1
|
Zhang Y, Suo X, Wang X, Xu J, Xu W, Pan L, Gao J. Intrinsic Links Between Non-Suicidal Self-Injury and Sleep Quality and Cytokines: A Network Analysis Based on Chinese Adolescents with Depressive Disorders. Psychol Res Behav Manag 2025; 18:1033-1047. [PMID: 40297150 PMCID: PMC12036595 DOI: 10.2147/prbm.s513241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/12/2025] [Indexed: 04/30/2025] Open
Abstract
Background Non-suicidal self-injury (NSSI) in adolescents has a complex etiology and a wide range of negative consequences. This study aimed to assess the interactions between NSSI and sleep quality and cytokines and explore the association of these factors with cognitive flexibility. Methods A cross-sectional survey was conducted from January 2022 to September 2024 in Qingdao, China. Adolescent Non-Suicidal Self-Injury Assessment Questionnaire, Pittsburgh Sleep Quality Index, and Wisconsin Card Sorting Test 128 card version were used to assess the NSSI, sleep quality, and cognitive flexibility. Levels of 12 serum cytokines were measured. Network analysis was performed by R software (version 4.4.1) to identify the central nodes and bridging symptoms of the network and all nodes' association with cognitive flexibility. Results A total of 337 adolescents with depressive disorders were included in the study. In the NSSI-Sleep Quality-Cytokines Network "Intentional scratches", "IL-12p70", and "Intentionally hitting oneself with fists or harder objects" were central nodes in the network. Furthermore, sleep-related variables such as "Sleep disturbance" and "Sleep duration" were identified as bridge symptoms. No direct association between NSSI and cognitive flexibility was observed. Limitations The cross-sectional design, reliance on self-reported data, and restricted geographic sample limit the ability to establish causal relationships and generalize the findings. Conclusion IL-12p70 plays a significant role in the development of NSSI among adolescents with depressive disorders. Sleep problems facilitate the interaction between NSSI and cytokines. Cognitive flexibility may be related to NSSI through indirect pathways.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Xingbo Suo
- Department of Psychosomatic Medicine, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Xinqi Wang
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Jingjing Xu
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Wangwang Xu
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Liangke Pan
- Qingdao No.9 high School (Qingdao Foreign Language School), Qingdao, Shandong, People’s Republic of China
| | - Jin Gao
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, People’s Republic of China
| |
Collapse
|
2
|
Candan B, Gungor S. Current and Evolving Concepts in the Management of Complex Regional Pain Syndrome: A Narrative Review. Diagnostics (Basel) 2025; 15:353. [PMID: 39941283 PMCID: PMC11817358 DOI: 10.3390/diagnostics15030353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Complex regional pain syndrome (CRPS) is characterized by severe pain and reduced functionality, which can significantly affect an individual's quality of life. The current treatment of CRPS is challenging. However, recent advances in diagnostic and treatment methods show promise for improving patient outcomes. This review aims to place the question of CRPS in a broader context and highlight the objectives of the research for future directions in the management of CRPS. Methods: This study involved a comprehensive literature review. Results: Research has identified three primary pathophysiological pathways that may explain the clinical variability observed in CRPS: inflammatory mechanisms, vasomotor dysfunction, and maladaptive neuroplasticity. Investigations into these pathways have spurred the development of novel diagnostic and treatment strategies focused on N-Methyl-D-aspartate Receptor Antagonists (NMDA), Toll-like receptor 4 (TLR-4), α1 and α2 adrenoreceptors, as well as the identification of microRNA (miRNA) biomarkers. Treatment methods being explored include immune and glial-modulating agents, intravenous immunoglobulin (IVIG) therapy, plasma exchange therapy, and neuromodulation techniques. Additionally, there is ongoing debate regarding the efficacy of other treatments, such as free radical scavengers, alpha-lipoic acid (ALA), dimethyl fumarate (DMF), adenosine monophosphate-activated protein kinase (AMPK) activators such as metformin, and phosphodiesterase-5 inhibitors such as tadalafil. Conclusions: The controversies surrounding the mechanisms, diagnosis, and treatment of CRPS have prompted researchers to investigate new approaches aimed at enhancing understanding and management of the condition, with the goal of alleviating symptoms and reducing associated disabilities.
Collapse
Affiliation(s)
- Burcu Candan
- Department of Anesthesiology and Reanimation, Bahçeşehir University Göztepe Medical Park Hospital, 34732 Istanbul, Türkiye
| | - Semih Gungor
- Division of Musculoskeletal and Interventional Pain Management, Department of Anesthesiology, Critical Care and Pain Management, Hospital for Special Surgery, New York, NY 10021, USA;
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
3
|
Łazarczyk M, Skiba D, Mickael ME, Jaskuła K, Nawrocka A, Religa P, Sacharczuk M. Opioid System and Epithelial-Mesenchymal Transition. Pharmaceuticals (Basel) 2025; 18:120. [PMID: 39861181 PMCID: PMC11768736 DOI: 10.3390/ph18010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/04/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Opioids are a challenging class of drugs due to their dual role. They alleviate pain, but also pose a risk of dependency, or trigger constipation, particularly in cancer patients, who require the more potent painkillers in more advanced stages of the disease, closely linked to pain resulting from general inflammation, bone metastases, and primary or secondary tumour outgrowth-related nerve damage. Clinicians' vigilance considering treatment with opioids is necessary, bearing in mind extensive data accumulated over decades that have reported the contribution of opioids to immunosuppression, tumour progression, or impaired tissue regeneration, either following opioid use during surgical tumour resection and post-surgical pain treatment, or as a result of other diseases like diabetes, where chronic wounds healing constitutes a challenge. During last few years, an increasing trend for seeking relationships between opioids and epithelial-mesenchymal transition (EMT) in cancer research can be observed. Transiently lasting EMT is desirable during wound healing, but in cancer, or vital organ fibrogenesis, EMT appears to be an obstacle to overcome, forcing to adjust treatment strategies that would reduce the risk for worsening of the disease outcome and patient prognosis. The same opioid may demonstrate promoting or inhibitory effect on EMT, dependently on various conditions in particular clinical cases. We have summarized current findings on this issue to uncover some rules that govern opioid-mediated EMT induction or repression; however, many aspects still remain to be elucidated.
Collapse
Affiliation(s)
- Marzena Łazarczyk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland
| | - Dominik Skiba
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland
| | - Michel-Edwar Mickael
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland
| | - Kinga Jaskuła
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland
| | - Agata Nawrocka
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland
| | - Piotr Religa
- Department of Medicine, Karolinska Institute, 171 77 Solna, Sweden
| | - Mariusz Sacharczuk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A, 05-552 Jastrzebiec, Poland
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland
| |
Collapse
|
4
|
Castro EM, Lotfipour S, Leslie FM. Neuroglia in substance use disorders. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:347-369. [PMID: 40148055 DOI: 10.1016/b978-0-443-19102-2.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Substance use disorders (SUD) remain a major public health concern in which individuals are unable to control their use of substances despite significant harm and negative consequences. Drugs of abuse dysregulate major brain and behavioral functions. Glial cells, primarily microglia and astrocytes, play a crucial role in these drug-induced molecular and behavioral changes. This review explores preclinical and clinical studies of how neuroglia and their associated neuroinflammatory responses contribute to SUD and reward-related properties. We evaluate preclinical and clinical evidence for targeting neuroglia as therapeutic interventions. In addition, we evaluate the literature on the gut microbiome and its role in SUD. Clinical treatments are most effective for reducing drug cravings, and some have yielded promising results in other measures of drug use. N-Acetylcysteine, through modulation of cysteine-glutamate antiporter of glial cells, shows encouraging results across a variety of drug classes. Neuroglia and gut microbiome interactions are important factors to consider with regard to SUD and could lead to novel therapeutic avenues. Age- and sex-dependent properties of neuroglia, gut microbiome, and drug use behaviors are important areas in need of further investigation.
Collapse
Affiliation(s)
- Emily M Castro
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| | - Shahrdad Lotfipour
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States; Department of Emergency Medicine, School of Medicine, University of California, Irvine, Irvine, CA, United States; Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Frances M Leslie
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States.
| |
Collapse
|
5
|
Liu Q, Yan R, Wang L, Li R, Zhang D, Liao C, Mao S. Alpha-asarone alleviates cutaneous hyperalgesia by inhibiting hyperexcitability and neurogenic inflammation via TLR4/NF-κB/NLRP3 signaling pathway in a female chronic migraine rat model. Neuropharmacology 2024; 261:110158. [PMID: 39276863 DOI: 10.1016/j.neuropharm.2024.110158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Migraine is a highly prevalent neurological disorder. Alpha-asarone (ASA), a major active component found in Acorus tatarinowii, plays a crucial role in analgesia and anti-inflammation for neuropathic pain. This study aimed to assess the efficacy of ASA against migraine and elucidate its potential mechanisms using a well-established inflammatory soup (IS) migraine female rat model. Mechanical pain thresholds were assessed daily before IS infusion, followed by post-infusion administration of ASA. Subsequently, spontaneous locomotor activities, exploratory behavior, short-term spatial memory, and photophobia were blindly evaluated after the final drug administration. The rats were then sacrificed for investigation into the underlying mechanisms of action. Network pharmacology was also employed to predict potential targets and pathways of ASA against migraine. The anti-inflammatory activity of ASA and pathway-related proteins were examined in BV2 cells stimulated with lipopolysaccharides (LPS). The results demonstrated that ASA ameliorated cutaneous hyperalgesia and photophobia while improving spatial memory and increasing exploratory behavior in IS rats. ASA attenuated central sensitization-related indicators and excessive glutamate levels while enhancing GABA synthesis. ASA rescued neuronal loss in the cortex and hippocampus of IS rats. Notably, the ability of ASA to improve spatial memory performance in the Y maze test was not observed with sumatriptan, a first-line treatment drug, suggesting the potential involvement of the TLR4 pathway. Moreover, ASA suppressed microglial activation, reduced pro-inflammatory factors, and downregulated TLR4, MyD88, p-NF-κB/NF-κB, NLRP3, caspase-1, IL-1β, and IL-18. Overall, ASA demonstrated its potential to alleviate hyperalgesia and improve behavioral performance in migraine rats by inhibiting hyperexcitability and microglia-related inflammation.
Collapse
Affiliation(s)
- Qi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ruijie Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ling Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rui Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Di Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Can Liao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Shengjun Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Kuthati Y, Wong CS. The Melatonin Type 2 Receptor Agonist IIK7 Attenuates and Reverses Morphine Tolerance in Neuropathic Pain Rats Through the Suppression of Neuroinflammation in the Spinal Cord. Pharmaceuticals (Basel) 2024; 17:1638. [PMID: 39770480 PMCID: PMC11676719 DOI: 10.3390/ph17121638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Morphine analgesic tolerance (MAT) limits the clinical application of morphine in the management of chronic pain. IIK7 is a melatonin type 2 (MT2) receptor agonist known to have antioxidant properties. Oxidative stress is recognized as a critical factor in MAT. This study sought to assess the impact of IIK7 on the progression of MAT and its potential to reverse pre-existing MAT. METHODS Wistar rats underwent partial sciatic nerve transection (PSNT) surgery to induce neuropathic pain (NP). Seven days post nerve transection, we implanted an intrathecal (i.t.) catheter and linked it to an osmotic pump. Rats were randomly divided into the following groups: sham-operated/vehicle, PSNT/vehicle, PSNT/IIK7 50 ng/h, PSNT/MOR 15 g/h, and PSNT/MOR 15 g + IIK7 50 ng/h. We implanted two i.t. catheters for drug administration and the evaluation of the efficacy of IIK7 in reversing pre-established MAT. We linked one to an osmotic pump for MOR or saline continuous i.t. infusion. On the 7th day, the osmotic pump was disconnected, and 50 μg of IIK7 or the vehicle was administered through the second catheter. After 3 h, 15 μg of MOR or saline was administered, and the animal behavior tests were performed. We measured the levels of mRNA for Nrf2 and HO-1, pro-inflammatory cytokines (PICs), and the microglial and astrocyte activation in the spinal cord. RESULTS The co-administration of IIK7 with MOR delayed MAT development in PSNT rats by restoring Nrf2 and HO-1 while also inhibiting the microglial-cell and astrocyte activation, alongside the suppression of PICs. Additionally, a single injection of high-dose 50 μg IIK7 was efficient in restoring MOR's antinociception in MOR-tolerant rats. CONCLUSIONS Our results indicate that the co-infusion of ultra-low-dose IIK7 can delay MAT development and a high dose can reverse pre-existing MAT.
