1
|
Sekimoto Matsuyama LSA, Harle V, Offord V, Droop A, Rabbie R, Garg M, Vázquez-Cruz ME, Robles-Espinoza CD, Turner G, Fraser D, de Oliveira EA, de Carvalho DG, Jorge NAN, Boroni M, Possik PA, Adams DJ, Maria-Engler SS. Knockout of SIN3B modulates transcriptional programs and cell survival in cutaneous melanoma. Pharmacol Res 2025:107785. [PMID: 40393534 DOI: 10.1016/j.phrs.2025.107785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 05/16/2025] [Accepted: 05/17/2025] [Indexed: 05/22/2025]
Abstract
SIN3 is a critical component of the histone deacetylase complex. Utilizing whole transcriptome data from melanoma patient samples we reveal that elevated levels of SIN3B are associated with poor survival outcomes with in vitro studies showing increased SIN3B expression in BRAF-mutant metastatic melanoma cell lines. The generation of isogenic SIN3B knockout cell lines indicated that SIN3B disruption led to a decrease in pathways associated with tumor invasion, migration, and cell-cell interactions. Moreover, pooled genome-wide CRISPR/Cas9 screens highlighted POLE4 and STK11 as crucial for the fitness and survival of SIN3B-knockout melanoma cells suggesting a role for these genes in epistasis with SIN3B. In summary, our findings suggest that SIN3B plays a pivotal role in modulating the behavior of melanoma cells, with implications for tumor growth and response to therapy.
Collapse
Affiliation(s)
- Larissa Satiko Alcantara Sekimoto Matsuyama
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil; Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Victoria Harle
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Victoria Offord
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Alastair Droop
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Roy Rabbie
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Manik Garg
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Martha Estefania Vázquez-Cruz
- Laboratorio Internacional de Investigacion sobre el Genoma Humano, Universidad Nacional Autonoma de Mexico, Santiago de Queretaro, Mexico
| | - Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigacion sobre el Genoma Humano, Universidad Nacional Autonoma de Mexico, Santiago de Queretaro, Mexico
| | - Gemma Turner
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - David Fraser
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Erica Aparecida de Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil; Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | | | | | - Mariana Boroni
- Laboratory of Bioinformatics and Computational Biology, Division of Basic and Experimental Research, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Patricia A Possik
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom; Division of Basic and Experimental Research, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Silvya Stuchi Maria-Engler
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
2
|
Zong Z, Ren J, Yang B, Zhang L, Zhou F. Emerging roles of lysine lactyltransferases and lactylation. Nat Cell Biol 2025; 27:563-574. [PMID: 40185947 DOI: 10.1038/s41556-025-01635-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 02/13/2025] [Indexed: 04/07/2025]
Abstract
Given its various roles in cellular functions, lactate is no longer considered a waste product of metabolism and lactate sensing is a pivotal step in the transduction of lactate signals. Lysine lactylation is a recently identified post-translational modification that serves as an intracellular mechanism of lactate sensing and transfer. Although acetyltransferases such as p300 exhibit general acyl transfer activity, no bona fide lactyltransferases have been identified. Recently, the protein synthesis machinery, alanyl-tRNA synthetase 1 (AARS1), AARS2 and their Escherichia coli orthologue AlaRS, have been shown to be able to sense lactate and mediate lactyl transfer and are thus considered pan-lactyltransferases. Here we highlight the mechanisms and functions of these lactyltransferases and discuss potential strategies that could be exploited for the treatment of human diseases.
Collapse
Affiliation(s)
- Zhi Zong
- The First Affiliated Hospital of Soochow University, Suzhou, China
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| | - Jiang Ren
- MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Institute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Bing Yang
- State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of the Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Long Zhang
- MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Institute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China.
- State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of the Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| | - Fangfang Zhou
- The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Catanese MC, Klingl YE, Gilbert TM, Strebl-Bantillo MG, Hartigan CR, Schenone M, Hooker JM. Chemoproteomics Sheds Light on Epigenetic Targets of [ 11C]Martinostat in the Human Brain. ACS Chem Neurosci 2025; 16:723-731. [PMID: 39912892 DOI: 10.1021/acschemneuro.4c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Initiation of research programs to investigate binding specificity based on in vivo positron emission tomography (PET) imaging results can provide rich opportunities to improve data interpretation, gain biological insight, and inform hypothesis development. Here, we profile the binding specificity of the neuroepigenetic imaging probe, [11C]Martinostat. In vivo neuroimaging studies using [11C]Martinostat have uncovered differential regional uptake in relation to age and biological sex and in patients with schizophrenia, bipolar disorder, Alzheimer's disease, and low-back pain compared to healthy controls. Previous studies using recombinant proteins and thermal shift assays in postmortem tissue indicate that [11C]Martinostat engages class I and putatively class IIb histone deacetylases (HDACs). While HDACs serve multiple functions, including regulation of chromatin remodeling and gene transcription, it is not known how differences in HDAC expression may arise across brain regions. HDACs functionally interact with a diverse array of multisubunit complexes, and engagement with associated binding partners may contribute to these differences. To further assess target engagement of [11C]Martinostat, we designed a synthetic probe based on the inhibitor structural scaffold for use in competition experiments followed by proteomic analysis in postmortem tissue. The synthetic probe, called Compound 4, appears to interact with the class I HDAC paralog HDAC2 and the class IIb paralog HDAC6 in a robust manner. We also uncovered unique interacting partners, including synaptic proteins from the synaptotagmin (SYT) family of proteins and neuronal pentraxin 2 (NPTX2). Further work to investigate HDAC associations with interacting proteins across regions of the human brain is needed to better understand neuroepigenetic dysregulation in psychiatric and neurological conditions.
Collapse
Affiliation(s)
- Mary C Catanese
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yvonne E Klingl
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Tonya M Gilbert
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Martin G Strebl-Bantillo
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Christina R Hartigan
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Monica Schenone
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
4
|
Luo Y, Yan Z, Chu X, Zhang Y, Qiu Y, Li H. Binding mechanism and distant regulation of histone deacetylase 8 by PCI-34051. Commun Biol 2025; 8:221. [PMID: 39939814 PMCID: PMC11821889 DOI: 10.1038/s42003-025-07649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025] Open
Abstract
Histone deacetylase 8 (HDAC8) is a well-known epigenetic regulator for cancer therapy. However, developing targeted inhibitors for HDAC8 is challenging due to a limited understanding of its structural dynamics, which is crucial for ligand interaction. Here, we employed an integrated approach, including native mass spectrometry (native MS), hydrogen-deuterium exchange mass spectrometry (HDX-MS), and molecular dynamics (MD) simulation, to investigate the inhibition mechanism and dynamic regulation of human HDAC8 (hHDAC8) by selective inhibitor PCI-34051, compared with the pan-inhibitor SAHA. Our results revealed that PCI-34051 engages with an expanded set of residues and conforms more aptly to the binding channel of hHDAC8, stabilizing the flexible loops surrounding the binding channel. Moreover, this dynamic stabilization effect is not limited to the binding regions, but also extends to distant regions (such as L2, α5, and α1 + α2), with L3 serving as a critical structural bridge. Overall, these results show the structural and dynamic regulations of hHDAC8 by PCI-34051, which induces a lower energy state for the protein-ligand system compared to SAHA, thus showing better inhibitory effects. In addition, it also suggests that certain regions, specifically loops L2 and L3, within the hHDAC8 protein could be key regions for targeted intervention.
