1
|
Liu Y, Takamatsu Y, Chen K, Ding Y, Oka Y, Sugiyama T, Maejima H. Skilled reaching training combined with pharmacological inhibition of histone deacetylases potentiated motor recovery after intracerebral hemorrhage in a synergic manner. Brain Res 2025; 1856:149569. [PMID: 40081517 DOI: 10.1016/j.brainres.2025.149569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/19/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Neuronal recovery after stroke is supported by the expression of genes involved in neuronal plasticity and neuroprotection. As an epigenetic modification, histone acetylation modulates gene expression elicited by neurorehabilitation. This study aimed to investigate the combined effects of skilled reaching training (SRT) and the pharmacological inhibition of histone deacetylase (HDAC) using sodium butyrate (NaB) on motor function recovery after intracerebral hemorrhage (ICH). Wistar rats were divided into five groups: Sham, ICH, ICH plus SRT (ICH + SRT), ICH plus NaB administration (ICH + NaB), and ICH plus SRT plus NaB administration (ICH + SRT + NaB). ICH surgery was conducted based on the microinjection of collagenase into the striatum near the internal capsule. NaB treatment (300 mg/kg injected intraperitoneally) and SRT were performed five days a week for four weeks after ICH surgery, followed by tissue collection. After the intervention, the ICH + SRT + NaB group exhibited significant improvement in skilled motor function, accompanied by a significant increase in neurotrophin 4 and synaptophysin expression in the ipsilateral motor cortex. This study showed that combination therapy of SRT and HDAC inhibition synergistically promoted motor recovery after ICH, accompanied by the upregulation of crucial genes for neuroplasticity. Taken together, this study indicates that HDAC inhibition could represent an enriched neuronal platform for neurorehabilitation after ICH.
Collapse
Affiliation(s)
- Yushan Liu
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Yasuyuki Takamatsu
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan; Department of Physical Therapy, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai 487-8501, Japan
| | - Ke Chen
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Yuan Ding
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Yuichiro Oka
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Takuya Sugiyama
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan
| | - Hiroshi Maejima
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
2
|
Seifert-Gorzycki J, Muñoz D, Lizarraga A, Iriarte L, Coceres V, Strobl-Mazzulla PH, de Miguel N. Targeting histone acetylation to overcome drug resistance in the parasite Trichomonas vaginalis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631743. [PMID: 39829914 PMCID: PMC11741363 DOI: 10.1101/2025.01.07.631743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Trichomoniasis, caused by the parasite Trichomonas vaginalis, is the most common non-viral sexually transmitted infection. Current treatment relies exclusively on 5-nitroimidazole drugs, with metronidazole (MTZ) as the primary option. However, the increasing prevalence of MTZ-resistant strains poses a significant challenge, particularly in the current absence of alternative therapies. Several studies have revealed that the development of metronidazole resistance in T. vaginalis is linked to genomic and transcriptional alterations. Given the role of epigenetic regulation in controlling gene expression, we investigated whether targeting histone deacetylase (HDAC) enzymes could influence drug resistance. Treatment of an MTZ-resistant strain (B7268) with the HDAC inhibitor, trichostatin A (TSA), in combination with MTZ enhanced drug sensitivity and induced significant genome-wide transcriptional changes, as revealed by RNA-seq analysis. To identify drug-related genes epigenetically silenced in the resistant strain but highly active in a sensitive strain, we compared the expression levels of the genes affected by TSA and MTZ treatment with their baseline expression profiles in both resistant and sensitive strains. This analysis identified 130 candidate genes differentially expressed in the sensitive strain NYH209, less expressed in the resistant B7268 strain, that exhibited significant expression changes upon TSA and MTZ treatment. Functional validation involved transfecting the B7268 strain with plasmids encoding four individual candidate genes: a thioredoxin reductase (TrxR), a cysteine synthase (CS), and two genes containing Myb domains (Myb5 and Myb6). Overexpression of three of these genes resulted in a marked reduction in MTZ resistance, demonstrating their role in modulating drug sensitivity. Our findings identified three novel genes that modulate drug resistance in T. vaginalis. This study reveals a previously unknown epigenetic mechanism underlying drug resistance and highlights the therapeutic potential of targeting epigenetic factors, such as HDACs, to overcome resistance and improve treatment efficacy.
Collapse
Affiliation(s)
- Julieta Seifert-Gorzycki
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Daniela Muñoz
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Ayelen Lizarraga
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Lucrecia Iriarte
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Verónica Coceres
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Pablo H. Strobl-Mazzulla
- Laboratorio de Biología del Desarrollo, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Natalia de Miguel
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| |
Collapse
|
3
|
Yao Q, Wei T, Qiu H, Cai Y, Yuan L, Liu X, Li X. Epigenetic Effects of Natural Products in Inflammatory Diseases: Recent Findings. Phytother Res 2025; 39:90-137. [PMID: 39513382 DOI: 10.1002/ptr.8364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/17/2024] [Accepted: 07/12/2024] [Indexed: 11/15/2024]
Abstract
Inflammation is an essential step for the etiology of multiple diseases. Clinically, due to the limitations of current drugs for the treatment of inflammatory diseases, such as serious side effects and expensive costs, it is urgent to explore novel mechanisms and medicines. Natural products have received extensive attention recently because of their multi-component and multi-target characteristics. Epigenetic modifications are crucial pathophysiological targets for developing innovative therapies for pharmacological interventions. Investigations examining how natural products improving inflammation through epigenetic modifications are emerging. This review state that natural products relieve inflammation via regulating the gene transcription levels through chromosome structure regulated by histone acetylation levels and the addition or deletion of methyl groups on DNA duplex. They could also exert anti-inflammatory effects by modulating the proteins in typical inflammatory signaling pathways by ubiquitin-related degradation and the effect of glycolysis derived free glycosyls. Studies on epigenetic modifications have the potential to facilitate the development of natural products as therapeutic agents. Future research directed at better understanding of how natural products modulate inflammatory processes through less studied epigenetic modifications including neddylation, SUMOylation, palmitoylation and lactylation, may provide new implications. Meanwhile, higher quality preclinical studies and more powerful clinical evidence are still needed to firmly establish the clinical efficacy of the natural products. Trial Registration: ClinicalTrials.gov Identifier: NCT01764204; ClinicalTrials.gov Identifier: NCT05845931; ClinicalTrials.gov Identifier: NCT04657926; ClinicalTrials.gov Identifier: NCT02330276.
Collapse
Affiliation(s)
- Qianyi Yao
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Tanjun Wei
- Department of Pharmacy, Dazhou Integrated TCM & Western Medical Hospital, Sichuan, China
| | - Hongmei Qiu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Yongqing Cai
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| |
Collapse
|
4
|
Dacomo L, La Vitola P, Brunelli L, Messa L, Micotti E, Artioli L, Sinopoli E, Cecutti G, Leva S, Gagliardi S, Pansarasa O, Carelli S, Guaita A, Pastorelli R, Forloni G, Cereda C, Balducci C. Transcriptomic and metabolomic changes might predict frailty in SAMP8 mice. Aging Cell 2024; 23:e14263. [PMID: 38961613 PMCID: PMC11464142 DOI: 10.1111/acel.14263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
Frailty is a geriatric, multi-dimensional syndrome that reflects multisystem physiological change and is a transversal measure of reduced resilience to negative events. It is characterized by weakness, frequent falls, cognitive decline, increased hospitalization and dead and represents a risk factor for the development of Alzheimer's disease (AD). The fact that frailty is recognized as a reversible condition encourages the identification of earlier biomarkers to timely predict and prevent its occurrence. SAMP8 (Senescence-Accelerated Mouse Prone-8) mice represent the most appropriate preclinical model to this aim and were used in this study to carry transcriptional and metabolic analyses in the brain and plasma, respectively, upon a characterization at cognitive, motor, structural, and neuropathological level at 2.5, 6, and 9 months of age. At 2.5 months, SAMP8 mice started displaying memory deficits, muscle weakness, and motor impairment. Functional alterations were associated with a neurodevelopmental deficiency associated with reduced neuronal density and glial cell loss. Through transcriptomics, we identified specific genetic signatures well distinguishing SAMP8 mice at 6 months, whereas plasma metabolomics allowed to segregate SAMP8 mice from SAMR1 already at 2.5 months of age by detecting constitutively lower levels of acylcarnitines and lipids in SAMP8 at all ages investigated correlating with functional deficits and neuropathological signs. Our findings suggest that specific genetic alterations at central level, as well as metabolomic changes in plasma, might allow to early assess a frail condition leading to dementia development, which paves the foundation for future investigation in a clinical setting.
Collapse
Affiliation(s)
- Letizia Dacomo
- Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Pietro La Vitola
- Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Laura Brunelli
- Department of Environmental Health SciencesLaboratory of Metabolites and Proteins in Translational Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Letizia Messa
- Department of ElectronicsInformation and Bioengineering (DEIB) Politecnico di MilanoMilanItaly
- Department of Pediatrics, Center of Functional Genomics and Rare DiseasesBuzzi Children's HospitalMilanItaly
| | - Edoardo Micotti
- Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Luisa Artioli
- Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Elena Sinopoli
- Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Greta Cecutti
- Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Susanna Leva
- Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Stella Gagliardi
- Molecular Biology and TranscriptomicsIRCCS Mondino FoundationPaviaItaly
| | - Orietta Pansarasa
- Cellular Model and NeuroepigeneticsIRCCS Mondino FoundationPaviaItaly
| | - Stephana Carelli
- Department of Pediatrics, Center of Functional Genomics and Rare DiseasesBuzzi Children's HospitalMilanItaly
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center “Romeo Ed Enrica Invernizzi”University of MilanMilanItaly
| | | | - Roberta Pastorelli
- Department of Environmental Health SciencesLaboratory of Metabolites and Proteins in Translational Research, Istituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Gianluigi Forloni
- Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Cristina Cereda
- Department of Pediatrics, Center of Functional Genomics and Rare DiseasesBuzzi Children's HospitalMilanItaly
| | - Claudia Balducci
- Department of NeuroscienceIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| |
Collapse
|
5
|
Singh AK, Rai A, Joshi I, Reddy DN, Guha R, Alka K, Shukla S, Rath SK, Nazir A, Clement JP, Kundu TK. Oral Administration of a Specific p300/CBP Lysine Acetyltransferase Activator Induces Synaptic Plasticity and Repairs Spinal Cord Injury. ACS Chem Neurosci 2024; 15:2741-2755. [PMID: 38795032 DOI: 10.1021/acschemneuro.4c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024] Open
Abstract
TTK21 is a small-molecule activator of p300/creb binding protein (CBP) acetyltransferase activity, which, upon conjugation with a glucose-derived carbon nanosphere (CSP), can efficiently cross the blood-brain barrier and activate histone acetylation in the brain. Its role in adult neurogenesis and retention of long-term spatial memory following intraperitoneal (IP) administration is well established. In this study, we successfully demonstrate that CSP-TTK21 can be effectively administered via oral gavage. Using a combination of molecular biology, microscopy, and electrophysiological techniques, we systematically investigate the comparative efficacy of oral administration of CSP and CSP-TTK21 in wild-type mice and evaluate their functional effects in comparison to intraperitoneal (IP) administration. Our findings indicate that CSP-TTK21, when administered orally, induces long-term potentiation in the hippocampus without significantly altering basal synaptic transmission, a response comparable to that achieved through IP injection. Remarkably, in a spinal cord injury model, oral administration of CSP-TTK21 exhibits efficacy equivalent to that of IP administration. Furthermore, our research demonstrates that oral delivery of CSP-TTK21 leads to improvements in motor function, histone acetylation dynamics, and increased expression of regeneration-associated genes (RAGs) in a spinal injury rat model, mirroring the effectiveness of IP administration. Importantly, no toxic and mutagenic effects of CSP-TTK21 are observed at a maximum tolerated dose of 1 g/kg in Sprague-Dawley (SD) rats via the oral route. Collectively, these results underscore the potential utility of CSP as an oral drug delivery system, particularly for targeting the neural system.
