1
|
Campos JV, Pontes JTC, Canales CSC, Roque-Borda CA, Pavan FR. Advancing Nanotechnology: Targeting Biofilm-Forming Bacteria with Antimicrobial Peptides. BME FRONTIERS 2025; 6:0104. [PMID: 40041091 PMCID: PMC11876546 DOI: 10.34133/bmef.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/21/2025] [Accepted: 02/07/2025] [Indexed: 03/06/2025] Open
Abstract
Nanotechnology offers innovative solutions for addressing the challenges posed by biofilm-forming bacteria, which are highly resistant to conventional antimicrobial therapies. This review explores the integration of pharmaceutical nanotechnology with antimicrobial peptides (AMPs) to enhance the treatment of biofilm-related infections. The use of various nanoparticle systems-including inorganic/metallic, polymeric, lipid-based, and dendrimer nanostructures-provides promising avenues for improving drug delivery, targeting, and biofilm disruption. These nanocarriers facilitate the penetration of biofilms, down-regulate biofilm-associated genes, such as ALS1, ALS3, EFG1, and HWP1, and inhibit bacterial defense mechanisms through membrane disruption, reactive oxygen species generation, and intracellular targeting. Furthermore, nanoparticle formulations such as NZ2114-NPs demonstrate enhanced efficacy by reducing biofilm bacterial counts by several orders of magnitude. This review highlights the potential of combining nanotechnology with AMPs to create novel, targeted therapeutic approaches for combatting biofilm-related infections and overcoming the limitations of traditional antimicrobial treatments.
Collapse
Affiliation(s)
- Julia Valladares Campos
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, Brazil
| | - Janaína Teixeira Costa Pontes
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, Brazil
| | | | - Cesar Augusto Roque-Borda
- Vicerrectorado de Investigación, Universidad Católica de Santa María de Arequipa, Arequipa 04000, Peru
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, Brazil
| |
Collapse
|
2
|
Ma G, Li X, Cai J, Wang X. Carbon dots-based fluorescent probe for detection of foodborne pathogens and its potential with microfluidics. Food Chem 2024; 451:139385. [PMID: 38663242 DOI: 10.1016/j.foodchem.2024.139385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 05/26/2024]
Abstract
Concern about food safety triggers demand on rapid, accurate and on-site detection of foodborne pathogens. Among various fluorescent probes for detection, carbon dots (CDs) prepared by carbonization of carbon-rich raw materials show extraordinary performance for their excellent and tailorable photoluminescence property, as well as their facilely gained specificity by surface customization and modification. CDs-based fluorescent probes play a crucial role in many pathogenic bacteria sensing systems. In addition, microfluidic technology with characteristics of portability and functional integration is expected to combine with CDs-based fluorescent probes for point-of-care testing (POCT), which can further enhance the detection property of CDs-based fluorescent probes. Here, this paper reviews CDs-based bacterial detection methods and systems, including the structural modulation of fluorescent probes and pathogenic bacteria detection mechanisms, and describes the potential of combining CDs with microfluidic technology, providing reference for the development of novel rapid detection technology for pathogenic bacteria in food.
Collapse
Affiliation(s)
- Guozhi Ma
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Xiaoyun Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Jihai Cai
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| |
Collapse
|
3
|
Dzulkharnien NSF, Rohani R, Tan Kofli N, Mohd Kasim NA, Abd Muid S, Patrick M, Mohd Fauzi NA, Alias H, Ahmad Radzuan H. Enhanced binding interaction and antibacterial inhibition for nanometal oxide particles activated with Aloe Vulgarize through one-pot ultrasonication techniques. Bioorg Chem 2024; 150:107513. [PMID: 38905888 DOI: 10.1016/j.bioorg.2024.107513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/23/2024]
Abstract
The interaction of green zinc oxide nanoparticles (ZnO NPs) with bacterial strains are still scarcely reported. This work was conducted to study the green-one-pot-synthesized ZnO NPs from the Aloe Vulgarize (AV) leaf peel extract assisted with different sonication techniques followed by the physicochemical, biological activities and molecular docking studies. The NPs structure was analyzed using FTIR, UV-vis and EDX. The morphology, particle size and crystallinity of ZnO NPs were identified using FESEM and XRD. It was found that the formed flower-like structure with sharp edge and fine size of particulates in ZnO NPs/AV could enhance the bacterial inhibition. The minimum inhibitory concentration (MIC) for all the tested bacterial strains is at 3.125 µg/ml and the bacterial growth curve are dependent on the ZnO NPs dosage. The results of disc diffusion revealed that the ZnO NPs/AV possess better antibacterial effect with bigger ZOI due to the presence of AV active ingredient. The molecular docking between active ingredients of AV in the NPs with the protein of IFCM and 1MWU revealed that low binding energy (Ebind = -6.56 kcal/mol and -8.99 kcal/mol, respectively) attributes to the excessive hydrogen bond from AV that highly influenced their interaction with the amino acid of the selected proteins. Finally, the cytotoxicity test on the biosynthesized ZnO NPs with concentration below 20 µg/ml are found nontoxic on the HDF cell. Overall, ZnO NPs/20 % AV (probe sonication) is considered as the best synthesis option due to its efficient one-pot method, short sonication time but own the best antibacterial effect.
Collapse
Affiliation(s)
- Nur Syafiqah Farhanah Dzulkharnien
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Rosiah Rohani
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Noorhisham Tan Kofli
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Noor Alicezah Mohd Kasim
- Faculty of Medicine, Universiti Teknologi Mara Selangor Branch, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Suhaila Abd Muid
- Faculty of Medicine, Universiti Teknologi Mara Selangor Branch, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Melonney Patrick
- Faculty of Medicine, Universiti Teknologi Mara Selangor Branch, Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Noor Akhmazillah Mohd Fauzi
- Department of Chemical Engineering Technology, Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, 86400, Johor, Malaysia
| | - Hajar Alias
- Department of Chemical Engineering, Faculty of Chemical Engineering and Natural Resources, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Husna Ahmad Radzuan
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| |
Collapse
|
4
|
Adeniyi ET, Kruppa M, De Benedetti S, Ludwig KC, Krisilia V, Wassenberg TR, Both M, Schneider T, Müller TJJ, Kalscheuer R. Synthesis of Bisindole Alkaloids and Their Mode of Action against Methicillin-Resistant Staphylococcus Aureus. ACS Infect Dis 2024; 10:1958-1969. [PMID: 38841740 DOI: 10.1021/acsinfecdis.3c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
About 100,000 deaths are attributed annually to infections with methicillin-resistant Staphylococcus aureus (MRSA) despite concerted efforts toward vaccine development and clinical trials involving several preclinically efficacious drug candidates. This necessitates the development of alternative therapeutic options against this drug-resistant bacterial pathogen. Using the Masuda borylation-Suzuki coupling (MBSC) sequence, we previously synthesized and modified naturally occurring bisindole alkaloids, alocasin A, hyrtinadine A and scalaradine A, resulting in derivatives showing potent in vitro and in vivo antibacterial efficacy. Here, we report on a modified one-pot MBSC protocol for the synthesis of previously reported and several undescribed N-tosyl-protected bisindoles with anti-MRSA activities and moderate cytotoxicity against human monocytic and kidney cell lines. In continuation of the mode of action investigation of the previously synthesized membrane-permeabilizing hit compounds, mechanistic studies reveal that bisindoles impact the cytoplasmic membrane of Gram-positive bacteria by promiscuously interacting with lipid II and membrane phospholipids while rapidly dissipating membrane potential. The bactericidal and lipid II-interacting lead compounds 5c and 5f might be interesting starting points for drug development in the fight against MRSA.
Collapse
Affiliation(s)
- Emmanuel T Adeniyi
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical Biology and Biotechnology, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Marco Kruppa
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Stefania De Benedetti
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
| | - Kevin C Ludwig
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
| | - Violetta Krisilia
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical Biology and Biotechnology, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Tobias R Wassenberg
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Melissa Both
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, 53115 Bonn, Germany
| | - Thomas J J Müller
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Rainer Kalscheuer
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical Biology and Biotechnology, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Panthi VK, Fairfull-Smith KE, Islam N. Liposomal drug delivery strategies to eradicate bacterial biofilms: Challenges, recent advances, and future perspectives. Int J Pharm 2024; 655:124046. [PMID: 38554739 DOI: 10.1016/j.ijpharm.2024.124046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/08/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Typical antibiotic treatments are often ineffectual against biofilm-related infections since bacteria residing within biofilms have developed various mechanisms to resist antibiotics. To overcome these limitations, antimicrobial-loaded liposomal nanoparticles are a promising anti-biofilm strategy as they have demonstrated improved antibiotic delivery and eradication of bacteria residing in biofilms. Antibiotic-loaded liposomal nanoparticles revealed remarkably higher antibacterial and anti-biofilm activities than free drugs in experimental settings. Moreover, liposomal nanoparticles can be used efficaciously for the combinational delivery of antibiotics and other antimicrobial compounds/peptide which facilitate, for instance, significant breakdown of the biofilm matrix, increased bacterial elimination from biofilms and depletion of metabolic activity of various pathogens. Drug-loaded liposomes have mitigated recurrent infections and are considered a promising tool to address challenges associated to antibiotic resistance. Furthermore, it has been demonstrated that surface charge and polyethylene glycol modification of liposomes have a notable impact on their antibacterial biofilm activity. Future investigations should tackle the persistent hurdles associated with development of safe and effective liposomes for clinical application and investigate novel antibacterial treatments, including CRISPR-Cas gene editing, natural compounds, phages, and nano-mediated approaches. Herein, we emphasize the significance of liposomes in inhibition and eradication of various bacterial biofilms, their challenges, recent advances, and future perspectives.
