1
|
Gundersen ET, Wang Z, Førde JL, Larquet E, Æsøy R, Roussel H, Tosi L, Barratt G, Herfindal L, Legrand FX. Repurposing chlorpromazine for anti-leukaemic therapy with the drug-in-cyclodextrin-in-liposome nanocarrier platform. Carbohydr Polym 2025; 358:123478. [PMID: 40383608 DOI: 10.1016/j.carbpol.2025.123478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 05/20/2025]
Abstract
Acute myeloid leukaemia (AML) accounts for 30 % of adult leukaemia cases, predominantly affecting individuals over 60. The standard "7 + 3" intensive chemotherapy regimen is unsuitable for many elderly patients, contributing to AML's poor prognosis. While progress in drug therapies has been made, breakthroughs remain limited, indication-specific, and slow to expand. Drug repurposing offers a faster route to therapy development, while nanocarrier encapsulation broadens the scope of viable drug candidates. Chlorpromazine (CPZ) is an antipsychotic which has been identified as a potential anti-leukaemic agent. Due to its ability to cross the blood-brain barrier, it is likely to cause central nervous system (CNS) effects. The drug-in-cyclodextrin-in-liposome (DCL) nanocarrier platform enables the formulation of CPZ encapsulated with cyclodextrins (CDs) such as HP-γ-CD, SBE-β-CD, and Sugammadex. The CD/CPZ formulations were equally, or more efficient than free CPZ in inducing AML cell death. Uptake of the DCL in AML cells quickly reached saturation, with minimal differences among formulations, except for SBE-β-CD. When injected intravenously in zebrafish larvae, the different DCLs did not differ in biodistribution, and no brain accumulation was observed at two days post-injection. These DCL-based CPZ formulations maintain anti-leukaemic activity, avoid CNS accumulation, and allow drug availability adjustments based on the included CD.
Collapse
Affiliation(s)
- Edvin Tang Gundersen
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway; Hospital Pharmacies Enterprise, Western Norway, Bergen, Norway
| | - Zhiqiang Wang
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Jan-Lukas Førde
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Internal Medicine, Haukeland University Hospital, Bergen, Norway
| | - Eric Larquet
- Laboratoire de Physique de la Matière Condensée (PMC), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Reidun Æsøy
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hugo Roussel
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Lou Tosi
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Gillian Barratt
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway.
| | | |
Collapse
|
2
|
Shah FA, Qadir H, Khan JZ, Faheem M. A review: From old drugs to new solutions: The role of repositioning in alzheimer's disease treatment. Neuroscience 2025; 576:167-181. [PMID: 40164279 DOI: 10.1016/j.neuroscience.2025.03.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/02/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Drug repositioning or drug reprofiling, involves identifying novel indications for approved and previously abandoned drugs in the treatment of other diseases. The traditional drug discovery process is tedious, time-consuming, risky, and challenging. Fortunately, the inception of the drug repositioning concept has expedited the process by using compounds with established safety profiles in humans, and thereby significantly reducing costs. Alzheimer's disease (AD) is a severe neurological disorder characterized by progressive degeneration of the brain with limited and less effective therapeutic interventions. Researchers have attempted to identify potential treatment of AD from existing drug however, the success of drug repositioning strategy in AD remains uncertain. This article briefly discusses the importance and effectiveness of drug repositioning strategies, the major obstacles in the development of drugs for AD, approaches to address these challenges, and the role of machine learning in identifying early markers of AD for improved management.
Collapse
Affiliation(s)
- Fawad Ali Shah
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| | - Halima Qadir
- Shifa College of Pharmaceutical Sciences, STMU, Islamabad Pakistan.
| | - Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad Pakistan.
| | - Muhammad Faheem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, Pakistan.
| |
Collapse
|
3
|
Bai P, Wang P, Ren T, Tang Q, Lin Z, Zhang N, Zhao L, Zhong R, Sun G. Natural small molecule thymoquinone increases the chemosensitivity of glioblastoma to temozolomide through inhibiting Wnt/β-catenin signaling pathway to downregulate MGMT expression: In vitro and in vivo validation. Biochem Pharmacol 2025; 236:116886. [PMID: 40127739 DOI: 10.1016/j.bcp.2025.116886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 03/26/2025]
Abstract
Temozolomide (TMZ) is the only one oral first-line chemotherapeutic drug for glioblastoma treatment. However, O6-methylguanine-DNA methyltransferase (MGMT) can repair the lethal O6-methylguaine (O6-MeG) lesion produced by TMZ, thus imparting resistance to TMZ. Currently, the clinical utility of small molecule covalent MGMT inhibitors is limited by the occurrence of severe hematological toxicity. Therefore, developing new strategies for overcoming MGMT-mediated resistance is highly urgent. Here, we explored the feasibility that modulating Wnt/β-catenin signaling pathway in glioblastoma to inhibit MGMT expression to overcome TMZ resistance. From eight natural products or approved drugs with inhibitory effects on Wnt/β-catenin pathway, we found thymoquinone (TQ) completely suppressed MGMT expression in glioblastoma SF763 and SF767 cell lines within 24 h. As expected, TQ exhibited synergistic killing effects with TMZ in SF763 and SF767 cells, while in MGMT-negative SF126 cells only additive effect observed. Moreover, TQ remarkably enhanced the inhibition of TMZ on cell proliferation, clone formation, invasion and migration, and promoted cell apoptosis. In resistant SF763 mice tumor xenograft model, TQ significantly increased the suppression of TMZ on tumor growth, meanwhile maintaining good biosafety. Western blotting analysis indicated that TQ significantly inhibited the nuclear translocation of β-catenin and the expression of downstream proteins Cyclin D1 and MGMT. The addition of Wnt activator LiCl reversed the nuclear translocation of β-catenin and the expression of Cyclin D1 and MGMT induced by TQ. For the first time, our findings indicate that TQ can considerably increase the sensitivity of glioblastoma to TMZ by interfering Wnt/β-catenin pathway to downregulate MGMT expression.
Collapse
Affiliation(s)
- Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Peng Wang
- Department of Neurosurgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Qing Tang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ziao Lin
- OmixScience Research Institute, OmixScience Co., Ltd., Hangzhou 311199, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311100, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
4
|
Tanoli Z, Fernández-Torras A, Özcan UO, Kushnir A, Nader KM, Gadiya Y, Fiorenza L, Ianevski A, Vähä-Koskela M, Miihkinen M, Seemab U, Leinonen H, Seashore-Ludlow B, Tampere M, Kalman A, Ballante F, Benfenati E, Saunders G, Potdar S, Gómez García I, García-Serna R, Talarico C, Beccari AR, Schaal W, Polo A, Costantini S, Cabri E, Jacobs M, Saarela J, Budillon A, Spjuth O, Östling P, Xhaard H, Quintana J, Mestres J, Gribbon P, Ussi AE, Lo DC, de Kort M, Wennerberg K, Fratelli M, Carreras-Puigvert J, Aittokallio T. Computational drug repurposing: approaches, evaluation of in silico resources and case studies. Nat Rev Drug Discov 2025:10.1038/s41573-025-01164-x. [PMID: 40102635 DOI: 10.1038/s41573-025-01164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2025] [Indexed: 03/20/2025]
Abstract
Repurposing of existing drugs for new indications has attracted substantial attention owing to its potential to accelerate drug development and reduce costs. Hundreds of computational resources such as databases and predictive platforms have been developed that can be applied for drug repurposing, making it challenging to select the right resource for a specific drug repurposing project. With the aim of helping to address this challenge, here we overview computational approaches to drug repurposing based on a comprehensive survey of available in silico resources using a purpose-built drug repurposing ontology that classifies the resources into hierarchical categories and provides application-specific information. We also present an expert evaluation of selected resources and three drug repurposing case studies implemented within the Horizon Europe REMEDi4ALL project to demonstrate the practical use of the resources. This comprehensive Review with expert evaluations and case studies provides guidelines and recommendations on the best use of various in silico resources for drug repurposing and establishes a basis for a sustainable and extendable drug repurposing web catalogue.
Collapse
Affiliation(s)
- Ziaurrehman Tanoli
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Drug Discovery and Chemical Biology (DDCB) Consortium, Biocenter Finland, University of Helsinki, Helsinki, Finland.
| | | | - Umut Onur Özcan
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Aleksandr Kushnir
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kristen Michelle Nader
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Yojana Gadiya
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Frankfurt, Germany
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, Bonn, Germany
| | - Laura Fiorenza
- Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milan, Italy
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Markus Vähä-Koskela
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mitro Miihkinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Umair Seemab
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Henri Leinonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Brinton Seashore-Ludlow
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Marianna Tampere
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Adelinn Kalman
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Flavio Ballante
- Chemical Biology Consortium Sweden (CBCS), SciLifeLab, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Emilio Benfenati
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Gary Saunders
- European Infrastructure for Translational Medicine (EATRIS ERIC), Amsterdam, The Netherlands
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | | | | | | | | | - Wesley Schaal
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Andrea Polo
- Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Susan Costantini
- Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Enrico Cabri
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marc Jacobs
- Fraunhofer-Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - Jani Saarela
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Alfredo Budillon
- Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Päivi Östling
- Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Henri Xhaard
- Drug Discovery and Chemical Biology (DDCB) Consortium, Biocenter Finland, University of Helsinki, Helsinki, Finland
- Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jordi Quintana
- Chemotargets SL, Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - Jordi Mestres
- Chemotargets SL, Parc Científic de Barcelona, Barcelona, Catalonia, Spain
- Institut de Quimica Computacional i Catalisi, Facultat de Ciencies, Universitat de Girona, Girona, Catalonia, Spain
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Frankfurt, Germany
| | - Anton E Ussi
- European Infrastructure for Translational Medicine (EATRIS ERIC), Amsterdam, The Netherlands
| | - Donald C Lo
- European Infrastructure for Translational Medicine (EATRIS ERIC), Amsterdam, The Netherlands
| | - Martin de Kort
- European Infrastructure for Translational Medicine (EATRIS ERIC), Amsterdam, The Netherlands
| | - Krister Wennerberg
- Biotech Research & Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | | | - Jordi Carreras-Puigvert
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway.
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
5
|
Lu S, Cao C, Zhang W, Li J, Yang J, Huang Z, Wu Z, Liu B, Huang H, Wang H, Wang Y, Liu D, Zhang Z, Liu K, Yang G, Gong X, Dai H, Li Y, Dong E, Zhang X, Zhang Y. Peficitinib suppresses diffuse-type tenosynovial giant cell tumor by targeting TYK2 and JAK/STAT signaling. SCIENCE CHINA. LIFE SCIENCES 2025; 68:593-609. [PMID: 39808223 DOI: 10.1007/s11427-024-2790-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025]
Abstract
Diffuse-type tenosynovial giant cell tumor (dTGCT) is a destructive but rare benign proliferative synovial neoplasm. Although surgery is currently the main treatment modality for dTGCT, the recurrence risk is up to 50%. Therefore, there is a great need for effective drugs against dTGCT with minor side effects. The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling plays a central role in rheumatoid arthritis (RA), a disease with similar characteristics as dTGCT, but its function in dTGCT remains unknown. dTGCT fibroblast-like synoviocytes (FLS) and macrophages were isolated from 10 synovial tissue samples from dTGCT patients for the screening and validation of the five clinically approved JAK inhibitors to treat RA against dTGCT. Cell viability, cell death, inflammation and the activity of the JAK family members of cultured dTGCT FLS (both 2-D and 3-D) and macrophages were investigated for the efficacy of the JAK inhibitors. Here, we found that similar to RA, JAK/STAT signaling was markedly activated in the dTGCT synovium. Of the 5 JAK inhibitors, peficitinib was shown to have the most potency in addressing some of the pathological responses of dTGCT FLS and macrophages. The potency of peficitinib was much higher than pexidartinib, which is the only FDA-approved drug for dTGCT. Mechanistically, peficitinib inhibited tyrosine kinase 2 (TYK2), a JAK family member necessary for the pathological progression of dTGCT FLS and macrophages. In summary, we not only revealed JAK/STAT (especially TYK2) signaling as the major mechanism underlying dTGCT, but also identified peficitinib as a promising drug against dTGCT.
Collapse
Affiliation(s)
- Shan Lu
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Chenxi Cao
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing, 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, 100191, China
| | - Wenjia Zhang
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Jiayi Li
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
| | - Jingli Yang
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Zisheng Huang
- Peking University Health Science Centre, Peking University, Beijing, 100871, China
| | - Zhijun Wu
- Peking University Health Science Centre, Peking University, Beijing, 100871, China
| | - Baitao Liu
- Peking University Health Science Centre, Peking University, Beijing, 100871, China
| | - Hongjie Huang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing, 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, 100191, China
| | - Haijun Wang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing, 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, 100191, China
| | - Yongjian Wang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing, 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, 100191, China
| | - Dingge Liu
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing, 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, 100191, China
| | - Zhihua Zhang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing, 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, 100191, China
| | - Kaiping Liu
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing, 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, 100191, China
| | - Gang Yang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing, 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, 100191, China
| | - Xi Gong
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, 100191, China
- Beijing Key Laboratory of Sports Injuries, Beijing, 100191, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, 100191, China
| | - Hui Dai
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100871, China
| | - Yingjia Li
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Erdan Dong
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Haihe Laboratory of Cell Ecosystem, Beijing, 100191, China.
| | - Xin Zhang
- Department of Sports Medicine, Peking University Third Hospital, Institute of Sports Medicine of Peking University, Beijing, 100191, China.