Collapse
Affiliation(s)
- Akash Kumar Singh
- Transcription and Disease Laboratory, Molecular Biology, and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560 064, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Amrish Rai
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ila Joshi
- Transcription and Disease Laboratory, Molecular Biology, and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560 064, India
| | - Damodara N Reddy
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajdeep Guha
- Division of Laboratory Animal Facility, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kumari Alka
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shubha Shukla
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srikanta Kumar Rath
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology, and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru 560 064, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
6
|
Cherednichenko AS, Mozdor PV, Oleynikova TK, Khatam PA, Nastueva FM, Kovalenkov KO, Serdinova AS, Osmaeva AK, Rovchak AI, Esikova YY, Shogenova MK, Akhmedov KI, Amirgamzaev MR, Batyrshina ER. A relationship between intestinal microbiome and epilepsy: potential treatment options for drug-resistant epilepsy. EPILEPSY AND PAROXYSMAL CONDITIONS 2024; 16:250-265. [DOI: 10.17749/2077-8333/epi.par.con.2024.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Background. According to the World Health Organization, about 50 million people worldwide suffer from epilepsy. Almost 1/3 of patients are diagnosed with drug-resistant epilepsy (DRE). A relationship between intestinal microbiome (IM) and the central nervous system carried out throughout life via bidirectional dynamic network exists. It has been evidenced that IM profile becomes altered in patients with DRE.Objective: to summarize the current literature data on the role for microbiome-gut-brain axis in DRE, as well as to assess an importance of IM composition changes as a prognostic marker for developing DRE.Material and methods. The authors conducted a search for publications in the electronic databases PubMed/MEDLINE and eLibrary, as well as Google Scholar search engine. The evaluation of the articles was carried out in accordance with the PRISMA recommendations. Based on the search, 4,158 publications were retrieved from PubMed/MEDLINE database, 173 – from eLibrary, and 1,100 publications found with Google Scholar. After the selection procedure, 121 studies were included in the review.Results. The review provides convincing evidence about a correlation between IM and DRE demonstrating overt differences in IM composition found in patients with epilepsy related to drug sensitivity. IM dysbiosis can be corrected by exogenous interventions such as ketogenic diet, probiotic treatment and fecal microbiota transplantation subsequently resulting in altered brain neurochemical signaling and, therefore, alleviating epileptic activity.Conclusion. A ketogenic diet, probiotics and antibiotics may have some potential to affect epilepsy by correcting IM dysbiosis, but the current studies provide no proper level of evidence. Future clinical multicenter trials should use standardized protocols and a larger-scale patient sample to provide more reliable evidence. Moreover, further fundamental investigations are required to elucidate potential mechanisms and therapeutic targets.
Collapse
|
7
|
Santini A, Tassinari E, Poeta E, Loi M, Ciani E, Trazzi S, Piccarducci R, Daniele S, Martini C, Pagliarani B, Tarozzi A, Bersani M, Spyrakis F, Danková D, Olsen CA, Soldati R, Tumiatti V, Montanari S, De Simone A, Milelli A. First in Class Dual Non-ATP-Competitive Glycogen Synthase Kinase 3β/Histone Deacetylase Inhibitors as a Potential Therapeutic to Treat Alzheimer's Disease. ACS Chem Neurosci 2024; 15:2099-2111. [PMID: 38747979 DOI: 10.1021/acschemneuro.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Despite recent FDA approvals, Alzheimer's disease (AD) still represents an unmet medical need. Among the different available therapeutic approaches, the development of multitarget molecules represents one of the most widely pursued. In this work, we present a second generation of dual ligands directed toward highly networked targets that are deeply involved in the development of the disease, namely, Histone Deacetylases (HDACs) and Glycogen Synthase Kinase 3β (GSK-3β). The synthesized compounds are highly potent GSK-3β, HDAC2, and HDAC6 inhibitors with IC50 values in the nanomolar range of concentrations. Among them, compound 4 inhibits histone H3 and tubulin acetylation at 0.1 μM concentration, blocks hyperphosphorylation of tau protein, and shows interesting immunomodulatory and neuroprotective properties. These features, together with its ability to cross the blood-brain barrier and its favorable physical-chemical properties, make compound 4 a promising hit for the development of innovative disease-modifying agents.
Collapse
Affiliation(s)
- Alan Santini
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Elisa Tassinari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Eleonora Poeta
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Science, Alma Mater Studiorum-University of Bologna, Piazza di Porta S. Donato, 2, 40126 Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Science, Alma Mater Studiorum-University of Bologna, Piazza di Porta S. Donato, 2, 40126 Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Science, Alma Mater Studiorum-University of Bologna, Piazza di Porta S. Donato, 2, 40126 Bologna, Italy
| | - Rebecca Piccarducci
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy
| | - Barbara Pagliarani
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Andrea Tarozzi
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Matteo Bersani
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Daniela Danková
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Roberto Soldati
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Vincenzo Tumiatti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Serena Montanari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Angela De Simone
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
8
|
Donoghue S, Wright J, Voss AK, Lockhart PJ, Amor DJ. The Mendelian disorders of chromatin machinery: Harnessing metabolic pathways and therapies for treatment. Mol Genet Metab 2024; 142:108360. [PMID: 38428378 DOI: 10.1016/j.ymgme.2024.108360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
The Mendelian disorders of chromatin machinery (MDCMs) represent a distinct subgroup of disorders that present with neurodevelopmental disability. The chromatin machinery regulates gene expression by a range of mechanisms, including by post-translational modification of histones, responding to histone marks, and remodelling nucleosomes. Some of the MDCMs that impact on histone modification may have potential therapeutic interventions. Two potential treatment strategies are to enhance the intracellular pool of metabolites that can act as substrates for histone modifiers and the use of medications that may inhibit or promote the modification of histone residues to influence gene expression. In this article we discuss the influence and potential treatments of histone modifications involving histone acetylation and histone methylation. Genomic technologies are facilitating earlier diagnosis of many Mendelian disorders, providing potential opportunities for early treatment from infancy. This has parallels with how inborn errors of metabolism have been afforded early treatment with newborn screening. Before this promise can be fulfilled, we require greater understanding of the biochemical fingerprint of these conditions, which may provide opportunities to supplement metabolites that can act as substrates for chromatin modifying enzymes. Importantly, understanding the metabolomic profile of affected individuals may also provide disorder-specific biomarkers that will be critical for demonstrating efficacy of treatment, as treatment response may not be able to be accurately assessed by clinical measures.
Collapse
Affiliation(s)
- Sarah Donoghue
- Murdoch Children's Research Institute, Parkville 3052, Australia; Department of Biochemical Genetics, Victorian Clinical Genetics Services, Parkville 3052, Australia; Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia.
| | - Jordan Wright
- Murdoch Children's Research Institute, Parkville 3052, Australia; Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - Anne K Voss
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville 3052, Australia
| | - Paul J Lockhart
- Murdoch Children's Research Institute, Parkville 3052, Australia; Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - David J Amor
- Murdoch Children's Research Institute, Parkville 3052, Australia; Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| |
Collapse
|
9
|
Lan Z, Tang X, Lu M, Hu Z, Tang Z. The role of short-chain fatty acids in central nervous system diseases: A bibliometric and visualized analysis with future directions. Heliyon 2024; 10:e26377. [PMID: 38434086 PMCID: PMC10906301 DOI: 10.1016/j.heliyon.2024.e26377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Background Short-chain fatty acids (SCFAs) are thought to play a key role in the microbe-gut-brain axis and involve in the pathogenesis of a variety of neurological diseases. This study aimed to identify research hotspots and evolution trends in SCFAs in central nervous diseases (CNS) and examine current research trends. Methods The bibliometric analysis was performed using CiteSpace, and the results were visualized via network maps. Results From 2002 to 2022, 480 publications in the database met the criteria. On the country level, China produced the highest number of publications, while the United States had the highest centrality. On the institutional level, University College Cork contributed to the most publications, and John F. Cryan from this university was the key researcher with considerable academic influence. The article, the role of short-chain fatty acids in microbiota-gut-brain, written by Boushra Dalile et al., in 2019 was the most cited article. Furthermore, the journal Nutrients had the maximum number of publications, while Plos One was the most cited journal. "Gut microbiome", "SCFAs", and "central nervous system" were the three most frequent keywords. Among them, SCFAs had the highest centrality. "Animal model" was the keyword with the highest burst strength, with the latest burst keywords being "social behavior", "pathogenesis", and "insulin sensitive". In addition, the research topics on SCFAs in CNS diseases from 2002 to 2022 mainly focused on following aspects: SCFAs plays a key role in microbe-gut-brain crosstalk; The classification and definition of SCFAs in the field of CNS; Several CNS diseases that are closely related to SCFAs research; Mechanism and translational studies of SCFAs in the CNS diseases. And the hotspots over the past 5 years have gradually increased the attention to the therapeutic potential of SCFAs in the CNS diseases. Conclusion The research of SCFAs in CNS diseases is attracting growing attention. However, there is a lack of cooperation between countries and institutions, and additional measures are required to promote cooperation. The current evidence for an association between SCFAs and CNS diseases is preliminary and more work is needed to pinpoint the precise mechanism. Moreover, large-scale clinical trials are needed in the future to define the therapeutic potential of SCFAs in CNS diseases.
Collapse
Affiliation(s)
- Ziwei Lan
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ming Lu
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, 410003, Hunan, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zhenchu Tang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
10
|
Gao J, Liu W, Liu J, Hao N, Pei J, Zhang L. The Role of Acetylation and Methylation of Rat Hippocampal Histone H3 in the Mechanism of Aluminum-Induced Neurotoxicity. Neurochem Res 2024; 49:441-452. [PMID: 37897558 DOI: 10.1007/s11064-023-04045-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/30/2023]
Abstract
Aluminum is a known neurotoxin and a major environmental contributor to neurodegenerative diseases such as Alzheimer's disease (AD). We uesd a subchronic aluminum chloride exposure model in offspring rats by continuously treating them with AlCl3 solution from the date of birth until day 90 in this research. Then evaluated the neurobehavioral changes in rats, observed the ultrastructural changes of hippocampal synapses and neurons, and examined the level of hippocampal acetylated histone H3 (H3ac), the activity and protein expression of hippocampal HAT1 and G9a, and the protein expression level of H3K9 dimethylation (H3K9me2). The findings demonstrated that aluminum-treated offspring rats had impaired learning and memory abilities as well as ultrastructural alterations in hippocampal synapses and neurons. The level of histone H3ac was decreased along with decreased protein expression and activity of HAT1, while level of H3K9me2 was increased along with increased protein expression and activity of G9a.
Collapse
Affiliation(s)
- Jie Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, Shenyang, 110034, Liaoning Province, P. R. China
| | - Wei Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, Shenyang, 110034, Liaoning Province, P. R. China
| | - Jiaqi Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, Shenyang, 110034, Liaoning Province, P. R. China
| | - Niping Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, Shenyang, 110034, Liaoning Province, P. R. China
| | - Jing Pei
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, Shenyang, 110034, Liaoning Province, P. R. China
| | - Lifeng Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Shenyang Medical College, Shenyang, 110034, Liaoning Province, P. R. China.
| |
Collapse
|
11
|
Du J, Liu N, Ma L, Liu R, Zuo D, Lan X, Yang J, Wei W, Peng X, Yu J. Antidepressant effect of the novel histone deacetylase-5 inhibitor T2943 in a chronic restraint stress mouse model. Biomed Pharmacother 2024; 171:116176. [PMID: 38242038 DOI: 10.1016/j.biopha.2024.116176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024] Open
Abstract
Depression is a prevalent and debilitating psychiatric illness. However, the antidepressant drugs currently prescribed are only effective in a limited group of patients. Histone modifications mediated by histone acetylation are considered to play an important role in the pathogenesis and treatment of depression. Recent studies have revealed that histone deacetylase inhibitors may be involved in the pathogenesis of depression and the underlying mechanism of the antidepressant therapeutic action. Here, we first conducted virtual screening of histone deacetylase-5 (HDAC5) inhibitors against HDAC5, a target closely related to depression, and identified compound T2943, further verifying its inhibitory effect on enzyme activities in vitro. After stereotaxic injection of T2943 into the hippocampus of mice, the antidepressant effect of T2943 was evaluated using behavioral experiments. We also used different proteomic and molecular biology analyses to determine and confirm that T2943 promoted histone 3 lysine 14 acetylation (H3K14ac) by inhibiting HDAC5 activity. Following the overexpression of adenoviral HDAC5 in the hippocampus of mice and subsequent behavioral analyses, we confirmed that T2943 exerts antidepressant effects by inhibiting HDAC5 activity. Our findings highlight the efficacy of targeting HDAC5 to treat depression and demonstrate the potential of using T2943 as an antidepressant.
