1
|
Onofrj M, De Rosa MA, Russo M, Ajdinaj P, Calisi D, Thomas A, Sensi SL. Psychiatric Disorders and Cognitive Fluctuations in Parkinson's Disease: Changing Approaches in the First Decades of the 21st Century. Brain Sci 2024; 14:1233. [PMID: 39766432 PMCID: PMC11727288 DOI: 10.3390/brainsci14121233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/15/2025] Open
Abstract
Parkinson's Disease (PD) is a multifaceted neurodegenerative disorder characterized, in addition to the well-recognized motor disturbances, by a complex interplay between cognitive and psychiatric manifestations. We dissect the complex landscape of PD-related psychiatric symptoms, taking into account the impact of functional neurological disorders, somatic delusions, impulse control disorders, and conditions within the bipolar spectrum. The newer entities of somatoform and functional neurological disorders, as well as preexisting bipolar spectrum disorders, are analyzed in detail. Moreover, we emphasize the need for a holistic understanding of PD, wherein the cognitive and psychiatric dimensions are valued alongside motor symptoms. Such an approach aims to facilitate early detection and personalized interventions, and enhance the overall quality of life for individuals suffering from this neurodegenerative disorder.
Collapse
Affiliation(s)
- Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.A.D.R.); (M.R.); (P.A.); (D.C.); (A.T.); (S.L.S.)
| | - Matteo Alessandro De Rosa
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.A.D.R.); (M.R.); (P.A.); (D.C.); (A.T.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Neurology Institute, SS. Annunziata University Hospital, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mirella Russo
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.A.D.R.); (M.R.); (P.A.); (D.C.); (A.T.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Neurology Institute, SS. Annunziata University Hospital, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Ajdinaj
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.A.D.R.); (M.R.); (P.A.); (D.C.); (A.T.); (S.L.S.)
| | - Dario Calisi
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.A.D.R.); (M.R.); (P.A.); (D.C.); (A.T.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Neurology Institute, SS. Annunziata University Hospital, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Astrid Thomas
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.A.D.R.); (M.R.); (P.A.); (D.C.); (A.T.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano Luca Sensi
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (M.A.D.R.); (M.R.); (P.A.); (D.C.); (A.T.); (S.L.S.)
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Neurology Institute, SS. Annunziata University Hospital, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
2
|
Lu W, Chang X, Wu W, Jin P, Lin S, Xiong L, Yu X. The Scalp Nerve Block Combined with Intercostal Nerve Block Improves Recovery After Deep Brain Stimulation in Patients with Parkinson's Disease: A Prospective, Randomized Controlled Trial. Clin Interv Aging 2024; 19:1881-1889. [PMID: 39534530 PMCID: PMC11556225 DOI: 10.2147/cia.s473421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Objective To explore the effect of scalp nerve block (SNB) combined with intercostal nerve block (ICNB) on quality of recovery (QoR) after deep brain stimulation (DBS) in patients with Parkinson's disease (PD). Methods We conducted a prospective randomized controlled trial in which 88 patients with PD were randomly assigned to undergo SNB combined with ICNB (SNB group) or not (control group) before surgery. The primary outcome was the 15-item QoR (QoR-15) score 24 h after surgery. The secondary outcomes included QoR-15 scores at 72 h and 1 month after surgery, pain-related events, recovery events in post-anesthesia care unit (PACU), duration of anesthesia and surgery, and nerve block-related adverse events. Results The QoR-15 score at 24 h after surgery was significantly higher in SNB group than Control group: 122.0 ± 7.6 vs 113.5 ± 11.3 (P = 0.006). SNB combined with ICNB improved QoR-15 scores at 72 h (P = 0.004) but not at 1 month after surgery (P = 0.230). The SNB group was positively related to QoR-15 scores 24 h after surgery (β = 8.92; 95% CI = 4.52~13.32) after adjusting for confounding variables. The numeric rating scale pain scores at PACU discharge and at 24 h, intraoperative opioid consumption, rescue analgesic use, and the incidence of postoperative nausea and vomiting (PONV) in SNB group were significantly lower than Control group (P < 0.05). Conclusion Preoperative SNB combined with ICNB improved QoR and analgesia after surgery, and reduced intraoperative opioid consumption and the incidence of PONV in patients with PD who underwent DBS.