Collapse
Affiliation(s)
- Vijay Kumar Panthi
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Kathryn E Fairfull-Smith
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia; Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia; Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, QLD, Australia; Centre for Immunology and Infection Control (CIIC), Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| |
Collapse
|
6
|
Bhattacharjee B, Basak M, Das G, Ramesh A. Quinoxaline-based membrane-targeting therapeutic material: Implications in rejuvenating antibiotic and curb MRSA invasion in an in vitro bone cell infection model. BIOMATERIALS ADVANCES 2023; 148:213359. [PMID: 36963341 DOI: 10.1016/j.bioadv.2023.213359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/04/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Manifestation of resistance in methicillin-resistant Staphylococcus aureus (MRSA) against multiple antibiotics demands an effective strategy to counter the menace of the pathogen. To address this challenge, the current study explores quinoxaline-based synthetic ligands as an adjuvant material to target MRSA in a combination therapy regimen. Amongst the tested ligands (C1-C4), only C2 was bactericidal against the MRSA strain S. aureus 4 s, with a minimum inhibitory concentration (MIC) of 32 μM. C2 displayed a membrane-directed activity and could effectively hinder MRSA biofilm formation. A quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that C2 downregulated expression of the regulator gene agrC and reduced the fold change in the expression of adhesin genes fnbA and cnbA in MRSA in a dose-dependent manner. C2 enabled a 4-fold reduction in the MIC of ciprofloxacin (CPX) and in presence of 10 μM C2 and 8.0 μM CPX, growth of MRSA was arrested. Furthermore, a combination of 10 μM C2 and 12 μM CPX could strongly inhibit MRSA biofilm formation and reduce biofilm metabolic activity. The minimum biofilm inhibitory concentration (MBIC) of CPX against S. aureus 4 s biofilm was reduced and a synergy resulted between C2 and CPX. In a combinatorial treatment regimen, C2 could prevent emergence of CPX resistance and arrest growth of MRSA till 360 generations. C2 could also be leveraged in combination treatment (12 μM CPX and 10 μM C2) to target MRSA in an in vitro bone cell infection model, wherein MRSA cell adhesion and invasion onto cultured MG-63 cells was only ~17 % and ~ 0.37 %, respectively. The combinatorial treatment regimen was also biocompatible as the viability of MG-63 cells was high (~ 91 %). Thus, C2 is a promising adjuvant material to counter antibiotic-refractory therapy and mitigate MRSA-mediated bone cell infection.
Collapse
Affiliation(s)
- Basu Bhattacharjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Megha Basak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Aiyagari Ramesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
7
|
Roque-Borda CA, Bento da Silva P, Rodrigues MC, Di Filippo LD, Duarte JL, Chorilli M, Vicente EF, Garrido SS, Rogério Pavan F. Pharmaceutical nanotechnology: Antimicrobial peptides as potential new drugs against WHO list of critical, high, and medium priority bacteria. Eur J Med Chem 2022; 241:114640. [PMID: 35970075 DOI: 10.1016/j.ejmech.2022.114640] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 12/29/2022]
Abstract
Nanobiotechnology is a relatively unexplored area that has, nevertheless, shown relevant results in the fight against some diseases. Antimicrobial peptides (AMPs) are biomacromolecules with potential activity against multi/extensively drug-resistant bacteria, with a lower risk of generating bacterial resistance. They can be considered an excellent biotechnological alternative to conventional drugs. However, the application of several AMPs to biological systems is hampered by their poor stability and lifetime, inactivating them completely. Therefore, nanotechnology plays an important role in the development of new AMP-based drugs, protecting and carrying the bioactive to the target. This is the first review article on the different reported nanosystems using AMPs against bacteria listed on the WHO priority list. The current shortage of information implies a nanobiotechnological potential to obtain new drugs or repurpose drugs based on the AMP-drug synergistic effect.
Collapse
Affiliation(s)
- Cesar Augusto Roque-Borda
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, CEP 14800-903, Brazil; Universidad Católica de Santa María, Vicerrectorado de Investigación, Facultad de Ciencias Farmacéuticas Bioquímicas y Biotecnológicas, Brazil
| | - Patricia Bento da Silva
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Mosar Corrêa Rodrigues
- Laboratory of Nanobiotechnology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Leonardo Delello Di Filippo
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Jonatas L Duarte
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, CEP 14800-903, Brazil
| | - Eduardo Festozo Vicente
- São Paulo State University (UNESP), School of Sciences and Engineering, Tupã, São Paulo, CEP 17602-496, Brazil
| | - Saulo Santesso Garrido
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, São Paulo, CEP 14801-902, Brazil
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, CEP 14800-903, Brazil.
| |
Collapse
|
8
|
Yamamura H, Hagiwara T, Hayashi Y, Osawa K, Kato H, Katsu T, Masuda K, Sumino A, Yamashita H, Jinno R, Abe M, Miyagawa A. Antibacterial Activity of Membrane-Permeabilizing Bactericidal Cyclodextrin Derivatives. ACS OMEGA 2021; 6:31831-31842. [PMID: 34870006 PMCID: PMC8638021 DOI: 10.1021/acsomega.1c04541] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/29/2021] [Indexed: 05/08/2023]
Abstract
Antimicrobial peptides that act by disrupting bacterial membranes are attractive agents for treating drug-resistant bacteria. This study investigates a membrane-disrupting peptide mimic made of a cyclic oligosaccharide cyclodextrin scaffold that can be chemically polyfunctionalized. An antibacterial functional group on the peptide was simplified to an alkylamino group that combines cationic and hydrophobic moieties, the former to interact with the anionic bacterial membrane and the latter with the membrane interior. The cyclodextrins equipped with eight alkylamino groups on the molecules using a poly-click reaction exhibited antibacterial activity against Gram-positive and Gram-negative bacteria, including drug-resistant pathogens such as carbapenem-resistant Enterobacteriaceae. Several lines of evidence showed that these agents disrupt bacterial membranes, leading to rapid bacterial cell death. The resulting membrane perturbation was directly visualized using high-speed atomic force microscopy imaging. In Gram-negative bacteria, the membrane-permeabilizing action of these derivatives allowed the entry of co-treated traditional antibiotics, which were then active against these bacteria.
Collapse
Affiliation(s)
- Hatsuo Yamamura
- Graduate
School of Engineering, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Tatsuya Hagiwara
- Graduate
School of Engineering, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Yuma Hayashi
- Graduate
School of Engineering, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Kayo Osawa
- Department
of Medical Technology, Faculty of Health Sciences, Kobe Tokiwa University, Nagata-ku, Kobe 653-0838, Japan
| | - Hisato Kato
- Graduate
School of Clinical Pharmacy, Shujitsu University, Naka-ku, Okayama 703-8516, Japan
| | - Takashi Katsu
- Graduate
School of Clinical Pharmacy, Shujitsu University, Naka-ku, Okayama 703-8516, Japan
| | - Kazufumi Masuda
- Graduate
School of Clinical Pharmacy, Shujitsu University, Naka-ku, Okayama 703-8516, Japan
| | - Ayumi Sumino
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakumamachi, Kanazawa 920-1192, Japan
- Institute
for Frontier Science Initiative, Kanazawa
University, Kakumamachi, Kanazawa 920-1192, Japan
| | - Hayato Yamashita
- Graduate
School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ryo Jinno
- Graduate
School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Masayuki Abe
- Graduate
School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Atsushi Miyagawa
- Graduate
School of Engineering, Nagoya Institute
of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
9
|
Hasan N, Lee J, Kwak D, Kim H, Saparbayeva A, Ahn HJ, Yoon IS, Kim MS, Jung Y, Yoo JW. Diethylenetriamine/NONOate-doped alginate hydrogel with sustained nitric oxide release and minimal toxicity to accelerate healing of MRSA-infected wounds. Carbohydr Polym 2021; 270:118387. [PMID: 34364628 DOI: 10.1016/j.carbpol.2021.118387] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/12/2021] [Accepted: 06/27/2021] [Indexed: 12/17/2022]
Abstract
This study demonstrates the development of a nitric oxide (NO)-releasing hydrogel wound dressing and its efficacy at accelerating methicillin-resistant Staphylococcus aureus (MRSA)-infected wound healing. A DETA/NONOate-doped alginate (Alg-DETA/NO) hydrogel was synthesized using alginate as a hydrogel-forming wound dressing material and diethylenetriamine/diazeniumdiolate (DETA/NONOate) as an NO donor. Alg-DETA/NO exhibited a prolonged NO release profile over a period of 4 days. The rheological properties of Alg-DETA/NO did not differ significantly from those of pure alginate. Importantly, Alg-DETA/NO showed potent antibacterial activity against MRSA, with minimal toxicity to mouse fibroblasts. The application of Alg-DETA/NO to MRSA-infected wounds in a mouse model showed a favorable wound healing with accelerated wound-size reduction and reduced skin bacterial infection. Additionally, histological examination revealed that Alg-DETA/NO reduced inflammation at the wound site and promoted re-epithelialization, angiogenesis, and collagen deposition. Thus, Alg-DETA/NO presented herein could serve as a safe and potent hydrogel dressing for the treatment of MRSA-infected wounds.
Collapse
Affiliation(s)
- Nurhasni Hasan
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Dongmin Kwak
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Hyunwoo Kim
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | | | - Hye-Jin Ahn
- School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju 52828, South Korea
| | - In-Soo Yoon
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan 46241, South Korea..
| |
Collapse
|
10
|
Amiss AS, Henriques ST, Lawrence N. Antimicrobial peptides provide wider coverage for targeting drug‐resistant bacterial pathogens. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Anna S. Amiss
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
- School of Biomedical Sciences Queensland University of Technology, Translational Research Institute Brisbane Queensland Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
11
|
Richardi JF, Kogawa AC, Belavenuto EGT, Chorilli M, Salgado HRN. An Ecological and Miniaturized Biological Method for the Analysis of Daptomycin Potency. J AOAC Int 2021; 104:466-471. [PMID: 34020456 DOI: 10.1093/jaoacint/qsaa112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 11/12/2022]
Abstract
BACKGROUND Physicochemical and microbiological methods are found in the literature for the analysis of daptomycin, an antimicrobial. OBJECTIVE This paper brings a miniaturized turbidimetric microbiological method for analysis of daptomycin in lyophilized powder. METHODS The method was performed using 96-well microplates, 4-h incubation, 2, 4 and 8 μg/mL, 7% Staphylococcus aureus ATCC 6538 IAL 2082, and BHI broth. RESULTS Linearity was proven by obtaining analytical curves with a correlation coefficient greater than 0.99 and statistical evaluation by ANOVA. The method was also selective, since the standard and sample analytical curves were parallel, proving that the excipient does not interfere with daptomycin analysis. Intraday, interday and inter-analyst precision presented RSDs of 2, 2.27, and 1.08%, respectively. Accuracy was assessed by the recovery test, where known quantities of standard solution are added to the sample and an average recovery value of 100.73% (RSD = 0.71%) was obtained. The present method was robust when minor changes were made in the parameters of used antimicrobial volume, inoculum volume and incubation time. CONCLUSIONS This work is an innovative and ecological proposal and has advantages such as (i) less waste generation, (ii) miniaturized quantities of sample, culture media and inoculum, (iii) no need to use formaldehyde as in the traditional turbidimetric method, (iv) lower volume of glassware used and (v) shorter incubation time compared to other methods as agar diffusion requiring approximately 24 h. HIGHLIGHTS This work is focuses on a current, innovative and sustainable theme for pharmaceutical analysis around the world.
