1
|
Chen R, Chen W, Li P, Zhao Y, Zeng Q, Chen W, Cao D. Function and application of brain‑derived neurotrophic factor precursors (Review). Int J Mol Med 2025; 56:105. [PMID: 40341415 PMCID: PMC12081033 DOI: 10.3892/ijmm.2025.5546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
Brain‑derived neurotrophic factor precursor (proBDNF) plays a critical role in the pathogenesis and progression of various human diseases. Through its interaction with p75NTR and sortilin receptors, proBDNF promotes apoptosis, impairs synaptic plasticity, and contributes to the regulation of immune system function, inflammatory responses and cellular metabolic processes. proBDNF is widely distributed throughout the body, and as such, extensive research has demonstrated that proBDNF is significantly associated with the pathophysiological mechanisms underlying several diseases. In the present review, the mechanisms by which proBDNF contributes to different diseases are summarized to highlight its potential therapeutic and diagnostic implications. Specifically, the role of proBDNF in cognitive disorders, focusing on its effects on synaptic function and neural network dynamics, while analyzing the cascade reactions involving proBDNF and downstream effector molecules in inflammatory diseases, to elucidate its bidirectional regulatory effects in tumor initiation and progression. Furthermore, the function of proBDNF in neurogenesis, the mechanism by which it regulates the memory of fear, and enhances individual behavioral flexibility is discussed. Finally, the potential of proBDNF as a biomarker for disease diagnosis and the therapeutic prospects of targeting it using monoclonal antibodies are highlighted while also proposing future research directions. The present review can serve as a reference for translational medical research on proBDNF and its receptors.
Collapse
Affiliation(s)
- Risheng Chen
- Department of Anesthesiology, Pingshan Central Hospital of Shenzhen, Shenzhen, Guangdong 518122, P.R. China
| | - Weixin Chen
- Department of Science and Education, The Fourth People's Hospital of Shenzhen (Shenzhen Sami Medical Center), Shenzhen, Guangdong 518118, P.R. China
| | - Ping Li
- Department of Anesthesiology, Pingshan Central Hospital of Shenzhen, Shenzhen, Guangdong 518122, P.R. China
| | - Yingchang Zhao
- Department of Anesthesiology, Pingshan Central Hospital of Shenzhen, Shenzhen, Guangdong 518122, P.R. China
| | - Qianqian Zeng
- Department of Anesthesiology, Pingshan Central Hospital of Shenzhen, Shenzhen, Guangdong 518122, P.R. China
| | - Wenqing Chen
- Department of Anesthesiology, Pingshan Central Hospital of Shenzhen, Shenzhen, Guangdong 518122, P.R. China
| | - Dequan Cao
- Department of Anesthesiology, Pingshan Central Hospital of Shenzhen, Shenzhen, Guangdong 518122, P.R. China
| |
Collapse
|
2
|
Morrel J, Dong M, Rosario MA, Cotter DL, Bottenhorn KL, Herting MM. A systematic review of air pollution exposure and brain structure and function during development. ENVIRONMENTAL RESEARCH 2025; 275:121368. [PMID: 40073924 PMCID: PMC12086053 DOI: 10.1016/j.envres.2025.121368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
OBJECTIVES Air pollutants are known neurotoxicants. In this updated systematic review, we evaluate new evidence since our 2019 systematic review on the effect of outdoor air pollution exposure on childhood and adolescent brain structure and function as measured by magnetic resonance imaging (MRI). METHODS Using PubMed, Web of Science, and Scopus we conducted an updated literature search and systematic review of articles published through January 2025, using key terms for air pollution and functional and/or structural MRI. Two raters independently screened all articles using Covidence and implemented the risk of bias instrument for systematic reviews used to inform the World Health Organization Global Air Quality Guidelines. RESULTS We identified 29 relevant papers, and 20 new studies met our inclusion criteria. Including six studies from our 2019 review, the 26 publications to date include study populations from the United States, Netherlands, Spain, and United Kingdom. Studies investigated exposure periods spanning pregnancy through early adolescence, and estimated air pollutant exposure levels via personal monitoring, geospatial residential estimates, or school courtyard monitors. Brain MRI occurred when children were on average 6-14.7 years old; however, one study assessed newborns. Several MRI modalities were leveraged, including structural morphology, diffusion tensor imaging, restriction spectrum imaging, arterial spin labeling, magnetic resonance spectroscopy, as well as resting-state and task-based functional MRI. Air pollutants were associated with widespread brain differences, although the magnitude and direction of findings are largely inconsistent, making it difficult to draw strong conclusions. CONCLUSION Prenatal and childhood exposure to outdoor air pollution is associated with structural and functional brain variations. Compared to our initial 2019 review comprised of only cross-sectional studies, the current literature now includes longitudinal studies and more advanced neuroimaging methods. Further research is needed to clarify the effects of developmental timing, along with the downstream implications of outdoor air pollution exposure on children's cognitive and mental health.