Collapse
Affiliation(s)
- Wenbin Lu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University/Second Military Medical University, PLA, Shanghai, People’s Republic of China
| | - Xinning Chang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University/Second Military Medical University, PLA, Shanghai, People’s Republic of China
| | - Wei Wu
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Clinical Research Centre for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Peipei Jin
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University/Second Military Medical University, PLA, Shanghai, People’s Republic of China
| | - Shengwei Lin
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University/Second Military Medical University, PLA, Shanghai, People’s Republic of China
| | - Lize Xiong
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Clinical Research Centre for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Xiya Yu
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Clinical Research Centre for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Pavelka L, Rawal R, Sapienza S, Klucken J, Pauly C, Satagopam V, Krüger R. Genetically stratified Parkinson's disease with freezing of gait is related to specific pattern of cognitive impairment and non-motor dominant endophenotype. Front Aging Neurosci 2024; 16:1479572. [PMID: 39463818 PMCID: PMC11502444 DOI: 10.3389/fnagi.2024.1479572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Background Freezing of gait (FOG) is an important milestone in the individual disease trajectory of people with Parkinson's disease (PD). Based on the cognitive model of FOG etiology, the mechanism behind FOG implies higher executive dysfunction in PDFOG+. To test this model, we investigated the FOG-related phenotype and cognitive subdomains in idiopathic PD (iPD) patients without genetic variants linked to PD from the Luxembourg Parkinson's study. Methods A cross-sectional analysis comparing iPDFOG+ (n = 118) and iPDFOG- (n = 378) individuals was performed, followed by the application of logistic regression models. Consequently, regression models were fitted for a subset of iPDFOG+ (n = 35) vs. iPDFOG- (n = 126), utilizing a detailed neuropsychological battery to assess the association between FOG and cognitive subdomains. Both regression models were adjusted for sociodemographic confounders and disease severity. Results iPDFOG+ individuals presented with more motor complications (MDS-UPDRS IV) compared to iPDFOG- individuals. Moreover, iPDFOG+ individuals exhibited a higher non-motor burden, including a higher frequency of hallucinations, higher MDS-UPDRS I scores, and more pronounced autonomic dysfunction as measured by the SCOPA-AUT. In addition, iPDFOG+ individuals showed lower sleep quality along with lower quality of life (measured by PDSS and PDQ-39, respectively). The cognitive subdomain analysis in iPDFOG+ vs. iPDFOG- indicated lower scores in Benton's Judgment of Line Orientation test and CERAD word recognition, reflecting higher impairment in visuospatial, executive function, and memory encoding. Conclusion We determined a significant association between FOG and a clinical endophenotype of PD with higher non-motor burden. While our results supported the cognitive model of FOG, our findings point to a more widespread cortical impairment across cognitive subdomains beyond the executive domain in PDFOG+ with additional higher impairment in visuospatial function and memory encoding.
Collapse
Affiliation(s)
- Lukas Pavelka
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Parkinson’s Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
| | - Rajesh Rawal
- Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Stefano Sapienza
- Digital Medicine, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jochen Klucken
- Parkinson’s Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Digital Medicine, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Digital Medicine, Department of Precision Health, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Claire Pauly
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Parkinson’s Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
| | - Venkata Satagopam
- Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Parkinson’s Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
| |
Collapse
|
4
|
Onofrj M, Russo M, Delli Pizzi S, De Gregorio D, Inserra A, Gobbi G, Sensi SL. The central role of the Thalamus in psychosis, lessons from neurodegenerative diseases and psychedelics. Transl Psychiatry 2023; 13:384. [PMID: 38092757 PMCID: PMC10719401 DOI: 10.1038/s41398-023-02691-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
The PD-DLB psychosis complex found in Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB) includes hallucinations, Somatic Symptom/Functional Disorders, and delusions. These disorders exhibit similar presentation patterns and progression. Mechanisms at the root of these symptoms also share similarities with processes promoting altered states of consciousness found in Rapid Eye Movement sleep, psychiatric disorders, or the intake of psychedelic compounds. We propose that these mechanisms find a crucial driver and trigger in the dysregulated activity of high-order thalamic nuclei set in motion by ThalamoCortical Dysrhythmia (TCD). TCD generates the loss of finely tuned cortico-cortical modulations promoted by the thalamus and unleashes the aberrant activity of the Default Mode Network (DMN). TCD moves in parallel with altered thalamic filtering of external and internal information. The process produces an input overload to the cortex, thereby exacerbating DMN decoupling from task-positive networks. These phenomena alter the brain metastability, creating dreamlike, dissociative, or altered states of consciousness. In support of this hypothesis, mind-altering psychedelic drugs also modulate thalamic-cortical pathways. Understanding the pathophysiological background of these conditions provides a conceptual bridge between neurology and psychiatry, thereby helping to generate a promising and converging area of investigation and therapeutic efforts.