Collapse
Affiliation(s)
- Yuxiang Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Zhaoyue Yan
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiakun Chu
- Advanced Materials Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Yufan Qiu
- School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Wai Huan Dong Lu, Guangzhou Higher Education Mega Center, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Feller F, Honin I, Miranda M, Weber H, Henze S, Hanl M, Hansen FK. Development of the First-in-Class FEM1B-Recruiting Histone Deacetylase Degraders. J Med Chem 2025; 68:1824-1843. [PMID: 39804678 PMCID: PMC11780399 DOI: 10.1021/acs.jmedchem.4c02569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Targeted protein degradation (TPD) represents a promising alternative to conventional occupancy-driven protein inhibition. Despite the existence of more than 600 E3 ligases in the human proteome, so far only a few have been utilized for TPD of histone deacetylases (HDACs), which represent important epigenetic anticancer drug targets. In this study, we disclose the first-in-class Fem-1 homologue B (FEM1B)-recruiting HDAC degraders. A set of 12 proteolysis targeting chimeras (PROTACs) was synthesized using a solid-phase supported parallel synthesis approach utilizing a covalent FEM1B ligand as an E3 ligase warhead. The evaluation of the HDAC degradation efficiency revealed substantial HDAC1 degradation by the top-performing degrader FF2049 (1g: Dmax = 85%; DC50 = 257 nM). Unlike our previously published cereblon-recruiting selective HDAC6 degrader, A6, which uses the same HDAC ligand, the FEM1B-based PROTACs achieved selective HDAC1-3 degradation. This unexpected change in the HDAC isoform degradation profile was accompanied by significant enhancement of the antiproliferative properties.
Collapse
Affiliation(s)
- Felix Feller
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Irina Honin
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Martina Miranda
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Heiko Weber
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Svenja Henze
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Maria Hanl
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Finn K. Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
6
|
Raouf YS, Moreno-Yruela C. Slow-Binding and Covalent HDAC Inhibition: A New Paradigm? JACS AU 2024; 4:4148-4161. [PMID: 39610753 PMCID: PMC11600154 DOI: 10.1021/jacsau.4c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024]
Abstract
The dysregulated post-translational modification of proteins is an established hallmark of human disease. Through Zn2+-dependent hydrolysis of acyl-lysine modifications, histone deacetylases (HDACs) are key regulators of disease-implicated signaling pathways and tractable drug targets in the clinic. Early targeting of this family of 11 enzymes (HDAC1-11) afforded a first generation of broadly acting inhibitors with medicinal applications in oncology, specifically in cutaneous and peripheral T-cell lymphomas and in multiple myeloma. However, first-generation HDAC inhibitors are often associated with weak-to-modest patient benefits, dose-limited efficacies, pharmacokinetic liabilities, and recurring clinical toxicities. Alternative inhibitor design to target single enzymes and avoid toxic Zn2+-binding moieties have not overcome these limitations. Instead, recent literature has seen a shift toward noncanonical mechanistic approaches focused on slow-binding and covalent inhibition. Such compounds hold the potential of improving the pharmacokinetic and pharmacodynamic profiles of HDAC inhibitors through the extension of the drug-target residence time. This perspective aims to capture this emerging paradigm and discuss its potential to improve the preclinical/clinical outlook of HDAC inhibitors in the coming years.
Collapse
Affiliation(s)
- Yasir S. Raouf
- Department
of Chemistry, United Arab Emirates University, P.O. Box No. 15551 Al Ain, UAE
| | - Carlos Moreno-Yruela
- Laboratory
of Chemistry and Biophysics of Macromolecules (LCBM), Institute of
Chemical Sciences and Engineering (ISIC), School of Basic Sciences, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Pavan AR, Smalley JP, Patel U, Pytel WA, Dos Santos JL, Cowley SM, Schwabe JWR, Hodgkinson JT. Cereblon-recruiting proteolysis targeting chimeras (PROTACs) can determine the selective degradation of HDAC1 over HDAC3. Chem Commun (Camb) 2024; 60:13879-13882. [PMID: 39499531 PMCID: PMC11563196 DOI: 10.1039/d4cc05138f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/07/2024]
Abstract
Histone deacetylase (HDAC) enzymes 1-3 exist in several corepressor complexes and are viable drug targets. To date, proteolysis targeting chimeras (PROTACs) designed to target HDAC1-3 typically exhibit the selective degradation of HDAC3. Herein, we report cereblon-recruiting PROTACs that degrade HDAC1 with selectivity over HDAC3.
Collapse
Affiliation(s)
- Aline R Pavan
- Leicester Institute of Structural and Chemical Biology and School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - Joshua P Smalley
- Leicester Institute of Structural and Chemical Biology and School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - Urvashi Patel
- Leicester Institute of Structural and Chemical Biology and School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - Wiktoria A Pytel
- Leicester Institute of Structural and Chemical Biology and School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | | | - Shaun M Cowley
- A Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK.
| | - John W R Schwabe
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK.
| | - James T Hodgkinson
- Leicester Institute of Structural and Chemical Biology and School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
8
|
Minisini M, Mascaro M, Brancolini C. HDAC-driven mechanisms in anticancer resistance: epigenetics and beyond. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:46. [PMID: 39624079 PMCID: PMC11609180 DOI: 10.20517/cdr.2024.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 01/03/2025]
Abstract
The emergence of drug resistance leading to cancer recurrence is one of the challenges in the treatment of cancer patients. Several mechanisms can lead to drug resistance, including epigenetic changes. Histone deacetylases (HDACs) play a key role in chromatin regulation through epigenetic mechanisms and are also involved in drug resistance. The control of histone acetylation and the accessibility of regulatory DNA sequences such as promoters, enhancers, and super-enhancers are known mechanisms by which HDACs influence gene expression. Other targets of HDACs that are not histones can also contribute to resistance. This review describes the contribution of HDACs to the mechanisms that, in some cases, may determine resistance to chemotherapy or other cancer treatments.
Collapse
Affiliation(s)
| | | | - Claudio Brancolini
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine 33100, Italy
| |
Collapse
|
9
|
Zhang Z, Tang Y, Wang Y, Xu J, Yang X, Liu M, Mazzone M, Niu N, Sun Y, Tang Y, Xue J. SIN3B Loss Heats up Cold Tumor Microenvironment to Boost Immunotherapy in Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402244. [PMID: 39316363 DOI: 10.1002/advs.202402244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/24/2024] [Indexed: 09/25/2024]
Abstract
Despite progress significant advances in immunotherapy for some solid tumors, pancreatic ductal adenocarcinoma (PDAC) remains unresponsive poorly responsive to such interventions, largely due to its highly immunosuppressive tumor microenvironment (TME) with limited CD8+ T cell infiltration. This study explores the role of the epigenetic factor Sin3B in the PDAC TME. Using murine PDAC models, we found that tumor cell-intrinsic Sin3B loss reshapes the TME, increasing CD8+ T cell infiltration and cytotoxicity, thus impeding tumor progression and enhancing sensitivity to anti-PD1 treatment. Sin3B-deficient tumor cells exhibited amplified CXCL9/10 secretion in response to Interferon-gamma (IFNγ), creating a positive feedback loop via the CXCL9/10-CXCR3 axis, thereby intensifying the anti-tumor immune response against PDAC. Mechanistically, extensive epigenetic regulation is uncovered by Sin3B loss, particularly enhanced H3K27Ac distribution on genes related to immune responses in PDAC cells. Consistent with the murine model findings, analysis of human PDAC samples revealed a significant inverse correlation between SIN3B levels and both CD8+ T cell infiltration and CXCL9/10 expression. Notebly, PDAC patients with lower SIN3B expression showed a more favorable response to anti-PD1 therapy. The findings suggest that targeting SIN3B can enhance cytotoxic T cell infiltration into the tumor site and improve immunotherapy efficacy in PDAC, offering potential avenues for therapeutic biomarker or target in this challenging disease.