- Beijing Key Laboratory of Sports Injuries, Beijing, 100191, China.
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, 100191, China.
| | - Yan Zhang
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
6
|
Anastasio G, Felaco M, Lamolinara A, Pizzo FD, Cacciagrano E, Mottini C, Mutarelli M, Di Modugno F, Iezzi M, Cardone L. Enhancing PDAC therapy: Decitabine-olaparib synergy targets KRAS-dependent tumors. iScience 2025; 28:111842. [PMID: 40008360 PMCID: PMC11851998 DOI: 10.1016/j.isci.2025.111842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 02/27/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) shows limited response to chemotherapy, partly due to the absence of effective biomarkers for personalized treatment. Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations are found in 90% of PDAC cases, and tumors dependent on KRAS (dKRAS) can be identified using gene expression signature scores. Previous research indicates that dKRAS-PDAC cells are sensitive to decitabine (DEC), an FDA-approved drug for hematological cancers, though its use in solid tumors is limited by side effects. We discovered that low-dose DEC combined with the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib (OLA) enhances antitumor activity in dKRAS-PDAC. DEC induces DNA damage and activates the ataxia telangiectasia (ATR)/ataxia telangiectasia mutated (ATM)-mediated DNA damage response (DDR), with PARP1-mediated repair playing a key role. Inhibiting PARP with OLA further improves efficacy, even in BRCA1/2-wild-type and homologous recombination (HR)-proficient tumors but not in KRAS-independent tumors. The combination was especially effective in dKRAS-PDAC with a BRCA2 mutation, preventing metastasis growth. Our results support the clinical evaluation of DEC+OLA in PDAC.
Collapse
Affiliation(s)
- Giorgia Anastasio
- Institute of Biochemistry and Cellular Biology, National Research Council, Monterotondo-Scalo, 00015 Rome, Italy
| | - Michela Felaco
- Institute of Biochemistry and Cellular Biology, National Research Council, Monterotondo-Scalo, 00015 Rome, Italy
- Unit of Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Alessia Lamolinara
- Center for Advanced Studies and Technology, 66100 Chieti, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Francesco del Pizzo
- Center for Advanced Studies and Technology, 66100 Chieti, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Elisa Cacciagrano
- Center for Advanced Studies and Technology, 66100 Chieti, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carla Mottini
- UOSD SAFU Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Margherita Mutarelli
- Institute of Applied Sciences and Intelligent Systems, National Research Council, 80078 Naples, Italy
| | - Francesca Di Modugno
- Unit of Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Manuela Iezzi
- Center for Advanced Studies and Technology, 66100 Chieti, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Luca Cardone
- Institute of Biochemistry and Cellular Biology, National Research Council, Monterotondo-Scalo, 00015 Rome, Italy
- Unit of Tumor Immunology and Immunotherapy, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
7
|
Dong X, Liu H, Tong T, Wu L, Wang J, You T, Wei Y, Yi X, Yang H, Hu J, Wang H, Wang X, Li MJ. Personalized prediction of anticancer potential of non-oncology drugs through learning from genome derived molecular pathways. NPJ Precis Oncol 2025; 9:36. [PMID: 39905223 PMCID: PMC11794852 DOI: 10.1038/s41698-025-00813-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/19/2025] [Indexed: 02/06/2025] Open
Abstract
Advances in cancer genomics have significantly expanded our understanding of cancer biology. However, the high cost of drug development limits our ability to translate this knowledge into precise treatments. Approved non-oncology drugs, comprising a large repository of chemical entities, offer a promising avenue for repurposing in cancer therapy. Herein we present CHANCE, a supervised machine learning model designed to predict the anticancer activities of non-oncology drugs for specific patients by simultaneously considering personalized coding and non-coding mutations. Utilizing protein-protein interaction networks, CHANCE harmonizes multilevel mutation annotations and integrates pharmacological information across different drugs into a single model. We systematically benchmarked the performance of CHANCE and show its predictions are better than previous model and highly interpretable. Applying CHANCE to approximately 5000 cancer samples indicated that >30% might respond to at least one non-oncology drug, with 11% non-oncology drugs predicted to have anticancer activities. Moreover, CHANCE predictions suggested an association between SMAD7 mutations and aspirin treatment response. Experimental validation using tumor cells derived from seven patients with pancreatic or esophageal cancer confirmed the potential anticancer activity of at least one non-oncology drug for five of these patients. To summarize, CHANCE offers a personalized and interpretable approach, serving as a valuable tool for mining non-oncology drugs in the precision oncology era.
Collapse
Affiliation(s)
- Xiaobao Dong
- Department of Genetics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Precision Medicine Research Center, The Second Hospital of Tianjin Medical University; Tianjin Medical University, Tianjin, China
| | - Huanhuan Liu
- Department of Bioinformatics, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ting Tong
- Department of Gastroenterology, The Third Xiangya Hospital, Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Central South University, Changsha, China
- Endoscopic Center, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Liuxing Wu
- Department of Bioinformatics, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jianhua Wang
- Department of Bioinformatics, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tianyi You
- Department of Bioinformatics, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yongjian Wei
- Department of Bioinformatics, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xianfu Yi
- Department of Bioinformatics, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hongxi Yang
- Department of Bioinformatics, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Hu
- Biobank of Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Haitao Wang
- Department of Oncology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Central South University, Changsha, China.
| | - Mulin Jun Li
- Department of Genetics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Precision Medicine Research Center, The Second Hospital of Tianjin Medical University; Tianjin Medical University, Tianjin, China.
- Department of Bioinformatics, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Choradia N, Szabo E. Repurposing Drugs for Cancer Prevention: Targeting Mechanisms Common to Chronic Diseases. Cancer J 2024; 30:345-351. [PMID: 39312454 PMCID: PMC11424023 DOI: 10.1097/ppo.0000000000000746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
ABSTRACT The development of agents for cancer prevention is a lengthy process requiring a delicate balance between the safety and tolerability of potential interventions and effectiveness in preventing future cancer. Individuals at risk for a specific cancer are frequently at risk for multiple types of cancer as well as other chronic diseases, especially ones associated with aging. Shared environmental exposures, genetic predisposition, metabolic factors, and commonalities in pathogenesis suggest opportunities for combined targeting of cancer and other chronic diseases. Examples discussed here include mechanisms shared between various cancers and obesity, diabetes, and cardiovascular disease.
Collapse
Affiliation(s)
- Nirmal Choradia
- From the Medical Oncology Service, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| | - Eva Szabo
- Lung and Upper Aerodigestive Cancer Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD
| |
Collapse
|
9
|
Yousaf S, Shahzadi K. Utilizing topological indices in QSPR modeling to identify non-cancer medications with potential anti-cancer properties: a promising strategy for drug repurposing. Front Chem 2024; 12:1410882. [PMID: 39176073 PMCID: PMC11338857 DOI: 10.3389/fchem.2024.1410882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/11/2024] [Indexed: 08/24/2024] Open
Abstract
The exploration of non-cancer medications with potential anti-cancer activity offers a promising avenue for drug repurposing, accelerating the development of new oncological therapies. This study employs Quantitative Structure-Property Relationship (QSPR) modeling to identify and predict the anti-cancer efficacy of various non-cancer drugs, utilizing topological indices as key descriptors. Topological indices, which capture the molecular structure's geometric and topological characteristics, provide critical insights into the pharmacological interactions relevant to anti-cancer activity. By analyzing a comprehensive dataset of non-cancer medications, this research establishes robust QSPR models that correlate topological indices with anti-cancer activity. The models demonstrate significant predictive power, highlighting several non-cancer drugs with potential anti-cancer properties. Further, we will use linear, quadratic and logarithmic regression to understand the structures of anti-cancer drugs and strengthen our ability to manipulate the molecular structures. The findings underscore the utility of topological indices in drug repurposing strategies and pave the way for further experimental validation and clinical trials. This integrative approach enhances our understanding of drug action mechanisms and offers a cost-effective strategy for expanding the repertoire of anti-cancer agents.
Collapse
Affiliation(s)
- Shamaila Yousaf
- Department of Mathematics, University of Gujrat, Gujrat, Pakistan
| | | |
Collapse
|
10
|
Al-Odat OS, Nelson E, Budak-Alpdogan T, Jonnalagadda SC, Desai D, Pandey MK. Discovering Potential in Non-Cancer Medications: A Promising Breakthrough for Multiple Myeloma Patients. Cancers (Basel) 2024; 16:2381. [PMID: 39001443 PMCID: PMC11240591 DOI: 10.3390/cancers16132381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
MM is a common type of cancer that unfortunately leads to a significant number of deaths each year. The majority of the reported MM cases are detected in the advanced stages, posing significant challenges for treatment. Additionally, all MM patients eventually develop resistance or experience relapse; therefore, advances in treatment are needed. However, developing new anti-cancer drugs, especially for MM, requires significant financial investment and a lengthy development process. The study of drug repurposing involves exploring the potential of existing drugs for new therapeutic uses. This can significantly reduce both time and costs, which are typically a major concern for MM patients. The utilization of pre-existing non-cancer drugs for various myeloma treatments presents a highly efficient and cost-effective strategy, considering their prior preclinical and clinical development. The drugs have shown promising potential in targeting key pathways associated with MM progression and resistance. Thalidomide exemplifies the success that can be achieved through this strategy. This review delves into the current trends, the challenges faced by conventional therapies for MM, and the importance of repurposing drugs for MM. This review highlights a noncomprehensive list of conventional therapies that have potentially significant anti-myeloma properties and anti-neoplastic effects. Additionally, we offer valuable insights into the resources that can help streamline and accelerate drug repurposing efforts in the field of MM.
Collapse
Affiliation(s)
- Omar S. Al-Odat
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (O.S.A.-O.); (E.N.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA;
| | - Emily Nelson
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (O.S.A.-O.); (E.N.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA;
| | | | | | - Dhimant Desai
- Department of Pharmacology, Penn State Neuroscience Institute, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Manoj K. Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (O.S.A.-O.); (E.N.)
| |
Collapse
|
11
|
Fatemi N, Karimpour M, Bahrami H, Zali MR, Chaleshi V, Riccio A, Nazemalhosseini-Mojarad E, Totonchi M. Current trends and future prospects of drug repositioning in gastrointestinal oncology. Front Pharmacol 2024; 14:1329244. [PMID: 38239190 PMCID: PMC10794567 DOI: 10.3389/fphar.2023.1329244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Gastrointestinal (GI) cancers comprise a significant number of cancer cases worldwide and contribute to a high percentage of cancer-related deaths. To improve survival rates of GI cancer patients, it is important to find and implement more effective therapeutic strategies with better prognoses and fewer side effects. The development of new drugs can be a lengthy and expensive process, often involving clinical trials that may fail in the early stages. One strategy to address these challenges is drug repurposing (DR). Drug repurposing is a developmental strategy that involves using existing drugs approved for other diseases and leveraging their safety and pharmacological data to explore their potential use in treating different diseases. In this paper, we outline the existing therapeutic strategies and challenges associated with GI cancers and explore DR as a promising alternative approach. We have presented an extensive review of different DR methodologies, research efforts and examples of repurposed drugs within various GI cancer types, such as colorectal, pancreatic and liver cancers. Our aim is to provide a comprehensive overview of employing the DR approach in GI cancers to inform future research endeavors and clinical trials in this field.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Karimpour
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoda Bahrami
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Chaleshi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Totonchi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
12
|
Zhou Y, Deng Y, Wang J, Yan Z, Wei Q, Ye J, Zhang J, He TC, Qiao M. Effect of antibiotic monensin on cell proliferation and IGF1R signaling pathway in human colorectal cancer cells. Ann Med 2023; 55:954-964. [PMID: 36896461 PMCID: PMC10795625 DOI: 10.1080/07853890.2023.2166980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/05/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND/AIMS Colorectal cancer is the third leading cause of death in patients with cancers in America. Monensin has represented anti-cancer effect on various human cancer cells. We seek to investigate the effect of monensin on proliferation of human colorectal cancer cells and explore whether IGF1R signaling pathway is involved in anti-cancer mechanism of monensin. METHODS Cell proliferation and migration were assessed by crystal violet staining and cell wounding assay respectively. Cell apoptosis was analyzed by Hoechst 33258 staining and flow cytometry. Cell cycle progression was detected with the use of flow cytometry. Cancer-associated pathways were assessed with the use of pathway-specific reporters. Gene expression was detected by touchdown-quantitative real-time PCR. Inhibition of IGF1R was tested by immunofluorescence staining. Inhibition of IGF1R signaling was accomplished by adenovirus-mediated expression of IGF1. RESULTS We found that monensin not only effectively inhibited cell proliferation, cell migration as well as cell cycle progression, but also induced apoptosis and G1 arrest in human colorectal cancer cells. Monensin was shown to target multiple cancer-related signaling pathways such as Elk1, AP1, as well as Myc/max, and suppressed IGF1R expression via increasing IGF1 in colorectal cancer cells. CONCLUSION Monensin could suppressed IGF1R expression via increasing IGF1 in colorectal cancer cells. It has the potential to be repurposed as an anti-colorectal cancer agent, but further studies are still required to investigate the detailed mechanisms of monensin underlying its anti-cancer motion.Key MessagesMonensin inhibits the cell proliferation and the migration, induces apoptosis and inhibits cell cycle progression in human colorectal cancer cells.Monensin may exert anti-cancer activity by targeting multiple signaling pathways, including the IGF1R signaling pathway.Monensin has the potential to be repurposed as an anti-colorectal cancer agent.