Collapse
Affiliation(s)
- Marco Onofrj
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
| | - Mirella Russo
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Stefano Delli Pizzi
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Danilo De Gregorio
- Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Inserra
- Neurobiological Psychiatry Unit, McGill University, Montreal, QC, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, McGill University, Montreal, QC, Canada
| | - Stefano L Sensi
- Behavioral Neurology and Molecular Neurology Units, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
5
|
Duysens J, Smits-Engelsman B. Freezing as Seen from the Inside. Mov Disord 2023; 38:1598-1601. [PMID: 37166110 DOI: 10.1002/mds.29444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/28/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023] Open
Affiliation(s)
- Jacques Duysens
- Department of Movement Sciences, Motor Control Laboratory, Movement Control and Neuroplasticity Research Group KU Leuven, Leuven, Belgium
| | - Bouwien Smits-Engelsman
- Department of Health and Rehabilitation Sciences, Faculty of Health Sciences, Division of Physiotherapy, Cape Town University, Cape Town, South Africa
- Department of Physical Activity, Sport and Recreation, Faculty Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
6
|
Sid ANEH, Kouini B, Bezzekhami MA, Toumi S, Ouchak K, Benfarhat S, Tahraoui H, Kebir M, Amrane A, Assadi AA, Zhang J, Mouni L. Optimization of Partially Hydrolyzed Polyacrylamide (HPAM) Utilized in Water-Based Mud While Drilling. Processes (Basel) 2023. [DOI: 10.3390/pr11041133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Water-soluble polymers are becoming increasingly important in various applications, such as stabilizer fluids and drilling muds. These materials are used as viscosifiers and filtration control agents, flocculants, and deflocculants due to their superior properties in increasing viscosity and gelling ability in the presence of crosslinkers. In general, studying the rheological behavior of drilling fluids is of paramount importance to ensure successful well drilling operations. Partially hydrolyzed polyacrylamide is one of the polymers widely used in water-based muds. The main objective of this study is to optimize the rheological properties of drilling muds through a characterization study of various parameters, including rheological behavior, viscosity, temperature (23 °C, 40 °C, and 60 °C), salinity using KCl and NaCl contents, aging, pH, solubility, and structural analysis using infrared of partially hydrolyzed polyacrylamide. The study aims to demonstrate the importance of using polymers in drilling muds. The findings revealed that a rate of 3% of HPAM gave better rheological behavior, the influence of KCl (1.5%, 3%, and 4.5%) was greater than that of NaCl (1.5%, 3%, and 4.5%) on polymers, and the aging test showed that the different formulations are stable and maintain their behavior up to 110 °C. The solubility test results confirmed the maximum amount absorbed by polyacrylamide ([CHPAM] = 66.42 g/L) in order to avoid aggregation, gelification, and enhance the drilling mud by utilizing the prescribed contents.
Collapse
Affiliation(s)
- Asma Nour El Houda Sid
- Department of Chemical Engineering, Faculty of Process Engineering, University of Salah Boubnider Constantine 3, Constantine 25000, Algeria
- Laboratoire de Recherche sur le Médicament et le Développement Durable ReMeDD, University of Salah Boubnider Constantine 3, Constantine 25000, Algeria
| | - Benalia Kouini
- Laboratory of Coatings, Materials and Environment, M’hamed Bougara University, Boumerdes 35000, Algeria
| | - Mohammed Amin Bezzekhami
- Laboratoire Structure, Elaboration et Application des Matériaux Moléculaires, Department of Chemistry, Faculté de Sciences Exactes et de I’Informatique, University Abdelhamid Ibn Badis, Mostaganem 27000, Algeria
| | - Selma Toumi
- Faculty of Sciences, Nouveau pole Urbain, Medea University, Medea 26000, Algeria
| | - Khadidja Ouchak
- Process Engineering Department, Faculty of Engineering Sciences, Boumerdes University, Boumerdes 35000, Algeria
| | - Sara Benfarhat
- Process Engineering Department, Faculty of Engineering Sciences, Boumerdes University, Boumerdes 35000, Algeria
| | - Hichem Tahraoui
- Laboratory of Biomaterials and Transport Phenomena (LBMTP), University Yahia Fares, Medea 26000, Algeria
- Laboratoire de Génie des Procédés Chimiques, Department of Process Engineering, University of Ferhat Abbas, Setif 19000, Algeria
| | - Mohammed Kebir
- Research Unit on Analysis and Technological Development in Environment (URADTE-CRAPC), BP 384, Bou-Ismail 42000, Tipaza, Algeria
| | - Abdeltif Amrane
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR—UMR6226, University Rennes, F-35000 Rennes, France
| | - Aymen Amine Assadi
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR—UMR6226, University Rennes, F-35000 Rennes, France
- College of Engineering, Imam Mohammad Ibn Saud Islamic University, IMSIU, Riyadh 11432, Saudi Arabia
| | - Jie Zhang
- School of Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Lotfi Mouni
- Laboratory of Management and Valorization of Natural Resources and Quality Assurance, SNVST Faculty, Akli Mohand Oulhadj University, Bouira 10000, Algeria
| |
Collapse
|
7
|
Rigby Dames BA, Kilili H, Charvet CJ, Díaz-Barba K, Proulx MJ, de Sousa AA, Urrutia AO. Evolutionary and genomic perspectives of brain aging and neurodegenerative diseases. PROGRESS IN BRAIN RESEARCH 2023; 275:165-215. [PMID: 36841568 PMCID: PMC11191546 DOI: 10.1016/bs.pbr.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This chapter utilizes genomic concepts and evolutionary perspectives to further understand the possible links between typical brain aging and neurodegenerative diseases, focusing on the two most prevalent of these: Alzheimer's disease and Parkinson's disease. Aging is the major risk factor for these neurodegenerative diseases. Researching the evolutionary and molecular underpinnings of aging helps to reveal elements of the typical aging process that leave individuals more vulnerable to neurodegenerative pathologies. Very little is known about the prevalence and susceptibility of neurodegenerative diseases in nonhuman species, as only a few individuals have been observed with these neuropathologies. However, several studies have investigated the evolution of lifespan, which is closely connected with brain size in mammals, and insights can be drawn from these to enrich our understanding of neurodegeneration. This chapter explores the relationship between the typical aging process and the events in neurodegeneration. First, we examined how age-related processes can increase susceptibility to neurodegenerative diseases. Second, we assessed to what extent neurodegeneration is an accelerated form of aging. We found that while at the phenotypic level both neurodegenerative diseases and the typical aging process share some characteristics, at the molecular level they show some distinctions in their profiles, such as variation in genes and gene expression. Furthermore, neurodegeneration of the brain is associated with an earlier onset of cellular, molecular, and structural age-related changes. In conclusion, a more integrative view of the aging process, both from a molecular and an evolutionary perspective, may increase our understanding of neurodegenerative diseases.