Collapse
Affiliation(s)
- Zhengyan Zhang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yingying Tang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yu Wang
- Department of Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Junyi Xu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xiaotong Yang
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Mingzhu Liu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, 3000, Belgium
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, Department of Oncology, Leuven, 3000, Belgium
| | - Ningning Niu
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yongwei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yujie Tang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Xue
- State Key Laboratory of Systems Medicine for Cancer, Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
10
|
Huang Z, Zeng L, Cheng B, Li D. Overview of class I HDAC modulators: Inhibitors and degraders. Eur J Med Chem 2024; 276:116696. [PMID: 39094429 DOI: 10.1016/j.ejmech.2024.116696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Class I histone deacetylases (HDACs) are closely associated with the development of a diverse array of diseases, including cancer, neurodegenerative disorders, HIV, and inflammatory diseases. Considering the essential roles in tumorigenesis, class I HDACs have emerged as highly desirable targets for therapeutic strategies, particularly in the field of anticancer drug development. However, the conventional class I HDAC inhibitors faced several challenges such as acquired resistance, inherent toxicities, and limited efficacy in inhibiting non-enzymatic functions of HDAC. To address these problems, novel strategies have emerged, including the development of class I HDAC dual-acting inhibitors, targeted protein degradation (TPD) technologies such as PROTACs, molecular glues, and HyT degraders, as well as covalent inhibitors. This review provides a comprehensive overview of class I HDAC enzymes and inhibitors, by initially introducing their structure and biological roles. Subsequently, we focus on the recent advancements of class I HDAC modulators, including isoform-selective class I inhibitors, dual-target inhibitors, TPDs, and covalent inhibitors, from the perspectives of rational design principles, pharmacodynamics, pharmacokinetics, and clinical progress. Finally, we also provide the challenges and outlines future prospects in the realm of class I HDAC-targeted drug discovery for cancer therapeutics.
Collapse
Affiliation(s)
- Ziqian Huang
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Limei Zeng
- College of Basic Medicine, Gannan Medical University, Ganzhou, 314000, China
| | - Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
11
|
Pan S, Wang X, Jiao J, Zhang L. The role of histone deacetylases in inflammatory respiratory diseases: an update. Expert Rev Clin Immunol 2024; 20:1193-1203. [PMID: 38823008 DOI: 10.1080/1744666x.2024.2363803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
INTRODUCTION Histone deacetylases (HDACs) catalyze the removal of acetyl groups from lysine residues of histones and other proteins, generally leading to a closed chromosomal configuration and transcriptional repression. Different HDACs have distinct substrate specificities and functions in different biological processes. Accumulating evidence indicates that HDACs play a key role in the pathogenesis of multiple respiratory diseases. AREAS COVERED After an extensive search of the PubMed database, Web of Science and ClinicalTrials.gov, covering the period from 1992 to 2024, this review summarizes recent advances in understanding the role of HDACs in inflammatory respiratory diseases, including allergic rhinitis (AR), chronic rhinosinusitis (CRS), asthma and chronic obstructive pulmonary disease (COPD). We also examine recent progress on the efficacy and potential use of histone deacetylase inhibitors (HDACi) for the treatment of these diseases. EXPERT OPINION Available data indicate that HDACs play an important role in the development of common inflammatory respiratory diseases, and HDACi have shown promise as treatments for these diseases. However, the exact roles and underlying mechanisms of specific HDACs in disease pathogenesis require further study. Additional work is necessary to develop novel potent HDACi with high isoform selectivity.
Collapse
Affiliation(s)
- Sicen Pan
- Department of Otolaryngology Head and Neck surgery and Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck surgery and Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Jian Jiao
- Department of Otolaryngology Head and Neck surgery and Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck surgery and Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Asmamaw MD, He A, Zhang LR, Liu HM, Gao Y. Histone deacetylase complexes: Structure, regulation and function. Biochim Biophys Acta Rev Cancer 2024; 1879:189150. [PMID: 38971208 DOI: 10.1016/j.bbcan.2024.189150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Histone deacetylases (HDACs) are key epigenetic regulators, and transcriptional complexes with deacetylase function are among the epigenetic corepressor complexes in the nucleus that target the epigenome. HDAC-bearing corepressor complexes such as the Sin3 complex, NuRD complex, CoREST complex, and SMRT/NCoR complex are common in biological systems. These complexes activate the otherwise inactive HDACs in a solitary state. HDAC complexes play vital roles in the regulation of key biological processes such as transcription, replication, and DNA repair. Moreover, deregulated HDAC complex function is implicated in human diseases including cancer. Therapeutic strategies targeting HDAC complexes are being sought actively. Thus, illustration of the nature and composition of HDAC complexes is vital to understanding the molecular basis of their functions under physiologic and pathologic conditions, and for designing targeted therapies. This review presents key aspects of large multiprotein HDAC-bearing complexes including their structure, function, regulatory mechanisms, implication in disease development, and role in therapeutics.
Collapse
Affiliation(s)
- Moges Dessale Asmamaw
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Ang He
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| | - Ya Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China.
| |
Collapse
|
13
|
Shen J, Lai W, Li Z, Zhu W, Bai X, Yang Z, Wang Q, Ji J. SDS3 regulates microglial inflammation by modulating the expression of the upstream kinase ASK1 in the p38 MAPK signaling pathway. Inflamm Res 2024; 73:1547-1564. [PMID: 39008037 PMCID: PMC11349808 DOI: 10.1007/s00011-024-01913-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Microglia, the main innate immune cells in the central nervous system, are key drivers of neuroinflammation, which plays a crucial role in the pathogenesis of neurodegenerative diseases. The Sin3/histone deacetylase (HDAC) complex, a highly conserved multiprotein co-repressor complex, primarily performs transcriptional repression via deacetylase activity; however, the function of SDS3, which maintains the integrity of the complex, in microglia remains unclear. METHODS To uncover the regulatory role of the transcriptional co-repressor SDS3 in microglial inflammation, we used chromatin immunoprecipitation to identify SDS3 target genes and combined with transcriptomics and proteomics analysis to explore expression changes in cells following SDS3 knocking down. Subsequently, we validated our findings through experimental assays. RESULTS Our analysis revealed that SDS3 modulates the expression of the upstream kinase ASK1 of the p38 MAPK pathway, thus regulating the activation of signaling pathways and ultimately influencing inflammation. CONCLUSIONS Our findings provide important evidence of the contributions of SDS3 toward microglial inflammation and offer new insights into the regulatory mechanisms of microglial inflammatory responses.
Collapse
Affiliation(s)
- Jian Shen
- Department of General Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Wenjia Lai
- Division of Nanotechnology Development, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zeyang Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Wenyuan Zhu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Xue Bai
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Zihao Yang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qingsong Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
14
|
Feng G, Wu Z, Yang L, Wang K, Wang H. β-hydroxybutyrate and ischemic stroke: roles and mechanisms. Mol Brain 2024; 17:48. [PMID: 39075604 PMCID: PMC11287974 DOI: 10.1186/s13041-024-01119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024] Open
Abstract
Stroke is a significant global burden, causing extensive morbidity and mortality. In metabolic states where glucose is limited, ketone bodies, predominantly β-hydroxybutyrate (BHB), act as alternative fuel sources. Elevated levels of BHB have been found in the ischemic hemispheres of animal models of stroke, supporting its role in the pathophysiology of cerebral ischemia. Clinically, higher serum and urinary BHB concentrations have been associated with adverse outcomes in ischemic stroke, highlighting its potential utility as a prognostic biomarker. In both animal and cellular models, exogenous BHB administration has exhibited neuroprotective effects, reduction of infarct size, and improvement of neurological outcomes. In this review, we focus on the role of BHB before and after ischemic stroke, with an emphasis on the therapeutic potential and mechanisms of ketone administration after ischemic stroke.
Collapse
Affiliation(s)
- Ge Feng
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei General Hospital, No. 348 21 Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Zongkai Wu
- Department of Neurology, Hebei General Hospital, No. 348 21 Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Leyi Yang
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei General Hospital, No. 348 21 Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Kaimeng Wang
- Graduate School of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Neurology, Hebei General Hospital, No. 348 21 Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Hebo Wang
- Department of Neurology, Hebei General Hospital, No. 348 21 Heping West Road, Shijiazhuang, 050051, Hebei, China.