Collapse
Affiliation(s)
- Juan Du
- College of Basic Medicine, Ningxia Medical University, Yin Chuan, China; Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yin Chuan, China; Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yin Chuan, China
| | - Ning Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yin Chuan, China
| | - Lin Ma
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yin Chuan, China
| | - Ruyun Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yin Chuan, China
| | - Di Zuo
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yin Chuan, China
| | - Xiaobing Lan
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yin Chuan, China
| | - Jiamei Yang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yin Chuan, China
| | - Wei Wei
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yin Chuan, China
| | - Xiaodong Peng
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yin Chuan, China.
| | - Jianqiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yin Chuan, China.
| |
Collapse
|
12
|
Wahi A, Jain P, Sinhari A, Jadhav HR. Progress in discovery and development of natural inhibitors of histone deacetylases (HDACs) as anti-cancer agents. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:675-702. [PMID: 37615708 DOI: 10.1007/s00210-023-02674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
The study of epigenetic translational modifications had drawn great interest for the last few decades. These processes play a vital role in many diseases and cancer is one of them. Histone acetyltransferase (HAT) and histone deacetylases (HDACs) are key enzymes involved in the acetylation and deacetylation of histones and ultimately in post-translational modifications. Cancer frequently exhibits epigenetic changes, particularly disruption in the expression and activity of HDACs. It includes the capacity to regulate proliferative signalling, circumvent growth inhibitors, escape cell death, enable replicative immortality, promote angiogenesis, stimulate invasion and metastasis, prevent immunological destruction, and genomic instability. The majority of tumours develop and spread as a result of HDAC dysregulation. As a result, HDAC inhibitors (HDACis) were developed, and they today stand as a very promising therapeutic approach. One of the most well-known and efficient therapies for practically all cancer types is chemotherapy. However, the efficiency and safety of treatment are constrained by higher toxicity. The same has been observed with the synthetic HDACi. Natural products, owing to many advantages over synthetic compounds for cancer treatment have always been a choice for therapy. Hence, naturally available molecules are of particular interest for HDAC inhibition and HDAC has drawn the attention of the research fraternity due to their potential to offer a diverse array of chemical structures and bioactive compounds. This diversity opens up new avenues for exploring less toxic HDAC inhibitors to reduce side effects associated with conventional synthetic inhibitors. The review presents comprehensive details on natural product HDACi, their mechanism of action and their biological effects. Moreover, this review provides a brief discussion on the structure activity relationship of selected natural HDAC inhibitors and their analogues which can guide future research to discover selective, more potent HDACi with minimal toxicity.
Collapse
Affiliation(s)
- Abhishek Wahi
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, DPSRU, New Delhi, 110017, India
| | - Priti Jain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, DPSRU, New Delhi, 110017, India.
| | - Apurba Sinhari
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333031, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333031, India
| |
Collapse
|
13
|
Geraci J, Bhargava R, Qorri B, Leonchyk P, Cook D, Cook M, Sie F, Pani L. Machine learning hypothesis-generation for patient stratification and target discovery in rare disease: our experience with Open Science in ALS. Front Comput Neurosci 2024; 17:1199736. [PMID: 38260713 PMCID: PMC10801647 DOI: 10.3389/fncom.2023.1199736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/20/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Advances in machine learning (ML) methodologies, combined with multidisciplinary collaborations across biological and physical sciences, has the potential to propel drug discovery and development. Open Science fosters this collaboration by releasing datasets and methods into the public space; however, further education and widespread acceptance and adoption of Open Science approaches are necessary to tackle the plethora of known disease states. Motivation In addition to providing much needed insights into potential therapeutic protein targets, we also aim to demonstrate that small patient datasets have the potential to provide insights that usually require many samples (>5,000). There are many such datasets available and novel advancements in ML can provide valuable insights from these patient datasets. Problem statement Using a public dataset made available by patient advocacy group AnswerALS and a multidisciplinary Open Science approach with a systems biology augmented ML technology, we aim to validate previously reported drug targets in ALS and provide novel insights about ALS subpopulations and potential drug targets using a unique combination of ML methods and graph theory. Methodology We use NetraAI to generate hypotheses about specific patient subpopulations, which were then refined and validated through a combination of ML techniques, systems biology methods, and expert input. Results We extracted 8 target classes, each comprising of several genes that shed light into ALS pathophysiology and represent new avenues for treatment. These target classes are broadly categorized as inflammation, epigenetic, heat shock, neuromuscular junction, autophagy, apoptosis, axonal transport, and excitotoxicity. These findings are not mutually exclusive, and instead represent a systematic view of ALS pathophysiology. Based on these findings, we suggest that simultaneous targeting of ALS has the potential to mitigate ALS progression, with the plausibility of maintaining and sustaining an improved quality of life (QoL) for ALS patients. Even further, we identified subpopulations based on disease onset. Conclusion In the spirit of Open Science, this work aims to bridge the knowledge gap in ALS pathophysiology to aid in diagnostic, prognostic, and therapeutic strategies and pave the way for the development of personalized treatments tailored to the individual's needs.
Collapse
Affiliation(s)
- Joseph Geraci
- NetraMark Corp, Toronto, ON, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
- Centre for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Arthur C. Clarke Center for Human Imagination, School of Physical Sciences, University of California San Diego, San Diego, CA, United States
| | - Ravi Bhargava
- Department of Biomedical and Molecular Science, Queens University, Kingston, ON, Canada
- Science and Research, Roche Integrated Informatics, F. Hoffmann La-Roche, Toronto, ON, Canada
| | | | | | - Douglas Cook
- NetraMark Corp, Toronto, ON, Canada
- Department of Surgery, Queen's University, Kingston, ON, Canada
| | - Moses Cook
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Fanny Sie
- Science and Research, Roche Integrated Informatics, F. Hoffmann La-Roche, Toronto, ON, Canada
| | - Luca Pani
- NetraMark Corp, Toronto, ON, Canada
- Department of Psychiatry and Behavioral Sciences, Leonard M. Miller School of Medicine, University of Miami, Coral Gables, FL, United States
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
14
|
Somsakeesit LO, Senawong T, Senawong G, Kumboonma P, Samankul A, Namwan N, Yenjai C, Phaosiri C. Evaluation and molecular docking study of two flavonoids from Oroxylum indicum (L.) Kurz and their semi-synthetic derivatives as histone deacetylase inhibitors. J Nat Med 2024; 78:236-245. [PMID: 37991632 DOI: 10.1007/s11418-023-01758-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/16/2023] [Indexed: 11/23/2023]
Abstract
Chrysin (5,7-dihydroxyflavone, 6) and galangin 3-methyl ether (5,7-dihydroxy-3-methoxy flavone, 7) were obtained from the leaves of Oroxylum indicum (L.) Kurz in 4% and 6% yields, respectively. Both compounds could act as pan-histone deacetylase (HDAC) inhibitors. Structural modification of these lead compounds provided thirty-eight derivatives which were further tested as HDAC inhibitors. Compounds 6b, 6c, and 6q were the most potent derivatives with the IC50 values of 97.29 ± 0.63 μM, 91.71 ± 0.27 μM, and 96.87 ± 0.45 µM, respectively. Molecular docking study indicated the selectivity of these three compounds toward HDAC8 and the test against HDAC8 showed IC50 values in the same micromolar range. All three compounds were further evaluated for the anti-proliferative activity against HeLa and A549 cell lines. Compound 6q exhibited the best activity against HeLa cell line with the IC50 value of 13.91 ± 0.34 μM. Moreover, 6q was able to increase the acetylation level of histone H3. These promising HDAC inhibitors deserve investigation as chemotherapeutic agents for treating cancer.
Collapse
Affiliation(s)
- La-Or Somsakeesit
- Natural Products Research Unit, Department of Chemistry, Faculty of Science, Center of Excellence for Innovation in Chemistry, Ministry of Higher Education, Science, Research, and Innovation (Implementation Unit-IU, Khon Kaen University), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thanaset Senawong
- Natural Products Research Unit, Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Gulsiri Senawong
- Natural Products Research Unit, Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Pakit Kumboonma
- Department of Applied Chemistry, Faculty of Science and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima, 30000, Thailand
| | - Arunta Samankul
- Natural Products Research Unit, Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Narissara Namwan
- Natural Products Research Unit, Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chavi Yenjai
- Natural Products Research Unit, Department of Chemistry, Faculty of Science, Center of Excellence for Innovation in Chemistry, Ministry of Higher Education, Science, Research, and Innovation (Implementation Unit-IU, Khon Kaen University), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chanokbhorn Phaosiri
- Natural Products Research Unit, Department of Chemistry, Faculty of Science, Center of Excellence for Innovation in Chemistry, Ministry of Higher Education, Science, Research, and Innovation (Implementation Unit-IU, Khon Kaen University), Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
15
|
Villoria-González A, Zierfuss B, Parzer P, Heuböck E, Zujovic V, Waidhofer-Söllner P, Ponleitner M, Rommer P, Göpfert J, Forss-Petter S, Berger J, Weinhofer I. Efficacy of HDAC Inhibitors in Driving Peroxisomal β-Oxidation and Immune Responses in Human Macrophages: Implications for Neuroinflammatory Disorders. Biomolecules 2023; 13:1696. [PMID: 38136568 PMCID: PMC10741867 DOI: 10.3390/biom13121696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Elevated levels of saturated very long-chain fatty acids (VLCFAs) in cell membranes and secreted lipoparticles have been associated with neurotoxicity and, therefore, require tight regulation. Excessive VLCFAs are imported into peroxisomes for degradation by β-oxidation. Impaired VLCFA catabolism due to primary or secondary peroxisomal alterations is featured in neurodegenerative and neuroinflammatory disorders such as X-linked adrenoleukodystrophy and multiple sclerosis (MS). Here, we identified that healthy human macrophages upregulate the peroxisomal genes involved in β-oxidation during myelin phagocytosis and pro-inflammatory activation, and that this response is impaired in peripheral macrophages and phagocytes in brain white matter lesions in MS patients. The pharmacological targeting of VLCFA metabolism and peroxisomes in innate immune cells could be favorable in the context of neuroinflammation and neurodegeneration. We previously identified the epigenetic histone deacetylase (HDAC) inhibitors entinostat and vorinostat to enhance VLCFA degradation and pro-regenerative macrophage polarization. However, adverse side effects currently limit their use in chronic neuroinflammation. Here, we focused on tefinostat, a monocyte/macrophage-selective HDAC inhibitor that has shown reduced toxicity in clinical trials. By using a gene expression analysis, peroxisomal β-oxidation assay, and live imaging of primary human macrophages, we assessed the efficacy of tefinostat in modulating VLCFA metabolism, phagocytosis, chemotaxis, and immune function. Our results revealed the significant stimulation of VLCFA degradation with the upregulation of genes involved in peroxisomal β-oxidation and interference with immune cell recruitment; however, tefinostat was less potent than the class I HDAC-selective inhibitor entinostat in promoting a regenerative macrophage phenotype. Further research is needed to fully explore the potential of class I HDAC inhibition and downstream targets in the context of neuroinflammation.