Collapse
Affiliation(s)
- Brier A Rigby Dames
- Department of Computer Science, University of Bath, Bath, United Kingdom; Department of Psychology, University of Bath, Bath, United Kingdom.
| | - Huseyin Kilili
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Christine J Charvet
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Karina Díaz-Barba
- Licenciatura en Ciencias Genómicas, UNAM, CP62210, Cuernavaca, México; Instituto de Ecología, UNAM, Ciudad Universitaria, CP04510, Ciudad de México, México
| | - Michael J Proulx
- Department of Psychology, University of Bath, Bath, United Kingdom
| | | | - Araxi O Urrutia
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom; Licenciatura en Ciencias Genómicas, UNAM, CP62210, Cuernavaca, México; Instituto de Ecología, UNAM, Ciudad Universitaria, CP04510, Ciudad de México, México.
| |
Collapse
|
8
|
Abstract
The frontal lobe is crucial and contributes to controlling truncal motion, postural responses, and maintaining equilibrium and locomotion. The rich repertoire of frontal gait disorders gives some indication of this complexity. For human walking, it is necessary to simultaneously achieve at least two tasks, such as maintaining a bipedal upright posture and locomotion. Particularly, postural control plays an extremely significant role in enabling the subject to maintain stable gait behaviors to adapt to the environment. To achieve these requirements, the frontal cortex (1) uses cognitive information from the parietal, temporal, and occipital cortices, (2) creates plans and programs of gait behaviors, and (3) acts on the brainstem and spinal cord, where the core posture-gait mechanisms exist. Moreover, the frontal cortex enables one to achieve a variety of gait patterns in response to environmental changes by switching gait patterns from automatic routine to intentionally controlled and learning the new paradigms of gait strategy via networks with the basal ganglia, cerebellum, and limbic structures. This chapter discusses the role of each area of the frontal cortex in behavioral control and attempts to explain how frontal lobe controls walking with special reference to postural control.
Collapse
Affiliation(s)
- Kaoru Takakusaki
- Department of Physiology, Division of Neuroscience, Asahikawa Medical University, Asahikawa, Japan.
| |
Collapse
|
9
|
Padilla-Godínez FJ, Ruiz-Ortega LI, Guerra-Crespo M. Nanomedicine in the Face of Parkinson's Disease: From Drug Delivery Systems to Nanozymes. Cells 2022; 11:3445. [PMID: 36359841 PMCID: PMC9657131 DOI: 10.3390/cells11213445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 01/02/2024] Open
Abstract
The complexity and overall burden of Parkinson's disease (PD) require new pharmacological approaches to counteract the symptomatology while reducing the progressive neurodegeneration of affected dopaminergic neurons. Since the pathophysiological signature of PD is characterized by the loss of physiological levels of dopamine (DA) and the misfolding and aggregation of the alpha-synuclein (α-syn) protein, new proposals seek to restore the lost DA and inhibit the progressive damage derived from pathological α-syn and its impact in terms of oxidative stress. In this line, nanomedicine (the medical application of nanotechnology) has achieved significant advances in the development of nanocarriers capable of transporting and delivering basal state DA in a controlled manner in the tissues of interest, as well as highly selective catalytic nanostructures with enzyme-like properties for the elimination of reactive oxygen species (responsible for oxidative stress) and the proteolysis of misfolded proteins. Although some of these proposals remain in their early stages, the deepening of our knowledge concerning the pathological processes of PD and the advances in nanomedicine could endow for the development of potential treatments for this still incurable condition. Therefore, in this paper, we offer: (i) a brief summary of the most recent findings concerning the physiology of motor regulation and (ii) the molecular neuropathological processes associated with PD, together with (iii) a recapitulation of the current progress in controlled DA release by nanocarriers and (iv) the design of nanozymes, catalytic nanostructures with oxidoreductase-, chaperon, and protease-like properties. Finally, we conclude by describing the prospects and knowledge gaps to overcome and consider as research into nanotherapies for PD continues, especially when clinical translations take place.