Collapse
Affiliation(s)
- Jessica Freitas Richardi
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, 14800-903, Brazil
| | - Ana Carolina Kogawa
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, 14800-903, Brazil.,Universidade Federal de Goiás - UFG, Faculdade de Farmácia, Laboratório de Controle de Qualidade, Goiânia, Goiás, 74605-170, Brazil
| | - Eliane Gandolpho Tótoli Belavenuto
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, 14800-903, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, 14800-903, Brazil
| | - Hérida Regina Nunes Salgado
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, 14800-903, Brazil
| |
Collapse
|
12
|
Mat Rani NNI, Mustafa Hussein Z, Mustapa F, Azhari H, Sekar M, Chen XY, Mohd Amin MCI. Exploring the possible targeting strategies of liposomes against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Pharm Biopharm 2021; 165:84-105. [PMID: 33974973 DOI: 10.1016/j.ejpb.2021.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/26/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Multi antibiotic-resistant bacterial infections are on the rise due to the overuse of antibiotics. Methicillin-resistant Staphylococcus aureus (MRSA) is one of the pathogens listed under the category of serious threats where vancomycin remains the mainstay treatment despite the availability of various antibacterial agents. Recently, decreased susceptibility to vancomycin from clinical isolates of MRSA has been reported and has drawn worldwide attention as it is often difficult to overcome and leads to increased medical costs, mortality, and longer hospital stays. Development of antibiotic delivery systems is often necessary to improve bioavailability and biodistribution, in order to reduce antibiotic resistance and increase the lifespan of antibiotics. Liposome entrapment has been used as a method to allow higher drug dosing apart from reducing toxicity associated with drugs. The surface of the liposomes can also be designed and enhanced with drug-release properties, active targeting, and stealth effects to prevent recognition by the mononuclear phagocyte system, thus enhancing its circulation time. The present review aimed to highlight the possible targeting strategies of liposomes against MRSA bacteremia systemically while investigating the magnitude of this effect on the minimum inhibitory concentration level.
Collapse
Affiliation(s)
- Nur Najihah Izzati Mat Rani
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia; Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Zahraa Mustafa Hussein
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Fahimi Mustapa
- Hospital Batu Gajah Jalan Changkat, 31000 Batu Gajah, Perak, Malaysia
| | - Hanisah Azhari
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Xiang Yi Chen
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.
| |
Collapse
|
13
|
Synthesis and Characterization of Bone Binding Antibiotic-1 (BBA-1), a Novel Antimicrobial for Orthopedic Applications. Molecules 2021; 26:molecules26061541. [PMID: 33799713 PMCID: PMC7999004 DOI: 10.3390/molecules26061541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022] Open
Abstract
Osteomyelitis and orthopedic infections are major clinical problems, limited by a lack of antibiotics specialized for such applications. In this paper, we describe the design and synthesis of a novel bone-binding antibiotic (BBA-1) and its subsequent structural and functional characterization. The synthesis of BBA-1 was the result of a two-step chemical conjugation of cationic selective antimicrobial-90 (CSA-90) and the bisphosphonate alendronate (ALN) via a heterobifunctional linker. This was analytically confirmed by HPLC, FT-IR, MS and NMR spectroscopy. BBA-1 showed rapid binding and high affinity to bone mineral in an in vitro hydroxyapatite binding assay. Kirby—Baur assays confirmed that BBA-1 shows a potent antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus comparable to CSA-90. Differentiation of cultured osteoblasts in media supplemented with BBA-1 led to increased alkaline phosphatase expression, which is consistent with the pro-osteogenic activity of CSA-90. Bisphosphonates, such as ALN, are inhibitors of protein prenylation, however, the amine conjugation of ALN to CSA-90 disrupted this activity in an in vitro protein prenylation assay. Overall, these findings support the antimicrobial, bone-binding, and pro-osteogenic activities of BBA-1. The compound and related agents have the potential to ensure lasting activity against osteomyelitis after systemic delivery.
Collapse
|
14
|
Wang Y. Liposome as a delivery system for the treatment of biofilm-mediated infections. J Appl Microbiol 2021; 131:2626-2639. [PMID: 33650748 DOI: 10.1111/jam.15053] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022]
Abstract
Biofilm formation by pathogenic microorganisms has been a tremendous challenge for antimicrobial therapies due to various factors. The biofilm matrix sequesters bacterial cells from the exterior environment and therefore prevents antimicrobial agents from reaching the interior. In addition, biofilm surface extracellular polymeric substances can absorb antimicrobial agents and thus reduce their bioavailability. To conquer these protection mechanisms, liposomes have been developed into a drug delivery system for antimicrobial agents against biofilm-mediated infections. The unique characteristics of liposomes, including versatility for cargoes, target-specificity, nonimmunogenicity, low toxicity, and biofilm matrix-/cell membrane-fusogenicity, remarkably improve the effectiveness of antimicrobial agents and minimize recurrence of infections. This review summarizes current development of liposomal carriers for biofilm therapeutics, presents evidence in their practical applications and discusses their potential limitations.
Collapse
Affiliation(s)
- Y Wang
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, Qld, Australia
| |
Collapse
|
15
|
Li S, Wang Y, Xue Z, Jia Y, Li R, He C, Chen H. The structure-mechanism relationship and mode of actions of antimicrobial peptides: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Zeta potential beyond materials science: Applications to bacterial systems and to the development of novel antimicrobials. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183597. [PMID: 33652005 DOI: 10.1016/j.bbamem.2021.183597] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 01/17/2023]
Abstract
This review summarizes the theory of zeta potential (ZP) and the most relevant data about how it has been used for studying bacteria. We have especially focused on the discovery and characterization of novel antimicrobial compounds. The ZP technique may be considered an indirect tool to estimate the surface potential of bacteria, a physical characteristic that is key to maintaining optimal cell function. For this reason, targeting the bacterial surface is of paramount interest in the development of new antimicrobials. Surface-acting agents have been found to display a remarkable bactericidal effect and have simultaneously revealed a low tendency to trigger resistance. Changes in the bacterial surface as a result of various processes can also be followed by ZP measurements. However, due to the complexity of the bacterial surface, some considerations regarding the assessment of ZP must first be taken into account. Evidence on the application of ZP measurements to the characterization of bacteria and biofilm formation is presented next. We finally discuss the feasibility of using the ZP technique to assess antimicrobial-induced changes in the bacterial surface. Among these changes are those related to the interaction of the agent with different components of the cell envelope, membrane permeabilization, and loss of viability.
Collapse
|
17
|
Wijesundara NM, Lee SF, Cheng Z, Davidson R, Rupasinghe HPV. Carvacrol exhibits rapid bactericidal activity against Streptococcus pyogenes through cell membrane damage. Sci Rep 2021; 11:1487. [PMID: 33452275 PMCID: PMC7811018 DOI: 10.1038/s41598-020-79713-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pyogenes is an important human pathogen worldwide. The identification of natural antibacterial phytochemicals has renewed interest due to the current scarcity of antibiotic development. Carvacrol is a monoterpenoid found in herbs. We evaluated carvacrol alone and combined with selected antibiotics against four strains of S. pyogenes in vitro. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of carvacrol against S. pyogenes were 125 µg/mL (0.53 mM) and 250 µg/mL (1.05 mM), respectively. Kill curve results showed that carvacrol exhibits instantaneous bactericidal activity against S. pyogenes. We also demonstrated the potential mechanism of action of carvacrol through compromising the cell membrane integrity. Carvacrol induced membrane integrity changes leading to leakage of cytoplasmic content such as lactate dehydrogenase enzymes and nucleic acids. We further confirmed dose-dependent rupturing of cells and cell deaths using transmission electron microscopy. The chequerboard assay results showed that carvacrol possesses an additive-synergistic effect with clindamycin or penicillin. Carvacrol alone, combined with clindamycin or penicillin, can be used as a safe and efficacious natural health product for managing streptococcal pharyngitis.
Collapse
Affiliation(s)
- Niluni M Wijesundara
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada.,Department of Biology, Faculty of Science, Dalhousie University, Halifax, NS, Canada.,Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla, Sri Lanka
| | - Song F Lee
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada.,Canadian Center for Vaccinology, Nova Scotia Health Authority, and the Izaak Walton Killam Health Centre, Dalhousie University, Halifax, NS, Canada
| | - Zhenyu Cheng
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Ross Davidson
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Canadian Center for Vaccinology, Nova Scotia Health Authority, and the Izaak Walton Killam Health Centre, Dalhousie University, Halifax, NS, Canada.,Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Division of Microbiology at the Queen Elizabeth II Health Sciences Centre, Department of Pathology and Laboratory Medicine, Nova Scotia Health Authority, Halifax, NS, Canada
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada. .,Department of Biology, Faculty of Science, Dalhousie University, Halifax, NS, Canada. .,Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada. .,National Institute of Fundamental Studies, Kandy, Sri Lanka.
| |
Collapse
|
18
|
Belay C, Steinman NY, Campos LM, Dzikowski R, Golenser J, Domb AJ. Asymmetric trisalkylamine cyclopropenium derivatives with antimicrobial activity. Bioorg Chem 2020; 102:104069. [PMID: 32683179 DOI: 10.1016/j.bioorg.2020.104069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022]
Abstract
Cationic molecules are found in abundance as antimicrobial agents with a well-defined mechanism of action and significant therapeutic benefits. Quaternary ammonium-containing compounds are frequently employed due to their facile synthesis and tunable properties. Over time, however, bacterial resistance to these compounds has become a significant obstacle. We report here a series of asymmetric trisalkylamine cyclopropenium cationic derivatives as chemical isosteres of quaternary ammonium compounds, capable of strong antimicrobial activity and overcoming microbial resistance. These small molecules were prepared by one-pot reaction of tetrachlorocyclopropene (TCC) with unhindered secondary amines in the presence of Hünig's base. In this work we describe the synthesis, purification, and characterization of five trisamino-cyclopropenium derivatives and confirm their structures by spectral analysis and mass-spectrometry. Three of the compounds displayed considerable antimalarial activity (IC50 < 0.1 µM) without demonstrating significant toxic effects in vitro (TC50 > 1 µM). This class of cyclopropenium-based compounds provides an opening for the discovery of potent and non-toxic antimicrobial agents.