Collapse
Affiliation(s)
- Andrea Villoria-González
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
| | - Bettina Zierfuss
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
- Department of Neuroscience, Centre de Recherche du CHUM, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Patricia Parzer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
| | - Elisabeth Heuböck
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
| | - Violetta Zujovic
- Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière—University Hospital, Sorbonne University, DMU Neuroscience 6, 75013 Paris, France
| | - Petra Waidhofer-Söllner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Ponleitner
- Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Paulus Rommer
- Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Jens Göpfert
- Department of Pharma and Biotech, NMI Natural and Medical Sciences Institute, University of Tübingen, 72770 Reutlingen, Germany
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
| | - Isabelle Weinhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria; (A.V.-G.)
| |
Collapse
|
16
|
Mir FA, Amanullah A, Jain BP, Hyderi Z, Gautam A. Neuroepigenetics of ageing and neurodegeneration-associated dementia: An updated review. Ageing Res Rev 2023; 91:102067. [PMID: 37689143 DOI: 10.1016/j.arr.2023.102067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Gene expression is tremendously altered in the brain during memory acquisition, recall, and forgetfulness. However, non-genetic factors, including environmental elements, epigenetic changes, and lifestyle, have grabbed significant attention in recent years regarding the etiology of neurodegenerative diseases (NDD) and age-associated dementia. Epigenetic modifications are essential in regulating gene expression in all living organisms in a DNA sequence-independent manner. The genes implicated in ageing and NDD-related memory disorders are epigenetically regulated by processes such as DNA methylation, histone acetylation as well as messenger RNA editing machinery. The physiological and optimal state of the epigenome, especially within the CNS of humans, plays an intricate role in helping us adjust to the changing environment, and alterations in it cause many brain disorders, but the mechanisms behind it still need to be well understood. When fully understood, these epigenetic landscapes could act as vital targets for pharmacogenetic rescue strategies for treating several diseases, including neurodegeneration- and age-induced dementia. Keeping this objective in mind, this updated review summarises the epigenetic changes associated with age and neurodegeneration-associated dementia.
Collapse
Affiliation(s)
- Fayaz Ahmad Mir
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Zeeshan Hyderi
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
17
|
Okamura M, Inoue T, Takamatsu Y, Maejima H. Pharmacological inhibition of histone deacetylases ameliorates cognitive impairment after intracerebral hemorrhage with epigenetic alteration in the hippocampus. J Stroke Cerebrovasc Dis 2023; 32:107275. [PMID: 37523880 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
OBJECTIVES Post-stroke cognitive impairment (PSCI) interferes with neurorehabilitation in patients with stroke. Epigenetic regulation of the hippocampus has been targeted to ameliorate cognitive function. In particular, the acetylation level of histones is modulated by exercise, a potent therapy for patients with stroke. MATERIALS AND METHODS We examined the effects of exercise and pharmacological inhibition of histone deacetylase (HDAC) using sodium butyrate (NaB) on cognitive function and epigenetic factors in the hippocampus after intracerebral hemorrhage (ICH) to seek beneficial neuronal conditioning against PSCI. Forty rats were randomly assigned to five groups: sham, control, NaB, exercise, and NaB plus exercise groups (n=8 in each group). Except for those in the sham group, all rats underwent stereotaxic ICH surgery with a microinjection of collagenase solution. Intraperitoneal administration of NaB (300 mg/kg) and treadmill exercise (11 m/min for 30 min) were conducted for approximately 4 weeks starting 3 days post-surgery. RESULTS ICH reduced cognitive function, as detected by the object location test, accompanied by enhanced activity of HDACs. Although exercise did not modulate HDAC activity or cognitive function, repetitive NaB administration increased HDAC activity and ameliorated cognitive impairment induced by ICH. CONCLUSIONS This study suggests that pharmacological treatment with an HDAC inhibitor could potentially present an enriched epigenetic platform in the hippocampus and ameliorate PSCI for neurorehabilitation following ICH.
Collapse
Affiliation(s)
- Misato Okamura
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan
| | - Takahiro Inoue
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan
| | - Yasuyuki Takamatsu
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan
| | - Hiroshi Maejima
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
18
|
Meng Y, Du J, Liu N, Qiang Y, Xiao L, Lan X, Ma L, Yang J, Yu J, Lu G. Epigenetic modulation: Research progress on histone acetylation levels in major depressive disorders. J Drug Target 2023; 31:142-151. [PMID: 36112185 DOI: 10.1080/1061186x.2022.2125978] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Depression is a serious mental illness and a prevalent condition with multiple aetiologies. The impact of the current therapeutic strategies is limited and the pathogenesis of the illness is not well understood. According to previous studies, depression onset is influenced by a variety of environmental and genetic factors, including chronic stress, aberrant changes in gene expression, and hereditary predisposition. Transcriptional regulation in eukaryotes is closely related to chromosome packing and is controlled by histone post-translational modifications. The development of new antidepressants may proceed along a new path with medications that target epigenetics. Histone deacetylase inhibitors (HDACis) are a class of compounds that interfere with the function of histone deacetylases (HDACs). This review explores the relationship between HDACs and depression and focuses on the current knowledge on their regulatory mechanism in depression and the potential therapeutic use of HDACis with antidepressant efficacy in preclinical research. Future research on inhibitors is also proposed and discussed.
Collapse
Affiliation(s)
- Yuan Meng
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China.,Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Juan Du
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China.,Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Ning Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Yuanyuan Qiang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China
| | - Lifei Xiao
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China
| | - Xiaobing Lan
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Lin Ma
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Jiamei Yang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Jianqiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Guangyuan Lu
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China
| |
Collapse
|
19
|
Pal D, Sahu P, Mishra AK, Hagelgans A, Sukocheva O. Histone Deacetylase Inhibitors as Cognitive Enhancers and Modifiers of Mood and Behavior. Curr Drug Targets 2023; 24:728-750. [PMID: 36475351 DOI: 10.2174/1389450124666221207090108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Epigenetic regulation of gene signalling is one of the fundamental molecular mechanisms for the generation and maintenance of cellular memory. Histone acetylation is a common epigenetic mechanism associated with increased gene transcription in the central nervous system (CNS). Stimulation of gene transcription by histone acetylation is important for the development of CNS-based long-term memory. Histone acetylation is a target for cognitive enhancement via the application of histone deacetylase (HDAC) inhibitors. The promising potential of HDAC inhibitors has been observed in the treatment of several neurodevelopmental and neurodegenerative diseases. OBJECTIVE This study assessed the current state of HDAC inhibition as an approach to cognitive enhancement and treatment of neurodegenerative diseases. Our analysis provides insights into the mechanism of action of HDAC inhibitors, associated epigenetic priming, and describes the therapeutic success and potential complications after unsupervised use of the inhibitors. RESULTS AND CONCLUSION Several chromatin-modifying enzymes play key roles in the regulation of cognitive processes. The importance of HDAC signaling in the brain is highlighted in this review. Recent advancements in the field of cognitive epigenetics are supported by the successful development of various HDAC inhibitors, demonstrating effective treatment of mood-associated disorders. The current review discusses the therapeutic potential of HDAC inhibition and observed complications after mood and cognitive enhancement therapies.
Collapse
Affiliation(s)
- Dilipkumar Pal
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495 009, India
| | - Pooja Sahu
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495 009, India
| | | | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Olga Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park, 5042, SA, Australia
| |
Collapse
|
20
|
Raval M, Mishra S, Tiwari AK. Epigenetic regulons in Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:185-247. [DOI: 10.1016/bs.pmbts.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
21
|
Khan SS, Khatik GL, Datusalia AK. Strategies for Treatment of Disease-Associated Dementia Beyond Alzheimer's Disease: An Update. Curr Neuropharmacol 2023; 21:309-339. [PMID: 35410602 PMCID: PMC10190146 DOI: 10.2174/1570159x20666220411083922] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/27/2022] [Accepted: 04/03/2022] [Indexed: 11/22/2022] Open
Abstract
Memory, cognition, dementia, and neurodegeneration are complexly interlinked processes with various mechanistic pathways, leading to a range of clinical outcomes. They are strongly associated with pathological conditions like Alzheimer's disease, Parkinson's disease, schizophrenia, and stroke and are a growing concern for their timely diagnosis and management. Several cognitionenhancing interventions for management include non-pharmacological interventions like diet, exercise, and physical activity, while pharmacological interventions include medicinal agents, herbal agents, and nutritional supplements. This review critically analyzed and discussed the currently available agents under different drug development phases designed to target the molecular targets, including cholinergic receptor, glutamatergic system, GABAergic targets, glycine site, serotonergic targets, histamine receptors, etc. Understanding memory formation and pathways involved therein aids in opening the new gateways to treating cognitive disorders. However, clinical studies suggest that there is still a dearth of knowledge about the pathological mechanism involved in neurological conditions, making the dropouts of agents from the initial phases of the clinical trial. Hence, a better understanding of the disease biology, mode of drug action, and interlinked mechanistic pathways at a molecular level is required.
Collapse
Affiliation(s)
- Sabiya Samim Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
| | - Gopal L. Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
| | - Ashok K. Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
| |
Collapse
|
22
|
Actin-microtubule cytoskeletal interplay mediated by MRTF-A/SRF signaling promotes dilated cardiomyopathy caused by LMNA mutations. Nat Commun 2022; 13:7886. [PMID: 36550158 PMCID: PMC9780334 DOI: 10.1038/s41467-022-35639-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Mutations in the lamin A/C gene (LMNA) cause dilated cardiomyopathy associated with increased activity of ERK1/2 in the heart. We recently showed that ERK1/2 phosphorylates cofilin-1 on threonine 25 (phospho(T25)-cofilin-1) that in turn disassembles the actin cytoskeleton. Here, we show that in muscle cells carrying a cardiomyopathy-causing LMNA mutation, phospho(T25)-cofilin-1 binds to myocardin-related transcription factor A (MRTF-A) in the cytoplasm, thus preventing the stimulation of serum response factor (SRF) in the nucleus. Inhibiting the MRTF-A/SRF axis leads to decreased α-tubulin acetylation by reducing the expression of ATAT1 gene encoding α-tubulin acetyltransferase 1. Hence, tubulin acetylation is decreased in cardiomyocytes derived from male patients with LMNA mutations and in heart and isolated cardiomyocytes from Lmnap.H222P/H222P male mice. In Atat1 knockout mice, deficient for acetylated α-tubulin, we observe left ventricular dilation and mislocalization of Connexin 43 (Cx43) in heart. Increasing α-tubulin acetylation levels in Lmnap.H222P/H222P mice with tubastatin A treatment restores the proper localization of Cx43 and improves cardiac function. In summary, we show for the first time an actin-microtubule cytoskeletal interplay mediated by cofilin-1 and MRTF-A/SRF, promoting the dilated cardiomyopathy caused by LMNA mutations. Our findings suggest that modulating α-tubulin acetylation levels is a feasible strategy for improving cardiac function.
Collapse
|
23
|
Wang Y, Meng W, Liu Z, An Q, Hu X. Cognitive impairment in psychiatric diseases: Biomarkers of diagnosis, treatment, and prevention. Front Cell Neurosci 2022; 16:1046692. [DOI: 10.3389/fncel.2022.1046692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Psychiatric diseases, such as schizophrenia, bipolar disorder, autism spectrum disorder, and major depressive disorder, place a huge health burden on society. Cognitive impairment is one of the core characteristics of psychiatric disorders and a vital determinant of social function and disease recurrence in patients. This review thus aims to explore the underlying molecular mechanisms of cognitive impairment in major psychiatric disorders and identify valuable biomarkers for diagnosis, treatment and prevention of patients.
Collapse
|
24
|
Shang A, Bieszczad KM. Epigenetic mechanisms regulate cue memory underlying discriminative behavior. Neurosci Biobehav Rev 2022; 141:104811. [PMID: 35961385 DOI: 10.1016/j.neubiorev.2022.104811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/15/2022] [Accepted: 08/01/2022] [Indexed: 12/01/2022]
Abstract
The burgeoning field of neuroepigenetics has introduced chromatin modification as an important interface between experience and brain function. For example, epigenetic mechanisms like histone acetylation and DNA methylation operate throughout a lifetime to powerfully regulate gene expression in the brain that is required for experiences to be transformed into long-term memories. This review highlights emerging evidence from sensory models of memory that converge on the premise that epigenetic regulation of activity-dependent transcription in the sensory brain facilitates highly precise memory recall. Chromatin modifications may be key for neurophysiological responses to transient sensory cue features experienced in the "here and now" to be recapitulated over the long term. We conclude that the function of epigenetic control of sensory system neuroplasticity is to regulate the amount and type of sensory information retained in long-term memories by regulating neural representations of behaviorally relevant cues that guide behavior. This is of broad importance in the neuroscience field because there are few circumstances in which behavioral acts are devoid of an initiating sensory experience.