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, China.
| |
Collapse
|
15
|
Lu Y, Sun J, Wang L, Wang M, Wu Y, Getachew A, Matthews RC, Li H, Peng WG, Zhang J, Lu R, Zhou Y. ELM2-SANT Domain-Containing Scaffolding Protein 1 Regulates Differentiation and Maturation of Cardiomyocytes Derived From Human-Induced Pluripotent Stem Cells. J Am Heart Assoc 2024; 13:e034816. [PMID: 38904247 PMCID: PMC11255699 DOI: 10.1161/jaha.124.034816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND ELMSAN1 (ELM2-SANT domain-containing scaffolding protein 1) is a newly identified scaffolding protein of the MiDAC (mitotic deacetylase complex), playing a pivotal role in early embryonic development. Studies on Elmsan1 knockout mice showed that its absence results in embryo lethality and heart malformation. However, the precise function of ELMSAN1 in heart development and formation remains elusive. To study its potential role in cardiac lineage, we employed human-induced pluripotent stem cells (hiPSCs) to model early cardiogenesis and investigated the function of ELMSAN1. METHODS AND RESULTS We generated ELMSAN1-deficient hiPSCs through knockdown and knockout techniques. During cardiac differentiation, ELMSAN1 depletion inhibited pluripotency deactivation, decreased the expression of cardiac-specific markers, and reduced differentiation efficiency. The impaired expression of genes associated with contractile sarcomere structure, calcium handling, and ion channels was also noted in ELMSAN1-deficient cardiomyocytes derived from hiPSCs. Additionally, through a series of structural and functional assessments, we found that ELMSAN1-null hiPSC cardiomyocytes are immature, exhibiting incomplete sarcomere Z-line structure, decreased calcium handling, and impaired electrophysiological properties. Of note, we found that the cardiac-specific role of ELMSAN1 is likely associated with histone H3K27 acetylation level. The transcriptome analysis provided additional insights, indicating maturation reduction with the energy metabolism switch and restored cell proliferation in ELMSAN1 knockout cardiomyocytes. CONCLUSIONS In this study, we address the significance of the direct involvement of ELMSAN1 in the differentiation and maturation of hiPSC cardiomyocytes. We first report the impact of ELMSAN1 on multiple aspects of hiPSC cardiomyocyte generation, including cardiac differentiation, sarcomere formation, calcium handling, electrophysiological maturation, and proliferation.
Collapse
Affiliation(s)
- Yu‐An Lu
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Jiacheng Sun
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Lu Wang
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Meimei Wang
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Yalin Wu
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Anteneh Getachew
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Rachel C. Matthews
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Hui Li
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - William Gao Peng
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| | - Jianyi Zhang
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
- Department of Medicine, Division of Cardiovascular Disease, Heersink School of MedicineUniversity of Alabama at BirminghamBirminghamAL
| | - Rui Lu
- Department of Medicine, Division of Hematology/Oncology, Heersink School of MedicineUniversity of Alabama at BirminghamBirminghamAL
- O’Neal Comprehensive Cancer CenterUniversity of Alabama at BirminghamBirminghamAL
| | - Yang Zhou
- Department of Biomedical Engineering, Heersink School of Medicine, School of EngineeringUniversity of Alabama at BirminghamBirminghamAL
| |
Collapse
|
16
|
Guan Y, Gajewska J, Floryszak‐Wieczorek J, Tanwar UK, Sobieszczuk‐Nowicka E, Arasimowicz‐Jelonek M. Histone (de)acetylation in epigenetic regulation of Phytophthora pathobiology. MOLECULAR PLANT PATHOLOGY 2024; 25:e13497. [PMID: 39034655 PMCID: PMC11261156 DOI: 10.1111/mpp.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024]
Abstract
Phytophthora species are oomycetes that have evolved a broad spectrum of biological processes and improved strategies to cope with host and environmental challenges. A growing body of evidence indicates that the high pathogen plasticity is based on epigenetic regulation of gene expression linked to Phytophthora's rapid adjustment to endogenous cues and various stresses. As 5mC DNA methylation has not yet been identified in Phytophthora, the reversible processes of acetylation/deacetylation of histone proteins seem to play a pivotal role in the epigenetic control of gene expression in oomycetes. To explore this issue, we review the structure, diversity, and phylogeny of histone acetyltransferases (HATs) and histone deacetylases (HDACs) in six plant-damaging Phytophthora species: P. capsici, P. cinnamomi, P. infestans, P. parasitica, P. ramorum, and P. sojae. To further integrate and improve our understanding of the phylogenetic classification, evolutionary relationship, and functional characteristics, we supplement this review with a comprehensive view of HATs and HDACs using recent genome- and proteome-level databases. Finally, the potential functional role of transcriptional reprogramming mediated by epigenetic changes during Phytophthora species saprophytic and parasitic phases under nitro-oxidative stress is also briefly discussed.
Collapse
Affiliation(s)
- Yufeng Guan
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| | - Joanna Gajewska
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| | | | - Umesh Kumar Tanwar
- Department of Plant Physiology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| | - Ewa Sobieszczuk‐Nowicka
- Department of Plant Physiology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| | - Magdalena Arasimowicz‐Jelonek
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of BiologyAdam Mickiewicz University in PoznańPoznańPoland
| |
Collapse
|
17
|
Kleymenova A, Zemskaya A, Kochetkov S, Kozlov M. In-Cell Testing of Zinc-Dependent Histone Deacetylase Inhibitors in the Presence of Class-Selective Fluorogenic Substrates: Potential and Limitations of the Method. Biomedicines 2024; 12:1203. [PMID: 38927410 PMCID: PMC11200365 DOI: 10.3390/biomedicines12061203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
The development of anticancer drugs based on zinc-dependent histone deacetylase inhibitors (HDACi) has acquired great practical significance over the past decade. The most important HDACi characteristics are selectivity and strength of inhibition since they determine the mechanisms of therapeutic action. For in-cell testing of the selectivity of de novo-synthesized HDACi, Western blot analysis of the level of acetylation of bona fide protein substrates of HDACs of each class is usually used. However, the high labor intensity of this method prevents its widespread use in inhibitor screening. We developed an in-cell high-throughput screening method based on the use of three subtype-selective fluorogenic substrates of the general structure Boc-Lys(Acyl)-AMC, which in many cases makes it possible to determine the selectivity of HDACi at the class level. However, we found that the additional inhibitory activity of HDACi against metallo-β-lactamase domain-containing protein 2 (MBLAC2) leads to testing errors.
Collapse
Affiliation(s)
| | | | | | - Maxim Kozlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (A.K.); (A.Z.); (S.K.)
| |
Collapse
|
18
|
Curcio A, Rocca R, Alcaro S, Artese A. The Histone Deacetylase Family: Structural Features and Application of Combined Computational Methods. Pharmaceuticals (Basel) 2024; 17:620. [PMID: 38794190 PMCID: PMC11124352 DOI: 10.3390/ph17050620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Histone deacetylases (HDACs) are crucial in gene transcription, removing acetyl groups from histones. They also influence the deacetylation of non-histone proteins, contributing to the regulation of various biological processes. Thus, HDACs play pivotal roles in various diseases, including cancer, neurodegenerative disorders, and inflammatory conditions, highlighting their potential as therapeutic targets. This paper reviews the structure and function of the four classes of human HDACs. While four HDAC inhibitors are currently available for treating hematological malignancies, numerous others are undergoing clinical trials. However, their non-selective toxicity necessitates ongoing research into safer and more efficient class-selective or isoform-selective inhibitors. Computational techniques have greatly facilitated the discovery of HDAC inhibitors that achieve the desired potency and selectivity. These techniques encompass ligand-based strategies such as scaffold hopping, pharmacophore modeling, three-dimensional quantitative structure–activity relationships (3D-QSAR), and structure-based virtual screening (molecular docking). Additionally, advancements in molecular dynamics simulations, along with Poisson–Boltzmann/molecular mechanics generalized Born surface area (PB/MM-GBSA) methods, have enhanced the accuracy of predicting ligand binding affinity. In this review, we delve into the ways in which these methods have contributed to designing and identifying HDAC inhibitors.
Collapse
Affiliation(s)
- Antonio Curcio
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
| | - Roberta Rocca
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
- Net4Science S.r.l., Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
- Net4Science S.r.l., Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Campus “S. Venuta”, Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (A.C.); (S.A.); (A.A.)