Collapse
Affiliation(s)
- Chen Belay
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Noam Y Steinman
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Luis M Campos
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jacob Golenser
- Department of Microbiology and Molecular Genetics, The Kuvin Centre for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abraham J Domb
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
19
|
The Neutrally Charged Diarylurea Compound PQ401 Kills Antibiotic-Resistant and Antibiotic-Tolerant Staphylococcus aureus. mBio 2020; 11:mBio.01140-20. [PMID: 32605985 PMCID: PMC7327171 DOI: 10.1128/mbio.01140-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Membrane-damaging antimicrobial agents have great potential to treat multidrug-resistant or multidrug-tolerant bacteria against which conventional antibiotics are not effective. However, their therapeutic applications are often hampered due to their low selectivity to bacterial over mammalian membranes or their potential for cross-resistance to a broad spectrum of cationic membrane-active antimicrobial agents. We discovered that the diarylurea derivative compound PQ401 has antimicrobial potency against multidrug-resistant and multidrug-tolerant Staphylococcus aureus. PQ401 selectively disrupts bacterial membrane lipid bilayers in comparison to mammalian membranes. Unlike cationic membrane-active antimicrobials, the neutral form of PQ401 rather than its cationic form exhibits maximum membrane activity. Overall, our results demonstrate that PQ401 could be a promising lead compound that overcomes the current limitations of membrane selectivity and cross-resistance. Also, this work provides deeper insight into the design and development of new noncharged membrane-targeting therapeutics to combat hard-to-cure bacterial infections. Resistance or tolerance to traditional antibiotics is a challenging issue in antimicrobial chemotherapy. Moreover, traditional bactericidal antibiotics kill only actively growing bacterial cells, whereas nongrowing metabolically inactive cells are tolerant to and therefore “persist” in the presence of legacy antibiotics. Here, we report that the diarylurea derivative PQ401, previously characterized as an inhibitor of the insulin-like growth factor I receptor, kills both antibiotic-resistant and nongrowing antibiotic-tolerant methicillin-resistant Staphylococcus aureus (MRSA) by lipid bilayer disruption. PQ401 showed several beneficial properties as an antimicrobial lead compound, including rapid killing kinetics, low probability for resistance development, high selectivity to bacterial membranes compared to mammalian membranes, and synergism with gentamicin. In contrast to well-studied membrane-disrupting cationic antimicrobial low-molecular-weight compounds and peptides, molecular dynamic simulations supported by efficacy data demonstrate that the neutral form of PQ401 penetrates and subsequently embeds into bacterial lipid bilayers more effectively than the cationic form. Lastly, PQ401 showed efficacy in both the Caenorhabditis elegans and Galleria mellonella models of MRSA infection. These data suggest that PQ401 may be a lead candidate for repurposing as a membrane-active antimicrobial and has potential for further development as a human antibacterial therapeutic for difficult-to-treat infections caused by both drug-resistant and -tolerant S. aureus.
Collapse
|
20
|
Yamamura H, Isshiki K, Fujita Y, Kato H, Katsu T, Masuda K, Osawa K, Miyagawa A. Gramicidin S-inspired antimicrobial cyclodextrin to disrupt gram-negative and gram-positive bacterial membranes. MEDCHEMCOMM 2019; 10:1432-1437. [PMID: 31803397 PMCID: PMC6836745 DOI: 10.1039/c9md00229d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/12/2019] [Indexed: 11/21/2022]
Abstract
A membrane-active antimicrobial peptide gramicidin S-like amphiphilic structure was prepared from cyclodextrin. The mimic was a cyclic oligomer composed of 6-amino-modified glucose 2,3-di-O-propanoates and it exhibited antimicrobial activity against Gram-positive and Gram-negative bacteria, together with no resistance development and low haemolytic activity against red blood cells.
Collapse
Affiliation(s)
- Hatsuo Yamamura
- Materials Science and Engineering , Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho, Showa-ku , Nagoya 466-8555 , Japan .
| | - Kana Isshiki
- Materials Science and Engineering , Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho, Showa-ku , Nagoya 466-8555 , Japan .
| | - Yusuke Fujita
- Materials Science and Engineering , Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho, Showa-ku , Nagoya 466-8555 , Japan .
| | - Hisato Kato
- School of Pharmacy , Shujitsu University , 1-6-1 Nishigawara, Naka-ku, Okayama-shi , Okayama 703-8516 , Japan
| | - Takashi Katsu
- School of Pharmacy , Shujitsu University , 1-6-1 Nishigawara, Naka-ku, Okayama-shi , Okayama 703-8516 , Japan
| | - Kazufumi Masuda
- Graduate School of Clinical Pharmacy , Shujitsu University , 1-6-1 Nishigawara, Naka-ku, Okayama-shi , Okayama 703-8516 , Japan
| | - Kayo Osawa
- Department of Biophysics , Kobe University , Graduate School of Health Sciences , 7-10-2 Tomogaoka, Suma-ku , Kobe 654-0142 , Japan
| | - Atsushi Miyagawa
- Materials Science and Engineering , Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho, Showa-ku , Nagoya 466-8555 , Japan .
| |
Collapse
|
21
|
Bicarbonate Resensitization of Methicillin-Resistant Staphylococcus aureus to β-Lactam Antibiotics. Antimicrob Agents Chemother 2019; 63:AAC.00496-19. [PMID: 31010857 PMCID: PMC6591647 DOI: 10.1128/aac.00496-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/07/2019] [Indexed: 12/24/2022] Open
Abstract
Endovascular infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are a major health care concern, especially infective endocarditis (IE). Standard antimicrobial susceptibility testing (AST) defines most MRSA strains as “resistant” to β-lactams, often leading to the use of costly and/or toxic treatment regimens. In this investigation, five prototype MRSA strains, representing the range of genotypes in current clinical circulation, were studied. Endovascular infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are a major health care concern, especially infective endocarditis (IE). Standard antimicrobial susceptibility testing (AST) defines most MRSA strains as “resistant” to β-lactams, often leading to the use of costly and/or toxic treatment regimens. In this investigation, five prototype MRSA strains, representing the range of genotypes in current clinical circulation, were studied. We identified two distinct MRSA phenotypes upon AST using standard media, with or without sodium bicarbonate (NaHCO3) supplementation: one highly susceptible to the antistaphylococcal β-lactams oxacillin and cefazolin (NaHCO3 responsive) and one resistant to such agents (NaHCO3 nonresponsive). These phenotypes accurately predicted clearance profiles of MRSA from target tissues in experimental MRSA IE treated with each β-lactam. Mechanistically, NaHCO3 reduced the expression of two key genes involved in the MRSA phenotype, mecA and sarA, leading to decreased production of penicillin-binding protein 2a (that mediates methicillin resistance), in NaHCO3-responsive (but not in NaHCO3-nonresponsive) strains. Moreover, both cefazolin and oxacillin synergistically killed NaHCO3-responsive strains in the presence of the host defense antimicrobial peptide (LL-37) in NaHCO3-supplemented media. These findings suggest that AST of MRSA strains in NaHCO3-containing media may potentially identify infections caused by NaHCO3-responsive strains that are appropriate for β-lactam therapy.
Collapse
|
22
|
Kuroki A, Kengmo Tchoupa A, Hartlieb M, Peltier R, Locock KES, Unnikrishnan M, Perrier S. Targeting intracellular, multi-drug resistant Staphylococcus aureus with guanidinium polymers by elucidating the structure-activity relationship. Biomaterials 2019; 217:119249. [PMID: 31279102 DOI: 10.1016/j.biomaterials.2019.119249] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/20/2019] [Accepted: 06/05/2019] [Indexed: 11/29/2022]
Abstract
Intracellular persistence of bacteria represents a clinical challenge as bacteria can thrive in an environment protected from antibiotics and immune responses. Novel targeting strategies are critical in tackling antibiotic resistant infections. Synthetic antimicrobial peptides (SAMPs) are interesting candidates as they exhibit a very high antimicrobial activity. We first compared the activity of a library of ammonium and guanidinium polymers with different sequences (statistical, tetrablock and diblock) synthesized by RAFT polymerization against methicillin-resistant S. aureus (MRSA) and methicillin-sensitive strains (MSSA). As the guanidinium SAMPs were the most potent, they were used to treat intracellular S. aureus in keratinocytes. The diblock structure was the most active, reducing the amount of intracellular MSSA and MRSA by two-fold. We present here a potential treatment for intracellular, multi-drug resistant bacteria, using a simple and scalable strategy.
Collapse
Affiliation(s)
- Agnès Kuroki
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Matthias Hartlieb
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Raoul Peltier
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Katherine E S Locock
- CSIRO Manufacturing, Clayton, Victoria, 3168, Australia; Department of Chemical and Biomolecular Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | | | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK; Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK; Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
23
|
Douafer H, Andrieu V, Phanstiel O, Brunel JM. Antibiotic Adjuvants: Make Antibiotics Great Again! J Med Chem 2019; 62:8665-8681. [PMID: 31063379 DOI: 10.1021/acs.jmedchem.8b01781] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multiple approaches have been developed to combat bacterial resistance. However, the combination of antibiotic resistance mechanisms by bacteria and the limited number of effective antibiotics available decreases the effective interventions for the treatment of current bacterial infections. This review covers the many ways that bacteria resist antibiotics including antibiotic target modification, the use of efflux pumps, and antibiotic inactivation. As a pertinent example, the use of beta lactamase inhibitors in combination with β-lactam containing antibiotics is discussed in detail. The solution to emerging antibiotic resistance may involve combination therapies of existing antibiotics and potentiating adjuvants, which re-empower the antibiotic agent to become efficacious against the resistant strain of interest. We report herein that a reasoned adjuvant design permits one to perform polypharmacy on bacteria by not only providing greater internal access to the codosed antibiotics but also by de-energizing the efflux pumps used by the bacteria to escape antibiotic action.