Collapse
Affiliation(s)
- Francisco J. Padilla-Godínez
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Coyoacan, Mexico City 04510, Mexico
- Regenerative Medicine Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Coyoacan, Mexico City 04510, Mexico
| | - Leonardo I. Ruiz-Ortega
- Institute for Physical Sciences, National Autonomous University of Mexico, Cuernavaca 62210, Mexico
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Magdalena Guerra-Crespo
- Neurosciences Division, Cell Physiology Institute, National Autonomous University of Mexico, Coyoacan, Mexico City 04510, Mexico
- Regenerative Medicine Laboratory, Department of Physiology, Faculty of Medicine, National Autonomous University of Mexico, Coyoacan, Mexico City 04510, Mexico
| |
Collapse
|
10
|
Bagarinao E, Kawabata K, Watanabe H, Hara K, Ohdake R, Ogura A, Masuda M, Kato T, Maesawa S, Katsuno M, Sobue G. Connectivity impairment of cerebellar and sensorimotor connector hubs in Parkinson’s disease. Brain Commun 2022; 4:fcac214. [PMID: 36072644 PMCID: PMC9438962 DOI: 10.1093/braincomms/fcac214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/25/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Cognitive and movement processes involved integration of several large-scale brain networks. Central to these integrative processes are connector hubs, brain regions characterized by strong connections with multiple networks. Growing evidence suggests that many neurodegenerative and psychiatric disorders are associated with connector hub dysfunctions. Using a network metric called functional connectivity overlap ratio, we investigated connector hub alterations in Parkinson’s disease. Resting-state functional MRI data from 99 patients (male/female = 44/55) and 99 age- and sex-matched healthy controls (male/female = 39/60) participating in our cross-sectional study were used in the analysis. We have identified two sets of connector hubs, mainly located in the sensorimotor cortex and cerebellum, with significant connectivity alterations with multiple resting-state networks. Sensorimotor connector hubs have impaired connections primarily with primary processing (sensorimotor, visual), visuospatial, and basal ganglia networks, whereas cerebellar connector hubs have impaired connections with basal ganglia and executive control networks. These connectivity alterations correlated with patients’ motor symptoms. Specifically, values of the functional connectivity overlap ratio of the cerebellar connector hubs were associated with tremor score, whereas that of the sensorimotor connector hubs with postural instability and gait disturbance score, suggesting potential association of each set of connector hubs with the disorder’s two predominant forms, the akinesia/rigidity and resting tremor subtypes. In addition, values of the functional connectivity overlap ratio of the sensorimotor connector hubs were highly predictive in classifying patients from controls with an accuracy of 75.76%. These findings suggest that, together with the basal ganglia, cerebellar and sensorimotor connector hubs are significantly involved in Parkinson’s disease with their connectivity dysfunction potentially driving the clinical manifestations typically observed in this disorder.
Collapse
Affiliation(s)
- Epifanio Bagarinao
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 461–8673 Japan
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
| | - Kazuya Kawabata
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Hirohisa Watanabe
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
- Department of Neurology, Fujita Health University School of Medicine , Toyoake, Aichi, 470-1192 Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Reiko Ohdake
- Department of Neurology, Fujita Health University School of Medicine , Toyoake, Aichi, 470-1192 Japan
| | - Aya Ogura
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Michihito Masuda
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Toshiyasu Kato
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Satoshi Maesawa
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
- Department of Neurosurgery, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine , Nagoya, Aichi, 466-8550 Japan
| | - Gen Sobue
- Brain & Mind Research Center, Nagoya University , Nagoya, Aichi, 466–8550 Japan
- Aichi Medical University , Nagakute, Aichi, 480-1195 Japan
| |
Collapse
|
11
|
Effect of Scalp Nerve Block Combined with Intercostal Nerve Block on the Quality of Recovery in Patients with Parkinson’s Disease after Deep Brain Stimulation: Protocol for a Randomized Controlled Trial. Brain Sci 2022; 12:brainsci12081007. [PMID: 36009070 PMCID: PMC9405761 DOI: 10.3390/brainsci12081007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Parkinson’s disease (PD) patients who receive deep brain stimulation (DBS) have a higher risk of postoperative pain, which will affect their postoperative quality of recovery (QoR). Scalp nerve block (SNB) and intercostal nerve block (ICNB) can alleviate postoperative pain, yet their effect on postoperative QoR in PD patients has proven to be unclear. Therefore, we have aimed to explore the effect of SNB paired with ICNB on postoperative QoR. Methods: To explore the effect, we have designed a randomized controlled trial in which 88 patients with PD will be randomly assigned to either an SNB group or control group, receiving either SNB combined with ICNB or without before surgery. The primary outcome will be a 15-item QoR score at 24 h after surgery. The secondary outcomes will include: 15-item QoR scores at 72 h and 1 month after surgery; the numeric rating scale pain scores before discharge from the postanesthesia care unit (PACU) at 24 h, 72 h, and 1 month after surgery; rescue analgesics; nausea and vomiting 24 h after operation and remifentanil consumption during operation; emergence agitation; the duration of anesthesia and surgery; time to respiratory recovery, time to response, and time to extubation; the PACU length of stay; as well as adverse events. Proposed protocol and conclusion: Our findings will provide a novel method for the management of recovery and acute pain after DBS in PD patients. This research was registered at clinicaltrials.gov NCT05353764 on 19 April 2022.