Collapse
Affiliation(s)
- Jessica Morrel
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Michelle Dong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael A Rosario
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Devyn L Cotter
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Katherine L Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Department of Psychology, Florida International University, Miami, FL, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Monaco M, Torazza C, Fedele E, Grilli M. The Impact of the Exposome on Alzheimer's Disease: The Influence of Nutrition. Int J Mol Sci 2025; 26:3015. [PMID: 40243652 PMCID: PMC11988514 DOI: 10.3390/ijms26073015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline, memory loss, and behavioural changes. While genetic predispositions and pathological processes have been the traditional focus, this review highlights the fundamental role of environmental factors, particularly nutrition, within the exposome framework in modulating the risk and progression of AD. The exposome, which includes the totality of environmental exposures in an individual's lifetime, provides a comprehensive approach to understanding the complex aetiology of AD. In this review, we explore the impact of dietary factors and cyclic nucleotide pathways (cAMP/cGMP) on AD, emphasizing the potential of dietary interventions as therapeutic strategies. We investigate key aspects of how nutrition affects the accumulation of β-amyloid, the aggregation of tau proteins, and neuroinflammation. We also examine the impact of specific nutrients on cognitive performance and the risk of AD. Additionally, we discuss the potential of nutraceuticals with anti-phosphodiesterase activity and the role of various animal models of AD (such as 5xFAD, 3xTg-AD, Tg2576, and APP/PS1 mice) in demonstrating the effects of dietary interventions on disease onset and progression.
Collapse
Affiliation(s)
- Martina Monaco
- Pharmacology and Toxicology Unit, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (M.M.); (C.T.); (E.F.)
| | - Carola Torazza
- Pharmacology and Toxicology Unit, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (M.M.); (C.T.); (E.F.)
| | - Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (M.M.); (C.T.); (E.F.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Massimo Grilli
- Pharmacology and Toxicology Unit, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (M.M.); (C.T.); (E.F.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
4
|
Cotter DL, Kiss O, Ahmadi H, de Jesus A, Schwartz J, Baker FC, Hackman DA, Herting MM. Sleep duration and efficiency moderate the effects of prenatal and childhood ambient pollutant exposure on global white matter microstructural integrity in adolescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638133. [PMID: 39990345 PMCID: PMC11844460 DOI: 10.1101/2025.02.13.638133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Background Air pollution is a ubiquitous neurotoxicant associated with alterations in structural connectivity. Good habitual sleep may be an important protective lifestyle factor due to its involvement in the brain waste clearance and its bidirectional relationship with immune function. Wearable multisensory devices may provide more objective measures of sleep quantity and quality. We investigated whether sleep duration and efficiency moderated the relationship between prenatal and childhood pollutant exposure and whole-brain white matter microstructural integrity at ages 10-13 years. Methods We used multi-shell diffusion-weighted imaging data collected on 3T MRI scanners and objective sleep data collected with Fitbit Charge 2 from the 2-year follow-up visit for 2178 subjects in the Adolescent Brain Cognitive Development Study®. White matter tracts were identified using a probabilistic atlas. Restriction spectrum imaging was performed to extract restricted normalized isotropic (RNI) and directional (RND) signal fraction parameters for all white matter tracts, then averaged to calculate global measures. Sleep duration was calculated by summing the time spent in each sleep stage; sleep efficiency was calculated by dividing sleep duration by time spent in bed. Using an ensemble-based modeling approach, air pollution concentrations of PM2.5, NO2, and O3 were assigned to each child's residential addresses during the prenatal period (9-month average before birthdate) as well as at ages 9-10 years. Multi-pollutant linear mixed effects models assessed the associations between global RNI and RND and sleep-by-pollutant interactions, adjusting for appropriate covariates. Results Sleep duration interacted with childhood NO2 exposure and sleep efficiency interacted with prenatal O3 exposure to affect RND at ages 10-13 years. Longer sleep duration and higher sleep efficiency in the context of higher pollutant exposure was associated with lower RND compared to those with similar pollutant exposure but shorter sleep duration and lower sleep efficiency. Conclusions Low-level air pollution poses a risk to brain health in youth, and healthy sleep duration and efficiency may increase resilience to its harmful effects on white matter microstructural integrity. Future studies should evaluate the generalizability of these results in more diverse cohorts as well as utilize longitudinal data to understand how sleep may impact brain health trajectories in the context of pollution over time.
Collapse
Affiliation(s)
- Devyn L. Cotter
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Orsolya Kiss
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alethea de Jesus
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Fiona C. Baker
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - Daniel A. Hackman
- USC Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Children’s Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
5
|
Qin SJ, Zeng QG, Zeng HX, Meng WJ, Wu QZ, Lv Y, Dai J, Dong GH, Zeng XW. Novel perspective on particulate matter and Alzheimer's disease: Insights from adverse outcome pathway framework. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125601. [PMID: 39756567 DOI: 10.1016/j.envpol.2024.125601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, that accounts for 50-75% of all dementia cases. Evidence demonstrates the link between particulate matter (PM) exposure and AD. However, there are still considerable research gaps. This review aims to clarify the mechanism between PM and AD from different levels (subcellular/cellular/system/population) by using an adverse outcome pathway (AOP) framework. We applied a chemical-phenotype interaction network-based workflow to integrate diverse genes and phenotypes. The interactions among PM, genes, phenotypes, and AD were retrieved from the Comparative Toxicogenomics Database (CTD), DisGeNET, MalaCards, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG), which are publicly available databases. The filtered genes and phenotypes were assembled as molecular initiating events (MIEs) and key events (KEs) according to the upstream and downstream relationships, generating a predictive PM-Gene-Phenotype-AD AOP network. According to the Organization for Economic Co-operation and Development handbook (OECD), a verified AOP network was assessed and applied to determine the effects of PM on AD. PM could increase APP and GSK3B, increase apoptosis, impair cognition and memory, and ultimately lead to AD. Overall, chemical-phenotype interactions are expressed in a formal structured notation using controlled terms for chemicals, phenotypes, taxons, and anatomical descriptors. To our knowledge, this is the first AOP framework focusing on the underlying mechanism of exposure to PM on AD. Our network-based approach not only fills mechanism gaps in PM and AD but sheds light on constructing AOP frameworks for new chemicals.