- Net4Science S.r.l., Università degli Studi “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
19
|
Wilhelm E, Poirier M, Da Rocha M, Bédard M, McDonald PP, Lavigne P, Hunter CL, Bell B. Mitotic deacetylase complex (MiDAC) recognizes the HIV-1 core promoter to control activated viral gene expression. PLoS Pathog 2024; 20:e1011821. [PMID: 38781120 PMCID: PMC11115230 DOI: 10.1371/journal.ppat.1011821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024] Open
Abstract
The human immunodeficiency virus (HIV) integrates into the host genome forming latent cellular reservoirs that are an obstacle for cure or remission strategies. Viral transcription is the first step in the control of latency and depends upon the hijacking of the host cell RNA polymerase II (Pol II) machinery by the 5' HIV LTR. Consequently, "block and lock" or "shock and kill" strategies for an HIV cure depend upon a full understanding of HIV transcriptional control. The HIV trans-activating protein, Tat, controls HIV latency as part of a positive feed-forward loop that strongly activates HIV transcription. The recognition of the TATA box and adjacent sequences of HIV essential for Tat trans-activation (TASHET) of the core promoter by host cell pre-initiation complexes of HIV (PICH) has been shown to be necessary for Tat trans-activation, yet the protein composition of PICH has remained obscure. Here, DNA-affinity chromatography was employed to identify the mitotic deacetylase complex (MiDAC) as selectively recognizing TASHET. Using biophysical techniques, we show that the MiDAC subunit DNTTIP1 binds directly to TASHET, in part via its CTGC DNA motifs. Using co-immunoprecipitation assays, we show that DNTTIP1 interacts with MiDAC subunits MIDEAS and HDAC1/2. The Tat-interacting protein, NAT10, is also present in HIV-bound MiDAC. Gene silencing revealed a functional role for DNTTIP1, MIDEAS, and NAT10 in HIV expression in cellulo. Furthermore, point mutations in TASHET that prevent DNTTIP1 binding block the reactivation of HIV by latency reversing agents (LRA) that act via the P-TEFb/7SK axis. Our data reveal a key role for MiDAC subunits DNTTIP1, MIDEAS, as well as NAT10, in Tat-activated HIV transcription and latency. DNTTIP1, MIDEAS and NAT10 emerge as cell cycle-regulated host cell transcription factors that can control activated HIV gene expression, and as new drug targets for HIV cure strategies.
Collapse
Affiliation(s)
| | | | - Morgane Da Rocha
- Département de microbiologie et d’infectiologie, Faculté de médecine et sciences de la santé, Université de Sherbrooke, and Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Mikaël Bédard
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et sciences de la santé, Université de Sherbrooke, and Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Patrick P. McDonald
- Pulmonary Division, Medicine Faculty, Université de Sherbrooke; and Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | - Pierre Lavigne
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et sciences de la santé, Université de Sherbrooke, and Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| | | | - Brendan Bell
- Département de microbiologie et d’infectiologie, Faculté de médecine et sciences de la santé, Université de Sherbrooke, and Centre de recherche du CHUS, Sherbrooke, Québec, Canada
| |
Collapse
|
20
|
Wang C, Chu C, Guo Z, Zhan X. Structures and dynamics of Rpd3S complex bound to nucleosome. SCIENCE ADVANCES 2024; 10:eadk7678. [PMID: 38598631 PMCID: PMC11006229 DOI: 10.1126/sciadv.adk7678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
The Rpd3S complex plays a pivotal role in facilitating local histone deacetylation in the transcribed regions to suppress intragenic transcription initiation. Here, we present the cryo-electron microscopy structures of the budding yeast Rpd3S complex in both its apo and three nucleosome-bound states at atomic resolutions, revealing the exquisite architecture of Rpd3S to well accommodate a mononucleosome without linker DNA. The Rpd3S core, containing a Sin3 Lobe and two NB modules, is a rigid complex and provides three positive-charged anchors (Sin3_HCR and two Rco1_NIDs) to connect nucleosomal DNA. In three nucleosome-bound states, the Rpd3S core exhibits three distinct orientations relative to the nucleosome, assisting the sector-shaped deacetylase Rpd3 to locate above the SHL5-6, SHL0-1, or SHL2-3, respectively. Our work provides a structural framework that reveals a dynamic working model for the Rpd3S complex to engage diverse deacetylation sites.
Collapse
Affiliation(s)
- Chengcheng Wang
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Chen Chu
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Zhouyan Guo
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Xiechao Zhan
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
21
|
Chen Y, Guo P, Dong Z. The role of histone acetylation in transcriptional regulation and seed development. PLANT PHYSIOLOGY 2024; 194:1962-1979. [PMID: 37979164 DOI: 10.1093/plphys/kiad614] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 11/20/2023]
Abstract
Histone acetylation is highly conserved across eukaryotes and has been linked to gene activation since its discovery nearly 60 years ago. Over the past decades, histone acetylation has been evidenced to play crucial roles in plant development and response to various environmental cues. Emerging data indicate that histone acetylation is one of the defining features of "open chromatin," while the role of histone acetylation in transcription remains controversial. In this review, we briefly describe the discovery of histone acetylation, the mechanism of histone acetylation regulating transcription in yeast and mammals, and summarize the research progress of plant histone acetylation. Furthermore, we also emphasize the effect of histone acetylation on seed development and its potential use in plant breeding. A comprehensive knowledge of histone acetylation might provide new and more flexible research perspectives to enhance crop yield and stress resistance.
Collapse
Affiliation(s)
- Yan Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Peiguo Guo
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Zhicheng Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
22
|
Khatun S, Amin SA, Choudhury D, Chowdhury B, Jha T, Gayen S. Advances in structure-activity relationships of HDAC inhibitors as HIV latency-reversing agents. Expert Opin Drug Discov 2024; 19:353-368. [PMID: 38258439 DOI: 10.1080/17460441.2024.2305730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
INTRODUCTION HIV-infected cells may rebound due to the existence of the silent HIV-infected memory CD4+ T cells (HIV latency). This HIV latency makes the disease almost incurable. In latency, the integrated proviral DNA of HIV is transcriptionally silenced partly due to the activity of histone deacetylases (HDACs). Hence, inhibition of HDAC is considered a prime target for HIV latency reversal. AREAS COVERED A brief biology and function of HDACs have been discussed to identify key points to design HDAC inhibitors (HDACis). This article summarizes recent achievements in the development of HDACis to achieve HIV latency reversal. Structure-activity relationships (SARs) of some series of compounds were also explored. EXPERT OPINION Depletion of the HIV reservoir is the only way to end this deadly epidemic. HDACis are latency-reversing agents (LRA) that can be used to 'shock' the latently infected CD4+ T cells to induce them to produce viral proteins. It is interesting to note that HDAC3, which is extensively expressed in resting T cells, is specifically preferred by benzamide-containing HDACis for inhibition. Thus, the benzamide class of compounds should be explored. Nevertheless, more data on selective HDAC inhibition is needed for further development of HDACis in HIV latency reversal.
Collapse
Affiliation(s)
- Samima Khatun
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Sk Abdul Amin
- Department of Pharmaceutical Technology, JIS University, Kolkata, India
| | | | - Boby Chowdhury
- Department of Pharmaceutical Technology, JIS University, Kolkata, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
23
|
Moreno-Yruela C, Fierz B. Revealing chromatin-specific functions of histone deacylases. Biochem Soc Trans 2024; 52:353-365. [PMID: 38189424 DOI: 10.1042/bst20230693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024]
Abstract
Histone deacylases are erasers of Nε-acyl-lysine post-translational modifications and have been targeted for decades for the treatment of cancer, neurodegeneration and other disorders. Due to their relatively promiscuous activity on peptide substrates in vitro, it has been challenging to determine the individual targets and substrate identification mechanisms of each isozyme, and they have been considered redundant regulators. In recent years, biochemical and biophysical studies have incorporated the use of reconstituted nucleosomes, which has revealed a diverse and complex arsenal of recognition mechanisms by which histone deacylases may differentiate themselves in vivo. In this review, we first present the peptide-based tools that have helped characterize histone deacylases in vitro to date, and we discuss the new insights that nucleosome tools are providing into their recognition of histone substrates within chromatin. Then, we summarize the powerful semi-synthetic approaches that are moving forward the study of chromatin-associated factors, both in vitro by detailed single-molecule mechanistic studies, and in cells by live chromatin modification. We finally offer our perspective on how these new techniques would advance the study of histone deacylases. We envision that such studies will help elucidate the role of individual isozymes in disease and provide a platform for the development of the next generation of therapeutics.