Collapse
Affiliation(s)
- Yaswanth Kuthati
- Department of Anesthesiology, Cathay General Hospital, Taipei 106, Taiwan;
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei 106, Taiwan;
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 280, Taiwan
| |
Collapse
|
7
|
Schwartz EKC, De Aquino JP, Sofuoglu M. Glial modulators as novel therapeutics for comorbid pain and opioid use disorder. Br J Clin Pharmacol 2024; 90:3054-3066. [PMID: 38752593 DOI: 10.1111/bcp.16094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 11/29/2024] Open
Abstract
Chronic pain and opioid use disorder (OUD) are major public health problems, with rising opioid-related overdose deaths linked to increased opioid prescriptions for pain management. Novel treatment approaches for these commonly comorbid disorders are needed. Growing evidence supports a role for glial activation for both chronic pain and substance use disorders, including OUD. This review provides an overview of glial modulators as a novel treatment approach for comorbid pain and OUD. We aim to synthesize clinical studies investigating the efficacy of glial modulators in treating these comorbid disorders. We conducted a literature search of PubMed and Google Scholar databases in October 2023 to identify relevant clinical trials. The included studies varied in terms of patient population, study methodology and outcomes assessed, and were often limited by small sample sizes and other methodological issues. Additionally, several glial modulators have yet to be studied for chronic pain and OUD. Despite these limitations, these studies yielded positive signals that merit further investigation. Both chronic pain and OUD remain significant public health problems, with many treatment challenges. Glial modulators continue to hold promise as novel therapeutics for comorbid pain and OUD, given positive indications that they can improve pain measures, and reduce addiction-related outcomes. As our understanding of the mechanisms underlying the contributions of glial modulators to pain and addiction behaviours deepens, we will be better equipped to identify more specific therapeutic targets for chronic pain and OUD.
Collapse
Affiliation(s)
- Elizabeth K C Schwartz
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Joao P De Aquino
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, Connecticut, USA
| | - Mehmet Sofuoglu
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- VA Connecticut Healthcare System, West Haven, Connecticut, USA
| |
Collapse
|
8
|
Badshah I, Anwar M, Murtaza B, Khan MI. Molecular mechanisms of morphine tolerance and dependence; novel insights and future perspectives. Mol Cell Biochem 2024; 479:1457-1485. [PMID: 37470850 DOI: 10.1007/s11010-023-04810-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Drug addiction is a devastating condition that poses a serious burden on the society. The use of some drugs like morphine for their tremendous analgesic properties is also accompanied with developing tolerance, dependence and the withdrawal symptoms. These symptoms are frequently severe enough to reinforce the person in recovery to start over the use of drug again and hinder the clinical use of drugs like morphine for chronic pain. Research into opioid receptors and related molecular pathways has seen resurgence in the wake of the growing opioid epidemic. The current study provides a comprehensive scientific exploration of the molecular mechanisms and underlying signalling in morphine tolerance and dependence. It also critically evaluates current therapeutic approaches, shedding light on their efficacy and limitations, and future prospects.
Collapse
Affiliation(s)
- Ismail Badshah
- Riphah Institute of Pharmaceutical Sciences, G-7/4 Campus, Islamabad, Pakistan
| | - Maira Anwar
- Riphah Institute of Pharmaceutical Sciences, G-7/4 Campus, Islamabad, Pakistan
| | - Babar Murtaza
- Riphah Institute of Pharmaceutical Sciences, G-7/4 Campus, Islamabad, Pakistan.
| | - Muhammad Imran Khan
- Department of Biomedical Sciences, Pak Austria Fachhochschule: Institute of Applied Sciences and Technology, Haripur, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
9
|
Nehr-Majoros AK, Király Á, Helyes Z, Szőke É. Lipid raft disruption as an opportunity for peripheral analgesia. Curr Opin Pharmacol 2024; 75:102432. [PMID: 38290404 DOI: 10.1016/j.coph.2024.102432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/17/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
Chronic pain conditions are unmet medical needs, since the available drugs, opioids, non-steroidal anti-inflammatory/analgesic drugs and adjuvant analgesics do not provide satisfactory therapeutic effect in a great proportion of patients. Therefore, there is an urgent need to find novel targets and novel therapeutic approaches that differ from classical pharmacological receptor antagonism. Most ion channels and receptors involved in pain sensation and processing such as Transient Receptor Potential ion channels, opioid receptors, P2X purinoreceptors and neurokinin 1 receptor are located in the lipid raft regions of the plasma membrane. Targeting the membrane lipid composition and structure by sphingolipid or cholesterol depletion might open future perspectives for the therapy of chronic inflammatory, neuropathic or cancer pain, most importantly acting at the periphery.
Collapse
Affiliation(s)
- Andrea Kinga Nehr-Majoros
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, 12 Szigeti Street, H-7624, Pécs, Hungary; National Laboratory for Drug Research and Development, Budapest, Hungary; Hungarian Research Network, Chronic Pain Research Group, Pécs, Hungary
| | - Ágnes Király
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, 12 Szigeti Street, H-7624, Pécs, Hungary; National Laboratory for Drug Research and Development, Budapest, Hungary; Hungarian Research Network, Chronic Pain Research Group, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, 12 Szigeti Street, H-7624, Pécs, Hungary; National Laboratory for Drug Research and Development, Budapest, Hungary; Hungarian Research Network, Chronic Pain Research Group, Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School & Centre for Neuroscience, University of Pécs, 12 Szigeti Street, H-7624, Pécs, Hungary; National Laboratory for Drug Research and Development, Budapest, Hungary; Hungarian Research Network, Chronic Pain Research Group, Pécs, Hungary.
| |
Collapse
|
10
|
Bouloux GF, Chou J, DiFabio V, Ness G, Perez D, Mercuri L, Chung W, Klasser GD, Bender SD, Kraus S, Crago CA. Guidelines for the Management of Patients With Orofacial Pain and Temporomandibular Disorders. J Oral Maxillofac Surg 2024:S0278-2391(24)00200-3. [PMID: 38643965 DOI: 10.1016/j.joms.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024]
Affiliation(s)
- Gary F Bouloux
- Family Professor, Division Chief, Oral and Maxillofacial Surgery, Emory University School of Medicine, Atlanta, GA.
| | - Joli Chou
- Associate Professor, Department Of Oral and Maxillofacial Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Vince DiFabio
- Associate Clinical Professor, Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, University of Maryland Medical Center, Baltimore, MD
| | - Greg Ness
- Emeritus Professor-Clinical, The Ohio State University, Private Practice, Oral and Facial Surgery for Adults and Children, Columbus, OH
| | - Daniel Perez
- Associate Professor and Program Director, Oral and Maxillofacial Surgery, University Texas Health Sciences San Antonio, San Antonio, TX
| | - Louis Mercuri
- Visiting Professor, Department of Orthopedic Surgery, Rush University Medical Center, Adjunct Professor, Department of Bioengineering, University of Illinois Chicago, Chicago, IL
| | - William Chung
- Clinical Professor, Residency Program Director, Indiana University School of Dentistry and Hospital Medicine, Indianapolis, IN
| | - Gary D Klasser
- Certificate Orofacial Pain, Professor, Louisiana State University Health Sciences Center, School of Dentistry, New Orleans, LA
| | - Steven D Bender
- Clinical Associate Professor, Director, Clinical Center for Facial Pain and Sleep Medicine, Department of Oral and Maxillofacial Surgery, Texas A&M School of Dentistry, Dallas, TX
| | | | | |
Collapse
|
11
|
Martínez-Cuevas FL, Cruz SL, González-Espinosa C. Methadone Requires the Co-Activation of μ-Opioid and Toll-Like-4 Receptors to Produce Extracellular DNA Traps in Bone-Marrow-Derived Mast Cells. Int J Mol Sci 2024; 25:2137. [PMID: 38396814 PMCID: PMC10889600 DOI: 10.3390/ijms25042137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Methadone is an effective and long-lasting analgesic drug that is also used in medication-assisted treatment for people with opioid use disorders. Although there is evidence that methadone activates μ-opioid and Toll-like-4 receptors (TLR-4s), its effects on distinct immune cells, including mast cells (MCs), are not well characterized. MCs express μ-opioid and Toll-like receptors (TLRs) and constitute an important cell lineage involved in allergy and effective innate immunity responses. In the present study, murine bone-marrow-derived mast cells (BMMCs) were treated with methadone to evaluate cell viability by flow cytometry, cell morphology with immunofluorescence and scanning electron microscopy, reactive oxygen species (ROS) production, and intracellular calcium concentration ([Ca2+]i) increase. We found that exposure of BMMCs to 0.5 mM or 1 mM methadone rapidly induced cell death by forming extracellular DNA traps (ETosis). Methadone-induced cell death depended on ROS formation and [Ca2+]i. Using pharmacological approaches and TLR4-defective BMMC cultures, we found that µ-opioid receptors were necessary for both methadone-induced ROS production and intracellular calcium increase. Remarkably, TLR4 receptors were also involved in methadone-induced ROS production as it did not occur in BMMCs obtained from TLR4-deficient mice. Finally, confocal microscopy images showed a significant co-localization of μ-opioid and TLR4 receptors that increased after methadone treatment. Our results suggest that methadone produces MCETosis by a mechanism requiring a novel crosstalk pathway between μ-opioid and TLR4 receptors.
Collapse
Affiliation(s)
- Frida L. Martínez-Cuevas
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav, IPN), Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Rinconada de las Hadas, México City CP 14330, Mexico;
| | - Silvia L. Cruz
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav, IPN), Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Rinconada de las Hadas, México City CP 14330, Mexico;
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav, IPN), Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Rinconada de las Hadas, México City CP 14330, Mexico;
- Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav, IPN), Unidad Sede Sur, Calzada de los Tenorios, No. 235, Col. Rinconada de las Hadas, México City CP 14330, Mexico
| |
Collapse
|
12
|
Wong AK, Klepstad P, Somogyi AA, Vogrin S, Le B, Philip J, Rubio JP. Effect of gene variants on opioid dose, pain and adverse effect outcomes in advanced cancer: an explorative study. Pharmacogenomics 2023; 24:901-913. [PMID: 38126330 DOI: 10.2217/pgs-2023-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Aim: Associations between gene variants and opioid net effect are unclear. We conducted an exploratory pharmacogenetic analysis of 35 gene variants and opioid response in advanced cancer. Patients & methods: This multi-center prospective cohort study included clinical data, questionnaires (pain and adverse effects) and DNA (blood). Negative binomial regression and logistic regression were used. Results: Within 54 participants, eight statistically significant associations (p = 0.002-0.038) were observed between gene variants and opioid dose, pain scores or adverse effects, the majority being within the neuroimmune TLR4 pathway (IL1B [rs1143634], IL2 [rs2069762], IL6 [rs1800795], BDNF [rs6265]) and ARRB2 pathway (ARRB2 [rs3786047], DRD2 [rs6275]). Conclusion: Neuroimmune pathway genes may contribute to differences in opioid response in cancer and may be included in future similar studies.