Collapse
Affiliation(s)
- Shuang-Jian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Guo Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui-Xian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Jie Meng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qi-Zhen Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan Lv
- Department of Neurology, Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Jian Dai
- Department of Clinical Psychology, Jiangbin Hospital, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Cao Y, Yang C, Liu C, Fan Z, Yang S, Song H, Hao R. Advanced electrochemical detection methodologies for assessing neuroactive substance variability induced by environmental pollutants exposure. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2025; 37:103965. [DOI: 10.1016/j.eti.2024.103965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Khandayataray P, Murthy MK. Dietary interventions in mitigating the impact of environmental pollutants on Alzheimer's disease - A review. Neuroscience 2024; 563:148-166. [PMID: 39542342 DOI: 10.1016/j.neuroscience.2024.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Numerous studies linking environmental pollutants to oxidative stress, inflammation, and neurotoxicity have assigned pollutants to several neurodegenerative disorders, including Alzheimer's disease (AD). Heavy metals, pesticides, air pollutants, and endocrine disruptor chemicals have been shown to play important roles in AD development, with some traditional functions in amyloid-β formation, tau kinase action, and neuronal degeneration. However, pharmacological management and supplementation have resulted in limited improvement. This raises the interesting possibility that activities usually considered preventive, including diet, exercise, or mental activity, might be more similar to treatment or therapy for AD. This review focuses on the effects of diet on the effects of environmental pollutants on AD. One of the primary issues addressed in this review is a group of specific diets, including the Mediterranean diet (MeDi), Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH intervention for Neurodegenerative Delay (MIND), which prevent exposure to these toxins. Such diets have been proven to decrease oxidative stress and inflammation, which are unfavorable for neuronal growth. Furthermore, they contribute to positive changes in the composition of the human gut microbiota and thus encourage interactions in the Gut-Brain Axis, reducing inflammation caused by pollutants. This review emphasizes a multi-professional approach with reference to nutritional activities that would lower the neurotoxic load in populations with a high level of exposure to pollutants. Future studies focusing on diet and environment association plans may help identify preventive measures aimed at enhancing current disease deceleration.
Collapse
Affiliation(s)
- Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha 752057, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
8
|
Zhang D, Zhou Y, Liu Y, Wu S. Association between residential environment quality with mild cognitive impairment among middle and elderly adults in China. J Neurol Sci 2024; 467:123318. [PMID: 39608295 DOI: 10.1016/j.jns.2024.123318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Most studies have focused on the effects of individual environmental risk factors on cognitive function; however, none have evaluated the association between residential environmental quality and cognitive impairment. METHODS Data from the China Health and Retirement Longitudinal Study (CHARLS) were used to include 12,801 participants in a cross-sectional study and 8781 participants in a cohort study. Residential environmental quality was assessed using indicators such as particulate matter, types of household fuel, water sources, indoor temperature, and building types. Based on the residential environment quality score, participants were classified into three groups: comfortable (0-1 points), moderate (2-3 points), and poor (4-6 points). To evaluate the association between residential environmental quality and cognitive scores in the cross-sectional study, as well as the development of mild cognitive impairment (MCI) in the cohort study, ordinary least squares (OLS) regression and logistic regression models were applied. RESULTS In the cross-sectional study, cognitive scores and performance across four dimensions-orientation, computation, memory, and drawing-showed a significant decline from the comfortable to the poor residential environment groups. In the fully adjusted OLS regression model, scores across these dimensions were significantly reduced in the moderate and poor groups compared to the comfortable group (P for trend <0.001). The incidence of MCI from 2011 to 2018 was 10.1 %, 16.8 %, and 18.8 % for participants living in comfortable, moderate, and poor environments, respectively, with statistically significant differences among groups (all P < 0.07). Logistic regression analysis revealed an odds ratio of 1.25 (95 % CI: 1.02-1.53) for the moderate group and 1.31 (95 % CI: 1.04-1.65) for the poor group, compared to the comfortable group (P for trend<0.05). CONCLUSIONS An inferior residential environment is associated with lower cognitive scores and a higher rik of developing MCI in middle-aged and older Chinese adults.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Neurology, Tangshan Gongren Hospital, Tangshan 063000, Hebei Province, China
| | - Yuefei Zhou
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Yang Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 38# Xueyuan Road, Haidian District, Beijing 100191, China
| | - Shaoze Wu
- Department of Cardiology, Tangshan Gongren Hospital, Tangshan 063000, Hebei Province, China.
| |
Collapse
|
9
|
Tu Q, Liu G, Liu X, Zhang J, Xiao W, Lv L, Zhao B. Perspective on using non-human primates in Exposome research. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117199. [PMID: 39426107 DOI: 10.1016/j.ecoenv.2024.117199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/02/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
The physiological and pathological changes in the human body caused by environmental pressures are collectively referred to as the Exposome. Human society is facing escalating environmental pollution, leading to a rising prevalence of associated diseases, including respiratory diseases, cardiovascular diseases, neurological disorders, reproductive development disorders, among others. Vulnerable populations to the pathogenic effects of environmental pollution include those in the prenatal, infancy, and elderly stages of life. Conducting Exposome mechanistic research and proposing effective health interventions are urgent in addressing the current severe environmental pollution. In this review, we address the core issues and bottlenecks faced by current Exposome research, specifically focusing on the most toxic ultrafine nanoparticles. We summarize multiple research models being used in Exposome research. Especially, we discuss the limitations of rodent animal models in mimicking human physiopathological phenotypes, and prospect advantages and necessity of non-human primates in Exposome research based on their evolutionary relatedness, anatomical and physiological similarities to human. Finally, we declare the initiation of NHPE (Non-Human Primate Exposome) project for conducting Exposome research using non-human primates and provide insights into its feasibility and key areas of focus. SYNOPSIS: Non-human primate models hold unique advantages in human Exposome research.
