was based on sequentially turning off the connections with entorhinal cortex layer 2 (EC2) and the dentate gyrus on CA3 pyramidal neurons. Gamma induction modeling consisted of simulating the oscillation provided by the septo-hippocampal pathway with band frequencies from 40–130 Hz. Pathological models with and without gamma induction were compared with a control. Results: In the hippocampal regions of DG, CA3, and CA1, and jointly DG-CA3-CA1 and CA3-CA1, gamma induction resulted in a statistically significant improvement in terms of increased numbers of spikes, spikes per burst, and burst duration as compared with the model simulating Alzheimer’s disease (AD). The positive maximal Lyapunov exponent was negative in both the control model and the one with gamma induction as opposed to the pathological model where it was positive within the DG-CA3-CA1 region. Gamma induction resulted in decreased transfer entropy in accordance with the information flow in DG → CA3 and CA3 → CA1. Conclusions: The results of simulation studies show that inducing gamma oscillations in the hippocampus may reduce Alzheimer’s disease related pathology. Pathologically higher transfer entropy values after gamma induction returned to values comparable to the control model.
Collapse
|
30
|
Rosen AC, Toy L, Langston AH. Are Disease Modifying Treatments Enough? Improving Quality of Life in Late-Stage Patients. J Alzheimers Dis 2019; 68:1317-1319. [DOI: 10.3233/jad-181193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Allyson C. Rosen
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Leslie Toy
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | | |
Collapse
|
31
|
Towards neural co-processors for the brain: combining decoding and encoding in brain-computer interfaces. Curr Opin Neurobiol 2019; 55:142-151. [PMID: 30954862 DOI: 10.1016/j.conb.2019.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/18/2022]
Abstract
The field of brain-computer interfaces is poised to advance from the traditional goal of controlling prosthetic devices using brain signals to combining neural decoding and encoding within a single neuroprosthetic device. Such a device acts as a 'co-processor' for the brain, with applications ranging from inducing Hebbian plasticity for rehabilitation after brain injury to reanimating paralyzed limbs and enhancing memory. We review recent progress in simultaneous decoding and encoding for closed-loop control and plasticity induction. To address the challenge of multi-channel decoding and encoding, we introduce a unifying framework for developing brain co-processors based on artificial neural networks and deep learning. These 'neural co-processors' can be used to jointly optimize cost functions with the nervous system to achieve desired behaviors ranging from targeted neuro-rehabilitation to augmentation of brain function.
Collapse
|
32
|
Hu Y, Zhao T, Zang T, Zhang Y, Cheng L. Identification of Alzheimer's Disease-Related Genes Based on Data Integration Method. Front Genet 2019; 9:703. [PMID: 30740125 PMCID: PMC6355707 DOI: 10.3389/fgene.2018.00703] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/14/2018] [Indexed: 01/18/2023] Open
Abstract
Alzheimer disease (AD) is the fourth major cause of death in the elderly following cancer, heart disease and cerebrovascular disease. Finding candidate causal genes can help in the design of Gene targeted drugs and effectively reduce the risk of the disease. Complex diseases such as AD are usually caused by multiple genes. The Genome-wide association study (GWAS), has identified the potential genetic variants for most diseases. However, because of linkage disequilibrium (LD), it is difficult to identify the causative mutations that directly cause diseases. In this study, we combined expression quantitative trait locus (eQTL) studies with the GWAS, to comprehensively define the genes that cause Alzheimer disease. The method used was the Summary Mendelian randomization (SMR), which is a novel method to integrate summarized data. Two GWAS studies and five eQTL studies were referenced in this paper. We found several candidate SNPs that have a strong relationship with AD. Most of these SNPs overlap in different data sets, providing relatively strong reliability. We also explain the function of the novel AD-related genes we have discovered.
Collapse
Affiliation(s)
- Yang Hu
- Department of Computer Science and Technology, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Tianyi Zhao
- Department of Computer Science and Technology, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Tianyi Zang
- Department of Computer Science and Technology, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Ying Zhang
- Department of Rehabilitation, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Liang Cheng
- Department of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
33
|
Iturrate I, Pereira M, Millán JDR. Closed-loop electrical neurostimulation: Challenges and opportunities. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018. [DOI: 10.1016/j.cobme.2018.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Mably AJ, Colgin LL. Gamma oscillations in cognitive disorders. Curr Opin Neurobiol 2018; 52:182-187. [PMID: 30121451 DOI: 10.1016/j.conb.2018.07.009] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/18/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
Abstract
Gamma oscillations (∼25-100 Hz) are believed to play a role in cognition. Accordingly, aberrant gamma oscillations have been observed in several cognitive disorders, including Alzheimer's disease and Fragile X syndrome. Here, we review how recent results showing abnormal gamma rhythms in Alzheimer's disease and Fragile X syndrome help reveal links between cellular disturbances and cognitive impairments. We also discuss how gamma results from rodent models of Alzheimer's disease and Fragile X syndrome may provide insights about unique functions of distinct slow (∼25-50 Hz) and fast gamma (∼55-100 Hz) subtypes. Finally, we consider studies employing brain stimulation paradigms in Alzheimer's disease and discuss how such studies may reveal causal relationships between gamma impairments and memory disturbances.
Collapse
Affiliation(s)
- Alexandra J Mably
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, 1 University Station Stop C7000, Austin, TX 78712, USA
| | - Laura Lee Colgin
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, 1 University Station Stop C7000, Austin, TX 78712, USA.
| |
Collapse
|