Collapse
|
12
|
Qu M, Xing F, Xing N. Mesenchymal stem cells for the treatment of cognitive impairment caused by neurological diseases. Biotechnol Lett 2022; 44:903-916. [PMID: 35809141 DOI: 10.1007/s10529-022-03274-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/17/2022] [Indexed: 11/02/2022]
Abstract
Patients with neurological diseases often have cognitive impairment, which creates a substantial emotional and economic burden for patients and their families. This issue urgently needs to be addressed. The pathological mechanism of this cognitive impairment is a complicated process that involves a variety of cells and molecules, central nervous system inflammatory reactions, oxidative stress, free radical damage and nerve protection factor-related metabolic disorders. Traditional treatments include neuroprotective agents and analgesic therapy. However, analgesic therapy cannot improve cognitive function, and the blood-brain barrier (BBB) largely blocks neuroprotective agents from entering the central nervous system; therefore, it is very important to find a more effective treatment. Mesenchymal stem cells (MSCs) have anti-inflammatory, anti-apoptotic and immunomodulatory properties and have been proven to play an important role in the treatment of many neurodegenerative diseases. Most importantly, MSCs are likely to cross the BBB. Therefore, MSC therapy is regarded as an important means of ameliorating neurological impairment. The purpose of this review is to summarize recent researches on the treatment of cognitive dysfunction caused by neurological diseases with MSCs.
Collapse
Affiliation(s)
- Mingcui Qu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China
| | - Fei Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, China.
| |
Collapse
|
13
|
Nagatsu T, Nakashima A, Watanabe H, Ito S, Wakamatsu K. Neuromelanin in Parkinson's Disease: Tyrosine Hydroxylase and Tyrosinase. Int J Mol Sci 2022; 23:4176. [PMID: 35456994 PMCID: PMC9029562 DOI: 10.3390/ijms23084176] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 01/27/2023] Open
Abstract
Parkinson's disease (PD) is an aging-related disease and the second most common neurodegenerative disease after Alzheimer's disease. The main symptoms of PD are movement disorders accompanied with deficiency of neurotransmitter dopamine (DA) in the striatum due to cell death of the nigrostriatal DA neurons. Two main histopathological hallmarks exist in PD: cytosolic inclusion bodies termed Lewy bodies that mainly consist of α-synuclein protein, the oligomers of which produced by misfolding are regarded to be neurotoxic, causing DA cell death; and black pigments termed neuromelanin (NM) that are contained in DA neurons and markedly decrease in PD. The synthesis of human NM is regarded to be similar to that of melanin in melanocytes; melanin synthesis in skin is via DOPAquinone (DQ) by tyrosinase, whereas NM synthesis in DA neurons is via DAquinone (DAQ) by tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC). DA in cytoplasm is highly reactive and is assumed to be oxidized spontaneously or by an unidentified tyrosinase to DAQ and then, synthesized to NM. Intracellular NM accumulation above a specific threshold has been reported to be associated with DA neuron death and PD phenotypes. This review reports recent progress in the biosynthesis and pathophysiology of NM in PD.
Collapse
Affiliation(s)
- Toshiharu Nagatsu
- Center for Research Promotion and Support, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Akira Nakashima
- Department of Physiological Chemistry, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| | - Hirohisa Watanabe
- Department of Neurology, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (S.I.); (K.W.)
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (S.I.); (K.W.)
| |
Collapse
|
14
|
Tekriwal A, Felsen G, Ojemann SG, Abosch A, Thompson JA. Motor context modulates substantia nigra pars reticulata spike activity in patients with Parkinson's disease. J Neurol Neurosurg Psychiatry 2022; 93:386-394. [PMID: 35193951 PMCID: PMC10593310 DOI: 10.1136/jnnp-2021-326962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 02/01/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The severity of motor symptoms in Parkinson's disease (PD) depends on environmental conditions. For example, the presence of external patterns such as a rhythmic tone can attenuate bradykinetic impairments. However, the neural mechanisms for this context-dependent attenuation (e.g., paradoxical kinesis) remain unknown. Here, we investigate whether context-dependent symptom attenuation is reflected in single-unit activity recorded in the operating room from the substantia nigra pars reticulata (SNr) of patients with PD undergoing deep brain stimulation surgery. The SNr is known to influence motor planning and execution in animal models, but its role in humans remains understudied. METHODS We recorded SNr activity while subjects performed cued directional movements in response to auditory stimuli under interleaved 'patterned' and 'unpatterned' contexts. SNr localisation was independently confirmed with expert intraoperative assessment as well as post hoc imaging-based reconstructions. RESULTS As predicted, we found that motor performance was improved in the patterned context, reflected in increased reaction speed and accuracy compared with the unpatterned context. These behavioural differences were associated with enhanced responsiveness of SNr neurons-that is, larger changes in activity from baseline-in the patterned context. Unsupervised clustering analysis revealed two distinct subtypes of SNr neurons: one exhibited context-dependent enhanced responsiveness exclusively during movement preparation, whereas the other showed enhanced responsiveness during portions of the task associated with both motor and non-motor processes. CONCLUSIONS Our findings indicate the SNr participates in motor planning and execution, as well as warrants greater attention in the study of human sensorimotor integration and as a target for neuromodulatory therapies.