Collapse
Affiliation(s)
- Hana Douafer
- Aix Marseille University , INSERM, SSA, MCT , 13385 Marseille , France
| | - Véronique Andrieu
- Aix Marseille University , IRD, APHM, MEPHI, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie , 13385 Marseille , France
| | - Otto Phanstiel
- 12722 Research Parkway, College of Medicine , University of Central Florida , Orlando , Florida 32826 , United States
| | | |
Collapse
|
24
|
Guan D, Chen F, Qiu Y, Jiang B, Gong L, Lan L, Huang W. Sulfonium, an Underestimated Moiety for Structural Modification, Alters the Antibacterial Profile of Vancomycin Against Multidrug‐Resistant Bacteria. Angew Chem Int Ed Engl 2019; 58:6678-6682. [DOI: 10.1002/anie.201902210] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Dongliang Guan
- CAS Key Laboratory of Receptor ResearchCAS Center for Excellence in Molecular Cell ScienceCenter for Biotherapeutics Discovery ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Pudong Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Feifei Chen
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences. 555 Zuchongzhi Road, Pudong Shanghai 201203 China
| | - Yunguang Qiu
- CAS Key Laboratory of Receptor ResearchCAS Center for Excellence in Molecular Cell ScienceCenter for Biotherapeutics Discovery ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Pudong Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Bofeng Jiang
- CAS Key Laboratory of Receptor ResearchCAS Center for Excellence in Molecular Cell ScienceCenter for Biotherapeutics Discovery ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Likun Gong
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences. 555 Zuchongzhi Road, Pudong Shanghai 201203 China
| | - Lefu Lan
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences. 555 Zuchongzhi Road, Pudong Shanghai 201203 China
| | - Wei Huang
- CAS Key Laboratory of Receptor ResearchCAS Center for Excellence in Molecular Cell ScienceCenter for Biotherapeutics Discovery ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Pudong Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| |
Collapse
|
25
|
Guan D, Chen F, Qiu Y, Jiang B, Gong L, Lan L, Huang W. Sulfonium, an Underestimated Moiety for Structural Modification, Alters the Antibacterial Profile of Vancomycin Against Multidrug‐Resistant Bacteria. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dongliang Guan
- CAS Key Laboratory of Receptor ResearchCAS Center for Excellence in Molecular Cell ScienceCenter for Biotherapeutics Discovery ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Pudong Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Feifei Chen
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Yunguang Qiu
- CAS Key Laboratory of Receptor ResearchCAS Center for Excellence in Molecular Cell ScienceCenter for Biotherapeutics Discovery ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Pudong Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Bofeng Jiang
- CAS Key Laboratory of Receptor ResearchCAS Center for Excellence in Molecular Cell ScienceCenter for Biotherapeutics Discovery ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Likun Gong
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Lefu Lan
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Wei Huang
- CAS Key Laboratory of Receptor ResearchCAS Center for Excellence in Molecular Cell ScienceCenter for Biotherapeutics Discovery ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Pudong Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| |
Collapse
|
26
|
Ong TH, Chitra E, Ramamurthy S, Ling CCS, Ambu SP, Davamani F. Cationic chitosan-propolis nanoparticles alter the zeta potential of S. epidermidis, inhibit biofilm formation by modulating gene expression and exhibit synergism with antibiotics. PLoS One 2019; 14:e0213079. [PMID: 30818374 PMCID: PMC6394969 DOI: 10.1371/journal.pone.0213079] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/14/2019] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus epidermidis, is a common microflora of human body that can cause opportunistic infections associated with indwelling devices. It is resistant to multiple antibiotics necessitating the need for naturally occurring antibacterial agents. Malaysian propolis, a natural product obtained from beehives exhibits antimicrobial and antibiofilm properties. Chitosan-propolis nanoparticles (CPNP) were prepared using Malaysian propolis and tested for their effect against S. epidermidis. The cationic nanoparticles depicted a zeta potential of +40 and increased the net electric charge (zeta potential) of S. epidermidis from -17 to -11 mV in a concentration-dependent manner whereas, ethanol (Eth) and ethyl acetate (EA) extracts of propolis further decreased the zeta potential from -17 to -20 mV. Confocal laser scanning microscopy (CLSM) depicted that CPNP effectively disrupted biofilm formation by S. epidermidis and decreased viability to ~25% compared to Eth and EA with viability of ~60-70%. CPNP was more effective in reducing the viability of both planktonic as well as biofilm bacteria compared to Eth and EA. At 100 μg/mL concentration, CPNP decreased the survival of biofilm bacteria by ~70% compared to Eth or EA extracts which decreased viability by only 40%-50%. The morphology of bacterial biofilm examined by scanning electron microscopy depicted partial disruption of biofilm by Eth and EA extracts and significant disruption by CPNP reducing bacterial number in the biofilm by ~90%. Real time quantitative PCR analysis of gene expression in treated bacteria showed that genes involved in intercellular adhesion such as IcaABCD, embp and other related genes were significantly downregulated by CPNP. In addition to having a direct inhibitory effect on the survival of S. epidermidis, CPNP showed synergism with the antibiotics rifampicin, ciprofloxacin, vancomycin and doxycycline suggestive of effective treatment regimens. This would help decrease antibiotic treatment dose by at least 4-fold in combination therapies thereby opening up ways of tackling antibiotic resistance in bacteria.
Collapse
Affiliation(s)
- Teik Hwa Ong
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Ebenezer Chitra
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | | | | | | | - Fabian Davamani
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Batista de Andrade Neto J, Alexandre Josino MA, Rocha da Silva C, de Sousa Campos R, Aires do Nascimento FBS, Sampaio LS, Gurgel do Amaral Valente Sá L, de Sá Carneiro I, Dias Barroso FD, Juvêncio da Silva L, Lima de Mesquita JR, Cavalcanti BC, Odorico de Moraes M, Nobre Júnior HV. A mechanistic approach to the in-vitro resistance modulating effects of fluoxetine against meticillin resistant Staphylococcus aureus strains. Microb Pathog 2018; 127:335-340. [PMID: 30529514 DOI: 10.1016/j.micpath.2018.11.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 12/25/2022]
Abstract
Emergence of methicilin resistant Staphylococcus aureus (MRSA) strains is a major cause of infirmity worldwide and has limited our therapeutic options against these pathogens. In this regard, the search for candidates with an antimicrobial activity, with a greater efficacy and a lower toxicity, is necessary. As a result, there is greater need to search for resistance modifying agents which, in combination with existing drugs, will restore the efficacy of these drugs. The antibacterial effect of fluoxetine was determined by a broth microdilution method (the M07-A9 method of the Clinical and Laboratory Standard Institute) and flow cytometry techniques in which the probable mechanism of action of the compound was also assessed. The isolates used in the study belonged to the Laboratory of Bioprospecting of Antimicrobial Molecules (LABIMAN) of the Federal University of Ceará. After 24 h, Methicillin-resistant Sthaphylococcus aureus (MRSA) strains showed fluoxetine MICs equal to 64 μg/mL and 128 μg/mL, respectively. Cytometric analysis showed that treatment with fluoxetine caused alterations to the integrity of the plasma membranes and DNA damage, which led to cell death, probably by apoptosis.
Collapse
Affiliation(s)
- João Batista de Andrade Neto
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil
| | - Maria Aparecida Alexandre Josino
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil
| | - Cecília Rocha da Silva
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil; Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Rosana de Sousa Campos
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil; Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | | | - Letícia Serpa Sampaio
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil
| | - Igor de Sá Carneiro
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil
| | - Fátima Daiana Dias Barroso
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil
| | - Lisandra Juvêncio da Silva
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil
| | | | - Bruno Coelho Cavalcanti
- Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, CE, Brazil
| | | | - Hélio Vitoriano Nobre Júnior
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil.
| |
Collapse
|
28
|
Synthesis of an oleic acid based pH-responsive lipid and its application in nanodelivery of vancomycin. Int J Pharm 2018; 550:149-159. [DOI: 10.1016/j.ijpharm.2018.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 08/06/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
|
29
|
Broad-spectrum antibacterial amphiphilic aminoglycosides: A new focus on the structure of the lipophilic groups extends the series of active dialkyl neamines. Eur J Med Chem 2018; 157:1512-1525. [DOI: 10.1016/j.ejmech.2018.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 11/17/2022]
|
30
|
Otarigho B, Falade MO. Analysis of antibiotics resistant genes in different strains of Staphylococcus aureus. Bioinformation 2018; 14:113-122. [PMID: 29785070 PMCID: PMC5953858 DOI: 10.6026/97320630014113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 12/20/2022] Open
Abstract
The control of Staphylococcus aureus infection is being hampered by methicillin and other resistant strains. The identification of the unique antibiotic resistant genes from the genomes of various strains of S. aureus is of interest. We analyzed 11 S. aureus genomes sequences for Antibiotics Resistance Genes (ARGs) using CARD 2017 platform. We identified 32 ARGs across 11 S. aureus strains. Tet(38), norB, lmrB, mepA and mepR were present across genomes except for S. aureus strain UTSW MRSA 55. The mepA and mepR were found across 11 different genomes. However, FosB3, vgaALC, mphC and SAT-4 were found in UTSW MRSA 55, S.a. strain ISU935 and S.a. strain FDAARGOS_159. The prevalent mode of mechanism of antibiotics resistant was efflux pump complex or subunit conferring antibiotic resistance as well as protein(s). Analysis of norB, ImrB, norA, ImrB, tet (38), sav1866 and mecA have 12 to 14 TMHs. The results help in the understanding of Staphylococcus aureus pathogenesis in the context of antibiotic resistance.