Collapse
Affiliation(s)
- Aaron K Wong
- Peter MacCallum Cancer center, 305 Grattan St, Melbourne, Victoria, 3000, Australia
- The Royal Melbourne Hospital, 300 Grattan St, Parkville, Victoria, 3050, Australia
- Department of Medicine, University of Melbourne Eastern Hill Campus, Victoria Parade, Fitzroy, Victoria, 3065, Australia
| | - Pal Klepstad
- Department Intensive Care Medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Andrew A Somogyi
- Professor of Clinical & Experimental Pharmacology, Discipline of Pharmacology, Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, 5005, Australia
| | - Sara Vogrin
- Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Victoria, Australia
| | - Brian Le
- Peter MacCallum Cancer center, 305 Grattan St, Melbourne, Victoria, 3000, Australia
- The Royal Melbourne Hospital, 300 Grattan St, Parkville, Victoria, 3050, Australia
| | - Jennifer Philip
- Peter MacCallum Cancer center, 305 Grattan St, Melbourne, Victoria, 3000, Australia
- The Royal Melbourne Hospital, 300 Grattan St, Parkville, Victoria, 3050, Australia
- Department of Medicine, University of Melbourne Eastern Hill Campus, Victoria Parade, Fitzroy, Victoria, 3065, Australia
- St Vincent's Hospital, Palliative Care Service Victoria Parade, Fitzroy, Victoria, 3065, Australia
| | - Justin P Rubio
- Principal Research Fellow Florey Institute of Neuroscience & Mental Health, 30 Royal Parade, Victoria, 3052, Australia
| |
Collapse
|
13
|
Zhang X, Li R, Xu H, Wu G, Wu S, Wang H, Wang Y, Wang X. Dissecting the innate immune recognition of morphine and its metabolites by TLR4/MD2: an in silico simulation study. Phys Chem Chem Phys 2023; 25:29656-29663. [PMID: 37882236 DOI: 10.1039/d3cp03715k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
A toll-like receptor 4/myeloid differentiation factor 2 complex (TLR4/MD2) has been identified as a non-classical opioid receptor capable of recognizing morphine isomers and activating microglia in a non-enantioselective manner. Additionally, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G), the major metabolites of morphine, possess similar chemical structures but exhibit distinct effects on TLR4 signaling. However, the specific mechanisms by which morphine isomers and morphine metabolites are recognized by the innate immune receptor TLR4/MD2 are not well understood. Herein, molecular dynamics simulations were performed to dissect the molecular recognition of TLR4/MD2 with morphine isomers, M3G and M6G. Morphine and its (+)-enantiomer, dextro-morphine ((+)-morphine), were found to have comparable binding free energies as well as similar interaction modes when interacting with (TLR4/MD2)2. Binding with morphine and (+)-morphine caused the motion of the F126 loop towards the inside of the MD2 cavity, which stabilizes (TLR4/MD2)2 with similar dimerization interfaces. The binding free energies of M3G and M6G with (TLR4/MD2)2, while lower than those of morphine isomers, were comparable to each other. However, the binding behaviors of M3G and M6G exhibited contrasting patterns when interacting with (TLR4/MD2)2. The glucuronide group of M3G bound to the gating loop of MD2 and formed strong interactions with TLR4*, which stabilizes the active heterotetrameric complex. In contrast, M6G was situated in cavity A of MD2, where the critical interactions between M6G and the residues of TLR4* were lost, resulting in fluctuation of (TLR4/MD2)2 away from the active conformation. These results indicate that the pivotal interactions at the dimerization interface between MD2 and TLR4* in M6G-bound (TLR4/MD2)2 were considerably weaker than those in M3G-bound (TLR4/MD2)2, which partially explains why M6G fails to activate TLR4 signaling. The discoveries from this study will offer valuable insights for the advancement of next-generation TLR4 small molecule modulators based on opioids.
Collapse
Affiliation(s)
- Xiaozheng Zhang
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Ran Li
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Haoran Xu
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Guicai Wu
- Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Siru Wu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| |
Collapse
|
14
|
Temporomandibular Joint Surgery. J Oral Maxillofac Surg 2023; 81:E195-E220. [PMID: 37833023 DOI: 10.1016/j.joms.2023.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
|
15
|
Darvishmolla M, Saeedi N, Tavassoli Z, Heysieattalab S, Janahmadi M, Hosseinmardi N. Maladaptive plasticity induced by morphine is mediated by hippocampal astrocytic Connexin-43. Life Sci 2023; 330:121969. [PMID: 37541575 DOI: 10.1016/j.lfs.2023.121969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/06/2023]
Abstract
AIMS Drug addiction is an aberrant learning process that involves the recruitment of memory systems. We have previously demonstrated that morphine exposure causes maladaptive synaptic plasticity which involved hippocampal glial cells, especially astrocytes. Morphine addiction has been associated with astrocytic connexin 43 (Cx43), which plays a role in synaptic homeostasis. This study aimed to examine the role of hippocampal astrocytic Cx43 in morphine-induced maladaptive plasticity as a mechanism of addiction. MAIN METHODS Male rats were injected with morphine (10 mg/kg) subcutaneously every 12 h for nine days to induce dependence. Cx43 was inhibited by TAT-Gap19 (1 μl/1 nmol) microinjection in the CA1 region of the hippocampus 30 min before each morning morphine injection. Field potential recordings were used to assess synaptic plasticity. fEPSP was recorded from the CA1 area following CA3 stimulation. KEY FINDINGS Electrophysiological results showed that morphine treatment altered baseline synaptic responses. It also appears that morphine treatment augmented long-term potentiation (LTP) compared with the control group. Hippocampal astrocytic Cx43 inhibition, with the TAT-Gap19, undermines these effects of morphine on baseline synaptic responses and LTP. Despite this, long-term depression (LTD) did not differ significantly between the groups. Additionally, in the morphine-receiving group, inhibition of Cx43 significantly reduced the paired-pulse index at an 80-millisecond inter-pulse interval when assessing short-term plasticity. SIGNIFICANCE The results of this study demonstrated that inhibiting Cx43 reduced synaptic plasticity induced by morphine. It can be concluded that hippocampal astrocytes through Cx43 are involved in morphine-induced metaplasticity.
Collapse
Affiliation(s)
- Mahgol Darvishmolla
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negin Saeedi
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Tavassoli
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mahyar Janahmadi
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Hosseinmardi
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Sanchez JE, Noor S, Sun MS, Zimmerly J, Pasmay A, Sanchez JJ, Vanderwall AG, Haynes MK, Sklar LA, Escalona PR, Milligan ED. The FDA-approved compound, pramipexole and the clinical-stage investigational drug, dexpramipexole, reverse chronic allodynia from sciatic nerve damage in mice, and alter IL-1β and IL-10 expression from immune cell culture. Neurosci Lett 2023; 814:137419. [PMID: 37558176 PMCID: PMC10552878 DOI: 10.1016/j.neulet.2023.137419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
During the onset of neuropathic pain from a variety of etiologies, nociceptors become hypersensitized, releasing neurotransmitters and other factors from centrally-projecting nerve terminals within the dorsal spinal cord. Consequently, glial cells (astrocytes and microglia) in the spinal cord are activated and mediate the release of proinflammatory cytokines that act to enhance pain transmission and sensitize mechanical non-nociceptive fibers which ultimately results in light touch hypersensitivity, clinically observed as allodynia. Pramipexole, a D2/D3 preferring agonist, is FDA-approved for the treatment of Parkinson's disease and demonstrates efficacy in animal models of inflammatory pain. The clinical-stage investigational drug, R(+) enantiomer of pramipexole, dexpramipexole, is virtually devoid of D2/D3 agonist actions and is efficacious in animal models of inflammatory and neuropathic pain. The current experiments focus on the application of a mouse model of sciatic nerve neuropathy, chronic constriction injury (CCI), that leads to allodynia and is previously characterized to generate spinal glial activation with consequent release IL-1β. We hypothesized that both pramipexole and dexpramipexole reverse CCI-induced chronic neuropathy in mice, and in human monocyte cell culture studies (THP-1 cells), pramipexole prevents IL-1β production. Additionally, we hypothesized that in rat primary splenocyte culture, dexpramixole increases mRNA for the anti-inflammatory and pleiotropic cytokine, interleukin-10 (IL-10). Results show that following intravenous pramipexole or dexpramipexole, a profound decrease in allodynia was observed by 1 hr, with allodynia returning 24 hr post-injection. Pramipexole significantly blunted IL-1β protein production from stimulated human monocytes and dexpramipexole induced elevated IL-10 mRNA expression from rat splenocytes. The data support that clinically-approved compounds like pramipexole and dexpramipexole support their application as anti-inflammatory agents to mitigate chronic neuropathy, and provide a blueprint for future, multifaceted approaches for opioid-independent neuropathic pain treatment.
Collapse
Affiliation(s)
- J E Sanchez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - S Noor
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - M S Sun
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - J Zimmerly
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - A Pasmay
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - J J Sanchez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - A G Vanderwall
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - M K Haynes
- Center for Molecular Discovery (CMD) Innovation, Discovery and Training Complex (IDTC), University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - L A Sklar
- Center for Molecular Discovery (CMD) Innovation, Discovery and Training Complex (IDTC), University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - P R Escalona
- Department of Psychiatry, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; New Mexico VA Health Care System, Albuquerque NM 87108, USA
| | - E D Milligan
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
17
|
Mei C, Pan C, Xu L, Miao M, Lu Q, Yu Y, Lin P, Wu W, Ni F, Gao Y, Xu Y, Xu J, Chen X. Trimethoxyflavanone relieves Paclitaxel-induced neuropathic pain via inhibiting expression and activation of P2X7 and production of CGRP in mice. Neuropharmacology 2023; 236:109584. [PMID: 37225085 DOI: 10.1016/j.neuropharm.2023.109584] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/26/2023]
Abstract
Paclitaxel (PTX) is an anticancer drug used to treat solid tumors, but one of its common adverse effects is chemotherapy-induced peripheral neuropathy (CIPN). Currently, there is limited understanding of neuropathic pain associated with CIPN and effective treatment strategies are inadequate. Previous studies report the analgesic actions of Naringenin, a dihydroflavonoid compound, in pain. Here we observed that the anti-nociceptive action of a Naringenin derivative, Trimethoxyflavanone (Y3), was superior to Naringenin in PTX-induced pain (PIP). An intrathecal injection of Y3 (1 μg) reversed the mechanical and thermal thresholds of PIP and suppressed the PTX-induced hyper-excitability of dorsal root ganglion (DRG) neurons. PTX enhanced the expression of ionotropic purinergic receptor P2X7 (P2X7) in satellite glial cells (SGCs) and neurons in DRGs. The molecular docking simulation predicts possible interactions between Y3 and P2X7. Y3 reduced the PTX-enhanced P2X7 expression in DRGs. Electrophysiological recordings revealed that Y3 directly inhibited P2X7-mediated currents in DRG neurons of PTX-treated mice, suggesting that Y3 suppressed both expression and function of P2X7 in DRGs post-PTX administration. Y3 also reduced the production of calcitonin gene-related peptide (CGRP) in DRGs and at the spinal dorsal horn. Additionally, Y3 suppressed the PTX-enhanced infiltration of Iba1-positive macrophage-like cells in DRGs and overactivation of spinal astrocytes and microglia. Therefore, our results indicate that Y3 attenuates PIP via inhibiting P2X7 function, CGRP production, DRG neuron sensitization, and abnormal spinal glial activation. Our study implies that Y3 could be a promising drug candidate against CIPN-associated pain and neurotoxicity.
Collapse
Affiliation(s)
- Changqing Mei
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Chen Pan
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Linbin Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Mengmeng Miao
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Qichen Lu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yang Yu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Pengyu Lin
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Wenwei Wu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Feng Ni
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China; LeadArt Technologies Ltd., Ningbo, 315201, China
| | - Yinping Gao
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yuhao Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jia Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Xiaowei Chen
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
18
|
Ma R, Kutchy NA, Wang Z, Hu G. Extracellular vesicle-mediated delivery of anti-miR-106b inhibits morphine-induced primary ciliogenesis in the brain. Mol Ther 2023; 31:1332-1345. [PMID: 37012704 PMCID: PMC10188913 DOI: 10.1016/j.ymthe.2023.03.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Repeated use of opioids such as morphine causes changes in the shape and signal transduction pathways of various brain cells, including astrocytes and neurons, resulting in alterations in brain functioning and ultimately leading to opioid use disorder. We previously demonstrated that extracellular vesicle (EV)-induced primary ciliogenesis contributes to the development of morphine tolerance. Herein, we aimed to investigate the underlying mechanisms and potential EV-mediated therapeutic approach to inhibit morphine-mediated primary ciliogenesis. We demonstrated that miRNA cargo in morphine-stimulated-astrocyte-derived EVs (morphine-ADEVs) mediated morphine-induced primary ciliogenesis in astrocytes. CEP97 is a target of miR-106b and is a negative regulator of primary ciliogenesis. Intranasal delivery of ADEVs loaded with anti-miR-106b decreased the expression of miR-106b in astrocytes, inhibited primary ciliogenesis, and prevented the development of tolerance in morphine-administered mice. Furthermore, we confirmed primary ciliogenesis in the astrocytes of opioid abusers. miR-106b-5p in morphine-ADEVs induces primary ciliogenesis via targeting CEP97. Intranasal delivery of ADEVs loaded with anti-miR-106b ameliorates morphine-mediated primary ciliogenesis and prevents morphine tolerance. Our findings bring new insights into the mechanisms underlying primary cilium-mediated morphine tolerance and pave the way for developing ADEV-mediated small RNA delivery strategies for preventing substance use disorders.