Collapse
Affiliation(s)
- Youping Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Youlin Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jing Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Zhengjian Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Qiang Wei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Junhui Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Min Qiao
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| |
Collapse
|
13
|
Raza F, Zheng M, Zhong H, Su J, He B, Yuan WE, Qiu M. Engineered tumor microvesicles modified by SP94 peptide for arsenic trioxide targeting drug delivery in liver cancer therapy. BIOMATERIALS ADVANCES 2023; 155:213683. [PMID: 37925825 DOI: 10.1016/j.bioadv.2023.213683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Liver cancer is among the leading cause of cancer related death worldwide. There is growing interest in using traditional Chinese medicines such as arsenic trioxide (ATO) to treat liver cancer. ATO have attracted attention due to its wide range of anti-cancer activities. However, the current ATO formulations are associated with drawbacks such as short half-life, lack of targeting ability towards solid tumors and apparent toxic side effects. Tumor microvesicles (TMVs) has shown encouraging results for the delivery of drugs to solid tumor. In this work, we designed ATO loaded TMVs further modified by SP94 peptide as liver cancer specific ligand (ATO@SP94-TMVs). This drug delivery system utilized SP94 peptide that selectively targets liver cancer cells while TMVs increase the accumulation of ATO at tumor site and activate immune response owing to the associated antigens. ATO@SP94-TMVs exhibited high encapsulation efficiency and tumor microenvironment triggered enhanced release of ATO in vitro. Cytotoxicity and uptake studies revealed remarkable inhibition and specific targeting of H22 cells. In addition, excellent immune response was detected in vitro, enhancing anti-tumor efficacy. Furthermore, a tumor inhibition rate of about 53.23 % was observed in H22 bearing tumor model. Overall, these results confirm that ATO@SP94-TMVs can be a promising nano drug delivery system for the future liver cancer therapy and improve its clinical applications.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengyuan Zheng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongyu Zhong
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Beixuan He
- Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
14
|
Qayoom H, Alshehri B, Ul Haq B, Almilaibary A, Alkhanani M, Ahmad Mir M. Decoding the molecular mechanism of stypoldione against breast cancer through network pharmacology and experimental validation. Saudi J Biol Sci 2023; 30:103848. [PMID: 37964781 PMCID: PMC10641555 DOI: 10.1016/j.sjbs.2023.103848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023] Open
Abstract
Breast cancer is the primary factor contributing to female mortality worldwide. The incidence has overtaken lung cancer. It is the most difficult illness due to its heterogeneity and is made up of several subtypes, including Luminal A and B, basal-like, Her-2 overexpressed and TNBC. Amongst different breast carcinoma subtypes, TNBC is the most deadly breast cancer subtype. The hostile nature of TNBC is mainly attributed to its lack of three hormonal receptors and hence lack of targeted therapy. Furthermore, the current diagnostic options like radiotherapy, surgery and chemotherapy render unsuccessful due to recurrence, treatment side effects and drug resistance. The majority of anticancer drugs come from natural sources or is developed from them, making nature a significant source of many medicines. Marine-based constituents such as nucleotides, proteins, peptides, and amides are receiving a lot of interest in the field of cancer treatment due to their bioactive properties. The role of stypoldione in this study as a prospective treatment for breast carcinoma was examined, and we sought to comprehend the molecular means/pathways this chemical employs in breast carcinoma. The most promising possibility for an anti-cancer treatment is stypoldione, a marine chemical produced from the brown alga Stypopodium zonale. We investigated stypoldione's mode of action in breast cancer using the network pharmacology method, and we confirmed our research by using a number of computational tools, including UALCAN, cBioportal, TIMER, docking, and simulation. The findings revealed 92 common targets between the chemical and breast cancer target network. Additionally, we found that stypoldione targets a number of unregulated genes in breast cancer, including: ESR1, HSP90AA1, CXCL8, PTGS2, APP, MDM2, JAK2, KDR, LCK, GRM5, MAPK14, KIT, and several signaling pathways such as FOXO signaling pathway, VEGF pathway, calcium signaling pathway, MAPK/ERK pathway and Neuroactive ligand-receptor interaction. The examined medication demonstrated a strong affinity for the major targets, according to a docking analysis. The best hit compound produced a stable protein-ligand pair, as predicted by molecular dynamics simulations. Our results are supported by the fact that when in-vitro assays were done on melanoma using stypoldione compound it was found that its mechanisms of action involved the PI3K/mTOR/Akt and NF-kB pathways. This study was set out to inspect the possible value of stypoldione as a breast cancer cure and to get a deeper understanding of the molecular mechanisms by which this drug acts on breast cancer.
Collapse
Affiliation(s)
- Hina Qayoom
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Almajmaah 11952, Saudi Arabia
| | - Burhan Ul Haq
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Abdullah Almilaibary
- Department of Family & Community Medicine, Faculty of Medicine, Al Baha University, Albaha 65511, Saudi Arabia
| | - Mustfa Alkhanani
- Department of Biology, College of Science, Hafr Al Batin University of Hafr Al-Batin, 31991, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
15
|
Zhang Y, Huang Q, Xu Q, Jia C, Xia Y. Pimavanserin tartrate induces apoptosis and cytoprotective autophagy and synergizes with chemotherapy on triple negative breast cancer. Biomed Pharmacother 2023; 168:115665. [PMID: 37832400 DOI: 10.1016/j.biopha.2023.115665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Triple negative breast cancer (TNBC) poses a significant clinical challenge due to its lack of targeted therapy options and the frequent development of chemotherapy resistance. Metastasis remains a primary cause of mortality in late-stage TNBC patients, underscoring the urgent need for alternative treatments. Repurposing existing drugs offers a promising strategy for the discovery of novel therapies. In this study, we investigated the potential of pimavanserin tartrate (PVT) as a treatment for TNBC. While previous studies have highlighted PVT's anticancer effects in various cancer types, its activity in TNBC remains unclear. Our investigation aimed to elucidate the anticancer effects and underlying mechanisms of PVT in TNBC. We evaluated the impact of PVT and combination treatments involving PVT on TNBC cell viability, apoptosis, autophagy, and associated signaling pathways. Our findings revealed that PVT may induce mitochondria-dependent intrinsic apoptosis and caused cytoprotective autophagy via the PI3K/Akt/mTOR pathway in TNBC cells in vitro. Notably, our study demonstrated strong synergistic anti-TNBC effects when combining PVT with doxorubicin. We also found PVT showed some efficacies to inhibit TNBC tumor growth in vivo. These results provided valuable insights into the potential of PVT as an anti-TNBC therapeutic and a possible option for enhancing the sensitivity of TNBC cells to conventional chemotherapy drugs. Further studies are needed to determine the activity and mechanism of PVT in inhibiting TNBC.
Collapse
Affiliation(s)
- Yiqian Zhang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qianrui Huang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qisi Xu
- School of Food and Bioengineering, Xihua University, Chengdu 610041, China
| | - Chengsen Jia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu 610041, China.
| |
Collapse
|
16
|
Yang X, Zhang B, Wang S, Lu Y, Chen K, Luo C, Sun A, Zhang H. OTTM: an automated classification tool for translational drug discovery from omics data. Brief Bioinform 2023; 24:bbad301. [PMID: 37594310 PMCID: PMC10516341 DOI: 10.1093/bib/bbad301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
Omics data from clinical samples are the predominant source of target discovery and drug development. Typically, hundreds or thousands of differentially expressed genes or proteins can be identified from omics data. This scale of possibilities is overwhelming for target discovery and validation using biochemical or cellular experiments. Most of these proteins and genes have no corresponding drugs or even active compounds. Moreover, a proportion of them may have been previously reported as being relevant to the disease of interest. To facilitate translational drug discovery from omics data, we have developed a new classification tool named Omics and Text driven Translational Medicine (OTTM). This tool can markedly narrow the range of proteins or genes that merit further validation via drug availability assessment and literature mining. For the 4489 candidate proteins identified in our previous proteomics study, OTTM recommended 40 FDA-approved or clinical trial drugs. Of these, 15 are available commercially and were tested on hepatocellular carcinoma Hep-G2 cells. Two drugs-tafenoquine succinate (an FDA-approved antimalarial drug targeting CYC1) and branaplam (a Phase 3 clinical drug targeting SMN1 for the treatment of spinal muscular atrophy)-showed potent inhibitory activity against Hep-G2 cell viability, suggesting that CYC1 and SMN1 may be potential therapeutic target proteins for hepatocellular carcinoma. In summary, OTTM is an efficient classification tool that can accelerate the discovery of effective drugs and targets using thousands of candidate proteins identified from omics data. The online and local versions of OTTM are available at http://otter-simm.com/ottm.html.
Collapse
Affiliation(s)
- Xiaobo Yang
- ShanghaiTech University
- School of Life Science and Technology, ShanghaiTech University, 393 Huaxiazhong Road, Shanghai 200031, China
| | - Bei Zhang
- Shanghai Institute of Materia Medica
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Siqi Wang
- Beijing Proteome Research Center
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, and National Center for Protein Sciences (Beijing)
| | - Ye Lu
- Nanjing University of Chinese Medicine
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Chemical Biology Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kaixian Chen
- academician medicinal scientist of the Chinese Academy of Sciences
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, 393 Huaxiazhong Road, Shanghai 200031, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheng Luo
- Shanghai Institute of Materia Medica
- Chemical Biology Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Aihua Sun
- Beijing Proteome Research Center
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics; Research Unit of Proteomics-driven Cancer Precision Medicine, Chinese Academy of Medical Sciences
| | - Hao Zhang
- Shanghai Institute of Materia Medica
- Chemical Biology Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
17
|
Haasler L, von Montfort C, Kondadi AK, Golombek M, Ebbert L, Wenzel CK, Stahl W, Reichert AS, Brenneisen P. Involvement of necroptosis in the selective toxicity of the natural compound (±) gossypol on squamous skin cancer cells in vitro. Arch Toxicol 2023; 97:1997-2014. [PMID: 37210688 PMCID: PMC10256661 DOI: 10.1007/s00204-023-03516-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
Cutaneous basal and squamous cell carcinoma reflect the first and second most common type of non-melanoma skin cancer, respectively. Especially cutaneous squamous cell carcinoma has the tendency to metastasize, finally resulting in a rather poor prognosis. Therapeutic options comprise surgery, radiation therapy, and a systemic or targeted chemotherapy. There are some good treatment results, but overall, the response rate of newly developed drugs is still modest. Drug repurposing represents an alternative approach where already available and clinically approved substances are used, which originally intended for other clinical benefits. In this context, we tested the effect of the naturally occurring polyphenolic aldehyde (±) gossypol with concentrations between 1 and 5 µM on the invasive squamous cell carcinoma cell line SCL-1 and normal human epidermal keratinocytes. Gossypol treatment up to 96 h resulted in a selective cytotoxicity of SCL-1 cells (IC50: 1.7 µM, 96 h) compared with normal keratinocytes (IC50: ≥ 5.4 µM, 96 h) which is mediated by mitochondrial dysfunction and finally leading to necroptotic cell death. Taken together, gossypol shows a high potential as an alternative anticancer drug for the treatment of cutaneous squamous cell carcinoma.
Collapse
Affiliation(s)
- Lisa Haasler
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Claudia von Montfort
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Mathias Golombek
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lara Ebbert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Chantal-Kristin Wenzel
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Peter Brenneisen
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
18
|
Weng N, Zhang Z, Tan Y, Zhang X, Wei X, Zhu Q. Repurposing antifungal drugs for cancer therapy. J Adv Res 2023; 48:259-273. [PMID: 36067975 PMCID: PMC10248799 DOI: 10.1016/j.jare.2022.08.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Repurposing antifungal drugs in cancer therapy has attracted unprecedented attention in both preclinical and clinical research due to specific advantages, such as safety, high-cost effectiveness and time savings compared with cancer drug discovery. The surprising and encouraging efficacy of antifungal drugs in cancer therapy, mechanistically, is attributed to the overlapping targets or molecular pathways between fungal and cancer pathogenesis. Advancements in omics, informatics and analytical technology have led to the discovery of increasing "off-site" targets from antifungal drugs involved in cancerogenesis, such as smoothened (D477G) inhibition from itraconazole in basal cell carcinoma. AIM OF REVIEW This review illustrates several antifungal drugs repurposed for cancer therapy and reveals the underlying mechanism based on their original target and "off-site" target. Furthermore, the challenges and perspectives for the future development and clinical applications of antifungal drugs for cancer therapy are also discussed, providing a refresh understanding of drug repurposing. KEY SCIENTIFIC CONCEPTS OF REVIEW This review may provide a basic understanding of repurposed antifungal drugs for clinical cancer management, thereby helping antifungal drugs broaden new indications and promote clinical translation.