Collapse
Affiliation(s)
- Qiu Tu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China
| | - Gaojing Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiuyun Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jiao Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China
| | - Wenxian Xiao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Longbao Lv
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China.
| | - Bo Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
10
|
Belojević G. Sound and Alzheimer's Disease-From Harmful Noise to Beneficial Soundscape Augmentation and Music Therapy. Noise Health 2024; 26:445-448. [PMID: 39787544 PMCID: PMC11813243 DOI: 10.4103/nah.nah_162_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/12/2025] Open
Abstract
Exposure to sound energy may be a risk factor or a therapeutic intervention for Alzheimer's disease (AD). On one hand, noise has a harmful effect on people with AD by contributing to hearing loss, sleep disturbance, oxidative stress, inflammation, and excitotoxicity. But on the other hand, clinical trials and nursing home interventions with soundscape augmentation involving natural sounds have shown promising results in alleviating psychophysiological symptoms in people with AD. Music therapy, an emerging non-pharmacological treatment, can improve cognition, reduce anxiety and depression, and enhance self-awareness in patients with AD. To ensure that music does not become noise in clinical trials, only favorite music at levels safe for hearing should be used. From a public health standpoint, noise countermeasures, soundscape augmentation with natural sounds, and active or passive engagement with music may be regarded as potentially powerful strategies for the prevention of AD.
Collapse
Affiliation(s)
- Goran Belojević
- Institute of Hygiene and Medical Ecology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
11
|
Masurkar AV, Marsh K, Morgan B, Leitner D, Wisniewski T. Factors Affecting Resilience and Prevention of Alzheimer's Disease and Related Dementias. Ann Neurol 2024; 96:633-649. [PMID: 39152774 PMCID: PMC11534551 DOI: 10.1002/ana.27055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
Alzheimer's disease (AD) is a devastating, age-associated neurodegenerative disorder and the most common cause of dementia. The clinical continuum of AD spans from preclinical disease to subjective cognitive decline, mild cognitive impairment, and dementia stages (mild, moderate, and severe). Neuropathologically, AD is defined by the accumulation of amyloid β (Aβ) into extracellular plaques in the brain parenchyma and in the cerebral vasculature, and by abnormally phosphorylated tau that accumulates intraneuronally forming neurofibrillary tangles (NFTs). Development of treatment approaches that prevent or even reduce the cognitive decline because of AD has been slow compared to other major causes of death. Recently, the United States Food and Drug Administration gave full approval to 2 different Aβ-targeting monoclonal antibodies. However, this breakthrough disease modifying approach only applies to a limited subset of patients in the AD continuum and there are stringent eligibility criteria. Furthermore, these approaches do not prevent progression of disease, because other AD-related pathologies, such as NFTs, are not directly targeted. A non-mutually exclusive alternative is to address lifestyle interventions that can help reduce the risk of AD and AD-related dementias (ADRD). It is estimated that addressing such modifiable risk factors could potentially delay up to 40% of AD/ADRD cases. In this review, we discuss some of the many modifiable risk factors that may be associated with prevention of AD/ADRD and/or increasing brain resilience, as well as other factors that may interact with these modifiable risk factors to influence AD/ADRD progression. [Color figure can be viewed at www.annalsofneurology.org] ANN NEUROL 2024;96:633-649.
Collapse
Affiliation(s)
- Arjun V. Masurkar
- Department of Neurology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
- Center for Cognitive Neurology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
| | - Karyn Marsh
- Department of Neurology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
- Center for Cognitive Neurology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
| | - Brianna Morgan
- Department of Medicine, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
| | - Dominique Leitner
- Department of Neurology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
- Center for Cognitive Neurology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
| | - Thomas Wisniewski
- Department of Neurology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
- Center for Cognitive Neurology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
- Department of Pathology, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
- Department of Psychiatry, New York University Grossman School of Medicine, 560 First Avenue, New York, NY 10016
| |
Collapse
|
12
|
Morrel J, Dong M, Rosario MA, Cotter DL, Bottenhorn KL, Herting MM. A Systematic Review of Air Pollution Exposure and Brain Structure and Function during Development. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.13.24313629. [PMID: 39314970 PMCID: PMC11419233 DOI: 10.1101/2024.09.13.24313629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Objectives Air pollutants are known neurotoxicants. In this updated systematic review, we evaluate new evidence since our 2019 systematic review on the effect of outdoor air pollution exposure on childhood and adolescent brain structure and function as measured by magnetic resonance imaging (MRI). Methods Using PubMed and Web of Science, we conducted an updated literature search and systematic review of articles published through March 2024, using key terms for air pollution and functional and/or structural MRI. Two raters independently screened all articles using Covidence and implemented the risk of bias instrument for systematic reviews informing the World Health Organization Global Air Quality Guidelines. Results We identified 222 relevant papers, and 14 new studies met our inclusion criteria. Including six studies from our 2019 review, the 20 publications to date include study populations from the United States, Netherlands, Spain, and United Kingdom. Studies investigated exposure periods spanning pregnancy through early adolescence, and estimated air pollutant exposure levels via personal monitoring, geospatial residential estimates, or school courtyard monitors. Brain MRI occurred when children were on average 6-14.7 years old; however, one study assessed newborns. Several MRI modalities were leveraged, including structural morphology, diffusion tensor imaging, restriction spectrum imaging, arterial spin labeling, magnetic resonance spectroscopy, as well as resting-state and task-based functional MRI. Air pollutants were associated with widespread brain differences, although the magnitude and direction of findings are largely inconsistent, making it difficult to draw strong conclusions. Conclusion Prenatal and childhood exposure to outdoor air pollution is associated with structural and functional brain variations. Compared to our initial 2019 review, publications doubled-an increase that testifies to the importance of this public health issue. Further research is needed to clarify the effects of developmental timing, along with the downstream implications of outdoor air pollution exposure on children's cognitive and mental health.