Collapse
Affiliation(s)
- Andrea Shang
- Dept. of Psychology - Behavioral and Systems Neuroscience, Rutgers University - New Brunswick, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Kasia M Bieszczad
- Dept. of Psychology - Behavioral and Systems Neuroscience, Rutgers University - New Brunswick, 152 Frelinghuysen Road, Piscataway, NJ 08854, USA; Rutgers Center for Cognitive Science (RuCCS), Rutgers University, Piscataway, NJ 08854, USA; Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08854, USA.
| |
Collapse
|
25
|
Riva A, Pozzati E, Grasso M, De Caro C, Russo E, Verrotti A, Striano P. Targeting the MGBA with -biotics in epilepsy: New insights from preclinical and clinical studies. Neurobiol Dis 2022; 170:105758. [PMID: 35588991 DOI: 10.1016/j.nbd.2022.105758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Data accumulation reveals that the bidirectional communication between the gut microbiota and the brain, called the microbiota-gut-brain axis (MGBA), can be modulated by different compounds including prebiotics, probiotics, symbiotic (a fair combination of both), and diet, thus exerting a beneficial impact on brain activity and behaviors. This review aims to give an overview of the possible beneficial effects of the supplementation of -biotics in epilepsy treatment. METHODS A search on PubMed and ClinicalTrials.gov databases using the terms "probiotics", OR "prebiotics", AND "gut microbiota", AND "epilepsy" was performed. The search covered the period of the last eleven years (2010-2021). CONCLUSIONS Nowadays, studies analyzing the clinical impact of gut microbiota-modulating intervention strategies on epilepsy are limited and heterogenous due either to the different experimental populations studied (i.e., genetic vs lesional mouse models) or the various primary outcomes measure evaluated. However, positive effects have invariably been noticed; particularly, there have been improvements in behavioral comorbidities and associated gastrointestinal (GI) symptoms. More studies will be needed in the next few years to strictly evaluate the feasibility to introduce these new therapeutic strategies in the clinical treatment of highly refractory epilepsies.
Collapse
Affiliation(s)
- Antonella Riva
- Paediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy
| | - Elisa Pozzati
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy
| | - Mattia Grasso
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy
| | - Carmen De Caro
- Science of Health Department, School of Medicine, University of Catanzaro, Catanzaro, Italy
| | - Emilio Russo
- Science of Health Department, School of Medicine, University of Catanzaro, Catanzaro, Italy
| | - Alberto Verrotti
- Department of Paediatrics, University of Perugia, Perugia, Italy
| | - Pasquale Striano
- Paediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy.
| |
Collapse
|
26
|
Chen F, Wang N, He X. Identification of Differential Genes of DNA Methylation Associated With Alzheimer's Disease Based on Integrated Bioinformatics and Its Diagnostic Significance. Front Aging Neurosci 2022; 14:884367. [PMID: 35615586 PMCID: PMC9125150 DOI: 10.3389/fnagi.2022.884367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Background Alzheimer's disease (AD) is a common neurodegenerative disease. The pathogenesis is complex and has not been clearly elucidated, and there is no effective treatment. Recent studies have demonstrated that DNA methylation is closely associated with the pathogenesis of AD, which sheds light on investigating potential biomarkers for the diagnosis of early AD and related possible therapeutic approaches. Methods Alzheimer's disease patients samples and healthy controls samples were collected from two datasets in the GEO database. Using LIMMA software package in R language to find differentially expressed genes (DEGs). Afterward, DEGs have been subjected to enrichment analysis of GO and KEGG pathways. The PPI networks and Hub genes were created and visualized based on the STRING database and Cytoscape. ROC curves were further constructed to analyze the accuracy of these genes for AD diagnosis. Results Analysis of the GSE109887 and GSE97760 datasets showed 477 significant DEGs. GO and KEGG enrichment analysis showed terms related to biological processes related to these genes. The top ten Hub genes were found on the basis of the PPI network using the CytoHubba plugin, and the AUC areas of these top ranked genes were all greater than 0.7, showing satisfactory diagnostic accuracy. Conclusion The study identified the top 10 Hub genes associated with AD-related DNA methylation, of which RPSA, RPS23, and RPLP0 have high diagnostic accuracy and excellent AD biomarker potential.
Collapse
Affiliation(s)
| | | | - Xiaping He
- School of Basic Medical Sciences, Dali University, Dali, China
| |
Collapse
|
27
|
Isac T, Isac S, Rababoc R, Cotorogea M, Iliescu L. Epigenetics in inflammatory liver diseases: A clinical perspective (Review). Exp Ther Med 2022; 23:366. [PMID: 35481220 PMCID: PMC9016790 DOI: 10.3892/etm.2022.11293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/30/2021] [Indexed: 11/09/2022] Open
Abstract
Inflammatory liver diseases are, nowadays, multifactorial and wide-spread, thus having an important socio-economic impact. Although the therapeutic algorithms are well-known in hepatitis, regardless of etiology, strategies to identify inflammatory hepatic lesions in early stages and to develop new epigenetic therapies should be prioritized. The main entities of inflammatory liver disease are: alcoholic and non-alcoholic fatty liver disease, autoimmune hepatitis, viral hepatitis and Wilson disease. The main epigenetic processes include: DNA methylation/demethylation, which imply changes in DNA tertiary structure; post-translational histone covalent changes (methylation/demethylation, acetylation/deacetylation, ubiquitination), that cause DNA-histone instability; synthesis of small, non-coding RNA molecules, called microRNAs, that modulate translational potential of transcripts (mRNAs) and post-translational modification of polypeptide chains. Consequently, the epigenetic interactions aforementioned, play an important modulatory role in disease progression and response to conventional therapies The present review focused on the main epigenetic changes in inflammatory liver conditions, considering a new perspective: Epigenetic therapy. This approach is more than welcomed, taking into consideration that conventional therapeutic strategies are almost exhausted.
Collapse
Affiliation(s)
- Teodora Isac
- Department of Internal Medicine II, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Sebastian Isac
- Department of Anesthesiology and Intensive Care I, ‘Fundeni’ Clinical Institute, 022328 Bucharest, Romania
| | - Razvan Rababoc
- Department of Internal Medicine II, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mihail Cotorogea
- Department of Anesthesiology and Intensive Care I, ‘Fundeni’ Clinical Institute, 022328 Bucharest, Romania
| | - Laura Iliescu
- Department of Internal Medicine II, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
28
|
Hopewell R, Jolly D, Li QY, Ross K, Tsai IH, Lactus-Samoila M, Soucy JP, Kobayashi E, Rosa-Neto P, Massarweh G. High-yielding, automated radiosynthesis of [ 11 C]martinostat using [ 11 C]methyl triflate. J Labelled Comp Radiopharm 2022; 65:167-173. [PMID: 35218059 DOI: 10.1002/jlcr.3968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 11/09/2022]
Abstract
Histone deacetylases (HDACs) mediate epigenetic mechanisms implicated in a broad range of central nervous system dysfunction, including neurodegenerative diseases and neuropsychiatric disorders. [11 C]Martinostat allows in vivo quantification of class I/IIb HDACs and may be useful for the quantification of drug-occupancy relationship, facilitating drug development for disease modifying therapies. The present study reports a radiosynthesis of [11 C]martinostat using [11 C]methyl triflate in ethanol, as opposed to the originally described synthesis using [11 C]methyl iodide and DMSO. [11 C]Methyl triflate is trapped in a solution of 2 mg of precursor 1 dissolved in anhydrous ethanol (400 μl), reacted at ambient temperature for 5 minutes, and purified by high-performance liquid chromatography. 1.5-1.8 GBq (41-48 mCi; n=3) of formulated [11 C]martinostat was obtained from solid phase extraction using a hydrophilic-lipophilic cartridge in a radiochemical yield of 11.4 ± 1.1% (non-decay corrected to trapped [11 C]MeI), with a molar activity of 369 ± 53 GBq/μmol (9.97 ± 1.3 Ci/μmol) at the end of synthesis (40 min) and validated for human use. This methodology was used at our production site to produce [11 C]martinostat in sufficient quantities of activity to scan humans, including losses incurred from decay during pre-release quality control testing.
Collapse
Affiliation(s)
- Robert Hopewell
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Dean Jolly
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Qian Ying Li
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Karen Ross
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - I-Huang Tsai
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Jean-Paul Soucy
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Eliane Kobayashi
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Pedro Rosa-Neto
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, Quebec, Canada
| | - Gassan Massarweh
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Belayet JB, Beamish S, Rahaman M, Alanani S, Virdi RS, Frick DN, Rahman AFMT, Ulicki JS, Biswas S, Arnold LA, Roni MSR, Cheng EY, Steeber DA, Frick KM, Hossain MM. Development of a Novel, Small-Molecule Brain-Penetrant Histone Deacetylase Inhibitor That Enhances Spatial Memory Formation in Mice. J Med Chem 2022; 65:3388-3403. [PMID: 35133171 DOI: 10.1021/acs.jmedchem.1c01928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Histone acetylation is a prominent epigenetic modification linked to the memory loss symptoms associated with neurodegenerative disease. The use of existing histone deacetylase inhibitor (HDACi) drugs for treatment is precluded by their weak blood-brain barrier (BBB) permeability and undesirable toxicity. Here, we address these shortcomings by developing a new class of disulfide-based compounds, inspired by the scaffold of the FDA-approved HDACi romidepsin (FK288). Our findings indicate that our novel compound MJM-1 increases the overall level of histone 3 (H3) acetylation in a prostate cancer cell line. In mice, MJM-1 injected intraperitoneally (i.p.) crossed the BBB and could be detected in the hippocampus, a brain region that mediates memory. Consistent with this finding, we found that the post-training i.p. administration of MJM-1 enhanced hippocampus-dependent spatial memory consolidation in male mice. Therefore, MJM-1 represents a potential lead for further optimization as a therapeutic strategy for ameliorating cognitive deficits in aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jawad B Belayet
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Sarah Beamish
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Mizzanoor Rahaman
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Samer Alanani
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Rajdeep S Virdi
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - David N Frick
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - A F M Towheedur Rahman
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Joseph S Ulicki
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Sreya Biswas
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - M S Rashid Roni
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Eric Y Cheng
- College of Pharmacy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas 76107, United States
| | - Douglas A Steeber
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - M Mahmun Hossain
- Department of Chemistry and Biochemistry and Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
30
|
Bi N, Gu X, Fan A, Li D, Wang M, Zhou R, Sun QC, Wang HL. Bisphenol-A exposure leads to neurotoxicity through upregulating the expression of histone deacetylase 2 in vivo and in vitro. Toxicology 2022; 465:153052. [PMID: 34838597 DOI: 10.1016/j.tox.2021.153052] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022]
Abstract
Bisphenol-A (BPA), an environmental endocrine disruptor, is toxic to the central nervous system. Although recent studies have shown BPA-induced neurotoxicity, it is far from clear what precisely epigenetic mechanisms are involved in BPA-induced cognitive deficits. In this study, pheochromocytoma (PC12) cells were treated with BPA at 1 μM for 36 h in vitro. In vivo, C57BL/6 mice were administered to BPA at a dose of 1 mg/kg/day for 10 weeks. The results showed that 1 μM BPA exposure for 36 h impaired neurite outgrowth of PC12 cells through decreasing the primary and secondary branches. Besides, BPA exposure decreased the level of Ac-H3K9 (histone H3 Lys9 acetylation) by upregulating the expression of HDAC2 (histone deacetylases 2) in PC12 cells. Furthermore, treatment of both TSA (Trichostatin A, inhibitor of the histone deacetylase) and shHDAC2 plasmid (HDAC2 knockdown construct) resulted in amelioration neurite outgrowth deficits induced by BPA. In addition, it was shown that repression of HDAC2 could markedly rescue the spine density impairment in the hippocampus and prevent the cognitive impairment caused by BPA exposure in mice. Collectively, HDAC2 plays an essential role in BPA-induced neurotoxicity, which provides a potential molecular target for medical intervention.