Collapse
Affiliation(s)
- Ningna Weng
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Medical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fujian 350011, PR China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China; Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yunhan Tan
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xiaoyue Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
19
|
Zhang H, Han J, Zhang J, Miao J, Li F, Tang K, Zhou K, Duan B, Li W, Cheng J, Sun Y, Hou N, Huang C. Venlafaxine antagonizes the noradrenaline-promoted colon cancer progression by inhibiting the norepinephrine transporter. Cell Death Discov 2023; 9:152. [PMID: 37156838 PMCID: PMC10167232 DOI: 10.1038/s41420-023-01447-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Epidemiological studies have demonstrated that the use of antidepressants is associated with a decreased risk of colorectal cancer (CRC); however, the mechanisms behind this association are yet unknown. Adrenergic system contributes to the stress-related tumor progression, with norepinephrine (NE) mainly secreted from adrenergic nerve fibers. Norepinephrine serotonin reuptake inhibitors are successfully used antidepressants. This study demonstrates that a widely used antidepressant venlafaxine (VEN) antagonizes NE-promoted colon cancer in vivo and in vitro. Bioinformatic analysis suggested that NE transporter (NET, SLC6A2), a target of VEN, was closely associated with the prognosis of clinical patients with CRC. In addition, the knockdown of NET antagonized the effect of NE. The NET-protein phosphatase 2 scaffold subunit alpha/phosphorylated Akt/vascular endothelial growth factor pathway partially mediates the antagonizing effect of VEN on NE's actions in colon cancer cells. These were also confirmed by in vivo experiments. Our findings revealed for the first time that, in addition to its primary function as a transporter, NET also promotes NE-enhanced colon cancer cell proliferation, tumor angiogenesis, and tumor growth. This provides direct experimental and mechanistic evidence for the use of antidepressant VEN in the treatment of CRC and a therapeutic potential for repurposing existing drugs as an anti-cancer approach to improve the prognosis of patients with CRC.
Collapse
Affiliation(s)
- Huahua Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Medical Research and Experimental Center, Medical College, Yan'an University, Yan'an, 716000, China
| | - Jiming Han
- Medical Research and Experimental Center, Medical College, Yan'an University, Yan'an, 716000, China
| | - Jing Zhang
- Medical Research and Experimental Center, Medical College, Yan'an University, Yan'an, 716000, China
| | - Jiyu Miao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Department of Hematology, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an, 710004, China
| | - Fang Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Kaijie Tang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Kai Zhou
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Baojun Duan
- Department of Medical Oncology of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Wen Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jing Cheng
- 3201 Affiliated Hospital of Medical College of Xi'an Jiaotong University, Hanzhong, 723000, China
| | - Ying Sun
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Ni Hou
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
- Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Xi'an, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
- Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, Xi'an, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
20
|
Karthikeyan S, Grishina M, Kandasamy S, Mangaiyarkarasi R, Ramamoorthi A, Chinnathambi S, Pandian GN, John Kennedy L. A review on medicinally important heterocyclic compounds and importance of biophysical approach of underlying the insight mechanism in biological environment. J Biomol Struct Dyn 2023; 41:14599-14619. [PMID: 36914255 DOI: 10.1080/07391102.2023.2187640] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/12/2023] [Indexed: 03/16/2023]
Abstract
Heterocyclic derivatives have more interesting biological properties which hold a remarkable place in pharmaceutical industries due to their unique physiochemical properties and ease of adaption in various biological environments. Of many, the above-said derivatives have been recently examined for their promising action against a few malignancies. Specifically, anti-cancer research has benefited from these derivatives' natural flexibility and dynamic core scaffold. In any case, concerning some other promising anti-cancer drugs, heterocyclic derivative doesn't come without deficiencies. To be a successful drug candidate it should poses Absorption, Distribution, Metabolism and Eliminations (ADME) parameter, and must also have good binding interaction towards carrier protein as well as DNA and less in toxic nature, economically feasible. In this review, we described the overview of biologically important heterocyclic derivatives and their main application in medicine. Further, we focus types of biophysical techniques to understand the binding interaction mechanism.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Subramani Karthikeyan
- Division of Physics, School of Advanced Sciences, Vellore Institute of Technology University, Chennai, India
- Centre for Healthcare Advancement, Innovation and Research, Vellore Institute of Technology University, Chennai, India
| | - Maria Grishina
- Laboratory of Computational Modelling of Drugs, South Ural State University, Chelyabinsk, Russia
| | | | | | - Anitha Ramamoorthi
- Department of Chemistry, Velammal Intitute of Technology, Velammal Knowledge Park, Panchetti, India
| | - Shanmugavel Chinnathambi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Ganesh N Pandian
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
- Department of Molecular Engineering, Kyoto University, Kyoto, Japan
| | - L John Kennedy
- Division of Physics, School of Advanced Sciences, Vellore Institute of Technology University, Chennai, India
| |
Collapse
|
21
|
Meco D, Attinà G, Mastrangelo S, Navarra P, Ruggiero A. Emerging Perspectives on the Antiparasitic Mebendazole as a Repurposed Drug for the Treatment of Brain Cancers. Int J Mol Sci 2023; 24:1334. [PMID: 36674870 PMCID: PMC9862092 DOI: 10.3390/ijms24021334] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Repurposing approved non-antitumor drugs is a promising and affordable strategy in drug discovery to identify new therapeutic uses different from the original medical indication that may help increase the number of possible, effective anticancer drugs. The use of drugs in ways other than their original FDA-approved indications could offer novel avenues such as bypassing the chemoresistance and recurrence seen with conventional therapy and treatment; moreover, it can offer a safe and economic strategy for combination therapy. Recent works have demonstrated the anticancer properties of the FDA-approved drug Mebendazole. This synthetic benzimidazole proved effective against a broad spectrum of intestinal Helminthiasis. Mebendazole can penetrate the blood-brain barrier and has been shown to inhibit the malignant progression of glioma by targeting signaling pathways related to cell proliferation, apoptosis, or invasion/migration, or by increasing the sensitivity of glioma cells to conventional chemotherapy or radiotherapy. Moreover, several preclinical models and ongoing clinical trials explore the efficacy of Mebendazole in multiple cancers, including acute myeloid leukemia, brain cancer, oropharyngeal squamous cell carcinoma, breast cancer, gastrointestinal cancer, lung carcinoma, adrenocortical carcinoma, prostate cancer, and head and neck cancer. The present review summarizes central literature regarding the anticancer effects of MBZ in cancer cell lines, animal tumor models, and clinical trials to suggest possible strategies for safe and economical combinations of anticancer therapies in brain cancer. Mebendazole might be an excellent candidate for the treatment of brain tumors because of its efficacy both when used as monotherapy and in combination as an enhancement to standard chemotherapeutics and radiotherapy, due to its effectiveness on tumor angiogenesis inhibition, cell cycle arrest, apoptosis induction, and targeting of critical pathways involved in cancer such as Hedgehog signaling. Therefore, attention to MBZ repurposing has recently increased because of its potential therapeutic versatility and significant clinical implications, such as reducing medical care costs and optimizing existing therapies. Using new treatments is essential, particularly when current therapeutics for patients with brain cancer fail.
Collapse
Affiliation(s)
- Daniela Meco
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giorgio Attinà
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Pierluigi Navarra
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
22
|
Leite M, Seruca R, Gonçalves JM. Drug Repurposing in Gastric Cancer: Current Status and Future Perspectives. HEREDITARY GASTRIC AND BREAST CANCER SYNDROME 2023:281-320. [DOI: 10.1007/978-3-031-21317-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
23
|
Wang Y, Aldahdooh J, Hu Y, Yang H, Vähä-Koskela M, Tang J, Tanoli Z. DrugRepo: a novel approach to repurposing drugs based on chemical and genomic features. Sci Rep 2022; 12:21116. [PMID: 36477604 PMCID: PMC9729186 DOI: 10.1038/s41598-022-24980-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
The drug development process consumes 9-12 years and approximately one billion US dollars in costs. Due to the high finances and time costs required by the traditional drug discovery paradigm, repurposing old drugs to treat cancer and rare diseases is becoming popular. Computational approaches are mainly data-driven and involve a systematic analysis of different data types leading to the formulation of repurposing hypotheses. This study presents a novel scoring algorithm based on chemical and genomic data to repurpose drugs for 669 diseases from 22 groups, including various cancers, musculoskeletal, infections, cardiovascular, and skin diseases. The data types used to design the scoring algorithm are chemical structures, drug-target interactions (DTI), pathways, and disease-gene associations. The repurposed scoring algorithm is strengthened by integrating the most comprehensive manually curated datasets for each data type. At DrugRepo score ≥ 0.4, we repurposed 516 approved drugs across 545 diseases. Moreover, hundreds of novel predicted compounds can be matched with ongoing studies at clinical trials. Our analysis is supported by a web tool available at: http://drugrepo.org/ .
Collapse
Affiliation(s)
- Yinyin Wang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jehad Aldahdooh
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Yingying Hu
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hongbin Yang
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Markus Vähä-Koskela
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Ziaurrehman Tanoli
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.
- BioICAWtech, Helsinki, Finland.
| |
Collapse
|
24
|
Genomic variants-driven drug repurposing for tuberculosis by utilizing the established bioinformatic-based approach. Biochem Biophys Rep 2022; 32:101334. [PMID: 36090591 PMCID: PMC9449755 DOI: 10.1016/j.bbrep.2022.101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
A major challenge in translating genomic variants of Tuberculosis (TB) into clinical implementation is to integrate the disease-associated variants and facilitate drug discovery through the concept of genomic-driven drug repurposing. Here, we utilized two established genomic databases, namely a Genome-Wide Association Study (GWAS) and a Phenome-Wide Association Study (PheWAS) to identify the genomic variants associated with TB disease and further utilize them for drug-targeted genes. We evaluated 3.425 genomic variants associated with TB disease which overlapped with 200 TB-associated genes. To prioritize the biological TB risk genes, we devised an in-silico pipeline and leveraged an established bioinformatics method based on six functional annotations (missense mutation, cis-eQTL, biological process, cellular component, molecular function, and KEGG molecular pathway analysis). Interestingly, based on the six functional annotations that we applied, we discovered that 14 biological TB risk genes are strongly linked to the deregulation of the biological TB risk genes. Hence, we demonstrated that 12 drug target genes overlapped with 40 drugs for other indications and further suggested that the drugs may be repurposed for the treatment of TB. We highlighted that CD44, CCR5, CXCR4, and C3 are highly promising proposed TB targets since they are connected to SELP and HLA-B, which are biological TB risk genes with high systemic scores on functional annotations. In sum, the current study shed light on the genomic variants involved in TB pathogenesis as the biological TB risk genes and provided empirical evidence that the genomics of TB may contribute to drug discovery. The feasibility of utilizing genomic variants to facilitate drug repurposing for Tuberculosis. Genomic information can be effectively used for drug discovery and treatment through genomic-based therapies. Findings from our research support the possibility of drug repurposing for Tuberculosis based on genomic variations.
Collapse
|
25
|
Chen H, Shi X, Ren L, Zhuo H, Zeng L, Qin Q, Wan Y, Sangdan W, Zhou L. Identification of the miRNA-mRNA regulatory network associated with radiosensitivity in esophageal cancer based on integrative analysis of the TCGA and GEO data. BMC Med Genomics 2022; 15:249. [PMID: 36456979 PMCID: PMC9714096 DOI: 10.1186/s12920-022-01392-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The current study set out to identify the miRNA-mRNA regulatory networks that influence the radiosensitivity in esophageal cancer based on the The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. METHODS Firstly, esophageal cancer-related miRNA-seq and mRNA-seq data were retrieved from the TCGA database, and the mRNA dataset of esophageal cancer radiotherapy was downloaded from the GEO database to analyze the differential expressed miRNAs (DEmiRNAs) and mRNAs (DEmRNAs) in radiosensitive and radioresistant samples, followed by the construction of the miRNA-mRNA regulatory network and Gene Ontology and KEGG enrichment analysis. Additionally, a prognostic risk model was constructed, and its accuracy was evaluated by means of receiver operating characteristic analysis. RESULTS A total of 125 DEmiRNAs and 42 DEmRNAs were closely related to the radiosensitivity in patients with esophageal cancer. Based on 47 miRNA-mRNA interactions, including 21 miRNAs and 21 mRNAs, the miRNA-mRNA regulatory network was constructed. The prognostic risk model based on 2 miRNAs (miR-132-3p and miR-576-5p) and 4 mRNAs (CAND1, ZDHHC23, AHR, and MTMR4) could accurately predict the prognosis of esophageal cancer patients. Finally, it was verified that miR-132-3p/CAND1/ZDHHC23 and miR-576-5p/AHR could affect the radiosensitivity in esophageal cancer. CONCLUSION Our study demonstrated that miR-132-3p/CAND1/ZDHHC23 and miR-576-5p/AHR were critical molecular pathways related to the radiosensitivity of esophageal cancer.