Collapse
Affiliation(s)
- Anand Tekriwal
- Departments of Neurosurgery and Physiology and Biophysics, Neuroscience Graduate Program, Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gidon Felsen
- Department of Physiology and Biophysics, Neuroscience Graduate Program, Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Steven G Ojemann
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Aviva Abosch
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - John A Thompson
- Departments of Neurosurgery and Neurology, Neuroscience Graduate Program, Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
15
|
Digiovanni A, Ajdinaj P, Russo M, Sensi SL, Onofrj M, Thomas A. Bipolar spectrum disorders in neurologic disorders. Front Psychiatry 2022; 13:1046471. [PMID: 36620667 PMCID: PMC9811836 DOI: 10.3389/fpsyt.2022.1046471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Psychiatric symptoms frequently predate or complicate neurological disorders, such as neurodegenerative diseases. Symptoms of bipolar spectrum disorders (BSD), like mood, behavioral, and psychotic alterations, are known to occur - individually or as a syndromic cluster - in Parkinson's disease and in the behavioral variant of frontotemporal dementia (FTD). Nonetheless, due to shared pathophysiological mechanisms, or genetic predisposition, several other neurological disorders show significant, yet neglected, clinical and biological overlaps with BSD like neuroinflammation, ion channel dysfunctions, neurotransmission imbalance, or neurodegeneration. BSD pathophysiology is still largely unclear, but large-scale network dysfunctions are known to participate in the onset of mood disorders and psychotic symptoms. Thus, functional alterations can unleash BSD symptoms years before the evidence of an organic disease of the central nervous system. The aim of our narrative review was to illustrate the numerous intersections between BSD and neurological disorders from a clinical-biological point of view and the underlying predisposing factors, to guide future diagnostic and therapeutical research in the field.
Collapse
Affiliation(s)
- Anna Digiovanni
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Paola Ajdinaj
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mirella Russo
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Astrid Thomas
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
16
|
Pérez-Fernández J, Barandela M, Jiménez-López C. The Dopaminergic Control of Movement-Evolutionary Considerations. Int J Mol Sci 2021; 22:11284. [PMID: 34681941 PMCID: PMC8541398 DOI: 10.3390/ijms222011284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/11/2022] Open
Abstract
Dopamine is likely the most studied modulatory neurotransmitter, in great part due to characteristic motor deficits in Parkinson's disease that arise after the degeneration of the dopaminergic neurons in the substantia nigra pars compacta (SNc). The SNc, together with the ventral tegmental area (VTA), play a key role modulating motor responses through the basal ganglia. In contrast to the large amount of existing literature addressing the mammalian dopaminergic system, comparatively little is known in other vertebrate groups. However, in the last several years, numerous studies have been carried out in basal vertebrates, allowing a better understanding of the evolution of the dopaminergic system, especially the SNc/VTA. We provide an overview of existing research in basal vertebrates, mainly focusing on lampreys, belonging to the oldest group of extant vertebrates. The lamprey dopaminergic system and its role in modulating motor responses have been characterized in significant detail, both anatomically and functionally, providing the basis for understanding the evolution of the SNc/VTA in vertebrates. When considered alongside results from other early vertebrates, data in lampreys show that the key role of the SNc/VTA dopaminergic neurons modulating motor responses through the basal ganglia was already well developed early in vertebrate evolution.
Collapse
Affiliation(s)
- Juan Pérez-Fernández
- Center for Biomedical Research (CINBIO), Neurocircuits Group, Department of Functional Biology and Health Sciences, Campus Universitario Lagoas, Marcosende, Universidade de Vigo, 36310 Vigo, Spain; (M.B.); (C.J.-L.)
| | | | | |
Collapse
|
17
|
Onofrj M, Di Iorio A, Carrarini C, Russo M, Franciotti R, Espay AJ, Boylan LS, Taylor JP, Di Giannantonio M, Martinotti G, Valente EM, Thomas A, Bonanni L, Delli Pizzi S, Dono F, Sensi S. Preexisting Bipolar Disorder Influences the Subsequent Phenotype of Parkinson's Disease. Mov Disord 2021; 36:2840-2852. [PMID: 34427338 PMCID: PMC9292484 DOI: 10.1002/mds.28745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Background Patients with bipolar spectrum disorders (BSDs) exhibit an increased risk of Parkinson's disease (PD). Objective The aim is to investigate whether a previous diagnosis of BSDs influences the phenotype of PD. Methods Of 2660 PD patients followed for at least 6 years (6–27), 250 (BSD‐PD) had BSDs, 6–20 years before PD diagnosis; 48%–43% had a PD or BSD family history, and 34 carried glucocerebrosidase (GBA) and Parkin (PRKN) mutations. The cohort was split into a subset of 213 BSD‐PD patients, compared with 426 matched PD patients without BSDs, and a subset of 34 BSD‐PD and 79 PD patients carrying GBA or PRKN mutations. Carriers of mutations absent in BSD‐PD patients and of synuclein triplication were excluded. Structured clinical interviews and mood disorder questionnaires assessed BSDs. Linear mixed models evaluated the assessment scales over time. Thirteen BSD‐PD patients underwent subthalamic nucleus deep brain stimulation (STN‐DBS) and were compared with 27 matched STN‐DBS‐treated PD patients. Results Compared to PD patients, BSD‐PD showed (1) higher frequency of family history of PD (odds ratio [OR] 3.31; 2.32–4.71) and BSDs (OR 6.20; 4.11–9.35) 5); (2) higher incidence of impulse control disorders (hazard ratio [HR] 5.95, 3.89–9.09); (3) higher frequency of functional disorders occurring before PD therapy (HR, 5.67, 3.95–8.15); (4) earlier occurrence of delusions or mild dementia (HR, 7.70, 5.55–10.69; HR, 1.43, 1.16–1.75); and (5) earlier mortality (1.48; 1.11–1.97). Genetic BSD‐PD subjects exhibited clinical features indistinguishable from nongenetic BSD‐PD subjects. STN‐DBS‐treated BSD‐PD patients showed no improvements in quality of life compared to the control group. Conclusions BSDs as a prodrome to PD unfavorably shape their course and are associated with detrimental neuropsychiatric features and treatment outcomes. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Marco Onofrj