Collapse
Affiliation(s)
- Jessica Morrel
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Michelle Dong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael A. Rosario
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Devyn L. Cotter
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Katherine L. Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
13
|
Fano-Sizgorich D, Vásquez-Velásquez C, Ordoñez-Aquino C, Sánchez-Ccoyllo O, Tapia V, Gonzales GF. Iron Trace Elements Concentration in PM 10 and Alzheimer's Disease in Lima, Peru: Ecological Study. Biomedicines 2024; 12:2043. [PMID: 39335556 PMCID: PMC11429173 DOI: 10.3390/biomedicines12092043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's disease (AD) has been linked to air pollution, especially particulate matter (PM). PM comprises various elements, including iron-rich particles that may reach the brain through inhalation. Lima, Peru is one of the most polluted cities in Latin America, with a high rate of AD. The study aims to evaluate the association between iron (Fe) trace elements in PM10 and AD cases in Lima, Peru. This retrospective ecological study used monthly Fe concentration data from the Peruvian Ministry of Health. AD cases (ICD-10-G30) and dementia in AD cases (DAD, ICD-10-F00) were obtained from the Peruvian CDC. Fe trace element data were available for six districts in Lima for the years 2017-2019 and 2022. Cases were standardized based on ≥60-year-old populations of each district. Hierarchical mixed-effects models of Gaussian and negative binomial families were constructed to evaluate both outcomes jointly (AD + DAD) and separately (AD, and DAD). A sensitivity analysis was conducted by excluding data from Lima's downtown district. In the complete model, log-Fe concentration was associated with a higher rate of AD + DAD and DAD, and with a higher IRR for the three outcomes. After controlling for other metals, a higher DAD rate was observed (β-coeff = 6.76, 95%CI 0.07; 13.46, p = 0.048), and a higher IRR for AD + DAD (1.55, 95%CI 1.09; 2.20, p = 0.014) and DAD (1.83, 95%CI 1.21; 2.78, p = 0.004). The association was not significant in the sensitivity analysis. In conclusion, exposure to Fe through PM10 inhalation may be associated with the presence of AD in Lima.
Collapse
Affiliation(s)
- Diego Fano-Sizgorich
- Laboratorio de Endocrinología y Reproducción, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (D.F.-S.); (C.O.-A.); (V.T.); (G.F.G.)
| | - Cinthya Vásquez-Velásquez
- Laboratorio de Endocrinología y Reproducción, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (D.F.-S.); (C.O.-A.); (V.T.); (G.F.G.)
| | - Carol Ordoñez-Aquino
- Laboratorio de Endocrinología y Reproducción, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (D.F.-S.); (C.O.-A.); (V.T.); (G.F.G.)
- Departamento de Ingeniería, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Odón Sánchez-Ccoyllo
- Grupo de Investigación en Contaminación Atmosférica, Facultad de Ingeniería y Gestión, Universidad Nacional Tecnológica de Lima Sur, Lima 15834, Peru;
| | - Vilma Tapia
- Laboratorio de Endocrinología y Reproducción, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (D.F.-S.); (C.O.-A.); (V.T.); (G.F.G.)
| | - Gustavo F. Gonzales
- Laboratorio de Endocrinología y Reproducción, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (D.F.-S.); (C.O.-A.); (V.T.); (G.F.G.)
| |
Collapse
|
14
|
Wang AY, Hu HY, Sun Y, Ou YN, Ma YH, Li M, Li QY, Tan L. Association between air pollution and cerebrospinal fluid alpha-synuclein in urban elders: the CABLE study. Front Aging Neurosci 2024; 16:1422772. [PMID: 39280698 PMCID: PMC11392785 DOI: 10.3389/fnagi.2024.1422772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Increasing evidence suggests that air pollution has a significant impact on the development of synucleinopathies, but the potential neurobiological mechanisms are unknown. We aimed to explore the associations of air pollution (including ozone [O3], nitrogen dioxide [NO2], and particulate matter [PM2.5]) with CSF α-syn levels in urban older adults. Methods We included 933 urban participants from the Chinese Alzheimer's Biomarker and LifestylE study. The 5-year average levels of air pollution exposure were estimated in the areas of residence. Multivariate linear regression was conducted to detect the correlation of air pollution with CSF α-syn levels. Subgroup analyses by age, gender, season, and history of coronary heart disease (CHD) were performed. Moreover, restricted cubic spline (RCS) models were applied to explore the potential nonlinear relationships. Results We found a significant correlation of CSF α-syn level with PM2.5 in urban participants. Specifically, multiple linear regression showed a significant negative association between PM2.5 and CSF α-syn level (p = 0.029), which was more significant in female, midlife, non-CHD, and cold season subgroups. Besides, RCS models showed that O3 had an inverse J-shaped association with CSF α-syn levels in urban participants (p for nonlinearity = 0.040), and the harmful effect possibly appeared when O3 was above 37.9 ppb. Discussion Long-term exposure to air pollution was associated with lower CSF α-syn levels, which may offer a new direction for exploring and preventing synucleinopathies.