Collapse
Affiliation(s)
- Hongmin Chen
- grid.412901.f0000 0004 1770 1022Cancer Center, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041 People’s Republic of China
| | - Xiaoxiao Shi
- grid.13291.380000 0001 0807 1581Department of Medical Oncology, Chengdu Shang Jin Nan Fu Hospital (West China Hospital, S.C.U.), Chengdu, 611730 People’s Republic of China
| | - Li Ren
- grid.412901.f0000 0004 1770 1022Cancer Center, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041 People’s Republic of China
| | - Hongyu Zhuo
- grid.412901.f0000 0004 1770 1022Cancer Center, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041 People’s Republic of China
| | - Li Zeng
- grid.412901.f0000 0004 1770 1022Cancer Center, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041 People’s Republic of China
| | - Qing Qin
- grid.412901.f0000 0004 1770 1022Cancer Center, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041 People’s Republic of China
| | - Yuming Wan
- grid.412901.f0000 0004 1770 1022Cancer Center, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041 People’s Republic of China
| | - Wangmu Sangdan
- Department of Oncology, People’s Hospital of Tibet Autonomous Region, Lhasa, 850000 People’s Republic of China
| | - Lin Zhou
- grid.412901.f0000 0004 1770 1022Cancer Center, West China Hospital of Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581Department of Thoracic Oncology, State Key Laboratory of Biotherapy, Sichuan University, No. 1, Keyuan 4th Road, Gaopeng Avenue, Chengdu, 610041 People’s Republic of China
| |
Collapse
|
26
|
Jamialahmadi O, Salehabadi E, Hashemi-Najafabadi S, Motamedian E, Bagheri F, Mancina RM, Romeo S. Cellular Genome-Scale Metabolic Modeling Identifies New Potential Drug Targets Against Hepatocellular Carcinoma. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:671-682. [PMID: 36508280 DOI: 10.1089/omi.2022.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genome-scale metabolic modeling (GEM) is one of the key approaches to unpack cancer metabolism and for discovery of new drug targets. In this study, we report the Transcriptional Regulated Flux Balance Analysis-CORE (TRFBA-), an algorithm for GEM using key growth-correlated reactions using hepatocellular carcinoma (HCC), an important global health burden, as a case study. We generated a HepG2 cell-specific GEM by integrating this cell line transcriptomic data with a generic human metabolic model to forecast potential drug targets for HCC. A total of 108 essential genes for growth were predicted by the TRFBA-CORE. These genes were enriched for metabolic pathways involved in cholesterol, sterol, and steroid biosynthesis. Furthermore, we silenced a predicted essential gene, 11-beta dehydrogenase hydroxysteroid type 2 (HSD11B2), in HepG2 cells resulting in a reduction in cell viability. To further identify novel potential drug targets in HCC, we examined the effect of nine drugs targeting the essential genes, and observed that most drugs inhibited the growth of HepG2 cells. Some of these drugs in this model performed better than Sorafenib, the first-line therapeutic against HCC. A HepG2 cell-specific GEM highlights sterol metabolism to be essential for cell growth. HSD11B2 downregulation results in lower cell growth. Most of the compounds, selected by drug repurposing approach, show a significant inhibitory effect on cell growth in a wide range of concentrations. These findings offer new molecular leads for drug discovery for hepatic cancer while also illustrating the importance of GEM and drug repurposing in cancer therapeutics innovation.
Collapse
Affiliation(s)
- Oveis Jamialahmadi
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Biotechnology and Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Salehabadi
- Department of Biotechnology and Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Sameereh Hashemi-Najafabadi
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Motamedian
- Department of Biotechnology and Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology and Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Rosellina Margherita Mancina
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Stefano Romeo
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.,Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy.,Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
27
|
Afief AR, Irham LM, Adikusuma W, Perwitasari DA, Brahmadhi A, Chong R. Integration of genomic variants and bioinformatic-based approach to drive drug repurposing for multiple sclerosis. Biochem Biophys Rep 2022; 32:101337. [PMID: 36105612 PMCID: PMC9464879 DOI: 10.1016/j.bbrep.2022.101337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 01/04/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease in the central nervous system (CNS) marked by inflammation, demyelination, and axonal loss. Currently available MS medication is limited, thereby calling for a strategy to accelerate new drug discovery. One of the strategies to discover new drugs is to utilize old drugs for new indications, an approach known as drug repurposing. Herein, we first identified 421 MS-associated SNPs from the Genome-Wide Association Study (GWAS) catalog (p-value < 5 × 10-8), and a total of 427 risk genes associated with MS using HaploReg version 4.1 under the criterion r 2 > 0.8. MS risk genes were then prioritized using bioinformatics analysis to identify biological MS risk genes. The prioritization was performed based on six defined categories of functional annotations, namely missense mutation, cis-expression quantitative trait locus (cis-eQTL), molecular pathway analysis, protein-protein interaction (PPI), genes overlap with knockout mouse phenotype, and primary immunodeficiency (PID). A total of 144 biological MS risk genes were found and mapped into 194 genes within an expanded PPI network. According to the DrugBank and the Therapeutic Target Database, 27 genes within the list targeted by 68 new candidate drugs were identified. Importantly, the power of our approach is confirmed with the identification of a known approved drug (dimethyl fumarate) for MS. Based on additional data from ClinicalTrials.gov, eight drugs targeting eight distinct genes are prioritized with clinical evidence for MS disease treatment. Notably, CD80 and CD86 pathways are promising targets for MS drug repurposing. Using in silico drug repurposing, we identified belatacept as a promising MS drug candidate. Overall, this study emphasized the integration of functional genomic variants and bioinformatic-based approach that reveal important biological insights for MS and drive drug repurposing efforts for the treatment of this devastating disease.
Collapse
Key Words
- ARE, Antioxidant Response Element
- ASN, Asian
- Autoimmune disease
- Bioinformatics
- CNS, Central Nervous System
- Drug repurposing
- FDA, Food and Drug Administration
- FDR, False Discovery Rate
- GO, Gene Ontology
- GWAS, Genome-Wide Association Study
- Genomic variants
- HLA, Human Leukocyte Antigen
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- MP, Mammalian Phenotype
- MS, Multiple Sclerosis
- Multiple sclerosis
- PID, Primary Immuno-deficiency
- PPI, Protein-Protein Interaction
- SNP, Single Nucleotide Polymorphism
- cis-eQTL, cis-expression Quantitative Trait Locus
Collapse
Affiliation(s)
| | | | - Wirawan Adikusuma
- Department of Pharmacy, University of Muhammadiyah Mataram, Mataram, Indonesia
| | | | - Ageng Brahmadhi
- Faculty of Medicine, Universitas Muhammadiyah Purwokerto, Purwokerto, Central Java, Indonesia
| | - Rockie Chong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| |
Collapse
|
28
|
Mohsin NUA, Aslam S, Ahmad M, Irfan M, Al-Hussain SA, Zaki MEA. Cyclooxygenase-2 (COX-2) as a Target of Anticancer Agents: A Review of Novel Synthesized Scaffolds Having Anticancer and COX-2 Inhibitory Potentialities. Pharmaceuticals (Basel) 2022; 15:ph15121471. [PMID: 36558921 PMCID: PMC9783503 DOI: 10.3390/ph15121471] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a serious threat to human beings and is the second-largest cause of death all over the globe. Chemotherapy is one of the most common treatments for cancer; however, drug resistance and severe adverse effects are major problems associated with anticancer therapy. New compounds with multi-target inhibitory properties are targeted to surmount these challenges. Cyclooxygenase-2 (COX-2) is overexpressed in cancers of the pancreas, breast, colorectal, stomach, and lung carcinoma. Therefore, COX-2 is considered a significant target for the synthesis of new anticancer agents. This review discusses the biological activity of recently prepared dual anticancer and COX-2 inhibitory agents. The most important intermolecular interactions with the COX-2 enzyme have also been presented. Analysis of these agents in the active area of the COX-2 enzyme could guide the introduction of new lead compounds with extreme selectivity and minor side effects.
Collapse
Affiliation(s)
- Noor ul Amin Mohsin
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
- Correspondence: (M.A.); (M.E.A.Z.)
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Correspondence: (M.A.); (M.E.A.Z.)
| |
Collapse
|
29
|
Duarte D, Guerreiro I, Vale N. Novel Strategies for Cancer Combat: Drug Combination Using Repurposed Drugs Induces Synergistic Growth Inhibition of MCF-7 Breast and HT-29 Colon Cancer Cells. Curr Issues Mol Biol 2022; 44:4930-4949. [PMID: 36286050 PMCID: PMC9601176 DOI: 10.3390/cimb44100335] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/04/2022] Open
Abstract
Our group developed a new model of drug combination consisting of the use of antineoplastic drugs and different repurposed drugs, having demonstrated that antimalarial and central nervous system (CNS) drugs have a promising anticancer profile as standalone agents, as well as in combined regimens. Here, we evaluated the anticancer profiles of two different CNS drugs (edaravone and quetiapine), both alone and in combination with antineoplastic agents for breast and colon cancer, to explore whether these repurposed drugs could synergistically enhance the anticancer potential of chemotherapeutic drugs. We also developed a new model of combination using two repurposed drugs, to explore whether this model of combination could also be suitable for application in breast and colon cancer therapy. MCF-7 and HT-29 cancer cells were incubated for 48 h with each individual drug (0.01–100 µM) to determine their IC50. Cells were then treated with the IC50 value for doxorubicin or paclitaxel (MCF-7) or 5-fluorouracil (HT-29) and combined with increasing concentrations of edaravone or quetiapine for 48 h. Both cell lines were also treated with a combination of two antimalarial drugs (mefloquine and pyronaridine) or two CNS drugs (fluphenazine and sertraline) for 48 h. We found that the use of quetiapine in combined therapies seems to synergistically enhance the anticancer activity of doxorubicin for the management of breast cancer. Both CNS drugs significantly improved the cytotoxic potential of 5-fluorouracil in HT-29 cells, with quetiapine synergistically interacting with the antineoplastic drug in this drug combination. Regarding the combination of repurposed drugs, only found one synergic combination regimen (sertraline IC50 plus variable concentrations of fluphenazine) with anticancer potential against HT-29 colon cancer cells was found. Taken together, these results suggest that quetiapine and edaravone can be used as adjuvant agents in chemotherapy for colon cancer. It was also found that the combination of repurposed drugs, specifically the CNS drugs sertraline and fluphenazine, may have an interesting profile for application in colon cancer novel therapies.
Collapse
Affiliation(s)
- Diana Duarte
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Inês Guerreiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
30
|
Novel 7-Chloro-(4-thioalkylquinoline) Derivatives: Synthesis and Antiproliferative Activity through Inducing Apoptosis and DNA/RNA Damage. Pharmaceuticals (Basel) 2022; 15:ph15101234. [PMID: 36297346 PMCID: PMC9607427 DOI: 10.3390/ph15101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022] Open
Abstract
A series of 78 synthetic 7-chloro-(4-thioalkylquinoline) derivatives were investigated for cytotoxic activity against eight human cancer as well as 4 non-tumor cell lines. The results showed, with some exceptions, that sulfanyl 5-40 and sulfinyl 41-62 derivatives exhibited lower cytotoxicity for cancer cell lines than those of well-described sulfonyl N-oxide derivatives 63-82. As for compound 81, the most pronounced selectivity (compared against BJ and MRC-5 cells) was observed for human cancer cells from HCT116 (human colorectal cancer with wild-type p53) and HCT116p53-/- (human colorectal cancer with deleted p53), as well as leukemia cell lines (CCRF-CEM, CEM-DNR, K562, and K562-TAX), lung (A549), and osteosarcoma cells (U2OS). A good selectivity was also detected for compounds 73 and 74 for leukemic and colorectal (with and without p53 deletion) cancer cells (compared to MRC-5). At higher concentrations (5 × IC50) against the CCRF-CEM cancer cell line, we observe the accumulation of the cells in the G0/G1 cell phase, inhibition of DNA and RNA synthesis, and induction of apoptosis. In addition, X-ray data for compound 15 is being reported. These results provide useful scientific data for the development of 4-thioalkylquinoline derivatives as a new class of anticancer candidates.
Collapse
|
31
|
Faulkner R, Jo Y. Synthesis, function, and regulation of sterol and nonsterol isoprenoids. Front Mol Biosci 2022; 9:1006822. [PMID: 36275615 PMCID: PMC9579336 DOI: 10.3389/fmolb.2022.1006822] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Cholesterol, the bulk end-product of the mevalonate pathway, is a key component of cellular membranes and lipoproteins that transport lipids throughout the body. It is also a precursor of steroid hormones, vitamin D, and bile acids. In addition to cholesterol, the mevalonate pathway yields a variety of nonsterol isoprenoids that are essential to cell survival. Flux through the mevalonate pathway is tightly controlled to ensure cells continuously synthesize nonsterol isoprenoids but avoid overproducing cholesterol and other sterols. Endoplasmic reticulum (ER)-localized 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase (HMGCR), the rate limiting enzyme in the mevalonate pathway, is the focus of a complex feedback regulatory system governed by sterol and nonsterol isoprenoids. This review highlights transcriptional and post-translational regulation of HMGCR. Transcriptional regulation of HMGCR is mediated by the Scap-SREBP pathway. Post-translational control is initiated by the intracellular accumulation of sterols, which causes HMGCR to become ubiquitinated and subjected to proteasome-mediated ER-associated degradation (ERAD). Sterols also cause a subfraction of HMGCR molecules to bind the vitamin K2 synthetic enzyme, UbiA prenyltransferase domain-containing protein-1 (UBIAD1). This binding inhibits ERAD of HMGCR, which allows cells to continuously synthesize nonsterol isoprenoids such as geranylgeranyl pyrophosphate (GGPP), even when sterols are abundant. Recent studies reveal that UBIAD1 is a GGPP sensor, dissociating from HMGCR when GGPP thresholds are met to allow maximal ERAD. Animal studies using genetically manipulated mice disclose the physiological significance of the HMGCR regulatory system and we describe how dysregulation of these pathways contributes to disease.