Collapse
Affiliation(s)
- Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Naseer A Kutchy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901- 8525, USA
| | - Zhongbin Wang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
19
|
Mustafa S, Bajic JE, Barry B, Evans S, Siemens KR, Hutchinson MR, Grace PM. One immune system plays many parts: The dynamic role of the immune system in chronic pain and opioid pharmacology. Neuropharmacology 2023; 228:109459. [PMID: 36775098 PMCID: PMC10015343 DOI: 10.1016/j.neuropharm.2023.109459] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
The transition from acute to chronic pain is an ongoing major problem for individuals, society and healthcare systems around the world. It is clear chronic pain is a complex multidimensional biological challenge plagued with difficulties in pain management, specifically opioid use. In recent years the role of the immune system in chronic pain and opioid pharmacology has come to the forefront. As a highly dynamic and versatile network of cells, tissues and organs, the immune system is perfectly positioned at the microscale level to alter nociception and drive structural adaptations that underpin chronic pain and opioid use. In this review, we highlight the need to understand the dynamic and adaptable characteristics of the immune system and their role in the transition, maintenance and resolution of chronic pain. The complex multidimensional interplay of the immune system with multiple physiological systems may provide new transformative insight for novel targets for clinical management and treatment of chronic pain. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Sanam Mustafa
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia; Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA, Australia; Davies Livestock Research Centre, The University of Adelaide, Roseworthy, SA, Australia.
| | - Juliana E Bajic
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia; Davies Livestock Research Centre, The University of Adelaide, Roseworthy, SA, Australia
| | - Benjamin Barry
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Samuel Evans
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia; Davies Livestock Research Centre, The University of Adelaide, Roseworthy, SA, Australia
| | - Kariel R Siemens
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Mark R Hutchinson
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia; Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA, Australia; Davies Livestock Research Centre, The University of Adelaide, Roseworthy, SA, Australia
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA; MD Anderson Pain Research Consortium, Houston, TX, USA
| |
Collapse
|
20
|
Zamfir M, Sharif B, Locke S, Ehrlich AT, Ochandarena NE, Scherrer G, Ribeiro-da-Silva A, Kieffer BL, Séguéla P. Distinct and sex-specific expression of mu opioid receptors in anterior cingulate and somatosensory S1 cortical areas. Pain 2023; 164:703-716. [PMID: 35973045 PMCID: PMC10026835 DOI: 10.1097/j.pain.0000000000002751] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/24/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT The anterior cingulate cortex (ACC) processes the affective component of pain, whereas the primary somatosensory cortex (S1) is involved in its sensory-discriminative component. Injection of morphine in the ACC has been reported to be analgesic, and endogenous opioids in this area are required for pain relief. Mu opioid receptors (MORs) are expressed in both ACC and S1; however, the identity of MOR-expressing cortical neurons remains unknown. Using the Oprm1-mCherry mouse line, we performed selective patch clamp recordings of MOR+ neurons, as well as immunohistochemistry with validated neuronal markers, to determine the identity and laminar distribution of MOR+ neurons in ACC and S1. We found that the electrophysiological signatures of MOR+ neurons differ significantly between these 2 areas, with interneuron-like firing patterns more frequent in ACC. While MOR+ somatostatin interneurons are more prominent in ACC, MOR+ excitatory neurons and MOR+ parvalbumin interneurons are more prominent in S1. Our results suggest a differential contribution of MOR-mediated modulation to ACC and S1 outputs. We also found that females had a greater density of MOR+ neurons compared with males in both areas. In summary, we conclude that MOR-dependent opioidergic signaling in the cortex displays sexual dimorphisms and likely evolved to meet the distinct function of pain-processing circuits in limbic and sensory cortical areas.
Collapse
Affiliation(s)
- Maria Zamfir
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Behrang Sharif
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Samantha Locke
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Aliza T. Ehrlich
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Douglas Hospital Research Institute, McGill University, Montreal, QC, Canada
| | - Nicole E. Ochandarena
- Department of Cell Biology and Physiology The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Grégory Scherrer
- Department of Cell Biology and Physiology The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- UNC Neuroscience Center The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alfredo Ribeiro-da-Silva
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Brigitte L. Kieffer
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Douglas Hospital Research Institute, McGill University, Montreal, QC, Canada
| | - Philippe Séguéla
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Martin LF, Cheng K, Washington SM, Denton M, Goel V, Khandekar M, Largent-Milnes TM, Patwardhan A, Ibrahim MM. Green Light Exposure Elicits Anti-inflammation, Endogenous Opioid Release and Dampens Synaptic Potentiation to Relieve Post-surgical Pain. THE JOURNAL OF PAIN 2023; 24:509-529. [PMID: 36283655 PMCID: PMC9991952 DOI: 10.1016/j.jpain.2022.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
Light therapy improves multiple conditions such as seasonal affective disorders, circadian rhythm dysregulations, and neurodegenerative diseases. However, little is known about its potential benefits in pain management. While current pharmacologic methods are effective in many cases, the associated side effects can limit their use. Non-pharmacological methods would minimize drug dependence, facilitating a reduction of the opioid burden. Green light therapy has been shown to be effective in reducing chronic pain in humans and rodents. However, its underlying mechanisms remain incompletely defined. In this study, we demonstrate that green light exposure reduced postsurgical hypersensitivity in rats. Moreover, this therapy potentiated the antinociceptive effects of morphine and ibuprofen on mechanical allodynia in male rats. Importantly, in female rats, GLED potentiated the antinociceptive effects of morphine but did not affect that of ibuprofen. We showed that green light increases endogenous opioid levels while lessening synaptic plasticity and neuroinflammation. Importantly, this study reveals new insights into how light exposure can affect neuroinflammation and plasticity in both genders. Clinical translation of these results could provide patients with improved pain control and decrease opioid consumption. Given the noninvasive nature of green light, this innovative therapy would be readily implementable in hospitals. PERSPECTIVE: This study provides a potential additional therapy to decrease postsurgical pain. Given the safety, availability, and the efficacy of green light therapy, there is a significant potential for advancing the green light therapy to clinical trials and eventual translation to clinical settings.
Collapse
Affiliation(s)
- Laurent F Martin
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona; Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Kevin Cheng
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Stephanie M Washington
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Millie Denton
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Vasudha Goel
- Department of Anesthesiology, The University of Minnesota Medical School, Minneapolis, Minnesota
| | - Maithili Khandekar
- Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Tally M Largent-Milnes
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona
| | - Amol Patwardhan
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona; Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona; Department of Neurosurgery, College of Medicine, The University of Arizona, Tucson, Arizona; Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, Arizona
| | - Mohab M Ibrahim
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona; Department of Anesthesiology, College of Medicine, The University of Arizona, Tucson, Arizona; Department of Neurosurgery, College of Medicine, The University of Arizona, Tucson, Arizona; Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, Arizona.
| |
Collapse
|
22
|
Ahmadi S, Mohammadi Talvar S, Masoudi K, Zobeiri M. Repeated Use of Morphine Induces Anxiety by Affecting a Proinflammatory Cytokine Signaling Pathway in the Prefrontal Cortex in Rats. Mol Neurobiol 2023; 60:1425-1439. [PMID: 36450935 DOI: 10.1007/s12035-022-03144-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
We examined the role of toll-like receptors (TLRs) and proinflammatory cytokine signaling pathways in the prefrontal cortex (PFC) in anxiety-like behaviors after repeated use of morphine. Morphine (10 mg/kg) was used twice daily for 8 days to induce morphine dependence in male Wistar rats. On day 8, opioid dependence was confirmed by measuring naloxone-precipitated withdrawal signs. On days 1 and 8, anxiety-like behaviors were evaluated using a light/dark box test. Expression of TLR1 and 4, proinflammatory cytokines, and some of the downstream signaling molecules was also evaluated in the bilateral PFC at mRNA and protein levels following morphine dependence. The results revealed that morphine caused anxiolytic-like effects on day 1 while induced anxiety following 8 days of repeated injection. On day 8, a significant decrease in TLR1 expression was detected in the PFC in morphine-dependent rats, but TLR4 remained unaffected. Repeated morphine injection significantly increased IL1-β, TNFα, and IL6 expression, but decreased IL1R and TNFR at mRNA and protein levels except for IL6R at the protein level in the PFC. The p38α mitogen-activated protein (MAP) kinase expression significantly increased but the JNK3 expression decreased in the PFC in morphine-dependent rats. Repeated injection of morphine also significantly increased the NF-κB expression in the PFC. Further, significant increases in Let-7c, mir-133b, and mir-365 were detected in the PFC in morphine-dependent rats. We conclude that TLR1 and proinflammatory cytokines signaling pathways in the PFC are associated with the anxiogenic-like effects of morphine following its chronic use in rats via a MAP kinase/NF-κB pathway.
Collapse
Affiliation(s)
- Shamseddin Ahmadi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran.
| | - Shiva Mohammadi Talvar
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Kayvan Masoudi
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Mohammad Zobeiri
- Department of Biological Science, Faculty of Science, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| |
Collapse
|
23
|
Yen E, Gaddis N, Jantzie L, Davis JM. A review of the genomics of neonatal abstinence syndrome. Front Genet 2023; 14:1140400. [PMID: 36845389 PMCID: PMC9950123 DOI: 10.3389/fgene.2023.1140400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Neonatal abstinence syndrome (NAS) is a constellation of signs of withdrawal occurring after birth following in utero exposure to licit or illicit opioids. Despite significant research and public health efforts, NAS remains challenging to diagnose, predict, and manage due to highly variable expression. Biomarker discovery in the field of NAS is crucial for stratifying risk, allocating resources, monitoring longitudinal outcomes, and identifying novel therapeutics. There is considerable interest in identifying important genetic and epigenetic markers of NAS severity and outcome that can guide medical decision making, research efforts, and public policy. A number of recent studies have suggested that genetic and epigenetic changes are associated with NAS severity, including evidence of neurodevelopmental instability. This review will provide an overview of the role of genetics and epigenetics in short and longer-term NAS outcomes. We will also describe novel research efforts using polygenic risk scores for NAS risk stratification and salivary gene expression to understand neurobehavioral modulation. Finally, emerging research focused on neuroinflammation from prenatal opioid exposure may elucidate novel mechanisms that could lead to development of future novel therapeutics.
Collapse
Affiliation(s)
- Elizabeth Yen
- Department of Pediatrics, Tufts Medical Center, Boston, MA, United States
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States
- Tufts University School of Medicine, Boston, MA, United States
| | - Nathan Gaddis
- Research Triangle Institute International, Research Triangle Park, Durham, NC, United States
| | - Lauren Jantzie
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jonathan M. Davis
- Department of Pediatrics, Tufts Medical Center, Boston, MA, United States
- Tufts University School of Medicine, Boston, MA, United States
- Tufts Clinical and Translational Sciences Institute, Boston, MA, United States
| |
Collapse
|
24
|
Wiese BM, Alvarez Reyes A, Vanderah TW, Largent-Milnes TM. The endocannabinoid system and breathing. Front Neurosci 2023; 17:1126004. [PMID: 37144090 PMCID: PMC10153446 DOI: 10.3389/fnins.2023.1126004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/16/2023] [Indexed: 05/06/2023] Open
Abstract
Recent changes in cannabis accessibility have provided adjunct therapies for patients across numerous disease states and highlights the urgency in understanding how cannabinoids and the endocannabinoid (EC) system interact with other physiological structures. The EC system plays a critical and modulatory role in respiratory homeostasis and pulmonary functionality. Respiratory control begins in the brainstem without peripheral input, and coordinates the preBötzinger complex, a component of the ventral respiratory group that interacts with the dorsal respiratory group to synchronize burstlet activity and drive inspiration. An additional rhythm generator: the retrotrapezoid nucleus/parafacial respiratory group drives active expiration during conditions of exercise or high CO2. Combined with the feedback information from the periphery: through chemo- and baroreceptors including the carotid bodies, the cranial nerves, stretch of the diaphragm and intercostal muscles, lung tissue, and immune cells, and the cranial nerves, our respiratory system can fine tune motor outputs that ensure we have the oxygen necessary to survive and can expel the CO2 waste we produce, and every aspect of this process can be influenced by the EC system. The expansion in cannabis access and potential therapeutic benefits, it is essential that investigations continue to uncover the underpinnings and mechanistic workings of the EC system. It is imperative to understand the impact cannabis, and exogenous cannabinoids have on these physiological systems, and how some of these compounds can mitigate respiratory depression when combined with opioids or other medicinal therapies. This review highlights the respiratory system from the perspective of central versus peripheral respiratory functionality and how these behaviors can be influenced by the EC system. This review will summarize the literature available on organic and synthetic cannabinoids in breathing and how that has shaped our understanding of the role of the EC system in respiratory homeostasis. Finally, we look at some potential future therapeutic applications the EC system has to offer for the treatment of respiratory diseases and a possible role in expanding the safety profile of opioid therapies while preventing future opioid overdose fatalities that result from respiratory arrest or persistent apnea.