Collapse
Affiliation(s)
- An-Yi Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Sun
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Meng Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Qiong-Yao Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Mirzaei A, Kim JY, Kim HW, Kim SS. Resistive Gas Sensors Based on 2D TMDs and MXenes. Acc Chem Res 2024; 57:2395-2413. [PMID: 39101684 DOI: 10.1021/acs.accounts.4c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
ConspectusGas sensors are used in various applications to sense toxic gases, mainly for enhanced safety. Resistive sensors are particularly popular owing to their ability to detect trace amounts of gases, high stability, fast response times, and affordability. Semiconducting metal oxides are commonly employed in the fabrication of resistive gas sensors. However, these sensors often require high working temperatures, bringing about increased energy consumption and reduced selectivity. Furthermore, they do not have enough flexibility, and their performance is significantly decreased under bending, stretching, or twisting. To address these challenges, alternative materials capable of operating at lower temperatures with high flexibility are needed. Two-dimensional (2D) materials such as MXenes and transition-metal dichalcogenides (TMDs) offer high surface area and conductivity owing to their unique 2D structure, making them promising candidates for realization of resistive gas sensors. Nevertheless, their sensing performance in pristine form is typically weak and unacceptable, particularly in terms of response, selectivity, and recovery time (trec). To overcome these drawbacks, several strategies can be employed to enhance their sensing properties. Noble-metal decoration such as (Au, Pt, Pd, Rh, Ag) is a highly promising method, in which the catalytic effects of noble metals as well as formation of potential barriers with MXenes or TMDs eventually contribute to boosted response. Additionally, bimetallic noble metals such as Pt-Pd and Au/Pd with their synergistic properties can further improve sensor performance. Ion implantation is another feasible approach, involving doping of sensing materials with the desired concentration of dopants through control over the energy and dosage of the irradiation ions as well as creation of structural defects such as oxygen vacancies through high-energy ion-beam irradiation, contributing to enhanced sensing capabilities. The formation of core-shell structures is also effective, creating numerous interfaces between core and shell materials that optimize the sensing characteristics. However, the shell thickness needs to be carefully optimized to achieve the best sensing output. To reduce energy consumption, sensors can operate in a self-heating condition where an external voltage is applied to the electrodes, significantly lowering the power requirements. This enables sensors to function in energy-constrained environments, such as remote or low-energy areas. An important advantage of 2D MXenes and TMDs is their high mechanical flexibility. Unlike semiconducting metal oxides that lack mechanical flexibility, MXenes and TMDs can maintain their sensing performance even when integrated onto flexible substrates and subjected to bending, tilting, or stretching. This flexibility makes them ideal for fabricating flexible and portable gas sensors that rigid sensors cannot achieve.
Collapse
Affiliation(s)
- Ali Mirzaei
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 715557-13876, Islamic Republic of Iran
| | - Jin-Young Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Hyoun Woo Kim
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
16
|
Yslas AR, Park R, Nishimura N, Lee E. Monomeric and oligomeric amyloid-β cause distinct Alzheimer's disease pathophysiological characteristics in astrocytes in human glymphatics-on-chip models. LAB ON A CHIP 2024; 24:3826-3839. [PMID: 39037244 PMCID: PMC11302770 DOI: 10.1039/d4lc00287c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) is marked by the aggregation of extracellular amyloid-β (Aβ) and astrocyte dysfunction. For Aβ oligomers or aggregates to be formed, there must be Aβ monomers present; however, the roles of monomeric Aβ (mAβ) and oligomeric Aβ (oAβ) in astrocyte pathogenesis are poorly understood. We cultured astrocytes in a brain-mimicking three-dimensional (3D) extracellular matrix and revealed that both mAβ and oAβ caused astrocytic atrophy and hyper-reactivity, but showed distinct Ca2+ changes in astrocytes. This 3D culture evolved into a microfluidic glymphatics-on-chip model containing astrocytes and endothelial cells with the interstitial fluid (ISF). The glymphatics-on-chip model not only reproduced the astrocytic atrophy, hyper-reactivity, and Ca2+ changes induced by mAβ and oAβ, but recapitulated that the components of the dystrophin-associated complex (DAC) and aquaporin-4 (AQP4) were properly maintained by the ISF, and dysregulated by mAβ and oAβ. Collectively, mAβ and oAβ cause distinct AD pathophysiological characteristics in the astrocytes.
Collapse
Affiliation(s)
- Aria R Yslas
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| | - Rena Park
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| | - Nozomi Nishimura
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
17
|
Ji Z, Chen Q, Yang J, Hou J, Wu H, Zhang L. Global, regional, and national health inequalities of Alzheimer's disease and Parkinson's disease in 204 countries, 1990-2019. Int J Equity Health 2024; 23:125. [PMID: 38898437 PMCID: PMC11188225 DOI: 10.1186/s12939-024-02212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Alzheimer's disease and related dementias (ADRD) and Parkinson's disease (PD), pose growing global health challenges. Socio-demographic and economic development acts paradoxically, complicating the process that determines how governments worldwide designate policies and allocate resources for healthcare. METHODS We extracted data on ADRD and PD in 204 countries from the Global Burden of Disease 2019 database. Health disparities were estimated using the slope index of inequality (SII), and concentration index (CIX) based on the socio-demographic index. Estimated annual percentage changes (EAPCs) were employed to evaluate temporal trends. RESULTS Globally, the SII increased from 255.4 [95% confidence interval (CI), 215.2 to 295.5)] in 1990 to 559.3 (95% CI, 497.2 to 621.3) in 2019 for ADRD, and grew from 66.0 (95% CI, 54.9 to 77.2) in 1990 to 132.5 (95% CI, 118.1 to 147.0) in 2019 for PD; CIX rose from 33.7 (95% CI, 25.8 to 41.6) in 1990 to 36.9 (95% CI, 27.8 to 46.1) in 2019 for ADRD, and expanded from 22.2 (95% CI, 21.3 to 23.0) in 1990 to 29.0 (95% CI, 27.8 to 30.3) in 2019 for PD. Age-standardized disability-adjusted life years displayed considerable upward trends for ADRD [EAPC = 0.43 (95% CI, 0.27 to 0.59)] and PD [0.34 (95% CI, 0.29 to 0.38)]. CONCLUSIONS Globally, the burden of ADRD and PD continues to increase with growing health disparities. Variations in health inequalities and the impact of socioeconomic development on disease trends underscored the need for targeted policies and strategies, with heightened awareness, preventive measures, and active management of risk factors.