Collapse
|
32
|
Sun G, Dong D, Dong Z, Zhang Q, Fang H, Wang C, Zhang S, Wu S, Dong Y, Wan Y. Drug repositioning: A bibliometric analysis. Front Pharmacol 2022; 13:974849. [PMID: 36225586 PMCID: PMC9549161 DOI: 10.3389/fphar.2022.974849] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/12/2022] [Indexed: 11/14/2022] Open
Abstract
Drug repurposing has become an effective approach to drug discovery, as it offers a new way to explore drugs. Based on the Science Citation Index Expanded (SCI-E) and Social Sciences Citation Index (SSCI) databases of the Web of Science core collection, this study presents a bibliometric analysis of drug repurposing publications from 2010 to 2020. Data were cleaned, mined, and visualized using Derwent Data Analyzer (DDA) software. An overview of the history and development trend of the number of publications, major journals, major countries, major institutions, author keywords, major contributors, and major research fields is provided. There were 2,978 publications included in the study. The findings show that the United States leads in this area of research, followed by China, the United Kingdom, and India. The Chinese Academy of Science published the most research studies, and NIH ranked first on the h-index. The Icahn School of Medicine at Mt Sinai leads in the average number of citations per study. Sci Rep, Drug Discov. Today, and Brief. Bioinform. are the three most productive journals evaluated from three separate perspectives, and pharmacology and pharmacy are unquestionably the most commonly used subject categories. Cheng, FX; Mucke, HAM; and Butte, AJ are the top 20 most prolific and influential authors. Keyword analysis shows that in recent years, most research has focused on drug discovery/drug development, COVID-19/SARS-CoV-2/coronavirus, molecular docking, virtual screening, cancer, and other research areas. The hotspots have changed in recent years, with COVID-19/SARS-CoV-2/coronavirus being the most popular topic for current drug repurposing research.
Collapse
Affiliation(s)
- Guojun Sun
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Dashun Dong
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Zuojun Dong
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Qian Zhang
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Hui Fang
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| | - Chaojun Wang
- Hangzhou Aeronautical Sanatorium for Special Service of Chinese Air Force, Hangzhou, China
| | - Shaoya Zhang
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Shuaijun Wu
- Institute of Pharmaceutical Preparations, Department of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Yichen Dong
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yuehua Wan
- Institute of Information Resource, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
33
|
Xu X, Qian X, Gao C, Pang Y, Zhou H, Zhu L, Wang Z, Pang M, Wu D, Yu W, Kong F, Shi D, Guo Y, Su X, Hu W, Yan J, Feng X, Fan H. Advances in the pharmacological treatment of hepatic alveolar echinococcosis: From laboratory to clinic. Front Microbiol 2022; 13:953846. [PMID: 36003932 PMCID: PMC9393627 DOI: 10.3389/fmicb.2022.953846] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022] Open
Abstract
Hepatic alveolar echinococcosis (HAE) is a zoonotic parasitic disease caused by the larvae of Echinococcus multilocularis. Because of its characteristics of diffuse infiltration and growth similar to tumors, the disability rate and mortality rate are high among patients. Although surgery (including hepatectomy, liver transplantation, and autologous liver transplantation) is the first choice for the treatment of hepatic alveolar echinococcosis in clinic, drug treatment still plays an important and irreplaceable role in patients with end-stage echinococcosis, including patients with multiple organ metastasis, patients with inferior vena cava invasion, or patients with surgical contraindications, etc. However, Albendazole is the only recommended clinical drug which could exhibit a parasitostatic rather than a parasitocidal effect. Novel drugs are needed but few investment was made in the field because the rarity of the cases. Drug repurposing might be a solution. In this review, FDA-approved drugs that have a potential curative effect on hepatic alveolar echinococcosis in animal models are summarized. Further, nano drug delivery systems boosting the therapeutic effect on hepatic alveolar echinococcosis are also reviewed. Taken together, these might contribute to the development of novel strategy for advanced hepatic alveolar echinococcosis.
Collapse
Affiliation(s)
- Xiaolei Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qinghai University, Xining, Qinghai, China
- School of Clinical Medicine, Tsinghua University, Beijing, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, China
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Xinye Qian
- School of Clinical Medicine, Tsinghua University, Beijing, China
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Cancan Gao
- Department of General Medicine of Air Force Medical Center, Beijing, China
| | - Yuan Pang
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China
| | - Hu Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qinghai University, Xining, Qinghai, China
- School of Clinical Medicine, Tsinghua University, Beijing, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, China
| | - Lizhen Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qinghai University, Xining, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, China
| | - Zhan Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qinghai University, Xining, Qinghai, China
- School of Clinical Medicine, Tsinghua University, Beijing, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, China
| | - Mingquan Pang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qinghai University, Xining, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, China
| | - Defang Wu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qinghai University, Xining, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, China
| | - Wenhao Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qinghai University, Xining, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, China
| | - Fanyu Kong
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qinghai University, Xining, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, China
| | - Dalin Shi
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qinghai University, Xining, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, China
| | - Yuting Guo
- School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, China
| | - Xiaoxia Su
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qinghai University, Xining, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, China
| | - Wang Hu
- School of Clinical Medicine, Tsinghua University, Beijing, China
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Xiaobin Feng
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, Beijing, China
- *Correspondence: Xiaobin Feng, ; Haining Fan,
| | - Haining Fan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qinghai University, Xining, Qinghai, China
- Qinghai Research Key Laboratory for Echinococcosis, Qinghai, China
- *Correspondence: Xiaobin Feng, ; Haining Fan,
| |
Collapse
|
34
|
Khan SA, Lee TKW. Investigations of nitazoxanide molecular targets and pathways for the treatment of hepatocellular carcinoma using network pharmacology and molecular docking. Front Pharmacol 2022; 13:968148. [PMID: 35959427 PMCID: PMC9358010 DOI: 10.3389/fphar.2022.968148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Nitazoxanide has been investigated for colorectal cancer and breast cancer. However, its molecular targets and pathways have not yet been explored for hepatocellular carcinoma (HCC) treatment. Utilizing a network pharmacology approach, nitazoxanide’s potential targets and molecular pathways for HCC treatment were investigated. HCC targets were extracted from the GeneCards database. Potential targets of nitazoxanide were predicted using Swiss Target Prediction and Super Pred. Intersecting targets were analyzed with VENNY online tool. Using Cytoscape, a protein-protein interaction (PPI), cluster, and core targets-pathways networks were constructed. Using the Database for Annotation, Visualization and Integrated Discovery (DAVID), gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted. The nitazoxanide was molecularly docked with anti-HCC core targets by employing Auto Dock Vina. A total of 168 potential targets of nitazoxanide, 13,415 HCC-related targets, and 153 intersecting targets were identified. The top eight anti-HCC core targets were identified: SRC, EGFR, CASP3, MMP9, mTOR, HIF1A, ERBB2, and PPARG. GO enrichment analysis showed that nitazoxanide might have anti-HCC effects by affecting gene targets involved in multiple biological processes (BP) (protein phosphorylation, transmembrane receptor protein tyrosine kinase (RTKs) signaling pathway, positive regulation of MAP kinase activity, etc.). KEGG pathways and core targets-pathways network analysis indicated that pathways in cancer and proteoglycans in cancer are two key pathways that significantly contribute to the anti-HCC effects of nitazoxanide. Results of molecular docking demonstrated the potential for active interaction between the top eight anti-HCC core targets and nitazoxanide. Our research offers a theoretical basis for the notion that nitazoxanide may have distinct therapeutic effects in HCC, and the identified pharmacological targets and pathways might function as biomarkers for HCC therapy.
Collapse
Affiliation(s)
- Shakeel Ahmad Khan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- *Correspondence: Shakeel Ahmad Khan, ; Terence Kin Wah Lee,
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- *Correspondence: Shakeel Ahmad Khan, ; Terence Kin Wah Lee,
| |
Collapse
|
35
|
Rumienczyk I, Kulecka M, Statkiewicz M, Ostrowski J, Mikula M. Oncology Drug Repurposing for Sepsis Treatment. Biomedicines 2022; 10:biomedicines10040921. [PMID: 35453671 PMCID: PMC9030585 DOI: 10.3390/biomedicines10040921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/08/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022] Open
Abstract
Sepsis involves life-threatening organ dysfunction caused by a dysregulated host response to infection. Despite three decades of efforts and multiple clinical trials, no treatment, except antibiotics and supportive care, has been approved for this devastating syndrome. Simultaneously, numerous preclinical studies have shown the effectiveness of oncology-indicated drugs in ameliorating sepsis. Here we focus on cataloging these efforts with both oncology-approved and under-development drugs that have been repositioned to treat bacterial-induced sepsis models. In this context, we also envision the exciting prospect for further standard and oncology drug combination testing that could ultimately improve clinical outcomes in sepsis.
Collapse
Affiliation(s)
- Izabela Rumienczyk
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (I.R.); (M.K.); (M.S.); (J.O.)
| | - Maria Kulecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (I.R.); (M.K.); (M.S.); (J.O.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Małgorzata Statkiewicz
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (I.R.); (M.K.); (M.S.); (J.O.)
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (I.R.); (M.K.); (M.S.); (J.O.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (I.R.); (M.K.); (M.S.); (J.O.)
- Correspondence: ; Tel.: +48-22-546-26-55
| |
Collapse
|
36
|
Meng F, Zhang K, Yang C, Zhang K, Xu Q, Ren R, Zhou Y, Sun Y, Peng Y, Li Y, Guo H, Ren Y, Zhao Z. Prognostic Pathways Guide Drug Indications in Pan-Cancers. Front Oncol 2022; 12:849552. [PMID: 35372084 PMCID: PMC8964428 DOI: 10.3389/fonc.2022.849552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/07/2022] [Indexed: 11/18/2022] Open
Abstract
Pathway-level analysis is a powerful approach enabling the interpretation of post-genomic data at a higher level than that of individual molecules. Molecular-targeted therapy focusing on cascade signaling pathways has become a new paradigm in anticancer therapy, instead of a single protein. However, the approaches to narrowing down the long list of biological pathways are limited. Here, we proposed a strategy for in silico Drug Prescription on biological pathways across pan-Cancers (CDP), by connecting drugs to candidate pathways. Applying on a list of 120 traditional Chinese medicines (TCM), we especially identified the “TCM–pathways–cancers” triplet and constructed it into a heterogeneous network across pan-cancers. Applying them into TCMs, the computational prescribing methods deepened the understanding of the efficacy of TCM at the molecular level. Further applying them into Western medicines, CDP could promote drug reposition avoiding time-consuming developments of new drugs.
Collapse
Affiliation(s)
- Fanlin Meng
- Marketing and Management Department, CapitalBio Technology, Beijing, China.,National Engineering Research Center for Beijing Biochip Technology, Beijing, China
| | - Kenan Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Changlin Yang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Ke Zhang
- National Engineering Research Center for Beijing Biochip Technology, Beijing, China
| | - Quan Xu
- National Engineering Research Center for Beijing Biochip Technology, Beijing, China
| | - Ruifang Ren
- National Engineering Research Center for Beijing Biochip Technology, Beijing, China
| | - Yiming Zhou
- National Engineering Research Center for Beijing Biochip Technology, Beijing, China
| | - Yimin Sun
- Marketing and Management Department, CapitalBio Technology, Beijing, China.,National Engineering Research Center for Beijing Biochip Technology, Beijing, China
| | - Yan Peng
- Marketing and Management Department, CapitalBio Technology, Beijing, China
| | - Yanze Li
- Marketing and Management Department, CapitalBio Technology, Beijing, China
| | - Hongyan Guo
- National Engineering Research Center for Beijing Biochip Technology, Beijing, China
| | - Yonghong Ren
- Marketing and Management Department, CapitalBio Technology, Beijing, China
| | - Zheng Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
37
|
Current Advances of Nanomedicines Delivering Arsenic Trioxide for Enhanced Tumor Therapy. Pharmaceutics 2022; 14:pharmaceutics14040743. [PMID: 35456577 PMCID: PMC9026299 DOI: 10.3390/pharmaceutics14040743] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/18/2022] Open
Abstract
Arsenic trioxide (ATO) is one of the first-line chemotherapeutic drugs for acute promyelocytic leukemia. Its anti-cancer activities against various human neoplastic diseases have been extensively studied. However, the clinical use of ATO for solid tumors is limited, and these limitations are because of severe systemic toxicity, low bioavailability, and quick renal elimination before it reaches the target site. Although without much success, several efforts have been made to boost ATO bioavailability toward solid tumors without raising its dose. It has been found that nanomedicines have various advantages for drug delivery, including increased bioavailability, effectiveness, dose-response, targeting capabilities, and safety as compared to traditional drugs. Therefore, nanotechnology to deliver ATO to solid tumors is the main topic of this review, which outlines the previous and present medical applications of ATO. We also summarised ATO anti-cancer mechanisms, limitations, and outcomes of combinatorial treatment with chemo agents. As a result, we strongly recommend conducting pre-clinical and clinical studies of ATO, especially nano-system-based ones that might lead to a novel combination therapy for cancer treatment with high efficacy, bioavailability, and low toxicity for cancer patients.