Collapse
Affiliation(s)
- Carlos Moreno-Yruela
- Laboratory of Biophysical Chemistry of Macromolecules (LCBM), Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department of Drug Design and Pharmacology (ILF), Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules (LCBM), Institute of Chemical Sciences and Engineering (ISIC), School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Kelly RDW, Stengel KR, Chandru A, Johnson LC, Hiebert SW, Cowley SM. Histone deacetylases maintain expression of the pluripotent gene network via recruitment of RNA polymerase II to coding and noncoding loci. Genome Res 2024; 34:34-46. [PMID: 38290976 PMCID: PMC10903948 DOI: 10.1101/gr.278050.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Histone acetylation is a dynamic modification regulated by the opposing actions of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Deacetylation of histone tails results in chromatin tightening, and therefore, HDACs are generally regarded as transcriptional repressors. Counterintuitively, simultaneous deletion of Hdac1 and Hdac2 in embryonic stem cells (ESCs) reduces expression of the pluripotency-associated transcription factors Pou5f1, Sox2, and Nanog (PSN). By shaping global histone acetylation patterns, HDACs indirectly regulate the activity of acetyl-lysine readers, such as the transcriptional activator BRD4. Here, we use inhibitors of HDACs and BRD4 (LBH589 and JQ1, respectively) in combination with precision nuclear run-on and sequencing (PRO-seq) to examine their roles in defining the ESC transcriptome. Both LBH589 and JQ1 cause a marked reduction in the pluripotent gene network. However, although JQ1 treatment induces widespread transcriptional pausing, HDAC inhibition causes a reduction in both paused and elongating polymerase, suggesting an overall reduction in polymerase recruitment. Using enhancer RNA (eRNA) expression to measure enhancer activity, we find that LBH589-sensitive eRNAs are preferentially associated with superenhancers and PSN binding sites. These findings suggest that HDAC activity is required to maintain pluripotency by regulating the PSN enhancer network via the recruitment of RNA polymerase II.
Collapse
Affiliation(s)
- Richard D W Kelly
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Kristy R Stengel
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, Bronx, New York 10461, USA
| | - Aditya Chandru
- Cancer Research UK Beatson Institute, Bearsden, Glasgow G61 1BD, United Kingdom
| | - Lyndsey C Johnson
- Locate Bio Limited, MediCity, Beeston, Nottingham NG90 6BH, United Kingdom
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Shaun M Cowley
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester LE1 9HN, United Kingdom;
| |
Collapse
|
25
|
Smalley J, Cowley SM, Hodgkinson JT. MDM2 Antagonist Idasanutlin Reduces HDAC1/2 Abundance and Corepressor Partners but Not HDAC3. ACS Med Chem Lett 2024; 15:93-98. [PMID: 38229760 PMCID: PMC10788946 DOI: 10.1021/acsmedchemlett.3c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/18/2024] Open
Abstract
Histone deacetylases 1-3 (HDAC1, HDAC2, and HDAC3) and their associated corepressor complexes play important roles in regulating chromatin structure and gene transcription. HDAC enzymes are also validated drug targets for oncology and offer promise toward new drugs for neurodegenerative diseases and cardiovascular diseases. We synthesized four novel heterobifunctional molecules designed to recruit the mouse double minute 2 homologue (MDM2) E3 ligase to degrade HDAC1-3 utilizing the MDM2 inhibitor idasanutlin, known as proteolysis targeting chimeras (PROTACs). Idasanutlin inhibits the MDM2-P53 protein-protein interaction and is in clinical trials. Although two MDM2-recruiting heterobifunctional molecules reduced HDAC1 and HDAC2 abundance with complete selectivity over HDAC3 and reduced HDAC1/2 corepressor components LSD1 and SIN3A, we were surprised to observe that idasanutlin alone was also capable of this effect. This finding suggests an association between the MDM2 E3 ligase and HDAC1/2 corepressor complexes, which could be important for designing future dual/bifunctional HDAC- and MDM2-targeting therapeutics, such as PROTACs.
Collapse
Affiliation(s)
- Joshua
P. Smalley
- Leicester
Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Shaun M. Cowley
- Department
of Molecular and Cell Biology, University
of Leicester, Leicester LE1 7RH, United Kingdom
| | - James T. Hodgkinson
- Leicester
Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| |
Collapse
|
26
|
Patel AB, He Y, Radhakrishnan I. Histone acetylation and deacetylation - Mechanistic insights from structural biology. Gene 2024; 890:147798. [PMID: 37726026 PMCID: PMC11253779 DOI: 10.1016/j.gene.2023.147798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
Histones are subject to a diverse array of post-translational modifications. Among them, lysine acetylation is not only the most pervasive and dynamic modification but also highly consequential for regulating gene transcription. Although enzymes responsible for the addition and removal of acetyl groups were discovered almost 30 years ago, high-resolution structures of the enzymes in the context of their native complexes are only now beginning to become available, thanks to revolutionary technologies in protein structure determination and prediction. Here, we will review our current understanding of the molecular mechanisms of acetylation and deacetylation engendered by chromatin-modifying complexes, compare and contrast shared features, and discuss some of the pressing questions for future studies.
Collapse
Affiliation(s)
- Avinash B Patel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | - Ishwar Radhakrishnan
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
27
|
Torres HM, Fang F, May DG, Bosshardt P, Hinojosa L, Roux KJ, Tao J. Comprehensive analysis of the proximity-dependent nuclear interactome for the oncoprotein NOTCH1 in live cells. J Biol Chem 2024; 300:105522. [PMID: 38043798 PMCID: PMC10788534 DOI: 10.1016/j.jbc.2023.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/25/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023] Open
Abstract
Notch signaling plays a critical role in cell fate decisions in all cell types. Furthermore, gain-of-function mutations in NOTCH1 have been uncovered in many human cancers. Disruption of Notch signaling has recently emerged as an attractive disease treatment strategy. However, the nuclear interaction landscape of the oncoprotein NOTCH1 remains largely unexplored. We therefore employed here a proximity-dependent biotin identification approach to identify in vivo protein associations with the nuclear Notch1 intracellular domain in live cells. We identified a large set of previously reported and unreported proteins that associate with NOTCH1, including general transcription and elongation factors, DNA repair and replication factors, coactivators, corepressors, and components of the NuRD and SWI/SNF chromatin remodeling complexes. We also found that Notch1 intracellular domain associates with protein modifiers and components of other signaling pathways that may influence Notch signal transduction and protein stability such as USP7. We further validated the interaction of NOTCH1 with histone deacetylase 1 or GATAD2B using protein network analysis, proximity-based ligation, in vivo cross-linking and coimmunoprecipitation assays in several Notch-addicted cancer cell lines. Through data mining, we also revealed potential drug targets for the inhibition of Notch signaling. Collectively, these results provide a valuable resource to uncover the mechanisms that fine-tune Notch signaling in tumorigenesis and inform therapeutic targets for Notch-addicted tumors.