Collapse
Affiliation(s)
- Zixiang Ji
- Clinical Center for Intelligent Rehabilitation Research, Shanghai YangZhi Rehabilitation Hospital Tongji University School of Medicine, Tongji University, Shanghai, 201619, China
- Department of Epidemiology, School of Public Health, Tongji University School of Medicine, Tongji University, 2209 Xingguang Road, Songjiang, Shanghai, 201619, China
| | - Qi Chen
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu province, 211166, China
| | - Jing Yang
- Clinical Center for Intelligent Rehabilitation Research, Shanghai YangZhi Rehabilitation Hospital Tongji University School of Medicine, Tongji University, Shanghai, 201619, China
- Department of Epidemiology, School of Public Health, Tongji University School of Medicine, Tongji University, 2209 Xingguang Road, Songjiang, Shanghai, 201619, China
| | - Jiazhe Hou
- Clinical Center for Intelligent Rehabilitation Research, Shanghai YangZhi Rehabilitation Hospital Tongji University School of Medicine, Tongji University, Shanghai, 201619, China
- Department of Epidemiology, School of Public Health, Tongji University School of Medicine, Tongji University, 2209 Xingguang Road, Songjiang, Shanghai, 201619, China
| | - Hengjing Wu
- Clinical Center for Intelligent Rehabilitation Research, Shanghai YangZhi Rehabilitation Hospital Tongji University School of Medicine, Tongji University, Shanghai, 201619, China
| | - Lijuan Zhang
- Clinical Center for Intelligent Rehabilitation Research, Shanghai YangZhi Rehabilitation Hospital Tongji University School of Medicine, Tongji University, Shanghai, 201619, China.
- Department of Epidemiology, School of Public Health, Tongji University School of Medicine, Tongji University, 2209 Xingguang Road, Songjiang, Shanghai, 201619, China.
| |
Collapse
|
18
|
Cacialli P, Ricci S, Servetto GP, Franceschini V, Ruiz-Zepeda F, Vigliaturo R. Altered Morpho-Functional Features of Neurogenesis in Zebrafish Embryos Exposed to Non-Combustion-Derived Magnetite. Int J Mol Sci 2024; 25:6459. [PMID: 38928164 PMCID: PMC11203806 DOI: 10.3390/ijms25126459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Neurogenesis is the process by which new brain cells are formed. This crucial event emerges during embryonic life and proceeds in adulthood, and it could be influenced by environmental pollution. Non-combustion-derived magnetite represents a portion of the coarse particulate matter (PM) contributing to air and water pollution in urban settings. Studies on humans have reported that magnetite and other iron oxides have significant damaging effects at a central level, where these particles accumulate and promote oxidative stress. Similarly, magnetite nanoparticles can cross the placenta and damage the embryo brain during development, but the impact on neurogenesis is still unknown. Furthermore, an abnormal Fe cation concentration in cells and tissues might promote reactive oxygen species (ROS) generation and has been associated with multiple neurodegenerative conditions. In the present study, we used zebrafish as an in vivo system to analyze the specific effects of magnetite on embryonic neurogenesis. First, we characterized magnetite using mineralogical and spectroscopic analyses. Embryos treated with magnetite at sub-lethal concentrations showed a dose-response increase in ROS in the brain, which was accompanied by a massive decrease in antioxidant genes (sod2, cat, gsr, and nrf2). In addition, a higher number of apoptotic cells was observed in embryos treated with magnetite. Next, interestingly, embryos exposed to magnetite displayed a decrease in neural staminal progenitors (nestin, sox2, and pcna markers) and a neuronal marker (elavl3). Finally, we observed significative increases in apoeb (specific microglia marker) and interleukin-1b (il1b), confirming a status of inflammation in the brain embryos treated with magnetite. Our study represents the very first in vivo evidence concerning the effects of magnetite on brain development.