Collapse
|
38
|
Branco H, Oliveira J, Antunes C, Santos LL, Vasconcelos MH, Xavier CPR. Pirfenidone Sensitizes NCI-H460 Non-Small Cell Lung Cancer Cells to Paclitaxel and to a Combination of Paclitaxel with Carboplatin. Int J Mol Sci 2022; 23:ijms23073631. [PMID: 35408988 PMCID: PMC8998757 DOI: 10.3390/ijms23073631] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Pirfenidone, an antifibrotic drug, has antitumor potential against different types of cancers. Our work explored whether pirfenidone sensitizes non-small cell lung cancer (NSCLC) cell lines to chemotherapeutic treatments. The cytotoxic effect of paclitaxel in combination with pirfenidone against three NSCLC cell lines (A549, NCI-H322 and NCI-H460) was evaluated using the sulforhodamine B assay. The effects of this combination on cell viability (trypan blue exclusion assay), proliferation (BrdU incorporation assay), cell cycle (flow cytometry following PI staining) and cell death (Annexin V-FITC detection assay and Western blot) were analyzed on the most sensitive cell line (NCI-H460). The cytotoxic effect of this drug combination was also evaluated against two non-tumorigenic cell lines (MCF-10A and MCF-12A). Finally, the ability of pirfenidone to sensitize NCI-H460 cells to a combination of paclitaxel plus carboplatin was assessed. The results demonstrated that pirfenidone sensitized NCI-H460 cells to paclitaxel treatment, reducing cell growth, viability and proliferation, inducing alterations in the cell cycle profile and causing an increase in the % of cell death. Remarkably, this combination did not increase cytotoxicity in non-tumorigenic cells. Importantly, pirfenidone also sensitized NCI-H460 cells to paclitaxel plus carboplatin. This work highlights the possibility of repurposing pirfenidone in combination with chemotherapy for the treatment of NSCLC.
Collapse
Affiliation(s)
- Helena Branco
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (H.B.); (C.A.)
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Júlio Oliveira
- Experimental Pathology and Therapeutics Group, IPO—Instituto Português de Oncologia, Rua Dr. António Bernardino de Almeida 865, 4200-072 Porto, Portugal; (J.O.); (L.L.S.)
| | - Catarina Antunes
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (H.B.); (C.A.)
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Lúcio L. Santos
- Experimental Pathology and Therapeutics Group, IPO—Instituto Português de Oncologia, Rua Dr. António Bernardino de Almeida 865, 4200-072 Porto, Portugal; (J.O.); (L.L.S.)
- ICBAS-UP—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Helena Vasconcelos
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (H.B.); (C.A.)
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP—Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Correspondence: (M.H.V.); (C.P.R.X.); Tel.: +351-225-570-772 (M.H.V.)
| | - Cristina P. R. Xavier
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (H.B.); (C.A.)
- Cancer Drug Resistance Group, IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Correspondence: (M.H.V.); (C.P.R.X.); Tel.: +351-225-570-772 (M.H.V.)
| |
Collapse
|
39
|
Honeybee Venom Synergistically Enhances the Cytotoxic Effect of CNS Drugs in HT-29 Colon and MCF-7 Breast Cancer Cell Lines. Pharmaceutics 2022; 14:pharmaceutics14030511. [PMID: 35335887 PMCID: PMC8952811 DOI: 10.3390/pharmaceutics14030511] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/01/2022] Open
Abstract
5-fluorouracil (5-FU) and doxorubicin (DOX) are potent anti-tumour agents commonly used for colon and breast cancer therapy, respectively. However, their clinical application is limited by their side effects and the development of drug resistance. Honeybee venom is a complex mixture of substances that has been reported to be effective against different cancer cells. Its active compound is melittin, a positively charged amphipathic peptide that interacts with the phospholipids of the cell membrane, forming pores that enable the internalization of small molecules with cytotoxic activities,. and consequently, causing cell death. Some central nervous system (CNS) drugs have recently demonstrated great anti-cancer potential, both in vitro, in vivo and in clinical trials, being promising candidates for drug repurposing in oncology. The present work evaluated the anti-cancer efficacy of honeybee venom in combination with chemotherapeutic or CNS drugs in HT-29 colon and MCF-7 breast cancer cell lines. The chemical characterization of a Portuguese sample of honeybee venom was done by LC-DAD-ESI/MSn analysis. For single treatments, cells were incubated with increasing concentrations of bee venom. For combination treatments, increasing concentrations of bee venom were first combined with the half-maximal inhibitory concentration (IC50) of 5-FU and DOX, in HT-29 and MCF-7 cells, respectively. Cells were also treated with increasing concentrations of bee venom in combination with the IC50 value of four CNS drugs (fluphenazine, fluoxetine, sertraline and thioridazine). Cytotoxicity was evaluated by MTT and SRB assays. The combination index (CI) value was calculated using CompuSyn software, based on the Chou–Talalay method. Synergy scores of different reference models (HSA, Loewe, ZIP and Bliss) were also calculated using SynergyFinder. The results demonstrate that honeybee venom is active against HT-29 colon and MCF-7 breast cancer cells, having better anti-tumour activity in MCF-7 cells. It was found that bee venom combined with 5-FU and fluphenazine in HT-29 cells resulted in less cytotoxic effects compared to the co-treatment of fluoxetine, sertraline and thioridazine plus bee venom, which resulted in less than 15% of viable cells for the whole range of concentrations. The combination of MCF-7 cells with repurposed drugs plus honeybee venom resulted in better anti-cancer efficacies than with DOX, notably for lower concentrations. A combination of fluoxetine and thioridazine plus honeybee venom resulted in less than 40% of viable cells for all ranges of concentrations. These results support that the combination of honeybee venom with repurposed drugs and chemotherapeutic agents can help improve their anti-cancer activity, especially for lower concentrations, in both cell lines. Overall, the present study corroborates the enormous bioactive potential of honeybee venom for colon and breast cancer treatments, both alone and in combination with chemotherapy or repurposed drugs.
Collapse
|
40
|
Dey A, Kundu M, Das S, Jena BC, Mandal M. Understanding the function and regulation of Sox2 for its therapeutic potential in breast cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188692. [PMID: 35122882 DOI: 10.1016/j.bbcan.2022.188692] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/11/2022] [Accepted: 01/28/2022] [Indexed: 12/12/2022]
Abstract
Sox family of transcriptional factors play essential functions in development and are implicated in multiple clinical disorders, including cancer. Sox2 being their most prominent member and performing a critical role in reprogramming differentiated adult cells to an embryonic phenotype is frequently upregulated in multiple cancers. High Sox2 levels are detected in breast tumor tissues and correlate with a worse prognosis. In addition, Sox2 expression is connected with resistance to conventional anticancer therapy. Together, it can be said that inhibiting Sox2 expression can reduce the malignant features associated with breast cancer, including invasion, migration, proliferation, stemness, and chemoresistance. This review highlights the critical roles played by the Sox gene family members in initiating or suppressing breast tumor development, while primarily focusing on Sox2 and its role in breast tumor initiation, maintenance, and progression, elucidates the probable mechanisms that control its activity, and puts forward potential therapeutic strategies to inhibit its expression.
Collapse
Affiliation(s)
- Ankita Dey
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur (IIT Kharagpur), Kharagpur, West Bengal, India..
| | - Moumita Kundu
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur (IIT Kharagpur), Kharagpur, West Bengal, India..
| | - Subhayan Das
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur (IIT Kharagpur), Kharagpur, West Bengal, India..
| | - Bikash Chandra Jena
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur (IIT Kharagpur), Kharagpur, West Bengal, India..
| | - Mahitosh Mandal
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur (IIT Kharagpur), Kharagpur, West Bengal, India..
| |
Collapse
|
41
|
Tong S, Kaitu’u-Lino TJ, Hastie R, Brownfoot F, Cluver C, Hannan N. Pravastatin, proton-pump inhibitors, metformin, micronutrients, and biologics: new horizons for the prevention or treatment of preeclampsia. Am J Obstet Gynecol 2022; 226:S1157-S1170. [PMID: 32946849 DOI: 10.1016/j.ajog.2020.09.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022]
Abstract
There has been increasing research momentum to identify new therapeutic agents for the prevention or treatment of preeclampsia, drugs that can affect the underlying disease pathophysiology. Molecular targets of candidate treatments include oxidative stress, antiangiogenic factors, and the angiotensin, nitric oxide, and proinflammatory pathways. The proposed treatments undergoing preclinical and clinical trial evaluation are thought to act on placental or endothelial disease or both. Most have adopted the pragmatic strategy of repurposing drugs. Of all the therapeutic agents proposed, pravastatin has received the most interest. There are preclinical studies showing that it has pleiotropic actions that favorably impact on multiple molecular targets and can resolve a preeclampsia phenotype in many animal models. An early phase clinical trial suggests that it may have therapeutic activity. Several large prevention trials are planned or ongoing and, when completed, could definitively address whether pravastatin can prevent preeclampsia. Proton-pump inhibitors, metformin, and sulfasalazine are other drugs with preclinical evidence of multiple molecular actions that could resolve the pathophysiology of preeclampsia. These agents are also currently being evaluated in clinical trials. There have been many recent preclinical studies identifying the potential of numerous natural compounds to treat preeclampsia, such as plant extracts and micronutrients that have potent anti-inflammatory or antioxidant activity. Recent preclinical studies have also proposed novel molecular-targeted strategies, such as monoclonal antibodies targeting tumor necrosis factor alpha, placental growth factor, and short interfering RNA technology, to silence the gene expression of soluble fms-like tyrosine kinase-1 or angiotensinogen. Other treatment approaches that have transitioned to human trials (ranging from single-arm to phase III trials that have been completed or are ongoing) include folic acid, nitric oxide donors (such as L-arginine), recombinant antithrombin III, digoxin immune antigen-binding fragment, and melatonin. There have been case series showing the removal of circulating soluble fms-like tyrosine kinase-1 may help stabilize the disease and prolong pregnancy. Interestingly, there are case reports suggesting that monoclonal antibody eculizumab (complement inhibitor) may have therapeutic potential. If new agents are discovered that are proven to be effective in preventing or treating preeclampsia, the potential to improve global maternal and perinatal health will be significant.
Collapse
|
42
|
Repurposed antipsychotic chlorpromazine inhibits colorectal cancer and pulmonary metastasis by inducing G2/M cell cycle arrest, apoptosis, and autophagy. Cancer Chemother Pharmacol 2022; 89:331-346. [PMID: 35067737 DOI: 10.1007/s00280-021-04386-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/14/2021] [Indexed: 01/18/2023]
|
43
|
Unal U, Comertpay B, Demirtas TY, Gov E. Drug repurposing for rheumatoid arthritis: Identification of new drug candidates via bioinformatics and text mining analysis. Autoimmunity 2022; 55:147-156. [PMID: 35048767 DOI: 10.1080/08916934.2022.2027922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that results in the destruction of tissue by attacks on the patient by his or her own immune system. Current treatment strategies are not sufficient to overcome RA. In the present study, various transcriptomic data from synovial fluids, synovial fluid-derived macrophages, and blood samples from patients with RA were analysed using bioinformatics approaches to identify tissue-specific repurposing drug candidates for RA. Differentially expressed genes (DEGs) were identified by integrating datasets for each tissue and comparing diseased to healthy samples. Tissue-specific protein-protein interaction (PPI) networks were generated and topologically prominent proteins were selected. Transcription-regulating biomolecules for each tissue type were determined from protein-DNA interaction data. Common DEGs and reporter biomolecules were used to identify drug candidates for repurposing using the hypergeometric test. As a result of bioinformatic analyses, 19 drugs were identified as repurposing candidates for RA, and text mining analyses supported our findings. We hypothesize that the FDA-approved drugs momelotinib, ibrutinib, and sodium butyrate may be promising candidates for RA. In addition, CHEMBL306380, Compound 19a (CHEMBL3116050), ME-344, XL-019, TG100801, JNJ-26483327, and NV-128 were identified as novel repurposing candidates for the treatment of RA. Preclinical and further validation of these drugs may provide new treatment options for RA.