Collapse
Affiliation(s)
- Haydee M Torres
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA; Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, USA
| | - Fang Fang
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Danielle G May
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Paige Bosshardt
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Leetoria Hinojosa
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Kyle J Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls, South Dakota, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Jianning Tao
- Cancer Biology & Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA; Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA.
| |
Collapse
|
28
|
Havas AP, Tula-Sanchez AA, Steenhoek HM, Bhakta A, Wingfield T, Huntley MJ, Nofal AS, Ahmed T, Jaime-Frias R, Smith CL. Defining cellular responses to HDAC-selective inhibitors reveals that efficient targeting of HDAC3 is required to elicit cytotoxicity and overcome naïve resistance to pan-HDACi in diffuse large B cell lymphoma. Transl Oncol 2024; 39:101779. [PMID: 37865047 PMCID: PMC10597794 DOI: 10.1016/j.tranon.2023.101779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/12/2023] [Accepted: 08/30/2023] [Indexed: 10/23/2023] Open
Abstract
Approved histone deacetylase (HDAC) inhibitors have low efficacy against the most commonly-diagnosed non-Hodgkin lymphoma, diffuse large B cell lymphoma (DLBCL), but the mechanisms underlying clinical resistance are poorly understood. Using a DLBCL cell-based model, we previously demonstrated that resistance to pan-HDAC inhibitors (HDACi) is characterized by reversible growth arrest and sensitivity by mitotic arrest and apoptosis. The goal of the current study is to better define mechanisms of sensitivity and resistance to the cytotoxic effects of HDACi by using HDAC-selective inhibitors to determine which HDACs need to be targeted to achieve the sensitive and resistant phenotypes. We find that an inhibitor selective for HDACs 1 and 2 induces G1 arrest across DLBCL cell lines used, which is consistent with the resistant phenotype. In contrast an HDAC3-selective inhibitor induces DNA damage and cytotoxicity in a cell line that is sensitive to pan-HDACi but has no effect on resistant cell lines. RNAi-mediated depletion of HDAC3 indicate the presence of a long-lived population of HDAC3 in DLBCL cell lines. Finally, doses of pan-HDACi 3-5 times higher than the IC50 established for reversible growth inhibition induce the sensitive phenotype in resistant cell lines, suggesting that resistance may be associated with failure to efficiently inhibit HDAC3. Our findings indicate that selective inhibition of HDACs 1 and 2 is associated with G1 arrest and resistance to pan-HDACi while efficient targeting of HDAC3 could be key to achieving a cytotoxic response. Thus, our work reveals a potential novel mechanism of resistance to pan-HDACi.
Collapse
Affiliation(s)
- Aaron P Havas
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Ana A Tula-Sanchez
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Hailey M Steenhoek
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Anvi Bhakta
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Taylor Wingfield
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Matthew J Huntley
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Angela S Nofal
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Tasmia Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Rosa Jaime-Frias
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Catharine L Smith
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721-0207, USA.
| |
Collapse
|
29
|
Vuletić A, Mirjačić Martinović K, Spasić J. Role of Histone Deacetylase 6 and Histone Deacetylase 6 Inhibition in Colorectal Cancer. Pharmaceutics 2023; 16:54. [PMID: 38258065 PMCID: PMC10818982 DOI: 10.3390/pharmaceutics16010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Histone deacetylase 6 (HDAC6), by deacetylation of multiple substrates and association with interacting proteins, regulates many physiological processes that are involved in cancer development and invasiveness such as cell proliferation, apoptosis, motility, epithelial to mesenchymal transition, and angiogenesis. Due to its ability to remove misfolded proteins, induce autophagy, and regulate unfolded protein response, HDAC6 plays a protective role in responses to stress and enables tumor cell survival. The scope of this review is to discuss the roles of HDCA6 and its implications for the therapy of colorectal cancer (CRC). As HDAC6 is overexpressed in CRC, correlates with poor disease prognosis, and is not essential for normal mammalian development, it represents a good therapeutic target. Selective inhibition of HDAC6 impairs growth and progression without inducing major adverse events in experimental animals. In CRC, HDAC6 inhibitors have shown the potential to reduce tumor progression and enhance the therapeutic effect of other drugs. As HDAC6 is involved in the regulation of immune responses, HDAC6 inhibitors have shown the potential to improve antitumor immunity by increasing the immunogenicity of tumor cells, augmenting immune cell activity, and alleviating immunosuppression in the tumor microenvironment. Therefore, HDAC6 inhibitors may represent promising candidates to improve the effect of and overcome resistance to immunotherapy.
Collapse
Affiliation(s)
- Ana Vuletić
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Katarina Mirjačić Martinović
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Jelena Spasić
- Clinic for Medical Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| |
Collapse
|
30
|
Xiao Y, Hale S, Awasthee N, Meng C, Zhang X, Liu Y, Ding H, Huo Z, Lv D, Zhang W, He M, Zheng G, Liao D. HDAC3 and HDAC8 PROTAC dual degrader reveals roles of histone acetylation in gene regulation. Cell Chem Biol 2023; 30:1421-1435.e12. [PMID: 37572669 PMCID: PMC10802846 DOI: 10.1016/j.chembiol.2023.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 05/19/2023] [Accepted: 07/22/2023] [Indexed: 08/14/2023]
Abstract
HDAC3 and HDAC8 have critical biological functions and represent highly sought-after therapeutic targets. Because histone deacetylases (HDACs) have a very conserved catalytic domain, developing isozyme-selective inhibitors remains challenging. HDAC3/8 also have deacetylase-independent activity, which cannot be blocked by conventional enzymatic inhibitors. Proteolysis-targeting chimeras (PROTACs) can selectively degrade a target enzyme, abolishing both enzymatic and scaffolding function. Here, we report a novel HDAC3/8 dual degrader YX968 that induces highly potent, rapid, and selective degradation of both HDAC3/8 without triggering pan-HDAC inhibitory effects. Unbiased quantitative proteomic experiments confirmed its high selectivity. HDAC3/8 degradation by YX968 does not induce histone hyperacetylation and broad transcriptomic perturbation. Thus, histone hyperacetylation may be a major factor for altering transcription. YX968 promotes apoptosis and kills cancer cells with a high potency in vitro. YX968 thus represents a new probe for dissecting the complex biological functions of HDAC3/8.
Collapse
Affiliation(s)
- Yufeng Xiao
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Seth Hale
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Nikee Awasthee
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Chengcheng Meng
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Xuan Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Yi Liu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Haocheng Ding
- Department of Biostatistics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Dongwen Lv
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA.
| | - Daiqing Liao
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
31
|
Abdallah DI, de Araujo ED, Patel NH, Hasan LS, Moriggl R, Krämer OH, Gunning PT. Medicinal chemistry advances in targeting class I histone deacetylases. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:757-779. [PMID: 37711592 PMCID: PMC10497394 DOI: 10.37349/etat.2023.00166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/22/2023] [Indexed: 09/16/2023] Open
Abstract
Histone deacetylases (HDACs) are a class of zinc (Zn)-dependent metalloenzymes that are responsible for epigenetic modifications. HDACs are largely associated with histone proteins that regulate gene expression at the DNA level. This tight regulation is controlled by acetylation [via histone acetyl transferases (HATs)] and deacetylation (via HDACs) of histone and non-histone proteins that alter the coiling state of DNA, thus impacting gene expression as a downstream effect. For the last two decades, HDACs have been studied extensively and indicated in a range of diseases where HDAC dysregulation has been strongly correlated with disease emergence and progression-most prominently, cancer, neurodegenerative diseases, HIV, and inflammatory diseases. The involvement of HDACs as regulators in these biochemical pathways established them as an attractive therapeutic target. This review summarizes the drug development efforts exerted to create HDAC inhibitors (HDACis), specifically class I HDACs, with a focus on the medicinal chemistry, structural design, and pharmacology aspects of these inhibitors.
Collapse
Affiliation(s)
- Diaaeldin I. Abdallah
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 2E8, Canada
| | - Elvin D. de Araujo
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Naman H. Patel
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Lina S. Hasan
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Oliver H. Krämer
- Department of Toxicology, University of Mainz Medical Center, 55131 Mainz, Germany
| | - Patrick T. Gunning
- Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 2E8, Canada
| |
Collapse
|
32
|
Patel U, Smalley JP, Hodgkinson JT. PROTAC chemical probes for histone deacetylase enzymes. RSC Chem Biol 2023; 4:623-634. [PMID: 37654508 PMCID: PMC10467623 DOI: 10.1039/d3cb00105a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/27/2023] [Indexed: 09/02/2023] Open
Abstract
Over the past three decades, we have witnessed the progression of small molecule chemical probes designed to inhibit the catalytic active site of histone deacetylase (HDAC) enzymes into FDA approved drugs. However, it is only in the past five years we have witnessed the emergence of proteolysis targeting chimeras (PROTACs) capable of promoting the proteasome mediated degradation of HDACs. This is a field still in its infancy, however given the current progress of PROTACs in clinical trials and the fact that FDA approved HDAC drugs are already in the clinic, there is significant potential in developing PROTACs to target HDACs as therapeutics. Beyond therapeutics, PROTACs also serve important applications as chemical probes to interrogate fundamental biology related to HDACs via their unique degradation mode of action. In this review, we highlight some of the key findings to date in the discovery of PROTACs targeting HDACs by HDAC class and HDAC isoenzyme, current gaps in PROTACs to target HDACs and future outlooks.