Collapse
Affiliation(s)
- Beth M. Wiese
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Angelica Alvarez Reyes
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
- College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Todd W. Vanderah
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Tally M. Largent-Milnes
- Department of Pharmacology, University of Arizona, Tucson, AZ, United States
- *Correspondence: Tally M. Largent-Milnes,
| |
Collapse
|
25
|
Mechanisms behind the Development of Chronic Low Back Pain and Its Neurodegenerative Features. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010084. [PMID: 36676033 PMCID: PMC9862392 DOI: 10.3390/life13010084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/11/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Chronic back pain is complex and there is no guarantee that treating its potential causes will cause the pain to go away. Therefore, rather than attempting to "cure" chronic pain, many clinicians, caregivers and researchers aim to help educate patients about their pain and try to help them live a better quality of life despite their condition. A systematic review has demonstrated that patient education has a large effect on pain and pain related disability when done in conjunction with treatments. Therefore, understanding and updating our current state of knowledge of the pathophysiology of back pain is important in educating patients as well as guiding the development of novel therapeutics. Growing evidence suggests that back pain causes morphological changes in the central nervous system and that these changes have significant overlap with those seen in common neurodegenerative disorders. These similarities in mechanisms may explain the associations between chronic low back pain and cognitive decline and brain fog. The neurodegenerative underpinnings of chronic low back pain demonstrate a new layer of understanding for this condition, which may help inspire new strategies in pain education and management, as well as potentially improve current treatment.
Collapse
|
26
|
The Use of the Coenzyme Q 10 as a Food Supplement in the Management of Fibromyalgia: A Critical Review. Antioxidants (Basel) 2022; 11:antiox11101969. [PMID: 36290691 PMCID: PMC9598746 DOI: 10.3390/antiox11101969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The coenzyme Q10 is a naturally occurring benzoquinone derivative widely prescribed as a food supplement for different physical conditions and pathologies. This review aims to sum up the key structural and functional characteristics of Q10, taking stock of its use in people affected by fibromyalgia. A thorough survey has been conducted, using Pubmed, Scifinder, and ClinicalTrials.gov as the reference research applications and registry database, respectively. Original articles, reviews, and editorials published within the last 15 years, as well as open clinical investigations in the field, if any, were analyzed to point out the lights and shadows of this kind of supplementation as they emerge from the literature.
Collapse
|
27
|
Semkovych Y, Dmytriiev D. Elevated serum TLR4 level as a potential marker for postsurgical chronic pain in pediatric patients with different approaches to analgesia. Front Med (Lausanne) 2022; 9:897533. [PMID: 36059845 PMCID: PMC9428710 DOI: 10.3389/fmed.2022.897533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction The perioperative period of any surgery is accompanied by immune suppression. The level of Toll-like receptor 4 (TLR4) is known to increase in inflammation and after nerve injury and contributes to the development of neuropathic pain. The interaction of TLRs in response to the effect of opioids results in paradoxical hyperalgesia. Regional anesthesia techniques are the standard of care for perioperative pain management in children. Aim The aim of the study was to determine and evaluate the indicators of TLR4 for different methods of pain relief in anesthetic management of hernia repair in children and their effect on pain chronification. Materials and methods There were examined 60 children with inguinal hernia during 2020-2022. Children were divided into 3 groups: Group I included 20 children who underwent surgery under general anesthesia using the block of the anterior abdominal wall-transversalis fascia plane block (TFPB), combined with the quadratus lumborum block (QLB-4) via a single intramuscular injection; Group II included 20 children who underwent surgery under general anesthesia using the TFPB; Group III comprised 20 children who underwent surgery under general anesthesia using opioid analgesics. The levels of TLR4 were evaluated at a discharge from the hospital, 3 and 6 months after surgery. Results There was no difference in age and body weight among all groups. In Group II, boys prevailed. In Group III, the length of hospital stay was the longest (3.28 ± 0.24 days, p < 0.05, t = 4.09) as compared to children of Group II and Group I (3.0 ± 0.30 (p < 0.05, t = 2.647) and 2.1 ± 0.16 days, respectively). While staying in the surgical department, children of Group III demonstrated significantly higher FLACC and VAS scores. The prevalence of chronic pain was the highest among children of Group III (35%) as compared to those in Group II and Group I (20 and 15%, respectively). The highest increase in the level of TLR4 was found in the group of opioid analgesia on the third and sixth months after surgery (68.86 + 10.31 pg/ml and 143.15 + 18.77 pg/ml (p < 0.05, t = 6.33), respectively) as compared to patients who received regional anesthesia. Conclusions There were confirmed the following advantages of the transversalis fascia plane block combined with the quadratus lumborum block (QLB + TFPB) via a single intramuscular injection: ease of use; adequate perioperative pain control as evidenced by the FLACC and VAS pain assessment scales; reduced perioperative use of opioid analgesics; shortening the length of hospital stay.
Collapse
Affiliation(s)
- Yaroslav Semkovych
- Department of Children Diseases of Postgraduate Medical Education Faculty, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
| | - Dmytro Dmytriiev
- Department of Anesthesiology and Intensive Care, Vinnytsia National Pirogov Memorial Medical University, Vinnytsya, Ukraine
| |
Collapse
|
28
|
Boorman DC, Keay KA. Sex differences in morphine sensitivity are associated with differential glial expression in the brainstem of rats with neuropathic pain. J Neurosci Res 2022; 100:1890-1907. [PMID: 35853016 PMCID: PMC9543783 DOI: 10.1002/jnr.25103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/11/2022]
Abstract
Chronic pain is more prevalent and reported to be more severe in women. Opioid analgesics are less effective in women and result in stronger nauseant effects. The neurobiological mechanisms underlying these sex differences have yet to be clearly defined, though recent research has suggested neuronal–glial interactions are likely involved. We have previously shown that similar to people, morphine is less effective at reducing pain behaviors in female rats. In this study, we used the immunohistochemical detection of glial fibrillary acidic protein (GFAP) expression to investigate sex differences in astrocyte density and morphology in six medullary regions known to be modulated by pain and/or opioids. Morphine administration had small sex‐dependent effects on overall GFAP expression, but not on astrocyte morphology, in the rostral ventromedial medulla, the subnucleus reticularis dorsalis, and the area postrema. Significant sex differences in the density and morphology of GFAP immunopositive astrocytes were detected in all six regions. In general, GFAP‐positive cells in females showed smaller volumes and reduced complexity than those observed in males. Furthermore, females showed lower overall GFAP expression in all regions except for the area postrema, the critical medullary region responsible for opioid‐induced nausea and emesis. These data support the possibility that differences in astrocyte activity might underlie the sex differences seen in the processing of opioids in the context of chronic neuropathic pain.
Collapse
Affiliation(s)
- Damien C. Boorman
- School of Medical Sciences and the Brain and Mind Centre The University of Sydney Camperdown New South Wales Australia
| | - Kevin A. Keay
- School of Medical Sciences and the Brain and Mind Centre The University of Sydney Camperdown New South Wales Australia
| |
Collapse
|
29
|
Santoni A, Santoni M, Arcuri E. Chronic Cancer Pain: Opioids within Tumor Microenvironment Affect Neuroinflammation, Tumor and Pain Evolution. Cancers (Basel) 2022; 14:2253. [PMID: 35565382 PMCID: PMC9104169 DOI: 10.3390/cancers14092253] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Pain can be a devastating experience for cancer patients, resulting in decreased quality of life. In the last two decades, immunological and pain research have demonstrated that pain persistence is primarily caused by neuroinflammation leading to central sensitization with brain neuroplastic alterations and changes in pain responsiveness (hyperalgesia, and pain behavior). Cancer pain is markedly affected by the tumor microenvironment (TME), a complex ecosystem consisting of different cell types (cancer cells, endothelial and stromal cells, leukocytes, fibroblasts and neurons) that release soluble mediators triggering neuroinflammation. The TME cellular components express opioid receptors (i.e., MOR) that upon engagement by endogenous or exogenous opioids such as morphine, initiate signaling events leading to neuroinflammation. MOR engagement does not only affect pain features and quality, but also influences directly and/or indirectly tumor growth and metastasis. The opioid effects on chronic cancer pain are also clinically characterized by altered opioid responsiveness (tolerance and hyperalgesia), a hallmark of the problematic long-term treatment of non-cancer pain. The significant progress made in understanding the immune-mediated development of chronic pain suggests its exploitation for novel alternative immunotherapeutic approaches.
Collapse
Affiliation(s)
- Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Matteo Santoni
- Medical Oncology Unit, Macerata General Hospital, Via Santa Lucia 2, 62100 Macerata, Italy;
| | - Edoardo Arcuri
- IRCCS Regina Elena Cancer Institute, IFO, Via Elio Chianesi 53, 00128 Rome, Italy;
- Ars Medica Pain Clinic, Via Cesare Ferrero da Cambiano 29, 00191 Rome, Italy
| |
Collapse
|
30
|
Wang H, Luo J, Chen X, Hu H, Li S, Zhang Y, Shi C. Clinical Observation of the Effects of Oral Opioid on Inflammatory Cytokines and Gut Microbiota in Patients with Moderate to Severe Cancer Pain: A Retrospective Cohort Study. Pain Ther 2022; 11:667-681. [PMID: 35435623 PMCID: PMC9098777 DOI: 10.1007/s40122-022-00386-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/31/2022] [Indexed: 10/31/2022] Open
Abstract
Introduction Methods Results Conclusion
Collapse
|
31
|
Wu R, Liu J, Vu J, Huang Y, Dietz DM, Li JX. Interleukin-1 receptor-associated kinase 4 (IRAK4) in the nucleus accumbens regulates opioid-seeking behavior in male rats. Brain Behav Immun 2022; 101:37-48. [PMID: 34958862 PMCID: PMC8885906 DOI: 10.1016/j.bbi.2021.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/09/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022] Open
Abstract
Opioid addiction remains a severe health problem. While substantial insights underlying opioid addiction have been yielded from neuron-centric studies, the contribution of non-neuronal mechanisms to opioid-related behavioral adaptations has begun to be recognized. Toll-like receptor 4 (TLR4), a pattern recognition receptor, has been widely suggested in opioid-related behaviors. Interleukin-1 receptor-associated kinase 4 (IRAK4) is a kinase essential for TLR4 responses, However, the potential role of IRAK4 in opioid-related responses has not been examined. Here, we explored the role of IRAK4 in cue-induced opioid-seeking behavior in male rats. We found that morphine self-administration increased the phosphorylation level of IRAK4 in the nucleus accumbens (NAc) in rats; the IRAK4 signaling remained activated after morphine extinction and cue-induced reinstatement test. Both systemic and local inhibition of IRAK4 in the NAc core attenuated cue-induced morphine-seeking behavior without affecting the locomotor activity and cue-induced sucrose-seeking. In addition, inhibition of IRAK4 also reduced the cue-induced reinstatement of fentanyl-seeking. Our findings suggest an important role of IRAK4 in opioid relapse-like behaviors and provide novel evidence in the association between innate immunity and drug addiction.