Collapse
Affiliation(s)
- Ulku Unal
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Betul Comertpay
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Talip Yasir Demirtas
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Esra Gov
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| |
Collapse
|
44
|
Malik JA, Ahmed S, Jan B, Bender O, Al Hagbani T, Alqarni A, Anwar S. Drugs repurposed: An advanced step towards the treatment of breast cancer and associated challenges. Biomed Pharmacother 2021; 145:112375. [PMID: 34863612 DOI: 10.1016/j.biopha.2021.112375] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 02/09/2023] Open
Abstract
Breast cancer (BC) is mostly observed in women and is responsible for huge mortality in women subjects globally. Due to the continued development of drug resistance and other contributing factors, the scientific community needs to look for new alternatives, and drug repurposing is one of the best opportunities. Here we light upon the drug repurposing with a major focus on breast cancer. BC is a division of cancer known as the leading cause of death of 2.3 million women globally, with 685,000 fatalities. This number is steadily rising, necessitating the development of a treatment that can extend survival time. All available treatments for BC are very costly as well as show side effects. This unfulfilled requirement of the anti-cancer drugs ignited an enthusiasm for drug repositioning, which means finding out the anti-cancer use of already marketed drugs for other complications. With the advancement in proteomics, genomics, and computational approaches, the drug repurposing process hastens. So many drugs are repurposed for the BC, including alkylating agents, antimetabolite, anthracyclines, an aromatase inhibitor, mTOR, and many more. The drug resistance in breast cancer is rising, so reviewing how the challenges in breast cancer can be combated with drug repurposing. This paper provides the updated information on all the repurposed drugs candidates for breast cancer with the molecular mechanism responsible for their anti-tumor activity. Additionally, all the challenges that occur during the repurposing of the drugs are discussed.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India; Department of Biomedical engineering, Indian Institute of Technology (IIT), Ropar, Punjab, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Bisma Jan
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
| | - Onur Bender
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Aali Alqarni
- Pharmaceutical Chemistry Department, Pharmacology unit, College of Clinical Pharmacy, Al Baha University, Saudi Arabia
| | - Sirajudheen Anwar
- Pharmacology and Toxicology Department, College of Pharmacy, University of Hail, Hail, Saudi Arabia.
| |
Collapse
|
45
|
Mittal N, Mittal R. Repurposing old molecules for new indications: Defining pillars of success from lessons in the past. Eur J Pharmacol 2021; 912:174569. [PMID: 34653378 DOI: 10.1016/j.ejphar.2021.174569] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023]
Abstract
Drug repurposing or studying existing drugs for potential therapeutic utility in newer indications has been identified as an attractive option for treating a number of diseases. Various strategies of drug repurposing include serendipitous observation of drug's unexpected effects, directing the failed investigational drugs to new indications and currently adopted systematic approach to identify, screen and develop existing drug molecules for new off-label indications. Drug repurposing is able to constructively overcome the bottleneck restraints encountered during traditional de novo drug development process in grounds of timelines, cost and resources. However, success rates of drug repurposing programs are not very impressive. Through a meticulous examination of some failed repurposing attempts we aimed to identify key factors leading to high attrition rate in such studies. Based on the fundamental elements of knowledge and evaluation, we have defined four pillars toward improving success rate in drug repurposing programs viz. sound knowledge of the repurposed drug's pharmacological characteristics (pillar 1: drug pharmacology); drug formulation considerations in new indication (pillar 2: drug formulation); evaluation in representative biological assays with translational potential (pillar 3: evaluation in biological assays); and robust clinical trial methodologies including biomarker driven approach to provide conclusive evidence of repurposed drug's efficacy in new indication (pillar 4: clinical evaluation). In addition to the pharmacological challenges, certain regulatory concerns, including lack of clear guidelines for evaluation and market exclusivity pose hurdles in the application of drug repurposing, which may however be overcome to a great extent by adopting some strategies as discussed in this review.
Collapse
Affiliation(s)
- Niti Mittal
- Dept. of Pharmacology, Postgraduate Institute of Medical Sciences, Rohtak, 124001, India.
| | - Rakesh Mittal
- Dept. of Pharmacology, Postgraduate Institute of Medical Sciences, Rohtak, 124001, India
| |
Collapse
|
46
|
Gundersen ET, Førde JL, Tislevoll BS, Leitch C, Barratt G, Gjertsen BT, Herfindal L. Repurposing chlorpromazine for anti-leukaemic therapy by nanoparticle encapsulation. Int J Pharm 2021; 612:121296. [PMID: 34793932 DOI: 10.1016/j.ijpharm.2021.121296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022]
Abstract
Treatment of acute myeloid leukaemia (AML) relies on decades-old drugs, and while recent years have seen some breakthroughs, AML is still characterised by poor prognosis and survival rate. Drug repurposing can expedite the preclinical development of new therapies, and by nanocarrier encapsulation, the number of potentially viable drug candidates can be further expanded. The anti-psychotic drug chlorpromazine (CPZ) has been identified as a candidate for repurposing for AML therapy. Nanoencapsulation may improve the suitability of CPZ for the treatment of AML by reducing its effect on the central nervous system. Using the emulsion-evaporation technique, we have developed PEGylated PLGA nanoparticles loaded with CPZ for AML therapy. The nanoparticles were characterised to be between 150 and 300 nm by DLS, of spherical morphology by TEM, with a drug loading of at least 6.0% (w/w). After an initial burst release of adsorbed drug, the remaining 80% of the drug was retained in the PLGA nanoparticles for at least 24 h. The CPZ-loaded nanoparticles had equal cytotoxic potential towards AML cells to free CPZ, but acted more slowly, in line with the protracted drug release. Crucially, nanoparticles injected intravenously into zebrafish larvae did not accumulate in the brain, and nanoencapsulation also prevented CPZ from crossing an artificial membrane model. This demonstrates that the purpose for nanoencapsulation of CPZ is fulfilled, namely avoiding effects on the central nervous system while retaining the anti-AML activity of the drug.
Collapse
Affiliation(s)
- Edvin Tang Gundersen
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway; Hospital Pharmacies Enterprise, Western Norway, Bergen, Norway
| | - Jan-Lukas Førde
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Internal Medicine, Haukeland University Hospital, Bergen, Norway
| | - Benedicte Sjo Tislevoll
- Centre of Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Calum Leitch
- Centre of Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gillian Barratt
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, Châtenay-Malabry, France
| | - Bjørn Tore Gjertsen
- Centre of Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
47
|
Zou D, Bai J, Lu E, Yang C, Liu J, Wen Z, Liu X, Jin Z, Xu M, Jiang L, Zhang Y, Zhang Y. Identification of Novel Drug Candidate for Epithelial Ovarian Cancer via In Silico Investigation and In Vitro Validation. Front Oncol 2021; 11:745590. [PMID: 34745968 PMCID: PMC8568458 DOI: 10.3389/fonc.2021.745590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Epithelial ovarian cancer (EOC) has a poor prognosis and high mortality rate; patients are easy to relapse with standard therapies. So, there is an urgent need to develop novel drugs. In this study, differentially expressed genes (DEGs) of EOC were identified in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Enrichment and protein–protein interaction (PPI) analyses were performed. The drug candidate which has the possibility to treat EOC was predicted by Connectivity Map (CMAP) databases. Moreover, molecular docking was selected to calculate the binding affinity between drug candidate and hub genes. The cytotoxicity of drug candidates was assessed by MTT and colony formation analysis, the proteins coded by hub genes were detected by Western blots, and apoptosis analysis was evaluated by flow cytometry. Finally, 296 overlapping DEGs (|log 2 fold change|>1; q-value <0.05), which were principally involved in the cell cycle (p < 0.05), and cyclin-dependent kinase 1 (CDK1) were screened as the significant hub gene from the PPI network. Furthermore, the 21 drugs were extracted from CMAPs; among them, piperlongumine (PL) showed a lower CMAP score (-0.80, -62.92) and was regarded as the drug candidate. Furthermore, molecular docking results between PL and CDK1 with a docking score of –8.121 kcal/mol were close to the known CDK1 inhibitor (–8.24 kcal/mol). Additionally, in vitro experiments showed that PL inhibited proliferation and induced apoptosis via targeting CDK1 in EOC SKOV3 cells. Our results reveal that PL may be a novel drug candidate for EOC by inhibiting cell cycle.
Collapse
Affiliation(s)
- Dan Zou
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China.,Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Jin Bai
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China.,Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Enting Lu
- Department of Gynecology, First Hospital of China Medical University, Shenyang, China
| | - Chunjiao Yang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Jiaqing Liu
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Zhenpeng Wen
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Xuqin Liu
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Zi Jin
- The First Department of Oncology, Shenyang Fifth People's Hospital, Shenyang, China
| | - Mengdan Xu
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Lei Jiang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Yi Zhang
- Department of Gynecology, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
48
|
Biswal J, Jayaprakash P, Rayala SK, Venkatraman G, Rangaswamy R, Jeyaraman J. WaterMap and Molecular Dynamic Simulation-Guided Discovery of Potential PAK1 Inhibitors Using Repurposing Approaches. ACS OMEGA 2021; 6:26829-26845. [PMID: 34693105 PMCID: PMC8529594 DOI: 10.1021/acsomega.1c02032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Indexed: 06/13/2023]
Abstract
p21-Activated kinase 1 (PAK1) is positioned at the nexus of several oncogenic signaling pathways. Currently, there are no approved inhibitors for disabling the transfer of phosphate in the active site directly, as they are limited by lower affinity, and poor kinase selectivity. In this work, a repurposing study utilizing FDA-approved drugs from the DrugBank database was pursued with an initial selection of 27 molecules out of ∼2162 drug molecules, based on their docking energies and molecular interaction patterns. From the molecules that were considered for WaterMap analysis, seven molecules, namely, Mitoxantrone, Labetalol, Acalabrutinib, Sacubitril, Flubendazole, Trazodone, and Niraparib, ascertained the ability to overlap with high-energy hydration sites. Considering many other displaced unfavorable water molecules, only Acalabrutinib, Flubendazole, and Trazodone molecules highlighted their prominence in terms of binding affinity gains through ΔΔG that ranges between 6.44 and 2.59 kcal/mol. Even if Mitoxantrone exhibited the highest docking score and greater interaction strength, it did not comply with the WaterMap and molecular dynamics simulation results. Moreover, detailed MD simulation trajectory analyses suggested that the drug molecules Flubendazole, Niraparib, and Acalabrutinib were highly stable, observed from their RMSD values and consistent interaction pattern with Glu315, Glu345, Leu347, and Asp407 including the hydrophobic interactions maintained in the three replicates. However, the drug molecule Trazodone displayed a loss of crucial interaction with Leu347, which was essential to inhibit the kinase activity of PAK1. The molecular orbital and electrostatic potential analyses elucidated the reactivity and strong complementarity potentials of the drug molecules in the binding pocket of PAK1. Therefore, the CADD-based reposition efforts, reported in this work, helped in the successful identification of new PAK1 inhibitors that requires further investigation by in vitro analysis.
Collapse
Affiliation(s)
- Jayashree Biswal
- Structural
Biology and Bio-Computing Laboratory, Department of Bioinformatics,
Science Block, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Prajisha Jayaprakash
- Structural
Biology and Bio-Computing Laboratory, Department of Bioinformatics,
Science Block, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Suresh Kumar Rayala
- Department
of Biotechnology, Indian Institute of Technology
Madras, Room No. BT 306, Chennai 600 036, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department
of Human Genetics, College of Biomedical Sciences, Sri Ramachandra University, Porur, Chennai 600 116, Tamil Nadu, India
| | - Raghu Rangaswamy
- Structural
Biology and Bio-Computing Laboratory, Department of Bioinformatics,
Science Block, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Jeyakanthan Jeyaraman
- Structural
Biology and Bio-Computing Laboratory, Department of Bioinformatics,
Science Block, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| |
Collapse
|
49
|
Duarte D, Vale N. Combining repurposed drugs to treat colorectal cancer. Drug Discov Today 2021; 27:165-184. [PMID: 34592446 DOI: 10.1016/j.drudis.2021.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/19/2021] [Accepted: 09/22/2021] [Indexed: 02/08/2023]
Abstract
The drug development process, especially of antineoplastic agents, has become increasingly costly and ineffective. Drug repurposing and drug combination are alternatives to de novo drug development, being low cost, rapid, and easy to apply. These strategies allow higher efficacy, decreased toxicity, and overcoming of drug resistance. The combination of antineoplastic agents is already being applied in cancer therapy, but the combination of repurposed drugs is still under-explored in pre- and clinical development. In this review, we provide a set of pharmacological concepts focusing on drug repurposing for treating colorectal cancer (CRC) and that are relevant for the application of new drug combinations against this disease.
Collapse
Affiliation(s)
- Diana Duarte
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal; Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
| |
Collapse
|
50
|
Chen S, Zhou X, Yang X, Li W, Li S, Hu Z, Ling C, Shi R, Liu J, Chen G, Song N, Jiang X, Sui X, Gao Y. Dual Blockade of Lactate/GPR81 and PD-1/PD-L1 Pathways Enhances the Anti-Tumor Effects of Metformin. Biomolecules 2021; 11:1373. [PMID: 34572586 PMCID: PMC8466555 DOI: 10.3390/biom11091373] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Metformin is a widely used antidiabetic drug for cancer prevention and treatment. However, the overproduction of lactic acid and its inefficiency in cancer therapy limit its application. Here, we demonstrate the synergistic effects of the lactate/GPR81 blockade (3-hydroxy-butyrate, 3-OBA) and metformin on inhibiting cancer cells growth in vitro. Simultaneously, this combination could inhibit glycolysis and OXPHOS metabolism, as well as inhibiting tumor growth and reducing serum lactate levels in tumor-bearing mice. Interestingly, we observed that this combination could enhance the functions of Jurkat cells in vitro and CD8+ T cells in vivo. In addition, considering that 3-OBA could recover the inhibitory effects of metformin on PD-1 expression, we further determined the dual blockade effects of PD-1/PD-L1 and lactate/GPR81 on the antitumor activity of metformin. Our results suggested that this dual blockade strategy could remarkably enhance the anti-tumor effects of metformin, or even lead to tumor regression. In conclusion, our study has proposed a novel and robust strategy for a future application of metformin in cancer treatment.
Collapse
Affiliation(s)
- Shaomeng Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Xin Yang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Wanqiong Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Shuzhen Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Zheng Hu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Chen Ling
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Ranran Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Juan Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Guanyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Nazi Song
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 511400, China; (N.S.); (X.J.)
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 511400, China; (N.S.); (X.J.)
| | - Xinghua Sui
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (S.C.); (X.Z.); (X.Y.); (W.L.); (S.L.); (Z.H.); (C.L.); (J.L.); (G.C.)
| |
Collapse
|