Collapse
Affiliation(s)
- Benson Otarigho
- Department of Biological Science, Edo University, Iyamho, Edo State, Nigeria
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, OR USA
| | - Mofolusho O. Falade
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
31
|
Su X, Wang M, Wu Y, He Y, Fu Z. Specific chemiluminescent protocol for dual-site recognition of Streptococcus mutans utilizing strong affinity between teicoplanin and Gram-positive bacteria. Talanta 2018; 179:350-355. [DOI: 10.1016/j.talanta.2017.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/11/2022]
|
32
|
Yamamura H, Nonaka M, Okuno S, Mitsuhashi R, Kato H, Katsu T, Masuda K, Tanimoto K, Tomita H, Miyagawa A. Membrane-active antimicrobial poly(amino-modified alkyl) β-cyclodextrins synthesized via click reactions. MEDCHEMCOMM 2018; 9:509-518. [PMID: 30108941 DOI: 10.1039/c7md00592j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/17/2018] [Indexed: 11/21/2022]
Abstract
The emergence of drug-resistant bacteria has led to the high demand for new antibiotics. In this report, we investigated membrane-active antimicrobial β-cyclodextrins. These contain seven amino-modified alkyl groups on a molecule, which act as functional moieties to permeabilize bacterial cell membranes. The polyfunctionalization of cyclodextrins was achieved through a click reaction assisted by microwave irradiation. A survey using derivatives with systematically varied functionalities clarified the unique correlation of the antimicrobial activity of these compounds with their molecular structure and hydrophobicity/hydrophilicity balances. The optimum hydrophobicity for the compounds being membrane-active was specific to bacterial strains and animal cells; this led to specific compounds having selective toxicity against bacteria including multidrug-resistant pathogens. The results demonstrate that cyclodextrin is a versatile molecular scaffold for rationally designed structures and can be used for the development of new antibiotics.
Collapse
Affiliation(s)
- Hatsuo Yamamura
- Life and Applied Chemistry , Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho , Showa-ku , Nagoya 466-8555 , Japan . .,Materials Science and Engineering , Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho , Showa-ku , Nagoya 466-8555 , Japan
| | - Miho Nonaka
- Materials Science and Engineering , Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho , Showa-ku , Nagoya 466-8555 , Japan
| | - Shingo Okuno
- Materials Science and Engineering , Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho , Showa-ku , Nagoya 466-8555 , Japan
| | - Ryogo Mitsuhashi
- Materials Science and Engineering , Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho , Showa-ku , Nagoya 466-8555 , Japan
| | - Hisato Kato
- School of Pharmacy , Shujitsu University , 1-6-1 Nishigawara , Naka-ku , Okayama-shi , Okayama 703-8516 , Japan
| | - Takashi Katsu
- School of Pharmacy , Shujitsu University , 1-6-1 Nishigawara , Naka-ku , Okayama-shi , Okayama 703-8516 , Japan
| | - Kazufumi Masuda
- Graduate School of Clinical Pharmacy , Shujitsu University , 1-6-1 Nishigawara , Naka-ku , Okayama-shi , Okayama 703-8516 , Japan
| | - Koichi Tanimoto
- Laboratory of Bacterial Drug Resistance , Graduate School of Medicine , Gunma University , 3-39-22 Showa-machi , Maebashi , Gunma 371-8511 , Japan
| | - Haruyoshi Tomita
- Department of Bacteriology and Laboratory of Bacterial Drug Resistance , Graduate School of Medicine , Gunma University , 3-39-22 Showa-machi , Maebashi , Gunma 371-8511 , Japan
| | - Atsushi Miyagawa
- Life and Applied Chemistry , Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho , Showa-ku , Nagoya 466-8555 , Japan . .,Materials Science and Engineering , Graduate School of Engineering , Nagoya Institute of Technology , Gokiso-cho , Showa-ku , Nagoya 466-8555 , Japan
| |
Collapse
|
33
|
Mechanism of Azalomycin F 5a against Methicillin-Resistant Staphylococcus aureus. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6942452. [PMID: 29607325 PMCID: PMC5828411 DOI: 10.1155/2018/6942452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/03/2017] [Accepted: 12/24/2017] [Indexed: 11/18/2022]
Abstract
To investigate the mechanism of azalomycin F5a against methicillin-resistant Staphylococcus aureus (MRSA), the conductivity of MRSA suspension and the adenylate kinase activity of MRSA culture were determined with the intervention of azalomycin F5a, which were significantly increased compared to those of blank controls. This inferred that azalomycin F5a could lead to the leakage of cellular substances possibly by increasing permeability to kill MRSA. As phospholipid bilayer was mainly responsible for cell-membrane permeability, the interaction between azalomycin F5a and cell-membrane lipids was further researched by determining the anti-MRSA activities of azalomycin F5a combined with cell-membrane lipids extracted from test MRSA or with 1,2-dipalmitoyl-sn-glycero-3-phospho-glycerol (DPPG) for possible molecular targets lying in MRSA cell-membrane. The results indicated that the anti-MRSA activity of azalomycin F5a remarkably decreased when it combined with membrane lipids or DPPG. This indicated that cell-membrane lipids especially DPPG might be important targets of azalomycin F5a against MRSA.
Collapse
|
34
|
Chlorinated emodin as a natural antibacterial agent against drug-resistant bacteria through dual influence on bacterial cell membranes and DNA. Sci Rep 2017; 7:12721. [PMID: 28983096 PMCID: PMC5629251 DOI: 10.1038/s41598-017-12905-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 09/12/2017] [Indexed: 02/05/2023] Open
Abstract
The rise in infections caused by drug-resistant pathogens and a lack of effective medicines requires the discovery of new antibacterial agents. Naturally chlorinated emodin 1,3,8-trihydroxy-4-chloro-6-methyl-anthraquinone (CE) from fungi and lichens was found to markedly inhibit the growth of Gram-positive bacteria, especially common drug-resistant bacterial strains, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE). CE was confirmed to cause significant potassium leakage, cell membrane depolarization and damage to the selective permeability of cell membranes in bacterial cells, resulting in bacterial cell death. In addition, CE was shown to have a strong electrostatic interaction with bacterial DNA and induce DNA condensation. Thus, CE is a promising natural antibacterial pharmacophore against Gram-positive bacteria, especially common drug-resistant MRSA and VRE isolates, with a dual antibacterial mechanism that damages bacterial cell membranes and DNA.
Collapse
|
35
|
Kononova LI, Filatova LB, Eroshenko DV, Korobov VP. Suppression of development of vancomycin-resistant Staphylococcus epidermidis by low-molecular-weight cationic peptides of the lantibiotic family. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717050125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
36
|
Wang M, Wu Y, He Y, Su X, Ouyang H, Fu Z. Antibiotic-affinity strategy for bioluminescent detection of viable Gram-positive bacteria using daptomycin as recognition agent. Anal Chim Acta 2017; 987:91-97. [PMID: 28916044 DOI: 10.1016/j.aca.2017.08.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/19/2017] [Accepted: 08/15/2017] [Indexed: 11/28/2022]
Abstract
A bioluminescent method was proposed for rapid detection of viable Gram-positive bacteria based on a novel antibiotic-affinity strategy on a magnetic beads (MBs) platform. Daptomycin, a highly efficient lipopeptide antibiotic for Gram-positive bacteria, was used as a recognition agent to functionalize MBs. The daptomycin-functionalized MBs showed high capture and concentration efficiency for Gram-positive bacteria due to the strong binding between daptomycin and bacterial cell membrane in the presence of Ca2+ ion. The captured bacteria were lysed by hexadecyl trimethyl ammonium bromide solution, followed by a bioluminescent detection of the released intracellular adenosine triphosphate. Four Gram-positive bacteria, including Staphylococcus aureus, Streptococcus mutans, Bacillus subtilis and Staphylococcus epidermidis, were detected as model bacteria by this method. Under the optimal conditions, the bacteria could be detected within a linear range of 1.0 × 102-3.0 × 106 CFU mL-1, with a detection limit of 33 CFU mL-1. The whole detection procedure could be completed within 20 min. Gram-negative bacteria and dead Gram-positive bacteria showed negligible interference to the detection of viable Gram-positive bacteria. The proposed method was successfully applied to quantify the amount of viable Gram-positive bacteria in cheese, milk, lake water, human urine and physiological saline injection with acceptable recovery values ranging from 75.0% to 120.0%. The strategy possessed some advantages such as high sensitivity, short assay time and simple operation, thus showed great promise for food hygiene, environment monitoring, clinical diagnosis and drug safety.
Collapse
Affiliation(s)
- Mengyao Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Yue Wu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Yong He
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Xiaoxiao Su
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Hui Ouyang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Zhifeng Fu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
37
|
Porel M, Thornlow DN, Artim CM, Alabi CA. Sequence-Defined Backbone Modifications Regulate Antibacterial Activity of OligoTEAs. ACS Chem Biol 2017; 12:715-723. [PMID: 28068062 DOI: 10.1021/acschembio.6b00837] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In response to the urgent need for new antibiotic development strategies, antimicrobial peptides (AMPs) and other synthetic polymers are being actively investigated as promising alternatives to traditional antibiotics. Although most AMPs display lytic activity against several types of bacteria, they have poor toxicology profiles and are susceptible to proteolysis in vivo. While many synthetic variants have been created to mimic AMPs by tuning the hydrophobic to cationic ratio of the side-chain groups, few have decoupled the effects of charge from hydrophobicity in discrete systems, and none have investigated the effect of backbone hydrophobicity. We recently developed a rapid and efficient approach for the assembly of synthetic sequence-defined oligothioetheramides (oligoTEAs) that are resistant to protease activity. Our oligoTEA assembly scheme allows direct access to the oligomer backbone, which enables precise tuning of oligoTEA hydrophobicity while keeping charge constant. In this study, we synthesized a new class of antibacterial oligoTEAs (AOTs) with precise control over backbone hydrophobicity and composition. Our studies suggest that AOTs lyse cells via membrane permeabilization and that hydrophobicity and macromolecular conformation are key properties that regulate AOT activity. Some of our AOTs show highly promising antibacterial activity (MIC ∼ 0.5-5 μM) against clinically relevant pathogens in the presence of serum, with little to no toxicity against RBCs and HEK293 cells. Taken together, our data identify design parameters and criteria that may be useful for assembling the next generation of potent and selective AOTs.