Collapse
Affiliation(s)
- Ruyan Wu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY,Medical College of Yangzhou University, Yangzhou, China
| | - Jianfeng Liu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY
| | - Jimmy Vu
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY
| | - Yufei Huang
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY
| | - David M. Dietz
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
32
|
Somogyi AA, Musolino ST, Barratt DT. New pharmacological perspectives and therapeutic options for opioids: Differences matter. Anaesth Intensive Care 2022; 50:127-140. [PMID: 35112584 DOI: 10.1177/0310057x211063891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Opioids remain the major drug class for the treatment of acute, chronic and cancer pain, but have major harmful effects such as dependence and opioid-induced ventilatory impairment. Although no new typical opioids have come onto the market in the past almost 50 years, a plethora of new innovative formulations has been developed to meet the clinical need. This review is intended to shed light on new understanding of the molecular pharmacology of opioids, which has arisen largely due to the genomic revolution, and what new drugs may become available in the coming years. Atypical opioids have and are being developed which not only target the mu opioid receptor but other targets in the pain pathway. Biased mu agonists have been developed but remain 'unbiased' clinically. The contribution of drugs targeting non-mu opioid receptors either alone or as heterodimers shows potential promise but remains understudied. That gene splice variants of the mu opioid receptor produce multiple receptor isoforms in different brain regions, and may change with pain chronicity and phenotype, presents new challenges but also opportunities for precision pain medicine. Finally, that opioids also have pro-inflammatory effects not aligned with mu opioid receptor binding affinity implicates a fresh understanding of their role in chronic pain, whether cancer or non-cancer. Hopefully, a new understanding of opioid analgesic drug action may lead to new drug development and better precision medicine in acute and chronic pain relief with less patient harm.
Collapse
Affiliation(s)
- Andrew A Somogyi
- Discipline of Pharmacology, University of Adelaide, Adelaide, Australia
| | - Stefan T Musolino
- Discipline of Pharmacology, University of Adelaide, Adelaide, Australia
| | - Daniel T Barratt
- Discipline of Physiology, University of Adelaide, Adelaide, Australia
| |
Collapse
|
33
|
Mustafa S, Evans S, Barry B, Barratt D, Wang Y, Lin C, Wang X, Hutchinson MR. Toll-Like Receptor 4 in Pain: Bridging Molecules-to-Cells-to-Systems. Handb Exp Pharmacol 2022; 276:239-273. [PMID: 35434749 DOI: 10.1007/164_2022_587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pain impacts the lives of billions of people around the world - both directly and indirectly. It is complex and transcends beyond an unpleasant sensory experience to encompass emotional experiences. To date, there are no successful treatments for sufferers of chronic pain. Although opioids do not provide any benefit to chronic pain sufferers, they are still prescribed, often resulting in more complications such as hyperalgesia and dependence. In order to develop effective and safe medications to manage, and perhaps even treat pain, it is important to evaluate novel contributors to pain pathologies. As such, in this chapter we review the role of Toll-like receptor 4, a receptor of the innate immune system, that continues to gain substantial attention in the field of pain research. Positioned in the nexus of the neuro and immune systems, TLR4 may provide one of the missing pieces in understanding the complexities of pain. Here we consider how TLR4 enables a mechanistical understanding of pain as a multidimensional biopsychosocial state from molecules to cells to systems and back again.
Collapse
Affiliation(s)
- Sanam Mustafa
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia.
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA, Australia.
| | - Samuel Evans
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Benjamin Barry
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Daniel Barratt
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Cong Lin
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Mark R Hutchinson
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
34
|
Dworsky-Fried Z, Faig CA, Vogel HA, Kerr BJ, Taylor AMW. Central amygdala inflammation drives pain hypersensitivity and attenuates morphine analgesia in experimental autoimmune encephalomyelitis. Pain 2022; 163:e49-e61. [PMID: 33863858 DOI: 10.1097/j.pain.0000000000002307] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Chronic pain is a highly prevalent symptom associated with the autoimmune disorder multiple sclerosis (MS). The central nucleus of the amygdala plays a critical role in pain processing and modulation. Neuropathic pain alters nociceptive signaling in the central amygdala, contributing to pain chronicity and opioid tolerance. Here, we demonstrate that activated microglia within the central amygdala disrupt nociceptive sensory processing and contribute to pain hypersensitivity in experimental autoimmune encephalomyelitis (EAE), the most frequently used animal model of MS. Male and female mice with EAE exhibited differences in microglial morphology in the central amygdala, which was associated with heat hyperalgesia, impaired morphine reward, and reduced morphine antinociception in females. Animals with EAE displayed a lack of morphine-evoked activity in cells expressing somatostatin within the central amygdala, which drive antinociception. Induction of focal microglial activation in naïve mice via injection of lipopolysaccharide into the central amygdala produced a loss of morphine analgesia in females, similar to as observed in EAE animals. Our data indicate that activated microglia within the central amygdala may contribute to the sexually dimorphic effects of morphine and may drive neuronal adaptations that lead to pain hypersensitivity in EAE. Our results provide a possible mechanism underlying the decreased efficacy of opioid analgesics in the management of MS-related pain, identifying microglial activation as a potential therapeutic target for pain symptoms in this patient population.
Collapse
Affiliation(s)
- Zoë Dworsky-Fried
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Christian A Faig
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Holly A Vogel
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Bradley J Kerr
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| | - Anna M W Taylor
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
35
|
Leroy C, Saba W. Contribution of TSPO imaging in the understanding of the state of gliosis in substance use disorders. Eur J Nucl Med Mol Imaging 2021; 49:186-200. [PMID: 34041563 DOI: 10.1007/s00259-021-05408-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Recent research in last years in substance use disorders (SUD) synthesized a proinflammatory hypothesis of SUD based on reported pieces of evidence of non-neuronal central immune signalling pathways modulated by drug of abuse and that contribute to their pharmacodynamic actions. Positron emission tomography has been shown to be a precious imaging technique to study in vivo neurochemical processes involved in SUD and to highlight the central immune signalling actions of drugs of abuse. METHODS In this review, we investigate the contribution of the central immune system, with a particular focus on translocator protein 18 kDa (TSPO) imaging, associated with a series of drugs involved in substance use disorders (SUD) specifically alcohol, opioids, tobacco, methamphetamine, cocaine, and cannabis. RESULTS The large majority of preclinical and clinical studies presented in this review converges towards SUD modulation of the neuroimmune responses and TSPO expression and speculated a pivotal positioning in the pathogenesis of SUD. However, some contradictions concerning the same drug or between preclinical and clinical studies make it difficult to draw a clear picture about the significance of glial state in SUD. DISCUSSION Significant disparities in clinical and biological characteristics are present between investigated populations among studies. Heterogeneity in genetic factors and other clinical co-morbidities, difficult to be reproduced in animal models, may affect findings. On the other hand, technical aspects including study designs, radioligand limitations, or PET imaging quantification methods could impact the study results and should be considered to explain discrepancies in outcomes. CONCLUSION The supposed neuroimmune component of SUD provides new therapeutic approaches in the prediction and treatment of SUD pointing to the central immune signalling.
Collapse
Affiliation(s)
- Claire Leroy
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France
| | - Wadad Saba
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France.
| |
Collapse
|
36
|
Huang T, Li Y, Hu W, Yu D, Gao J, Yang F, Xu Y, Wang Z, Zong L. Dexmedetomidine attenuates haemorrhage-induced thalamic pain by inhibiting the TLR4/NF-κB/ERK1/2 pathway in mice. Inflammopharmacology 2021; 29:1751-1760. [PMID: 34643849 PMCID: PMC8643300 DOI: 10.1007/s10787-021-00877-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/18/2021] [Indexed: 10/31/2022]
Abstract
BACKGROUND Thalamic pain, a neuropathic pain syndrome, frequently occurs after stroke. This research aimed to investigate the effect of dexmedetomidine (DEX) on thalamic pain. METHODS The cellular localization of the TLR4 protein was determined by immunostaining. The expression of Iba1, GFAP and protein associated with the TLR4/NF-κB/ERK1/2 pathway was measured by Western blotting. Continuous pain hypersensitivity was evaluated by behavioural tests. The results were analysed by one-way ANOVA, two-way ANOVA and Tukey's post hoc test. RESULTS The results demonstrated that DEX obviously alleviated thalamic pain induced by haemorrhage on the ipsilateral side and delayed the development of pain hypersensitivity. Furthermore, the expression levels of Iba1, GFAP and proteins associated with the TLR4/NF-κB/ERK1/2 signalling pathway were greatly increased in mice with thalamic pain, but these effects were reversed by DEX. CONCLUSION Our findings suggest that DEX alleviates the inflammatory response during thalamic pain through the TLR4/NF-κB/ERK1/2 signalling pathway and might be a potential therapeutic agent for thalamic pain.
Collapse
Affiliation(s)
- Tianfeng Huang
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital Affiliated with Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Yong Li
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital Affiliated with Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Wenqing Hu
- Department of Gastrointestinal Surgery, Changzhi People's Hospital, The Affiliated Hospital of Changzhi Medical College, Shanxi, No. 502 Changxing Middle Road, Luzhou District, Changzhi, 046000, People's Republic of China
| | - Dapeng Yu
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital Affiliated with Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Ju Gao
- Department of Anesthesiology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital Affiliated with Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Fan Yang
- Department of Central Laboratory, Changzhi People's Hospital, Shanxi, The Affiliated Hospital of Changzhi Medical College, Changzhi, People's Republic of China
| | - Yingying Xu
- Department of General Surgery, Yizheng People's Hospital, Clinical Medical College, Yangzhou University, No. 61 Dongyuan South Road, Yangzhou, 211400, Jiangsu, People's Republic of China.
| | - Zehua Wang
- Department of Anesthesiology, Heji Hospital Affiliated To Changzhi Medical College, No. 271 Taihang East Road, Changzhi, 046000, Shanxi, People's Republic of China.
| | - Liang Zong
- Department of Gastrointestinal Surgery, Changzhi People's Hospital, The Affiliated Hospital of Changzhi Medical College, Shanxi, No. 502 Changxing Middle Road, Luzhou District, Changzhi, 046000, People's Republic of China.
- Department of Central Laboratory, Changzhi People's Hospital, Shanxi, The Affiliated Hospital of Changzhi Medical College, Changzhi, People's Republic of China.
| |
Collapse
|
37
|
Interaction of Opioids with TLR4-Mechanisms and Ramifications. Cancers (Basel) 2021; 13:cancers13215274. [PMID: 34771442 PMCID: PMC8582379 DOI: 10.3390/cancers13215274] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/09/2021] [Accepted: 10/17/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Recent evidence indicates that opioids can be active at a receptor that is abundantly expressed on innate immune cells as well as cancer cells: the receptor is termed toll-like receptor 4 (TLR4). TLR4 is increasingly recognised as playing key roles in tumour biology and anticancer defences. However, the issue of whether TLR4 mediates some of the effects of opioids on tumour growth and metastasis is entirely unknown. We review existing evidence, mechanisms, and functional consequences of the action of opioids at TLR4. This opens new avenues of research on the role of opioids in cancer. Abstract The innate immune receptor toll-like receptor 4 (TLR4) is known as a sensor for the gram-negative bacterial cell wall component lipopolysaccharide (LPS). TLR4 activation leads to a strong pro-inflammatory response in macrophages; however, it is also recognised to play a key role in cancer. Recent studies of the opioid receptor (OR)-independent actions of opioids have identified that TLR4 can respond to opioids. Opioids are reported to weakly activate TLR4, but to significantly inhibit LPS-induced TLR4 activation. The action of opioids at TLR4 is suggested to be non-stereoselective, this is because OR-inactive (+)-isomers of opioids have been shown to activate or to inhibit TLR4 signalling, although there is some controversy in the literature. While some opioids can bind to the lipopolysaccharide (LPS)-binding cleft of the Myeloid Differentiation factor 2 (MD-2) co-receptor, pharmacological characterisation of the inhibition of opioids on LPS activation of TLR4 indicates a noncompetitive mechanism. In addition to a direct interaction at the receptor, opioids affect NF-κB activation downstream of both TLR4 and opioid receptors and modulate TLR4 expression, leading to a range of in vivo outcomes. Here, we review the literature reporting the activity of opioids at TLR4, its proposed mechanism(s), and the complex functional consequences of this interaction.