Collapse
Affiliation(s)
- Nanxi Bi
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Xiaozhen Gu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Anni Fan
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Danyang Li
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Mengmeng Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Ruiqing Zhou
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China
| | - Quan-Cai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| |
Collapse
|
31
|
Morales-Tarré O, Alonso-Bastida R, Arcos-Encarnación B, Pérez-Martínez L, Encarnación-Guevara S. Protein lysine acetylation and its role in different human pathologies: a proteomic approach. Expert Rev Proteomics 2021; 18:949-975. [PMID: 34791964 DOI: 10.1080/14789450.2021.2007766] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Lysine acetylation is a reversible post-translational modification (PTM) regulated through the action of specific types of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (HDACs), in addition to bromodomains, which are a group of conserved domains which identify acetylated lysine residues, several of the players in the process of protein acetylation, including enzymes and bromodomain-containing proteins, have been related to the progression of several diseases. The combination of high-resolution mass spectrometry-based proteomics, and immunoprecipitation to enrich acetylated peptides has contributed in recent years to expand the knowledge about this PTM described initially in histones and nuclear proteins, and is currently reported in more than 5000 human proteins, that are regulated by this PTM. AREAS COVERED This review presents an overview of the main participant elements, the scenario in the development of protein lysine acetylation, and its role in different human pathologies. EXPERT OPINION Acetylation targets are practically all cellular processes in eukaryotes and prokaryotes organisms. Consequently, this modification has been linked to many pathologies like cancer, viral infection, obesity, diabetes, cardiovascular, and nervous system-associated diseases, to mention a few relevant examples. Accordingly, some intermediate mediators in the acetylation process have been projected as therapeutic targets.
Collapse
Affiliation(s)
- Orlando Morales-Tarré
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ramiro Alonso-Bastida
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Bolivar Arcos-Encarnación
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular Y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular Y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
32
|
Irwin AB, Bahabry R, Lubin FD. A putative role for lncRNAs in epigenetic regulation of memory. Neurochem Int 2021; 150:105184. [PMID: 34530054 PMCID: PMC8552959 DOI: 10.1016/j.neuint.2021.105184] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022]
Abstract
The central dogma of molecular genetics is defined as encoded genetic information within DNA, transcribed into messenger RNA, which contain the instructions for protein synthesis, thus imparting cellular functionality and ultimately life. This molecular genetic theory has given birth to the field of neuroepigenetics, and it is now well established that epigenetic regulation of gene transcription is critical to the learning and memory process. In this review, we address a potential role for a relatively new player in the field of epigenetic crosstalk - long non-coding RNAs (lncRNAs). First, we briefly summarize epigenetic mechanisms in memory formation and examine what little is known about the emerging role of lncRNAs during this process. We then focus discussions on how lncRNAs interact with epigenetic mechanisms to control transcriptional programs under various conditions in the brain, and how this may be applied to regulation of gene expression necessary for memory formation. Next, we explore how epigenetic crosstalk in turn serves to regulate expression of various individual lncRNAs themselves. To highlight the importance of further exploring the role of lncRNA in epigenetic regulation of gene expression, we consider the significant relationship between lncRNA dysregulation and declining memory reserve with aging, Alzheimer's disease, and epilepsy, as well as the promise of novel therapeutic interventions. Finally, we conclude with a discussion of the critical questions that remain to be answered regarding a role for lncRNA in memory.
Collapse
Affiliation(s)
- Ashleigh B Irwin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rudhab Bahabry
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
33
|
Gao Y, Aljazi MB, Wu Y, He J. Vorinostat, a histone deacetylase inhibitor, ameliorates the sociability and cognitive memory in an Ash1L-deletion-induced ASD/ID mouse model. Neurosci Lett 2021; 764:136241. [PMID: 34509565 PMCID: PMC8572157 DOI: 10.1016/j.neulet.2021.136241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Autism spectrum disorder (ASD) and intellectual disability (ID) are neurodevelopmental diseases associated with various gene mutations. Previous genetic and clinical studies reported that ASH1L is a high ASD risk gene identified in human patients. Our recent study used a mouse model to demonstrate that loss of ASH1L in the developing mouse brain was sufficient to cause multiple developmental defects, core autistic-like behaviors, and impaired cognitive memory, suggesting that the disruptive ASH1L mutations are the causative drivers leading the human ASD/ID genesis. Using this Ash1L-deletion-induced ASD/ID mouse model, here we showed that postnatal administration of vorinostat (SAHA), a histone deacetylase inhibitor (HDACi), significantly ameliorated both ASD-like behaviors and ID-like cognitive memory deficit. Thus, our study demonstrates that SAHA is a promising reagent for the pharmacological treatment of core ASD/ID behavioral and memory deficits caused by disruptive ASH1L mutations.
Collapse
Affiliation(s)
- Yuen Gao
- Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, MI 48824, United States
| | - Mohammad B Aljazi
- Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, MI 48824, United States
| | - Yan Wu
- Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, MI 48824, United States
| | - Jin He
- Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
34
|
Epigenetic Regulatory Dynamics in Models of Methamphetamine-Use Disorder. Genes (Basel) 2021; 12:genes12101614. [PMID: 34681009 PMCID: PMC8535492 DOI: 10.3390/genes12101614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023] Open
Abstract
Methamphetamine (METH)-use disorder (MUD) is a very serious, potentially lethal, biopsychosocial disease. Exposure to METH causes long-term changes to brain regions involved in reward processing and motivation, leading vulnerable individuals to engage in pathological drug-seeking and drug-taking behavior that can remain a lifelong struggle. It is crucial to elucidate underlying mechanisms by which exposure to METH leads to molecular neuroadaptive changes at transcriptional and translational levels. Changes in gene expression are controlled by post-translational modifications via chromatin remodeling. This review article focuses on the brain-region specific combinatorial or distinct epigenetic modifications that lead to METH-induced changes in gene expression.
Collapse
|
35
|
Liu C, Wang Y, Deng J, Lin J, Hu C, Li Q, Xu X. Social Deficits and Repetitive Behaviors Are Improved by Early Postnatal Low-Dose VPA Intervention in a Novel shank3-Deficient Zebrafish Model. Front Neurosci 2021; 15:682054. [PMID: 34566559 PMCID: PMC8462462 DOI: 10.3389/fnins.2021.682054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 12/27/2022] Open
Abstract
Mutations of the SHANK3 gene are found in some autism spectrum disorder (ASD) patients, and animal models harboring SHANK3 mutations exhibit a variety of ASD-like behaviors, presenting a unique opportunity to explore the underlying neuropathological mechanisms and potential pharmacological treatments. The histone deacetylase (HDAC) valproic acid (VPA) has demonstrated neuroprotective and neuroregenerative properties, suggesting possible therapeutic utility for ASD. Therefore, SHANK3-associated ASD-like symptoms present a convenient model to evaluate the potential benefits, therapeutic window, and optimal dose of VPA. We constructed a novel shank3-deficient (shank3ab–/–) zebrafish model through CRISPR/Cas9 editing and conducted comprehensive morphological and neurobehavioral evaluations, including of core ASD-like behaviors, as well as molecular analyses of synaptic proteins expression levels. Furthermore, different VPA doses and treatment durations were examined for effects on ASD-like phenotypes. Compared to wild types (WTs), shank3ab–/– zebrafish exhibited greater developmental mortality, more frequent abnormal tail bending, pervasive developmental delay, impaired social preference, repetitive swimming behaviors, and generally reduced locomotor activity. The expression levels of synaptic proteins were also dramatically reduced in shank3ab–/– zebrafish. These ASD-like behaviors were attenuated by low-dose (5 μM) VPA administered from 4 to 8 days post-fertilization (dpf), and the effects persisted to adulthood. In addition, the observed underexpression of grm5, encoding glutamate metabotropic receptor 5, was significantly improved in VPA-treated shank3ab–/– zebrafish. We report for the first time that low-dose VPA administered after neural tube closure has lasting beneficial effects on the social deficits and repetitive behavioral patterns in shank3-deficient ASD model zebrafish. These findings provide a promising strategy for ASD clinical drug development.
Collapse
Affiliation(s)
- Chunxue Liu
- Department of Child Health Care, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yi Wang
- Department of Child Health Care, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jingxin Deng
- Department of Child Health Care, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jia Lin
- Center for Translational Medicine, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defects Prevention and Control, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Chunchun Hu
- Department of Child Health Care, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Qiang Li
- Center for Translational Medicine, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defects Prevention and Control, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xiu Xu
- Department of Child Health Care, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| |
Collapse
|
36
|
Calabrese EJ. Human periodontal ligament stem cells and hormesis: Enhancing cell renewal and cell differentiation. Pharmacol Res 2021; 173:105914. [PMID: 34563662 DOI: 10.1016/j.phrs.2021.105914] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022]
Abstract
This paper provides a detailed assessment of hormetic dose responses by human periodontal ligament stem cells (hPDLSCs). Hormetic dose responses were induced by a broad range of chemicals, including dietary supplements (e.g., curcumin, ginsenoside Rg1), pharmaceutical/commercial substances (e.g., metformin) and endogenous agents (e.g., periostin, TNF-α) for cell proliferation/viability and osteogenic/adipocyte differentiation. This paper clarifies underlying mechanistic foundations of the hPLDSC hormetic dose responses and explores their therapeutic implications. Emerging evidence based on assessments of multiple types of stem cells shows hormetic dose responses to be widespread, reflecting considerable generality and a highly conserved evolutionary trait.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, Unites States.
| |
Collapse
|
37
|
Gil L, Niño SA, Guerrero C, Jiménez-Capdeville ME. Phospho-Tau and Chromatin Landscapes in Early and Late Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms221910283. [PMID: 34638632 PMCID: PMC8509045 DOI: 10.3390/ijms221910283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/25/2022] Open
Abstract
Cellular identity is determined through complex patterns of gene expression. Chromatin, the dynamic structure containing genetic information, is regulated through epigenetic modulators, mainly by the histone code. One of the main challenges for the cell is maintaining functionality and identity, despite the accumulation of DNA damage throughout the aging process. Replicative cells can remain in a senescent state or develop a malign cancer phenotype. In contrast, post-mitotic cells such as pyramidal neurons maintain extraordinary functionality despite advanced age, but they lose their identity. This review focuses on tau, a protein that protects DNA, organizes chromatin, and plays a crucial role in genomic stability. In contrast, tau cytosolic aggregates are considered hallmarks of Alzheimer´s disease (AD) and other neurodegenerative disorders called tauopathies. Here, we explain AD as a phenomenon of chromatin dysregulation directly involving the epigenetic histone code and a progressive destabilization of the tau–chromatin interaction, leading to the consequent dysregulation of gene expression. Although this destabilization could be lethal for post-mitotic neurons, tau protein mediates profound cellular transformations that allow for their temporal survival.
Collapse
Affiliation(s)
- Laura Gil
- Departamento de Genética, Escuela de Medicina, Universidad “Alfonso X el Sabio”, 28691 Madrid, Spain;
| | - Sandra A. Niño
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma, de San Luis Potosí 78210, Mexico;
| | - Carmen Guerrero
- Banco de Cerebros (Biobanco), Hospital Universitario Fundación Alcorcón, Alcorcón, 28922 Madrid, Spain;
| | - María E. Jiménez-Capdeville
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma, de San Luis Potosí 78210, Mexico;
- Correspondence: ; Tel.: +52-444-826-2366
| |
Collapse
|
38
|
Abstract
Neuroepigenetics, a new branch of epigenetics, plays an important role in the regulation of gene expression. Neuroepigenetics is associated with holistic neuronal function and helps in formation and maintenance of memory and learning processes. This includes neurodevelopment and neurodegenerative defects in which histone modification enzymes appear to play a crucial role. These modifications, carried out by acetyltransferases and deacetylases, regulate biologic and cellular processes such as apoptosis and autophagy, inflammatory response, mitochondrial dysfunction, cell-cycle progression and oxidative stress. Alterations in acetylation status of histone as well as non-histone substrates lead to transcriptional deregulation. Histone deacetylase decreases acetylation status and causes transcriptional repression of regulatory genes involved in neural plasticity, synaptogenesis, synaptic and neural plasticity, cognition and memory, and neural differentiation. Transcriptional deactivation in the brain results in development of neurodevelopmental and neurodegenerative disorders. Mounting evidence implicates histone deacetylase inhibitors as potential therapeutic targets to combat neurologic disorders. Recent studies have targeted naturally-occurring biomolecules and micro-RNAs to improve cognitive defects and memory. Multi-target drug ligands targeting HDAC have been developed and used in cell-culture and animal-models of neurologic disorders to ameliorate synaptic and cognitive dysfunction. Herein, we focus on the implications of histone deacetylase enzymes in neuropathology, their regulation of brain function and plausible involvement in the pathogenesis of neurologic defects.