Collapse
Affiliation(s)
- Mintu Porel
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Dana N. Thornlow
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Christine M. Artim
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Christopher A. Alabi
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
38
|
Zimmermann L, Das I, Désiré J, Sautrey G, Barros R. S. V, El Khoury M, Mingeot-Leclercq MP, Décout JL. New Broad-Spectrum Antibacterial Amphiphilic Aminoglycosides Active against Resistant Bacteria: From Neamine Derivatives to Smaller Neosamine Analogues. J Med Chem 2016; 59:9350-9369. [DOI: 10.1021/acs.jmedchem.6b00818] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Louis Zimmermann
- Département
de Pharmacochimie Moléculaire, ICMG FR 2607, University Grenoble Alpes/CNRS, UMR 5063, 470 Rue de la Chimie, BP 53, F-38041 Grenoble, France
| | - Indrajit Das
- Département
de Pharmacochimie Moléculaire, ICMG FR 2607, University Grenoble Alpes/CNRS, UMR 5063, 470 Rue de la Chimie, BP 53, F-38041 Grenoble, France
| | - Jérôme Désiré
- Département
de Pharmacochimie Moléculaire, ICMG FR 2607, University Grenoble Alpes/CNRS, UMR 5063, 470 Rue de la Chimie, BP 53, F-38041 Grenoble, France
| | - Guillaume Sautrey
- Unité
de Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research
Institute, Université Catholique de Louvain, Avenue E.
Mounier 73, B1.73.05, B-1200 Brussels, Belgium
| | - Vinicius Barros R. S.
- Département
de Pharmacochimie Moléculaire, ICMG FR 2607, University Grenoble Alpes/CNRS, UMR 5063, 470 Rue de la Chimie, BP 53, F-38041 Grenoble, France
| | - Micheline El Khoury
- Unité
de Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research
Institute, Université Catholique de Louvain, Avenue E.
Mounier 73, B1.73.05, B-1200 Brussels, Belgium
| | - Marie-Paule Mingeot-Leclercq
- Unité
de Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research
Institute, Université Catholique de Louvain, Avenue E.
Mounier 73, B1.73.05, B-1200 Brussels, Belgium
| | - Jean-Luc Décout
- Département
de Pharmacochimie Moléculaire, ICMG FR 2607, University Grenoble Alpes/CNRS, UMR 5063, 470 Rue de la Chimie, BP 53, F-38041 Grenoble, France
| |
Collapse
|
39
|
Malanovic N, Lohner K. Antimicrobial Peptides Targeting Gram-Positive Bacteria. Pharmaceuticals (Basel) 2016; 9:E59. [PMID: 27657092 PMCID: PMC5039512 DOI: 10.3390/ph9030059] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 01/01/2023] Open
Abstract
Antimicrobial peptides (AMPs) have remarkably different structures as well as biological activity profiles, whereupon most of these peptides are supposed to kill bacteria via membrane damage. In order to understand their molecular mechanism and target cell specificity for Gram-positive bacteria, it is essential to consider the architecture of their cell envelopes. Before AMPs can interact with the cytoplasmic membrane of Gram-positive bacteria, they have to traverse the cell wall composed of wall- and lipoteichoic acids and peptidoglycan. While interaction of AMPs with peptidoglycan might rather facilitate penetration, interaction with anionic teichoic acids may act as either a trap for AMPs or a ladder for a route to the cytoplasmic membrane. Interaction with the cytoplasmic membrane frequently leads to lipid segregation affecting membrane domain organization, which affects membrane permeability, inhibits cell division processes or leads to delocalization of essential peripheral membrane proteins. Further, precursors of cell wall components, especially the highly conserved lipid II, are directly targeted by AMPs. Thereby, the peptides do not inhibit peptidoglycan synthesis via binding to proteins like common antibiotics, but form a complex with the precursor molecule, which in addition can promote pore formation and membrane disruption. Thus, the multifaceted mode of actions will make AMPs superior to antibiotics that act only on one specific target.
Collapse
Affiliation(s)
- Nermina Malanovic
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Austria.
| | - Karl Lohner
- Institute of Molecular Biosciences, Biophysics Division, University of Graz, NAWI Graz, Austria.
- BioTechMed Graz, Humboldtstrasse 50/III, 8010 Graz, Austria.
| |
Collapse
|
40
|
Tótoli EG, Garg S, Salgado HRN. Daptomycin: Physicochemical, Analytical, and Pharmacological Properties. Ther Drug Monit 2016; 37:699-710. [PMID: 26020161 DOI: 10.1097/ftd.0000000000000222] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Daptomycin is the first approved member of a new class of antimicrobials, the cyclic lipopeptides, and presents selective action against gram-positive bacteria, including methicillin- and vancomycin-resistant strains. Considering that resistance to daptomycin is rare, the drug has become very important for current clinical practice. This review covers daptomycin's physicochemical characteristics, antibacterial spectrum, mechanism of action, pharmacokinetics, clinical applications, side effects, drug interactions, and the analytical methods used to measure daptomycin in pharmaceutical products and biologic samples. Special attention has been given to therapeutic drug monitoring reports, as studies have shown its highly variable pharmacokinetics in specific circumstances, such as in patients suffering from critical illness, morbid obesity, severe sepsis, and kidney injury. For the same reason, methods described for therapeutic drug monitoring of daptomycin in the special patient population have been reviewed. In addition, the review presents a discussion of environmentally friendly analytical methods for daptomycin, which are necessary to reduce the impact of our activities on the environment. However, it was observed that there is a gap in the literature in this regard and further research involving the development of "green" methodologies for the analysis of daptomycin is necessary. The review will be useful to the clinical community in assisting with the responsible use of daptomycin, which is critical to prevent the emergence of resistant strains.
Collapse
Affiliation(s)
- Eliane Gandolpho Tótoli
- *School of Pharmaceutical Sciences, Universidade Estadual Paulista, Araraquara, Brazil; and †Centre for Pharmaceutical Innovation and Development (CPID), University of South Australia, Adelaide, Australia
| | | | | |
Collapse
|
41
|
Malanovic N, Lohner K. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:936-46. [DOI: 10.1016/j.bbamem.2015.11.004] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/21/2022]
|
42
|
Yarlagadda V, Sarkar P, Samaddar S, Haldar J. A Vancomycin Derivative with a Pyrophosphate-Binding Group: A Strategy to Combat Vancomycin-Resistant Bacteria. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Venkateswarlu Yarlagadda
- Chemical Biology and Medicinal Chemistry Laboratory; New Chemistry Unit; Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR); Jakkur, Bengaluru 560064 Karnataka India
| | - Paramita Sarkar
- Chemical Biology and Medicinal Chemistry Laboratory; New Chemistry Unit; Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR); Jakkur, Bengaluru 560064 Karnataka India
| | - Sandip Samaddar
- Chemical Biology and Medicinal Chemistry Laboratory; New Chemistry Unit; Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR); Jakkur, Bengaluru 560064 Karnataka India
| | - Jayanta Haldar
- Chemical Biology and Medicinal Chemistry Laboratory; New Chemistry Unit; Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR); Jakkur, Bengaluru 560064 Karnataka India
| |
Collapse
|
43
|
Yarlagadda V, Sarkar P, Samaddar S, Haldar J. A Vancomycin Derivative with a Pyrophosphate-Binding Group: A Strategy to Combat Vancomycin-Resistant Bacteria. Angew Chem Int Ed Engl 2016; 55:7836-40. [DOI: 10.1002/anie.201601621] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/07/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Venkateswarlu Yarlagadda
- Chemical Biology and Medicinal Chemistry Laboratory; New Chemistry Unit; Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR); Jakkur, Bengaluru 560064 Karnataka India
| | - Paramita Sarkar
- Chemical Biology and Medicinal Chemistry Laboratory; New Chemistry Unit; Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR); Jakkur, Bengaluru 560064 Karnataka India
| | - Sandip Samaddar
- Chemical Biology and Medicinal Chemistry Laboratory; New Chemistry Unit; Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR); Jakkur, Bengaluru 560064 Karnataka India
| | - Jayanta Haldar
- Chemical Biology and Medicinal Chemistry Laboratory; New Chemistry Unit; Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR); Jakkur, Bengaluru 560064 Karnataka India
| |
Collapse
|
44
|
Yamamura H, Miyagawa A, Sugiyama H, Murata K, Mabuti T, Mitsuhashi R, Hagiwara T, Nonaka M, Tanimoto K, Tomita H. Rule of Hydrophobicity/Hydrophilicity Balance in Membrane-Disrupting Antimicrobial Activity of Polyalkylamino Cyclodextrins Synthesized via Click Chemistry. ChemistrySelect 2016. [DOI: 10.1002/slct.201500017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hatsuo Yamamura
- Graduate School of Engineering; Nagoya Institute of Technology, Gokiso-cho, Showa-ku; Nagoya 466-8555 Japan
| | - Atsushi Miyagawa
- Graduate School of Engineering; Nagoya Institute of Technology, Gokiso-cho, Showa-ku; Nagoya 466-8555 Japan
| | - Hiroki Sugiyama
- Graduate School of Engineering; Nagoya Institute of Technology, Gokiso-cho, Showa-ku; Nagoya 466-8555 Japan
| | - Kensuke Murata
- Graduate School of Engineering; Nagoya Institute of Technology, Gokiso-cho, Showa-ku; Nagoya 466-8555 Japan
| | - Takahiro Mabuti
- Graduate School of Engineering; Nagoya Institute of Technology, Gokiso-cho, Showa-ku; Nagoya 466-8555 Japan
| | - Ryogo Mitsuhashi
- Graduate School of Engineering; Nagoya Institute of Technology, Gokiso-cho, Showa-ku; Nagoya 466-8555 Japan
| | - Tatsuya Hagiwara
- Graduate School of Engineering; Nagoya Institute of Technology, Gokiso-cho, Showa-ku; Nagoya 466-8555 Japan
| | - Miho Nonaka
- Graduate School of Engineering; Nagoya Institute of Technology, Gokiso-cho, Showa-ku; Nagoya 466-8555 Japan
| | - Koichi Tanimoto
- Laboratory of Bacterial Drug Resistance; Graduate School of Medicine; Gunma University; 3-39-22 Showa-machi, Maebashi Gunma 371-8511 Japan
| | - Haruyoshi Tomita
- Department of Bacteriology and Laboratory of Bacterial Drug Resistance; Graduate School of Medicine; Gunma University; 3-39-22 Showa-machi, Maebashi Gunma 371-8511 Japan
| |
Collapse
|
45
|
Ghosh C, Manjunath GB, Konai MM, Uppu DSSM, Paramanandham K, Shome BR, Ravikumar R, Haldar J. Aryl-alkyl-lysines: Membrane-Active Small Molecules Active against Murine Model of Burn Infection. ACS Infect Dis 2016; 2:111-22. [PMID: 27624962 DOI: 10.1021/acsinfecdis.5b00092] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Infections caused by drug-resistant Gram-negative pathogens continue to be significant contributors to human morbidity. The recent advent of New Delhi metallo-β-lactamase-1 (blaNDM-1) producing pathogens, against which few drugs remain active, has aggravated the problem even further. This paper shows that aryl-alkyl-lysines, membrane-active small molecules, are effective in treating infections caused by Gram-negative pathogens. One of the compounds of the study was effective in killing planktonic cells as well as dispersing biofilms of Gram-negative pathogens. The compound was extremely effective in disrupting preformed biofilms and did not select resistant bacteria in multiple passages. The compound retained activity in different physiological conditions and did not induce any toxic effect in female Balb/c mice until concentrations of 17.5 mg/kg. In a murine model of Acinetobacter baumannii burn infection, the compound was able to bring the bacterial burden down significantly upon topical application for 7 days.