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center of Advanced Studies and Technology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,YDA Foundation, Institute of Immune Therapy and Advanced Biological Treatments, Pescara, Italy
| | - Angelo Di Iorio
- Department of Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Claudia Carrarini
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mirella Russo
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Raffaella Franciotti
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Alberto J Espay
- Department of Neurology, James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, University of Cincinnati, Cincinnati, Ohio, USA
| | - Laura S Boylan
- Department of Neurology, Bellevue Hospital, New York University School of Medicine, New York, New York, USA
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Biomedical Research Building, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Massimo Di Giannantonio
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Enza M Valente
- IRCCS Mondino Foundation and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Astrid Thomas
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Laura Bonanni
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Stefano Delli Pizzi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Fedele Dono
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - StefanoL Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center of Advanced Studies and Technology, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Institute for Mind Impairments and Neurological Disorders (IMIND), University of California-Irvine, Irvine, California, USA
| |
Collapse
|
18
|
Sun J, He C, Yan QX, Wang HD, Li KX, Sun X, Feng Y, Zha RR, Cui CP, Xiong X, Gao S, Wang X, Yin RX, Qiao GF, Li BY. Parkinson-like early autonomic dysfunction induced by vagal application of DOPAL in rats. CNS Neurosci Ther 2021; 27:540-551. [PMID: 33475253 PMCID: PMC8025611 DOI: 10.1111/cns.13589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
AIM To understand why autonomic failures, a common non-motor symptom of Parkinson's disease (PD), occur earlier than typical motor disorders. METHODS Vagal application of DOPAL (3,4-dihydroxyphenylacetaldehyde) to simulate PD-like autonomic dysfunction and understand the connection between PD and cardiovascular dysfunction. Molecular and morphological approaches were employed to test the time-dependent alternation of α-synuclein aggregation and the ultrastructure changes in the heart and nodose (NG)/nucleus tractus solitarius (NTS). RESULTS Blood pressure (BP) and baroreflex sensitivity of DOPAL-treated rats were significantly reduced accompanied with a time-dependent change in orthostatic BP, consistent with altered echocardiography and cardiomyocyte mitochondrial ultrastructure. Notably, time-dependent and collaborated changes in Mon-/Tri-α-synuclein were paralleled with morphological alternation in the NG and NTS. CONCLUSION These all demonstrate that early autonomic dysfunction mediated by vagal application of DOPAL highly suggests the plausible etiology of PD initiated from peripheral, rather than central site. It will provide a scientific basis for the prevention and early diagnosis of PD.
Collapse
Affiliation(s)
- Jie Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,School of Pharmaceutical Science, Sun Yat-Sen University, Shenzhen, China
| | - Chao He
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,School of Pharmaceutical Science, Sun Yat-Sen University, Shenzhen, China
| | - Qiu-Xin Yan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Hong-Dan Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ke-Xin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,Department of Biomedical Engineering, School of Engineering and Technology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Xun Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,Department of Biomedical Engineering, School of Engineering and Technology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Yan Feng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,Department of Biomedical Engineering, School of Engineering and Technology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Rong-Rong Zha
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,Department of Biomedical Engineering, School of Engineering and Technology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Chang-Peng Cui
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xue Xiong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shan Gao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xue Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Rui-Xue Yin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Guo-Fen Qiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Bai-Yan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
19
|
Chen Y, Wang J, Kang Y, Ghori MB. Emergence of Beta Oscillations of a Resonance Model for Parkinson's Disease. Neural Plast 2020; 2020:8824760. [PMID: 33335546 PMCID: PMC7722408 DOI: 10.1155/2020/8824760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 11/18/2022] Open
Abstract
In Parkinson's disease, the excess of beta oscillations in cortical-basal ganglia (BG) circuits has been correlated with normal movement suppression. In this paper, a physiologically based resonance model, generalizing an earlier model of the STN-GPe circuit, is employed to analyze critical dynamics of the occurrence of beta oscillations, which correspond to Hopf bifurcation. With the experimentally measured parameters, conditions for the occurrence of Hopf bifurcation with time delay are deduced by means of linear stability analysis, center manifold theorem, and normal form analysis. It is found that beta oscillations can be induced by increasing synaptic transmission delay. Furthermore, it is revealed that the oscillations originate from interaction among different synaptic connections. Our analytical results are consistent with the previous experimental and simulating findings, thus may provide a more systematic insight into the mechanisms underlying the transient beta bursts.
Collapse
Affiliation(s)
- Yaqian Chen
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi Province, China
| | - Junsong Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Yanmei Kang
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi Province, China
| | - Muhammad Bilal Ghori
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi Province, China
| |
Collapse
|