Collapse
|
39
|
Beaver M, Karisetty BC, Zhang H, Bhatnagar A, Armour E, Parmar V, Brown R, Xiang M, Elefant F. Chromatin and transcriptomic profiling uncover dysregulation of the Tip60 HAT/HDAC2 epigenomic landscape in the neurodegenerative brain. Epigenetics 2021; 17:786-807. [PMID: 34369292 PMCID: PMC9336495 DOI: 10.1080/15592294.2021.1959742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Disruption of histone acetylation-mediated gene control is a critical step in Alzheimer’s Disease (AD), yet chromatin analysis of antagonistic histone acetyltransferases (HATs) and histone deacetylases (HDACs) causing these alterations remains uncharacterized. We report the first Tip60 HAT versus HDAC2 chromatin (ChIP-seq) and transcriptional (RNA-seq) profiling study in Drosophila melanogaster brains that model early human AD. We find Tip60 and HDAC2 predominantly recruited to identical neuronal genes. Moreover, AD brains exhibit robust genome-wide early alterations that include enhanced HDAC2 and reduced Tip60 binding and transcriptional dysregulation. Orthologous human genes to co-Tip60/HDAC2 D. melanogaster neural targets exhibit conserved disruption patterns in AD patient hippocampi. Notably, we discovered distinct transcription factor binding sites close or within Tip60/HDAC2 co-peaks in neuronal genes, implicating them in coenzyme recruitment. Increased Tip60 protects against transcriptional dysregulation and enhanced HDAC2 enrichment genome-wide. We advocate Tip60 HAT/HDAC2 mediated epigenetic neuronal gene disruption as a genome-wide initial causal event in AD.
Collapse
Affiliation(s)
- Mariah Beaver
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | | | - Haolin Zhang
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Akanksha Bhatnagar
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Ellen Armour
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Visha Parmar
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Reshma Brown
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Merry Xiang
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Felice Elefant
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
40
|
Sodium phenylbutyrate reduces repetitive self-grooming behavior and rescues social and cognitive deficits in mouse models of autism. Psychopharmacology (Berl) 2021; 238:1833-1845. [PMID: 33723660 DOI: 10.1007/s00213-021-05812-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopment disorder characterized by deficits in social interaction and restrictive, repetitive, and stereotypical patterns of behavior. However, there is no pharmacological drug that is currently used to target these core ASD symptoms. Sodium phenylbutyrate (NaPB) is a well-known long-term treatment of urea cycle disorders in children. In this study, we assessed the therapeutic effects of NaPB, which is a chemical chaperone as well as histone deacetylase inhibitor on a BTBR T + Itpr3tf/J (BTBR) mice model of ASD. We found that acute and chronic treatment of NaPB remarkably improved, not only core ASD symptoms, including repetitive behaviors and sociability deficit, but also cognitive impairment in the BTBR mice. NaPB substantially induced histone acetylation in the brain of the BTBR mice. Intriguingly, the therapeutic effects of NaPB on autistic-like behaviors, such as repetitive behaviors, impaired sociability, and cognitive deficit also showed in the valproic acid (VPA)-induced mouse model of autism. In addition, pentylenetetrazole (PTZ)-induced seizure was significantly attenuated by NaPB treatment in C57BL/6J and BTBR mice. These findings suggest that NaPB may provide a novel therapeutic approach for the treatment of patients with ASD.
Collapse
|
41
|
Sharma VK, Mehta V, Singh TG. Alzheimer's Disorder: Epigenetic Connection and Associated Risk Factors. Curr Neuropharmacol 2021; 18:740-753. [PMID: 31989902 PMCID: PMC7536832 DOI: 10.2174/1570159x18666200128125641] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/26/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
The gene based therapeutics and drug targets have shown incredible and appreciable advances in alleviating human sufferings and complexities. Epigenetics simply means above genetics or which controls the organism beyond genetics. At present it is very clear that all characteristics of an individual are not determined by DNA alone, rather the environment, stress, life style and nutrition play a vital part in determining the response of an organism. Thus, nature (genetic makeup) and nurture (exposure) play equally important roles in the responses observed, both at the cellular and organism levels. Epigenetics influence plethora of complications at cellular and molecular levels that includes cancer, metabolic and cardiovascular complications including neurological (psychosis) and neurodegenerative disorders (Alzheimer’s disease, Parkinson disease etc.). The epigenetic mechanisms include DNA methylation, histone modification and non coding RNA which have substantial impact on progression and pathways linked to Alzheimer’s disease. The epigenetic mechanism gets deregulated in Alzheimer’s disease and is characterized by DNA hyper methylation, deacetylation of histones and general repressed chromatin state which alter gene expression at the transcription level by upregulation, downregulation or silencing of genes. Thus, the processes or modulators of these epigenetic processes have shown vast potential as a therapeutic target in Alzheimer’s disease.
Collapse
Affiliation(s)
| | - Vineet Mehta
- Govt. College of Pharmacy, Rohru, District Shimla, Himachal Pradesh-171207, India
| | | |
Collapse
|
42
|
Takada N, Nakamura Y, Ikeda K, Takaoka N, Hisaoka-Nakashima K, Sanoh S, Kotake Y, Nakata Y, Morioka N. Treatment with Histone Deacetylase Inhibitor Attenuates Peripheral Inflammation-Induced Cognitive Dysfunction and Microglial Activation: The Effect of SAHA as a Peripheral HDAC Inhibitor. Neurochem Res 2021; 46:2285-2296. [PMID: 34081246 DOI: 10.1007/s11064-021-03367-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/09/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022]
Abstract
It has been demonstrated that peripheral inflammation induces cognitive dysfunction. Several histone deacetylase (HDAC) inhibitors ameliorate cognitive dysfunction in animal models of not only peripheral inflammation but also Alzheimer's disease. However, it is not clear which HDAC expressed in the central nervous system or peripheral tissues is involved in the therapeutic effect of HDAC inhibition on cognitive dysfunction. Hence, the present study investigated the effect of peripheral HDAC inhibition on peripheral inflammation-induced cognitive dysfunction. Suberoylanilide hydroxamic acid (SAHA), a pan-HDAC inhibitor that is mainly distributed in peripheral tissues after intraperitoneal administration, was found to prevent peripheral inflammation-induced cognitive dysfunction. Moreover, pretreatment with SAHA dramatically increased mRNA expression of interleukin-10, an anti-inflammatory cytokine, in peripheral and central tissues and attenuated peripheral inflammation-induced microglial activation in the CA3 region of the hippocampus. Minocycline, a macrophage/microglia inhibitor, also ameliorated cognitive dysfunction. Furthermore, as a result of treatment with liposomal clodronate, depletion of peripheral macrophages partially ameliorated the peripheral inflammation-evoked cognitive dysfunction. Taken together, these findings demonstrate that inhibition of peripheral HDAC plays a critical role in preventing cognitive dysfunction induced by peripheral inflammation via the regulation of anti-inflammatory cytokine production and the inhibition of microglial functions in the hippocampus. Thus, these findings could provide support for inhibition of peripheral HDAC as a novel therapeutic strategy for inflammation-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Naoki Takada
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan.
| | - Keisuke Ikeda
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Naoki Takaoka
- Department of Neurochemistry and Environmental Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
- School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichibancho, Wakayama, 640-8156, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Seigo Sanoh
- Department of Neurochemistry and Environmental Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
- School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichibancho, Wakayama, 640-8156, Japan
| | - Yaichiro Kotake
- Department of Neurochemistry and Environmental Health Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Yoshihiro Nakata
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
43
|
Liu H, Tan M, Cheng B, Wang S, Xiao L, Zhu J, Wu Q, Lai X, Zhang Q, Chen J, Li T. Valproic Acid Induces Autism-Like Synaptic and Behavioral Deficits by Disrupting Histone Acetylation of Prefrontal Cortex ALDH1A1 in Rats. Front Neurosci 2021; 15:641284. [PMID: 33994921 PMCID: PMC8113628 DOI: 10.3389/fnins.2021.641284] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/06/2021] [Indexed: 12/27/2022] Open
Abstract
Objectives This study aimed to investigate the impact of valproic acid (VPA) on the histone acetylation of acetaldehyde dehydrogenase 1A1 (ALDH1A1) and the mechanism underlying VPA-induced autism-like behavior. Methods Female Sprague-Dawley rats were intraperitoneally injected with VPA during gestation to establish an autism model in their offspring. Some offspring prenatally exposed to VPA were randomly treated with MS-275, one histone deacetylase (HDAC) inhibitor, or retinoic acid (RA) after birth. Behavioral tests were conducted on the offspring 6 weeks after birth. Electrophysiological experiments were performed to investigate long-term potentiation (LTP) in the prefrontal cortex (PFC). The expression levels of AMPA receptors (GluA1 and 2), NMDA receptors (GluN1 and 2), synapsin 1 (SYN1), HDAC, acetylated histone 3 (AcH3), RA receptor alpha (RARα), and ALDH1A1 in the PFC were measured by Western blotting and quantitative polymerase chain reaction. ALDH enzyme activity in PFC tissue was detected using a Micro ALDH Assay Kit. The RA level in the PFC was measured using ultrahigh-performance liquid chromatography/tandem mass spectrometry. A chromatin immunoprecipitation (ChIP) experiment explored the interaction between the ALDH1A1 gene and AcH3. Results Offspring prenatally exposed to VPA showed autism-like behavior, upregulated the levels of LTP and GluN2A, GluA1, and SYN1 proteins relevant to synaptic plasticity in the PFC. The expression levels of HDAC3 mRNA and protein were increased. On the other hand, there was a significant reduction in the levels of AcH3, RARα, RA, ALDH1A1 mRNA and protein, the level of ALDH activity and AcH3 enrichment in the ALDH1A1 promoter region in VPA-induced offspring. Administration of MS-275 in VPA offspring significantly elevated the levels of AcH3, ALDH1A1 mRNA and protein, ALDH activity, RA, the level of RARα protein and the binding of AcH3 to the ALDH1A1 promoter. In addition, the GluA1 protein level and LTP were reduced, and most behavioral deficits were reversed. After RA supplementation in the VPA-treated offspring, the RA and RARα protein levels were significantly upregulated, GluA1 protein and LTP were downregulated, and most autism-like behavioral deficits were effectively reversed. Conclusion These findings suggest that VPA impairs histoneacetylation of ALDH1A1 and downregulates the RA-RARα pathway. Such epigenetic modification of ALDH1A1 by VPA leads to autism-like synaptic and behavioral deficits.