Collapse
|
38
|
Leduc-Pessah H, Trang T. Tackling the opioid crisis: Novel mechanisms and clinical perspectives. J Neurosci Res 2021; 100:5-9. [PMID: 34672010 DOI: 10.1002/jnr.24964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Heather Leduc-Pessah
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tuan Trang
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
39
|
Astrocyte-Derived Extracellular Vesicle-Mediated Activation of Primary Ciliary Signaling Contributes to the Development of Morphine Tolerance. Biol Psychiatry 2021; 90:575-585. [PMID: 34417054 DOI: 10.1016/j.biopsych.2021.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Morphine is used extensively in the clinical setting owing to its beneficial effects, such as pain relief; its therapeutic utility is limited because the prolonged use of morphine often results in tolerance and addiction. Astrocytes in the brain are a direct target of morphine action and play an essential role in the development of morphine tolerance. Primary cilia and the cilia-mediated sonic hedgehog (SHH) signaling pathways have been shown to play a role in drug resistance and morphine tolerance, respectively. Extracellular vesicles (EVs) play important roles as cargo-carrying vesicles mediating communication among cells and tissues. METHODS C57BL/6N mice were administered morphine for 8 days to develop tolerance, which was determined using the tail-flick and hot plate assays. EVs were separated from astrocyte-conditioned media using either size exclusion chromatography or ultracentrifugation approaches, followed by characterization of EVs using nanoparticle tracking analysis for EV size distribution and number, Western blotting for EV markers, and electron microscopy for EV morphology. Astrocytes were treated with EVs for 24 hours, followed by assessing primary cilia by fluorescent immunostaining for primary cilia markers (ARL13B and acetylated tubulin). RESULTS Morphine-tolerant mice exhibited an increase in primary cilia length and percentage of ciliated astrocytes. The levels of SHH protein were upregulated in morphine-stimulated astrocyte-derived EVs. SHH on morphine-stimulated astrocyte-derived EVs activated SHH signaling in astrocytes through primary cilia. Our in vivo study demonstrated that inhibition of either EV release or primary cilia prevents morphine tolerance in mice. CONCLUSIONS EV-mediated primary ciliogenesis contributes to the development of morphine tolerance.
Collapse
|
40
|
Dworsky-Fried Z, Chadwick CI, Kerr BJ, Taylor AMW. Multiple Sclerosis and the Endogenous Opioid System. Front Neurosci 2021; 15:741503. [PMID: 34602975 PMCID: PMC8484329 DOI: 10.3389/fnins.2021.741503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/26/2021] [Indexed: 01/10/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by chronic inflammation, neuronal degeneration and demyelinating lesions within the central nervous system. The mechanisms that underlie the pathogenesis and progression of MS are not fully known and current therapies have limited efficacy. Preclinical investigations using the murine experimental autoimmune encephalomyelitis (EAE) model of MS, as well as clinical observations in patients with MS, provide converging lines of evidence implicating the endogenous opioid system in the pathogenesis of this disease. In recent years, it has become increasingly clear that endogenous opioid peptides, binding μ- (MOR), κ- (KOR) and δ-opioid receptors (DOR), function as immunomodulatory molecules within both the immune and nervous systems. The endogenous opioid system is also well known to play a role in the development of chronic pain and negative affect, both of which are common comorbidities in MS. As such, dysregulation of the opioid system may be a mechanism that contributes to the pathogenesis of MS and associated symptoms. Here, we review the evidence for a connection between the endogenous opioid system and MS. We further explore the mechanisms by which opioidergic signaling might contribute to the pathophysiology and symptomatology of MS.
Collapse
Affiliation(s)
- Zoë Dworsky-Fried
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Caylin I. Chadwick
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Bradley J. Kerr
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| | - Anna M. W. Taylor
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
41
|
Pergolizzi JV, Varrassi G, Magnusson P, Breve F, Raffa RB, Christo PJ, Chopra M, Paladini A, LeQuang JA, Mitchell K, Coluzzi F. Pharmacologic agents directed at the treatment of pain associated with maladaptive neuronal plasticity. Expert Opin Pharmacother 2021; 23:105-116. [PMID: 34461795 DOI: 10.1080/14656566.2021.1970135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The definition of nociplastic pain in 2016 has changed the way maladaptive chronic pain is viewed in that it may emerge without neural lesions or neural disease. Many endogenous and pharmacologic substances are being investigated for their role in treating the pain associated with neuronal plasticity. AREAS COVERED The authors review promising pharmacologic agents for the treatment of pain associated with maladaptive neuronal plasticity. The authors then provide the reader with their expert opinion and provide their perspectives for the future. EXPERT OPINION An imbalance between the amplification of ascending pain signals and the poor activation of descending inhibitory signals may be at the root of many chronic pain syndromes. The inhibitory activity of noradrenaline reuptake may play a role in neuropathic and nociplastic analgesia. A better understanding of the brain's pain matrix, its signaling cascades, and the complex bidirectional communication between the immune system and the nervous system may help meet the urgent and unmet medical need for safe, effective chronic pain treatment, particularly for pain with a neuropathic and/or nociplastic component.
Collapse
Affiliation(s)
| | | | - Peter Magnusson
- Centre for Research and Development, Region Gävleborg/Uppsala University, Gävle, Sweden.,Department of Medicine, Cardiology Research Unit, Karolinska Institutet, Stockholm, Sweden
| | - Frank Breve
- Department of Pharmacy Practice, Temple University School of Pharmacy, Philadelphia, USA
| | - Robert B Raffa
- College of Pharmacy (Adjunct), University of Arizona, Tucson, USA.,Temple University School of Pharmacy (Professor Emeritus), Philadelphia, USA
| | - Paul J Christo
- Associate Professor, the Johns Hopkins School of Medicine, Baltimore, USA
| | | | | | | | | | - Flaminia Coluzzi
- Department Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
42
|
Ariani A, Bazzichi L, Sarzi-Puttini P, Salaffi F, Manara M, Prevete I, Bortoluzzi A, Carrara G, Scirè CA, Ughi N, Parisi S. The Italian Society for Rheumatology clinical practice guidelines for the diagnosis and management of fibromyalgia Best practices based on current scientific evidence. Reumatismo 2021; 73:89-105. [PMID: 34342210 DOI: 10.4081/reumatismo.2021.1362] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/25/2021] [Indexed: 11/23/2022] Open
Abstract
Fibromyalgia or fibromyalgia syndrome (FMS) is defined as a central sensitization syndrome characterized by the dysfunction of neurocircuits detecting, transmitting and processing nociceptive stimuli; the prevalent manifestation is musculoskeletal pain. In addition to pain, there are multiple accompanying symptoms, in common with other algo-dysfunctional syndromes, which are reflected in a broad spectrum of somatic, neurocognitive and neuro-vegetative manifestations. An evidence-based approach is essential in FMS management, in order to improve patient health and to reduce its social burden. Since in the last ten years new international guidelines for clinical practice (Clinical Practice Guidelines or CPGs) concerning FMS diagnosis and pharmacological/ non-pharmacological management have been published, the Italian Society of Rheumatology (SIR) has decided to adapt them to the Italian national setting. The framework of the Guidelines International Network Adaptation Working Group was adopted to identify, appraise (AGREE II), synthesize, and customize the most recent CPGs on FMS to the needs of the Italian healthcare context. A working group of rheumatologists from SIR epidemiology unit and FMS experts identified relevant clinical questions to guide the systematic review of the literature. The target audience of these CPGs included physicians and healthcare professionals who manage FMS. The adapted recommendations were finally assessed by an external multidisciplinary panel. From the systematic search in databases (Pubmed/Medline, Embase) and grey literature, 6 CPGs were selected and appraised by two independent raters. The combination of the scientific evidence underlying the original CPGs with expert opinion lead to the development of 17 recommendations. The quality of evidence for each recommendation was reported and their potential impact on clinical practice was assessed. These SIR recommendations are expected to be a valuable aid in the diagnosis and treatment of FMS, as they will contribute to disseminate the best practice on the basis of the current scientific evidence.
Collapse
Affiliation(s)
- A Ariani
- Epidemiology Unit, Italian Society for Rheumatology, Milan, Italy; Dipartimento di Medicina, Unità di Medicina Interna e Reumatologia, Azienda Ospedaliero-Universitaria di Parma.
| | - L Bazzichi
- Unità di Reumatologia, Azienda Ospedaliero Universitaria Pisana, Pisa.
| | - P Sarzi-Puttini
- Unità di Reumatologia, ASST Fatebenefratelli-Sacco, Università di Milano.
| | - F Salaffi
- Clinica Reumatologica, Ospedale 'Carlo Urbani', Università Politecnica delle Marche, Jesi (AN).
| | - M Manara
- Epidemiology Unit, Italian Society for Rheumatology, Milan, Italy; Reumatologia Clinica, Centro Specialistico Ortopedico-Traumatologico Gaetano Pini CTO, ASST Gaetano Pini, Milano.
| | - I Prevete
- Epidemiology Unit, Italian Society for Rheumatology, Milan, Italy; Unità di Reumatologia, Azienda Ospedaliera San Camillo-Forlanini, Roma.
| | - A Bortoluzzi
- Epidemiology Unit, Italian Society for Rheumatology, Milan, Italy; Dipartimento di Scienze Mediche, Sezione di Reumatologia, Università di Ferrara, Azienda Ospedaliero-Universitaria Sant'Anna, Cona (FE).
| | - G Carrara
- Epidemiology Unit, Italian Society for Rheumatology, Milan.
| | - C A Scirè
- Epidemiology Unit, Italian Society for Rheumatology, Milan, Italy; Dipartimento di Scienze Mediche, Sezione di Reumatologia, Università di Ferrara, Azienda Ospedaliero-Universitaria Sant'Anna, Cona (FE).
| | - N Ughi
- Epidemiology Unit, Italian Society for Rheumatology, Milan, Italy; Division of Rheumatology, ASST Grande Ospedale Metropolitano Niguarda, Milano.
| | - S Parisi
- Epidemiology Unit, Italian Society for Rheumatology, Milan, Italy; Unità di Reumatologia, Azienda Ospedaliera Città della Salute e della Scienza di Torino.
| |
Collapse
|
43
|
Zhang X, Wang H, Wang Y, Li H, Wu S, Gao J, Zhang T, Xie J, Wang X. Nalmefene non-enantioselectively targets myeloid differentiation protein 2 and inhibits toll-like receptor 4 signaling: wet-lab techniques and in silico simulations. Phys Chem Chem Phys 2021; 23:12260-12269. [PMID: 34013938 DOI: 10.1039/d1cp00237f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nalmefene is an opiate derivative having a similar structure to naltrexone. Recent evidence suggests that nalmefene, acting as the innate immune protein toll-like receptor 4 (TLR4) antagonist, effectively reduces the injury of lung ischemia-reperfusion and prevents neuroinflammation. However, the molecular recognition mechanism, especially the enantioselectivity, of nalmefene by the innate immune receptor is not well understood. Herein in vitro assays and in silico simulations were performed to dissect the innate immune recognition of nalmefene at the atomic, molecular, and cellular levels. Biophysical binding experiments and molecular dynamic simulations provide direct evidence that (-)-nalmefene and (+)-nalmefene bind to the hydrophobic cavity of myeloid differentiation protein 2 (MD-2) and behave similarly, which is primarily driven by hydrophobic interactions. The inhibition activity and the calculated binding free energies show that no enantioselectivity was observed during the interaction of nalmefene with MD-2 as well as the inhibition of TLR4 signaling. Interestingly, nalmefene showed ∼6 times better TLR4 antagonisic activity than naltrexone, indicating that the bioisosteric replacement with the methylene group is critical for the molecular recognition of nalmefene by MD-2. In all, this study provides molecular insight into the innate immune recognition of nalmefene, which demonstrates that nalmefene is non-enantioselectively sensed by MD-2.
Collapse
Affiliation(s)
- Xiaozheng Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Siru Wu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Jingwei Gao
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Tianshu Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China. and Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
44
|
Attitudes Towards and Management of Opioid-induced Hyperalgesia: A Survey of Chronic Pain Practitioners. Clin J Pain 2021; 36:359-364. [PMID: 32028382 DOI: 10.1097/ajp.0000000000000814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Opioid-induced hyperalgesia (OIH) is a phenomenon whereby opioids increase patients' pain sensitivity, complicating their use in analgesia. We explored practitioners' attitudes towards, and knowledge concerning diagnosis, risk factors, and treatment of OIH. MATERIALS AND METHODS We administered an 18-item cross-sectional survey to 850 clinicians that managed chronic pain with opioid therapy. RESULTS The survey response rate was 37% (318/850). Most respondents (240/318, 76%) reported they had observed patients with OIH in their practice, of which 38% (84/222) reported OIH affected >5% of their chronic pain patients. The majority (133/222, 60%) indicated that OIH could result from any dose of opioid therapy. The most commonly endorsed chronic pain conditions associated with the development of OIH were fibromyalgia (109/216, 51%) and low back pain (91/216, 42%), while 42% (91/216) indicated that no individual chronic pain condition was associated with greater risk of OIH. The most commonly endorsed opioids associated with the development of OIH were oxycodone (94/216, 44%), fentanyl (86/216, 40%), and morphine (84/216, 39%); 27% (59/216) endorsed that no specific opioid was more likely to result in OIH. Respondents commonly managed OIH by opioid dose reduction (147/216, 68%), administering a nonopioid adjuvant (133/216, 62%), or discontinuing opioids (95/216, 44%). DISCUSSION Most clinicians agreed that OIH is a complication of opioid therapy, but were divided regarding the prevalence of OIH, etiological factors, and optimal management.