Collapse
Affiliation(s)
- Chandradhish Ghosh
- Chemical
Biology and Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Goutham B. Manjunath
- Chemical
Biology and Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Mohini M. Konai
- Chemical
Biology and Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Divakara S. S. M. Uppu
- Chemical
Biology and Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| | - Krishnamoorthy Paramanandham
- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI) Ramagondanahalli, Yelahanka, Bengaluru 560064, Karnataka, India
| | - Bibek R. Shome
- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI) Ramagondanahalli, Yelahanka, Bengaluru 560064, Karnataka, India
| | - Raju Ravikumar
- Department of Neuromicrobiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bengaluru 560029, Karnataka, India
| | - Jayanta Haldar
- Chemical
Biology and Medicinal Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
46
|
Jeyanthi V, Velusamy P. Anti-methicillin Resistant Staphylococcus aureus Compound Isolation from Halophilic Bacillus amyloliquefaciens MHB1 and Determination of Its Mode of Action Using Electron Microscope and Flow Cytometry Analysis. Indian J Microbiol 2016; 56:148-57. [PMID: 27570306 DOI: 10.1007/s12088-016-0566-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/21/2016] [Indexed: 02/08/2023] Open
Abstract
The aim of this study was to purify, characterize and evaluate the antibacterial activity of bioactive compound against methicillin-resistant Staphylococcus aureus (MRSA). The anti-MRSA compound was produced by a halophilic bacterial strain designated as MHB1. The MHB1 strain exhibited 99 % similarity to Bacillus amyloliquefaciens based on 16S rRNA gene analysis. The culture conditions of Bacillus amyloliquefaciens MHB1 were optimized using nutritional and environmental parameters for enhanced anti-MRSA compound production. The pure bioactive compound was isolated using silica gel column chromatography and Semi-preparative High-performance liquid chromatography (Semi-preparative HPLC). The Thin layer chromatography, Fourier transform infrared spectroscopy and proton NMR ((1)H NMR) analysis indicated the phenolic nature of the compound. The molecular mass of the purified compound was 507 Da as revealed by Liquid chromatography-mass spectrometry (LC-MS) analysis. The compound inhibited the growth of MRSA with minimum inhibitory concentration (MIC) of 62.5 µg mL(-1). MRSA bacteria exposed to 4× MIC of the compound and the cell viability was determined using flow cytometric analysis. Scanning electron microscope and Transmission electron microscope analysis was used to determine the ultrastructural changes in bacteria. This is the first report on isolation of anti-MRSA compound from halophilic B. amyloliquefaciens MHB1 and could act as a promising biocontrol agent.
Collapse
Affiliation(s)
- Venkadapathi Jeyanthi
- Department of Biotechnology, School of Bioengineering, SRM University, SRM Nagar, Kattankulathur, Chennai, 603 203 India
| | - Palaniyandi Velusamy
- Department of Biotechnology, School of Bioengineering, SRM University, SRM Nagar, Kattankulathur, Chennai, 603 203 India
| |
Collapse
|
47
|
Alarfaj AA, Lee HHC, Munusamy MA, Ling QD, Kumar S, Chang Y, Chen YM, Lin HR, Lu YT, Wu GJ, Higuchi A. Development of biomaterial surfaces with and without microbial nanosegments. JOURNAL OF POLYMER ENGINEERING 2016. [DOI: 10.1515/polyeng-2015-0046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Infections by microorganisms are a major problem in public health throughout the world. Artificial materials, including biomedical goods, inherently lack defense against microbial development. Therefore, microbial cells can adhere on any type of artificial surface, particularly in a moist environment, and start to multiply to form a huge population. In this review, we will discuss a strategy for designing antimicrobial polymers and antimicrobial surfaces. Generally, there are five types of antimicrobial polymers: (a) polymeric biocides, (b) biocidal polymers, (c) biocide-releasing polymers, (d) bioactive oligopeptides, and (e) antimicrobial surfaces. Antimicrobial surfaces preventing the growth of microorganisms are a promising method to inhibit the spread of microbial infections. The antimicrobial surfaces can reject the attachment of microbes and/or kill microbes in the vicinity and can be designed to kill microbes on contact. It is recommended that the material surface not release biocidal substances, therefore preventing exhaustion of biocide release to kill microbes. Furthermore, the antimicrobial surfaces are desired to be nontoxic to human cells. The development of contact-active antimicrobial surfaces by grafting antimicrobial nanosegments onto the material surface will be an important topic in the future.
Collapse
|
48
|
Mingeot-Leclercq MP, Décout JL. Bacterial lipid membranes as promising targets to fight antimicrobial resistance, molecular foundations and illustration through the renewal of aminoglycoside antibiotics and emergence of amphiphilic aminoglycosides. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00503e] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Membrane anionic lipids as attractive targets in the design of amphiphilic antibacterial drugs active against resistant bacteria: molecular foundations and examples.
Collapse
Affiliation(s)
- Marie-Paule Mingeot-Leclercq
- Louvain Drug Research Institute
- Université catholique de Louvain
- Unité de Pharmacologie Cellulaire et Moléculaire
- Brussels
- Belgium
| | - Jean-Luc Décout
- Département de Pharmacochimie Moléculaire
- Université Grenoble Alpes/CNRS
- UMR 5063
- ICMG FR 2607
- F-38041 Grenoble
| |
Collapse
|
49
|
Panova N, Zborníková E, Šimák O, Pohl R, Kolář M, Bogdanová K, Večeřová R, Seydlová G, Fišer R, Hadravová R, Šanderová H, Vítovská D, Šiková M, Látal T, Lovecká P, Barvík I, Krásný L, Rejman D. Insights into the Mechanism of Action of Bactericidal Lipophosphonoxins. PLoS One 2015; 10:e0145918. [PMID: 26716439 PMCID: PMC4696656 DOI: 10.1371/journal.pone.0145918] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/03/2015] [Indexed: 11/19/2022] Open
Abstract
The advantages offered by established antibiotics in the treatment of infectious diseases are endangered due to the increase in the number of antibiotic-resistant bacterial strains. This leads to a need for new antibacterial compounds. Recently, we discovered a series of compounds termed lipophosphonoxins (LPPOs) that exhibit selective cytotoxicity towards Gram-positive bacteria that include pathogens and resistant strains. For further development of these compounds, it was necessary to identify the mechanism of their action and characterize their interaction with eukaryotic cells/organisms in more detail. Here, we show that at their bactericidal concentrations LPPOs localize to the plasmatic membrane in bacteria but not in eukaryotes. In an in vitro system we demonstrate that LPPOs create pores in the membrane. This provides an explanation of their action in vivo where they cause serious damage of the cellular membrane, efflux of the cytosol, and cell disintegration. Further, we show that (i) LPPOs are not genotoxic as determined by the Ames test, (ii) do not cross a monolayer of Caco-2 cells, suggesting they are unable of transepithelial transport, (iii) are well tolerated by living mice when administered orally but not peritoneally, and (iv) are stable at low pH, indicating they could survive the acidic environment in the stomach. Finally, using one of the most potent LPPOs, we attempted and failed to select resistant strains against this compound while we were able to readily select resistant strains against a known antibiotic, rifampicin. In summary, LPPOs represent a new class of compounds with a potential for development as antibacterial agents for topical applications and perhaps also for treatment of gastrointestinal infections.
Collapse
Affiliation(s)
- Natalya Panova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
- Institute of Microbiology, Czech Academy of Sciences v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Eva Zborníková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Ondřej Šimák
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Milan Kolář
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Kateřina Bogdanová
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Renata Večeřová
- Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Gabriela Seydlová
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 43 Prague 2, Czech Republic
| | - Radovan Fišer
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 128 43 Prague 2, Czech Republic
| | - Romana Hadravová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Hana Šanderová
- Institute of Microbiology, Czech Academy of Sciences v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Dragana Vítovská
- Institute of Microbiology, Czech Academy of Sciences v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Michaela Šiková
- Institute of Microbiology, Czech Academy of Sciences v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Tomáš Látal
- TRIOS, Ltd., Zakouřilova 142, Prague 4, 149 00, Prague, Czech Republic
| | - Petra Lovecká
- University of Chemistry and Technology, Technická 5, 166 28 Prague, Czech Republic
| | - Ivan Barvík
- Division of Biomolecular Physics, Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
| | - Libor Krásný
- Institute of Microbiology, Czech Academy of Sciences v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
50
|
Multi-functional Liposomes Enhancing Target and Antibacterial Immunity for Antimicrobial and Anti-Biofilm Against Methicillin-Resistant Staphylococcus aureus. Pharm Res 2015; 33:763-75. [DOI: 10.1007/s11095-015-1825-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
|