Collapse
Affiliation(s)
- Huan Liu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Nutrition and Health, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, Chongqing, China
| | - Mei Tan
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Nutrition and Health, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, Chongqing, China
| | - Boli Cheng
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Nutrition and Health, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, Chongqing, China
| | - Si Wang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Nutrition and Health, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, Chongqing, China
| | - Lu Xiao
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Nutrition and Health, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, Chongqing, China
| | - Jiang Zhu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Nutrition and Health, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, Chongqing, China
| | - Qionghui Wu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Nutrition and Health, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, Chongqing, China
| | - Xi Lai
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Nutrition and Health, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, Chongqing, China
| | - Qian Zhang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Nutrition and Health, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, Chongqing, China
| | - Jie Chen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Nutrition and Health, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, Chongqing, China
| | - Tingyu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Nutrition and Health, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorder, Chongqing, China
| |
Collapse
|
44
|
Genes that give our brains their rhythms. Nat Neurosci 2021; 24:455-456. [PMID: 33686296 DOI: 10.1038/s41593-021-00805-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Sun H, Zhang X, Kong Y, Gou L, Lian B, Wang Y, Jiang L, Li Q, Sun H, Sun L. Maternal Separation-Induced Histone Acetylation Correlates with BDNF-Programmed Synaptic Changes in an Animal Model of PTSD with Sex Differences. Mol Neurobiol 2021; 58:1738-1754. [PMID: 33245480 DOI: 10.1007/s12035-020-02224-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022]
Abstract
Maternal separation (MS) causes long-lasting epigenetic changes in the brain and increases vulnerability to traumatic events in adulthood. Of interest, there may be sex-specific differences in these epigenetic changes. In this study, the extent of histone acetylation in the hippocampus (HIP) and the expression of BDNF were measured to determine whether BDNF influences risk of PTSD following MS in early life. Rat offspring were separated from their dams (3 h/day or 6 h/day from PND2~PND14). Then, pups were treated with a single prolonged stress (SPS) procedure when they reached adulthood (PND80). In animals stressed with the SPS procedure in adulthood, those that had increased MS intensity in childhood demonstrated more significant changes in performance on tests of anxiety, depression, and contextual fear memory. Reduced levels of total BDNF mRNA and protein were observed after SPS treatment and further declined in groups with greater MS time in childhood. Interestingly, these changes were correlated with decreased H3K9ac levels and increased HDAC2 levels. Additional MS also led to more severe ultrastructural synaptic damage in rats that experienced the SPS procedure, particularly in the CA1 and CA3 region of the HIP, reflecting impaired synaptic plasticity in these regions. Interestingly, male rats in the MS3h-PTSD group showed decreased anxiety, but no similar changes were found in female rats, suggesting a degree of gender specificity in coping with stress after mild MS. In summary, this study suggests that the epigenetic signatures of the BDNF genes can be linked to HIP responses to stress, providing insights that may be relevant for people at risk of stress-related psychopathologies.
Collapse
MESH Headings
- Acetylation
- Animals
- Behavior, Animal
- Brain-Derived Neurotrophic Factor/metabolism
- CA1 Region, Hippocampal/metabolism
- CA1 Region, Hippocampal/ultrastructure
- CA3 Region, Hippocampal/metabolism
- CA3 Region, Hippocampal/ultrastructure
- Corticosterone/blood
- Disease Models, Animal
- Elevated Plus Maze Test
- Fear
- Female
- Gene Expression Regulation
- Histone Deacetylase 2/genetics
- Histone Deacetylase 2/metabolism
- Histones/metabolism
- Immobilization
- Male
- Maternal Deprivation
- Open Field Test
- Rats, Sprague-Dawley
- Regression Analysis
- Sex Characteristics
- Stress Disorders, Post-Traumatic/blood
- Stress Disorders, Post-Traumatic/complications
- Stress Disorders, Post-Traumatic/metabolism
- Stress, Psychological/blood
- Stress, Psychological/complications
- Swimming
- Synapses/metabolism
- Synapses/ultrastructure
- Rats
Collapse
Affiliation(s)
- Haoran Sun
- School of Clinical Medicine, Weifang Medical University, 7166# Baotong West Street, Weifang, 261053, Shandong, People's Republic of China
| | - Xianqiang Zhang
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, 261053, Shandong, People's Republic of China
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, 100083, People's Republic of China
| | - Yujia Kong
- School of Public Health, Weifang Medical University, 7166# Baotong West Street, Weifang, 261053, Shandong, People's Republic of China
| | - Luping Gou
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, 261053, Shandong, People's Republic of China
| | - Bo Lian
- School of Bioscience and Technology, Weifang Medical University, 7166# Baotong West Street, Weifang, 261053, Shandong, People's Republic of China
| | - Yanyu Wang
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, 261053, Shandong, People's Republic of China
| | - Li Jiang
- Cerebral Center, Sunshine Union Hospital, 9000# Yingqian Street, Weifang, 261205, Shandong, People's Republic of China
| | - Qi Li
- Department of Psychiatry and Centre for Reproduction Growth and Development, University of Hong Kong, Hong Kong, People's Republic of China
| | - Hongwei Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, 261053, Shandong, People's Republic of China
| | - Lin Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, 261053, Shandong, People's Republic of China.
| |
Collapse
|
46
|
Jang CH, Oh J, Lim JS, Kim HJ, Kim JS. Fermented Soy Products: Beneficial Potential in Neurodegenerative Diseases. Foods 2021; 10:foods10030636. [PMID: 33803607 PMCID: PMC8003083 DOI: 10.3390/foods10030636] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Fermented soybean products, such as cheonggukjang (Japanese natto), doenjang (soy paste), ganjang (soy sauce), and douchi, are widely consumed in East Asian countries and are major sources of bioactive compounds. The fermentation of cooked soybean with bacteria (Bacillus spp.) and fungi (Aspergillus spp. and Rhizopus spp.) produces a variety of novel compounds, most of which possess health benefits. This review is focused on the preventive and ameliorative potential of fermented soy foods and their components to manage neurodegenerative diseases, including Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Chan Ho Jang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
| | - Jisun Oh
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea; (J.O.); (J.S.L.)
| | - Ji Sun Lim
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea; (J.O.); (J.S.L.)
| | - Hyo Jung Kim
- Department of Korean Medicine Development, National Institute for Korean Medicine Development, Gyeongsan 38540, Korea;
| | - Jong-Sang Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea; (J.O.); (J.S.L.)
- Department of Integrative Biotechnology, Kyungpook National University, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-5752; Fax: +82-53-950-6750
| |
Collapse
|
47
|
Kitahara M, Inoue T, Mani H, Takamatsu Y, Ikegami R, Tohyama H, Maejima H. Exercise and pharmacological inhibition of histone deacetylase improves cognitive function accompanied by an increase of gene expressions crucial for neuronal plasticity in the hippocampus. Neurosci Lett 2021; 749:135749. [PMID: 33610667 DOI: 10.1016/j.neulet.2021.135749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 02/08/2023]
Abstract
Exercise is recognized to increase the expression of neurotrophic genes in the hippocampus and prevent cognitive impairment. Histone deacetylase (HDAC) inhibitor acetylate histones and enhance gene transcription in epigenetic regulation. HDAC inhibitors are expected to be an efficacious pharmacological treatment for cognitive function. This study aimed to examine the effect of HDAC inhibitors and exercise on epigenetic markers and neurotrophic gene expression in the hippocampus to find a more enriched brain conditioning for cognitive function based on the synergic effects of pharmacological treatment and behavioral therapy. Thirteen-week-old male mice were divided into four groups. Intraperitoneal administration of an HDAC inhibitor (1.2 g/kg sodium butyrate, NaB) and treadmill exercise (approximately 10 m/min for 60 min) were performed 5 days a week for 4 weeks. NaB administration increased the expression of an immediate-early gene, a neurotrophin, and a neurotrophin receptor in the hippocampus. These results indicate that HDAC inhibition could present an enriched platform for neuronal plasticity in the hippocampus and cognitive function. The novel object recognition test showed that NaB administration increased the score. Notably, the step-through passive avoidance test showed improved learning and memory in the presence of exercise and exercise, indicating that the mice acquired fear memory, specifically in the presence of NaB administration plus exercise. This study found that repetitive administration of HDAC inhibitors improved cognitive function and HDAC inhibitor administration plus exercise has a synergic effect on learning and memory, accompanying the enhancement of crucial gene transcriptions for neuronal plasticity in the hippocampus.
Collapse
Affiliation(s)
- Mika Kitahara
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan
| | - Takahiro Inoue
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan; Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Hiroki Mani
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan
| | - Yasuyuki Takamatsu
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan
| | - Ryo Ikegami
- Graduate School of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan
| | - Harukazu Tohyama
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan
| | - Hiroshi Maejima
- Department of Rehabilitation Science, Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
48
|
Mews P, Calipari ES, Day J, Lobo MK, Bredy T, Abel T. From Circuits to Chromatin: The Emerging Role of Epigenetics in Mental Health. J Neurosci 2021; 41:873-882. [PMID: 33446519 PMCID: PMC7880276 DOI: 10.1523/jneurosci.1649-20.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 02/01/2023] Open
Abstract
A central goal of neuroscience research is to understand how experiences modify brain circuits to guide future adaptive behavior. In response to environmental stimuli, neural circuit activity engages gene regulatory mechanisms within each cell. This activity-dependent gene expression is governed, in part, by epigenetic processes that can produce persistent changes in both neural circuits and the epigenome itself. The complex interplay between circuit activity and neuronal gene regulation is vital to learning and memory, and, when disrupted, is linked to debilitating psychiatric conditions, such as substance use disorder. To develop clinical treatments, it is paramount to advance our understanding of how neural circuits and the epigenome cooperate to produce behavioral adaptation. Here, we discuss how new genetic tools, used to manipulate neural circuits and chromatin, have enabled the discovery of epigenetic processes that bring about long-lasting changes in behavior relevant to mental health and disease.
Collapse
Affiliation(s)
- Philipp Mews
- Friedman Brain Institute, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10129
| | - Erin S Calipari
- Departments of Pharmacology, Molecular Physiology and Biophysics, Psychiatry and Behavioral Sciences; Vanderbilt Center for Addiction Research; Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37323
| | - Jeremy Day
- Department of Neurobiology, McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Timothy Bredy
- Queensland Brain Institute, University of Queensland, Brisbane, 4072, Australia
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
49
|
He C, Huang ZS, Yu CC, Wang HH, Zhou H, Kong LH. Epigenetic Regulation of Amyloid-beta Metabolism in Alzheimer's Disease. Curr Med Sci 2021; 40:1022-1030. [PMID: 33428129 DOI: 10.1007/s11596-020-2283-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 10/05/2020] [Indexed: 11/28/2022]
Abstract
Senile plaques (SPs) are one of the pathological features of Alzheimer's disease (AD) and they are formed by the overproduction and aggregation of amyloid-beta (Aβ) peptides derived from the abnormal cleavage of amyloid precursor protein (APP). Thus, understanding the regulatory mechanisms during Aβ metabolism is of great importance to elucidate AD pathogenesis. Recent studies have shown that epigenetic modulation-including DNA methylation, non-coding RNA alterations, and histone modifications-is of great significance in regulating Aβ metabolism. In this article, we review the aberrant epigenetic regulation of Aβ metabolism.
Collapse
Affiliation(s)
- Chuan He
- Hubei University of Chinese Medicine, Wuhan, 430060, China
| | | | - Chao-Chao Yu
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518000, China.,The 4th Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
| | - Hai-Hua Wang
- Hospital of Traditional Chinese Medicine of Fengrun District, Tangshan, 064000, China
| | - Hua Zhou
- Hubei University of Chinese Medicine, Wuhan, 430060, China.
| | - Li-Hong Kong
- Hubei University of Chinese Medicine, Wuhan, 430060, China.
| |
Collapse
|
50
|
Bonsack F, Sukumari-Ramesh S. Entinostat improves acute neurological outcomes and attenuates hematoma volume after Intracerebral Hemorrhage. Brain Res 2020; 1752:147222. [PMID: 33358731 DOI: 10.1016/j.brainres.2020.147222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023]
Abstract
Intracerebral hemorrhage (ICH) or hemorrhagic stroke is a major public health problem with no effective treatment. Given the emerging role of epigenetic mechanisms in the pathophysiology of ICH, we tested the hypothesis that a class 1 histone deacetylase inhibitor (HDACi), Entinostat, attenuates neurodegeneration and improves neurobehavioral outcomes after ICH. To address this, we employed a preclinical mouse model of ICH and Entinostat was administered intraperitoneally one-hour post induction of ICH. Entinostat treatment significantly reduced the number of degenerating neurons and TUNEL-positive cells after ICH in comparison to vehicle-treated controls. Moreover, Entinostat treatment significantly reduced hematoma volume, T2-weighted hemorrhagic lesion volume and improved acute neurological outcomes after ICH. Further, Entinostat significantly reduced the hemin-induced release of proinflammatory cytokines in vitro. Consistently, the expression of proinflammatory microglial/macrophage marker, CD16/32, was remarkably reduced in Entinostat treated group after ICH in comparison to control. Altogether, data implicates the potential of class 1 HDACi, Entinostat, in improving acute neurological function after ICH warranting further investigation.
Collapse
Affiliation(s)
- Frederick Bonsack
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Sangeetha Sukumari-Ramesh
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|