Collapse
Affiliation(s)
- Pietro Cacialli
- Department of Biological, Geological and Environmental Sciences (BIGEA), University of Bologna, 40126 Bologna, Italy
| | - Serena Ricci
- Department of Biological, Geological and Environmental Sciences (BIGEA), University of Bologna, 40126 Bologna, Italy
| | | | - Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences (BIGEA), University of Bologna, 40126 Bologna, Italy
| | - Francisco Ruiz-Zepeda
- Department of Physics and Chemistry of Materials, Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ruggero Vigliaturo
- Department of Earth Sciences, University of Turin, 10124 Turin, Italy
- Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates “G. Scansetti”, University of Turin, 10124 Turin, Italy
| |
Collapse
|
19
|
Dang M, Li Y, Zhao L, Li T, Lu Z, Lu J, Feng Y, Yang Y, Li F, Tang F, Wang X, Jian Y, Wang H, Zhang L, Fan H, Zhang G. Causal association between particulate matter 2.5 and Alzheimer's disease: a Mendelian randomization study. Front Public Health 2024; 12:1343915. [PMID: 38873321 PMCID: PMC11169690 DOI: 10.3389/fpubh.2024.1343915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Background Although epidemiological evidence implies a link between exposure to particulate matter (PM) and Alzheimer's disease (AD), establishing causality remains a complex endeavor. In the present study, we used Mendelian randomization (MR) as a robust analytical approach to explore the potential causal relationship between PM exposure and AD risk. We also explored the potential associations between PM exposure and other neurodegenerative diseases. Methods Drawing on extensive genome-wide association studies related to PM exposure, we identified the instrumental variables linked to individual susceptibility to PM. Using summary statistics from five distinct neurodegenerative diseases, we conducted two-sample MR analyses to gauge the causal impact of PM on the risk of developing these diseases. Sensitivity analyses were undertaken to evaluate the robustness of our findings. Additionally, we executed multivariable MR (MVMR) to validate the significant causal associations identified in the two-sample MR analyses, by adjusting for potential confounding risk factors. Results Our MR analysis identified a notable association between genetically predicted PM2.5 (PM with a diameter of 2.5 μm or less) exposure and an elevated risk of AD (odds ratio, 2.160; 95% confidence interval, 1.481 to 3.149; p < 0.001). A sensitivity analysis supported the robustness of the observed association, thus alleviating concerns related to pleiotropy. No discernible causal relationship was identified between PM and any other neurodegenerative diseases. MVMR analyses-adjusting for smoking, alcohol use, education, stroke, hearing loss, depression, and hypertension-confirmed a persistent causal relationship between PM2.5 and AD. Sensitivity analyses, including MR-Egger and weighted median analyses, also supported this causal association. Conclusion The present MR study provides evidence to support a plausible causal connection between PM2.5 exposure and AD. The results emphasize the importance of contemplating air quality interventions as a public health strategy for reducing AD risk.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Hong Fan
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guilian Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
20
|
Eisen A, Pioro EP, Goutman SA, Kiernan MC. Nanoplastics and Neurodegeneration in ALS. Brain Sci 2024; 14:471. [PMID: 38790450 PMCID: PMC11119293 DOI: 10.3390/brainsci14050471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Plastic production, which exceeds one million tons per year, is of global concern. The constituent low-density polymers enable spread over large distances and micro/nano particles (MNPLs) induce organ toxicity via digestion, inhalation, and skin contact. Particles have been documented in all human tissues including breast milk. MNPLs, especially weathered particles, can breach the blood-brain barrier, inducing neurotoxicity. This has been documented in non-human species, and in human-induced pluripotent stem cell lines. Within the brain, MNPLs initiate an inflammatory response with pro-inflammatory cytokine production, oxidative stress with generation of reactive oxygen species, and mitochondrial dysfunction. Glutamate and GABA neurotransmitter dysfunction also ensues with alteration of excitatory/inhibitory balance in favor of reduced inhibition and resultant neuro-excitation. Inflammation and cortical hyperexcitability are key abnormalities involved in the pathogenic cascade of amyotrophic lateral sclerosis (ALS) and are intricately related to the mislocalization and aggregation of TDP-43, a hallmark of ALS. Water and many foods contain MNPLs and in humans, ingestion is the main form of exposure. Digestion of plastics within the gut can alter their properties, rendering them more toxic, and they cause gut microbiome dysbiosis and a dysfunctional gut-brain axis. This is recognized as a trigger and/or aggravating factor for ALS. ALS is associated with a long (years or decades) preclinical period and neonates and infants are exposed to MNPLs through breast milk, milk substitutes, and toys. This endangers a time of intense neurogenesis and establishment of neuronal circuitry, setting the stage for development of neurodegeneration in later life. MNPL neurotoxicity should be considered as a yet unrecognized risk factor for ALS and related diseases.
Collapse
Affiliation(s)
- Andrew Eisen
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V6S 1Z3, Canada;
| | - Erik P. Pioro
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC V6S 1Z3, Canada;
| | - Stephen A. Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA;
| | | |
Collapse
|
21
|
Rushendran R, Begum RF, Singh S A, Narayanan PL, Vellapandian C, Prajapati BG, Paul PK. Navigating neurological disorders: harnessing the power of natural compounds for innovative therapeutic breakthroughs. EXCLI JOURNAL 2024; 23:534-569. [PMID: 38741726 PMCID: PMC11089094 DOI: 10.17179/excli2024-7051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 05/16/2024]
Abstract
Novel treatments are needed as neurological issues become more frequent worldwide. According to the report, plants, oceans, microorganisms, and animals contain interesting drug discovery compounds. Alzheimer's, Parkinson's, and stroke reviews emphasize neurological disorders' complexity and natural substances' safety. Learn about marine-derived and herbal substances' neuroprotective characteristics and applications. Molecular pathways show these substances' neurological healing effects. This article discusses clinical usage of Bryostatin-1, Fucoidan, Icariin, Salvianolic acid, Curcumin, Resveratrol, etc. Their potential benefits for asthma and Alzheimer's disease are complex. Although limited, the study promotes rigorous scientific research and collaboration between traditional and alternative medical practitioners. Unexplored natural compounds, quality control, well-structured clinical trials, and interdisciplinary collaboration should guide future study. Developing and employing natural chemicals to treat neurological illnesses requires ethical sourcing, sustainability, and public awareness. This detailed analysis covers natural chemicals' current state, challenges, and opportunities in neurological disorder treatment. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Rapuru Rushendran
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Rukaiah Fatma Begum
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Ankul Singh S
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Pavithra Lakshmi Narayanan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, Gujarat, India
| | - Pijush Kumar Paul
- Department of Pharmacy, Gono Bishwabidyalay University, Mirzanagar, Savar, Dhaka-1344, Bangladesh
| |
Collapse
|