Collapse
|
45
|
Tadjalli A, Seven YB, Sharma A, McCurdy CR, Bolser DC, Levitt ES, Mitchell GS. Acute morphine blocks spinal respiratory motor plasticity via long-latency mechanisms that require toll-like receptor 4 signalling. J Physiol 2021; 599:3771-3797. [PMID: 34142718 DOI: 10.1113/jp281362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/15/2021] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS While respiratory complications following opioid use are mainly mediated via activation of mu opioid receptors, long-latency off-target signalling via innate immune toll-like receptor 4 (TLR4) may impair other essential elements of breathing control such as respiratory motor plasticity. In adult rats, pre-treatment with a single dose of morphine blocked long-term facilitation (LTF) of phrenic motor output via a long-latency TLR4-dependent mechanism. In the phrenic motor nucleus, morphine triggered TLR4-dependent activation of microglial p38 MAPK - a key enzyme that orchestrates inflammatory signalling and is known to undermine phrenic LTF. Morphine-induced LTF loss may destabilize breathing, potentially contributing to respiratory side effects. Therefore, we suggest minimizing TLR-4 signalling may improve breathing stability during opioid therapy. ABSTRACT Opioid-induced respiratory dysfunction is a significant public health burden. While respiratory effects are mediated via mu opioid receptors, long-latency off-target opioid signalling through innate immune toll-like receptor 4 (TLR4) may modulate essential elements of breathing control, particularly respiratory motor plasticity. Plasticity in respiratory motor circuits contributes to the preservation of breathing in the face of destabilizing influences. For example, respiratory long-term facilitation (LTF), a well-studied model of respiratory motor plasticity triggered by acute intermittent hypoxia, promotes breathing stability by increasing respiratory motor drive to breathing muscles. Some forms of respiratory LTF are exquisitely sensitive to inflammation and are abolished by even a mild inflammation triggered by TLR4 activation (e.g. via systemic lipopolysaccharides). Since opioids induce inflammation and TLR4 activation, we hypothesized that opioids would abolish LTF through a TLR4-dependent mechanism. In adult Sprague Dawley rats, pre-treatment with a single systemic injection of the prototypical opioid agonist morphine blocks LTF expression several hours later in the phrenic motor system - the motor pool driving diaphragm muscle contractions. Morphine blocked phrenic LTF via TLR4-dependent mechanisms because pre-treatment with (+)-naloxone - the opioid inactive stereoisomer and novel small molecule TLR4 inhibitor - prevented impairment of phrenic LTF in morphine-treated rats. Morphine triggered TLR4-dependent activation of microglial p38 MAPK within the phrenic motor system - a key enzyme that orchestrates inflammatory signalling and undermines phrenic LTF. Morphine-induced LTF loss may destabilize breathing, potentially contributing to respiratory side effects. We suggest minimizing TLR-4 signalling may improve breathing stability during opioid therapy by restoring endogenous mechanisms of plasticity within respiratory motor circuits.
Collapse
Affiliation(s)
- Arash Tadjalli
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Yasin B Seven
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, University of Florida, Gainesville, FL, USA
| | | | - Donald C Bolser
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.,Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Erica S Levitt
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.,Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA.,Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
46
|
Warfield AE, Prather JF, Todd WD. Systems and Circuits Linking Chronic Pain and Circadian Rhythms. Front Neurosci 2021; 15:705173. [PMID: 34276301 PMCID: PMC8284721 DOI: 10.3389/fnins.2021.705173] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Research over the last 20 years regarding the link between circadian rhythms and chronic pain pathology has suggested interconnected mechanisms that are not fully understood. Strong evidence for a bidirectional relationship between circadian function and pain has been revealed through inflammatory and immune studies as well as neuropathic ones. However, one limitation of many of these studies is a focus on only a few molecules or cell types, often within only one region of the brain or spinal cord, rather than systems-level interactions. To address this, our review will examine the circadian system as a whole, from the intracellular genetic machinery that controls its timing mechanism to its input and output circuits, and how chronic pain, whether inflammatory or neuropathic, may mediate or be driven by changes in these processes. We will investigate how rhythms of circadian clock gene expression and behavior, immune cells, cytokines, chemokines, intracellular signaling, and glial cells affect and are affected by chronic pain in animal models and human pathologies. We will also discuss key areas in both circadian rhythms and chronic pain that are sexually dimorphic. Understanding the overlapping mechanisms and complex interplay between pain and circadian mediators, the various nuclei they affect, and how they differ between sexes, will be crucial to move forward in developing treatments for chronic pain and for determining how and when they will achieve their maximum efficacy.
Collapse
Affiliation(s)
| | | | - William D. Todd
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
47
|
Wang T, Zhu X, Yi H, Gu J, Liu S, Izenwasser S, Lemmon VP, Roy S, Hao S. Viral vector-mediated gene therapy for opioid use disorders. Exp Neurol 2021; 341:113710. [PMID: 33781732 DOI: 10.1016/j.expneurol.2021.113710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/26/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
Chronic exposure to opioids typically results in adverse consequences. Opioid use disorder (OUD) is a disease of the CNS with behavioral, psychological, neurobiological, and medical manifestations. OUD induces a variety of changes of neurotransmitters/neuropeptides in the nervous system. Existing pharmacotherapy, such as opioid maintenance therapy (OMT) is the mainstay for the treatment of OUD, however, current opioid replacement therapy is far from effective for the majority of patients. Pharmacological therapy for OUD has been challenging for many reasons including debilitating side-effects. Therefore, developing an effective, non-pharmacological approach would be a critical advancement in improving and expanding treatment for OUD. Viral vector mediated gene therapy provides a potential new approach for treating opioid abused patients. Gene therapy can supply targeting gene products directly linked to the mechanisms of OUD to restore neurotransmitter and/or neuropeptides imbalance, and avoid the off-target effects of systemic administration of drugs. The most commonly used viral vectors in rodent studies of treatment of opioid-used disorder are based on recombinant adenovirus (AV), adeno-associated virus (AAV), lentiviral (LV) vectors, and herpes simplex virus (HSV) vectors. In this review, we will focus on the recent progress of viral vector mediated gene therapy in OUD, especially morphine tolerance and withdrawal.
Collapse
Affiliation(s)
- Tao Wang
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Xun Zhu
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Hyun Yi
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Jun Gu
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Shue Liu
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Sari Izenwasser
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Vance P Lemmon
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Shuanglin Hao
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America.
| |
Collapse
|
48
|
Chen Z, Zhijie C, Yuting Z, Chan L, Shilin X, Qichun Z, Jinying O, Jing L, Chaohua L, Zhixian M. The Ameliorative Effects of Isorhynchophylline on Morphine Dependence Are Mediated Through the Microbiota-Gut-Brain Axis. Front Pharmacol 2021; 12:526923. [PMID: 34168553 PMCID: PMC8218633 DOI: 10.3389/fphar.2021.526923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 02/17/2021] [Indexed: 01/04/2023] Open
Abstract
Morphine abuse is a global public health problem. Increasing evidence has shown that gut microbiota dysbiosis plays an important role in several central nervous system diseases. However, whether there is an association between gut microbiota and morphine dependence remains unclear. In this study, the effects of isorhynchophylline on morphine dependence were evaluated based on the microbiota-gut-brain axis (MGBA). The results showed that isorhynchophylline could reverse the changes in alpha and beta diversity, composition, and richness of the intestinal flora occurring in morphine-dependent zebrafish, as well as the morphine-induced changes in the expression of MGBA-related genes in BV2 cells and the brain and intestine of zebrafish. Based on the results, we then used antibiotics to evaluate whether disrupting the gut microbiota would affect morphine addiction in zebrafish. The results showed that the antibiotic-induced intestinal floral imbalance changed the behavior of morphine-dependent zebrafish, the characteristics of the zebrafish intestinal flora, and the expression of MGBA-related genes in the zebrafish brain and intestine. Importantly, we also show that, following antibiotic administration, the ameliorative effects of isorhynchophylline on morphine addiction were lost. Together, our results indicate that the gut microbiota interacts with the brain, and dysbiosis of the intestinal flora may affect the efficacy of isorhynchophylline in the body. Our findings provide a novel framework for understanding the mechanisms of morphine addiction through the MGBA and may provide new therapeutic strategies for the use of Chinese medicines in the prevention of drug addiction.
Collapse
Affiliation(s)
- Zhu Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chen Zhijie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhou Yuting
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Li Chan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiao Shilin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zhou Qichun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ou Jinying
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Li Jing
- Central Laboratory, Southern Medical University, Guangzhou, China
| | - Luo Chaohua
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Mo Zhixian
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
49
|
Arcuri E, Mercadante S, Santoni A. Immunity and pain: is it time for the birth of immunoalgology? Minerva Anestesiol 2021; 87:845-847. [PMID: 34036770 DOI: 10.23736/s0375-9393.21.15713-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Sebastiano Mercadante
- Main Regional Center of Supportive/Palliative Care, La Maddalena Cancer Center, Palermo, Italy
| | | |
Collapse
|
50
|
Koob GF. Drug Addiction: Hyperkatifeia/Negative Reinforcement as a Framework for Medications Development. Pharmacol Rev 2021; 73:163-201. [PMID: 33318153 PMCID: PMC7770492 DOI: 10.1124/pharmrev.120.000083] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Compulsive drug seeking that is associated with addiction is hypothesized to follow a heuristic framework that involves three stages (binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation) and three domains of dysfunction (incentive salience/pathologic habits, negative emotional states, and executive function, respectively) via changes in the basal ganglia, extended amygdala/habenula, and frontal cortex, respectively. This review focuses on neurochemical/neurocircuitry dysregulations that contribute to hyperkatifeia, defined as a greater intensity of negative emotional/motivational signs and symptoms during withdrawal from drugs of abuse in the withdrawal/negative affect stage of the addiction cycle. Hyperkatifeia provides an additional source of motivation for compulsive drug seeking via negative reinforcement. Negative reinforcement reflects an increase in the probability of a response to remove an aversive stimulus or drug seeking to remove hyperkatifeia that is augmented by genetic/epigenetic vulnerability, environmental trauma, and psychiatric comorbidity. Neurobiological targets for hyperkatifeia in addiction involve neurocircuitry of the extended amygdala and its connections via within-system neuroadaptations in dopamine, enkephalin/endorphin opioid peptide, and γ-aminobutyric acid/glutamate systems and between-system neuroadaptations in prostress corticotropin-releasing factor, norepinephrine, glucocorticoid, dynorphin, hypocretin, and neuroimmune systems and antistress neuropeptide Y, nociceptin, endocannabinoid, and oxytocin systems. Such neurochemical/neurocircuitry dysregulations are hypothesized to mediate a negative hedonic set point that gradually gains allostatic load and shifts from a homeostatic hedonic state to an allostatic hedonic state. Based on preclinical studies and translational studies to date, medications and behavioral therapies that reset brain stress, antistress, and emotional pain systems and return them to homeostasis would be promising new targets for medication development. SIGNIFICANCE STATEMENT: The focus of this review is on neurochemical/neurocircuitry dysregulations that contribute to hyperkatifeia, defined as a greater intensity of negative emotional/motivational signs and symptoms during withdrawal from drugs of abuse in the withdrawal/negative affect stage of the drug addiction cycle and a driving force for negative reinforcement in addiction. Medications and behavioral therapies that reverse hyperkatifeia by resetting brain stress, antistress, and emotional pain systems and returning them to homeostasis would be promising new targets for medication development.
Collapse
Affiliation(s)
- George F Koob
- National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|