Collapse
Affiliation(s)
- Urvashi Patel
- Leicester Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester Leicester LE1 7RH UK
| | - Joshua P Smalley
- Leicester Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester Leicester LE1 7RH UK
| | - James T Hodgkinson
- Leicester Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester Leicester LE1 7RH UK
| |
Collapse
|
33
|
Van Roy Z, Shi W, Kak G, Duan B, Kielian T. Epigenetic Regulation of Leukocyte Inflammatory Mediator Production Dictates Staphylococcus aureus Craniotomy Infection Outcome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:414-428. [PMID: 37314520 PMCID: PMC10524781 DOI: 10.4049/jimmunol.2300050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
Staphylococcus aureus is a common cause of surgical-site infections, including those arising after craniotomy, which is performed to access the brain for the treatment of tumors, epilepsy, or hemorrhage. Craniotomy infection is characterized by complex spatial and temporal dynamics of leukocyte recruitment and microglial activation. We recently identified unique transcriptional profiles of these immune populations during S. aureus craniotomy infection. Epigenetic processes allow rapid and reversible control over gene transcription; however, little is known about how epigenetic pathways influence immunity to live S. aureus. An epigenetic compound library screen identified bromodomain and extraterminal domain-containing (BET) proteins and histone deacetylases (HDACs) as critical for regulating TNF, IL-6, IL-10, and CCL2 production by primary mouse microglia, macrophages, neutrophils, and granulocytic myeloid-derived suppressor cells in response to live S. aureus. Class I HDACs (c1HDACs) were increased in these cell types in vitro and in vivo during acute disease in a mouse model of S. aureus craniotomy infection. However, substantial reductions in c1HDACs were observed during chronic infection, highlighting temporal regulation and the importance of the tissue microenvironment for dictating c1HDAC expression. Microparticle delivery of HDAC and BET inhibitors in vivo caused widespread decreases in inflammatory mediator production, which significantly increased bacterial burden in the brain, galea, and bone flap. These findings identify histone acetylation as an important mechanism for regulating cytokine and chemokine production across diverse immune cell lineages that is critical for bacterial containment. Accordingly, aberrant epigenetic regulation may be important for promoting S. aureus persistence during craniotomy infection.
Collapse
Affiliation(s)
- Zachary Van Roy
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198
| | - Gunjan Kak
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
34
|
Zhang Y, Remillard D, Onubogu U, Karakyriakou B, Asiaban JN, Ramos AR, Bowland K, Bishop TR, Barta PA, Nance S, Durbin AD, Ott CJ, Janiszewska M, Cravatt BF, Erb MA. Collateral lethality between HDAC1 and HDAC2 exploits cancer-specific NuRD complex vulnerabilities. Nat Struct Mol Biol 2023; 30:1160-1171. [PMID: 37488358 PMCID: PMC10529074 DOI: 10.1038/s41594-023-01041-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/22/2023] [Indexed: 07/26/2023]
Abstract
Transcriptional co-regulators have been widely pursued as targets for disrupting oncogenic gene regulatory programs. However, many proteins in this target class are universally essential for cell survival, which limits their therapeutic window. Here we unveil a genetic interaction between histone deacetylase 1 (HDAC1) and HDAC2, wherein each paralog is synthetically lethal with hemizygous deletion of the other. This collateral synthetic lethality is caused by recurrent chromosomal deletions that occur in diverse solid and hematological malignancies, including neuroblastoma and multiple myeloma. Using genetic disruption or dTAG-mediated degradation, we show that targeting HDAC2 suppresses the growth of HDAC1-deficient neuroblastoma in vitro and in vivo. Mechanistically, we find that targeted degradation of HDAC2 in these cells prompts the degradation of several members of the nucleosome remodeling and deacetylase (NuRD) complex, leading to diminished chromatin accessibility at HDAC2-NuRD-bound sites of the genome and impaired control of enhancer-associated transcription. Furthermore, we reveal that several of the degraded NuRD complex subunits are dependencies in neuroblastoma and multiple myeloma, providing motivation to develop paralog-selective HDAC1 or HDAC2 degraders that could leverage HDAC1/2 synthetic lethality to target NuRD vulnerabilities. Altogether, we identify HDAC1/2 collateral synthetic lethality as a potential therapeutic target and reveal an unexplored mechanism for targeting NuRD-associated cancer dependencies.
Collapse
Affiliation(s)
- Yuxiang Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - David Remillard
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Ugoma Onubogu
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | - Joshua N Asiaban
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Anissa R Ramos
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Kirsten Bowland
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Timothy R Bishop
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Paige A Barta
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Stephanie Nance
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adam D Durbin
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher J Ott
- Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - Michalina Janiszewska
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael A Erb
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
35
|
Wang S, Fairall L, Pham TK, Ragan TJ, Vashi D, Collins M, Dominguez C, Schwabe JR. A potential histone-chaperone activity for the MIER1 histone deacetylase complex. Nucleic Acids Res 2023; 51:6006-6019. [PMID: 37099381 PMCID: PMC10325919 DOI: 10.1093/nar/gkad294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/10/2023] [Accepted: 04/19/2023] [Indexed: 04/27/2023] Open
Abstract
Histone deacetylases 1 and 2 (HDAC1/2) serve as the catalytic subunit of six distinct families of nuclear complexes. These complexes repress gene transcription through removing acetyl groups from lysine residues in histone tails. In addition to the deacetylase subunit, these complexes typically contain transcription factor and/or chromatin binding activities. The MIER:HDAC complex has hitherto been poorly characterized. Here, we show that MIER1 unexpectedly co-purifies with an H2A:H2B histone dimer. We show that MIER1 is also able to bind a complete histone octamer. Intriguingly, we found that a larger MIER1:HDAC1:BAHD1:C1QBP complex additionally co-purifies with an intact nucleosome on which H3K27 is either di- or tri-methylated. Together this suggests that the MIER1 complex acts downstream of PRC2 to expand regions of repressed chromatin and could potentially deposit histone octamer onto nucleosome-depleted regions of DNA.
Collapse
Affiliation(s)
- Siyu Wang
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Louise Fairall
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Trong Khoa Pham
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- biOMICS facility, Mass Spectrometry Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Timothy J Ragan
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Dipti Vashi
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Mark O Collins
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- biOMICS facility, Mass Spectrometry Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Cyril Dominguez
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - John W R Schwabe
- Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
36
|
Wan MSM, Muhammad R, Koliopoulos MG, Roumeliotis TI, Choudhary JS, Alfieri C. Mechanism of assembly, activation and lysine selection by the SIN3B histone deacetylase complex. Nat Commun 2023; 14:2556. [PMID: 37137925 PMCID: PMC10156912 DOI: 10.1038/s41467-023-38276-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/22/2023] [Indexed: 05/05/2023] Open
Abstract
Lysine acetylation in histone tails is a key post-translational modification that controls transcription activation. Histone deacetylase complexes remove histone acetylation, thereby repressing transcription and regulating the transcriptional output of each gene. Although these complexes are drug targets and crucial regulators of organismal physiology, their structure and mechanisms of action are largely unclear. Here, we present the structure of a complete human SIN3B histone deacetylase holo-complex with and without a substrate mimic. Remarkably, SIN3B encircles the deacetylase and contacts its allosteric basic patch thereby stimulating catalysis. A SIN3B loop inserts into the catalytic tunnel, rearranges to accommodate the acetyl-lysine moiety, and stabilises the substrate for specific deacetylation, which is guided by a substrate receptor subunit. Our findings provide a model of specificity for a main transcriptional regulator conserved from yeast to human and a resource of protein-protein interactions for future drug designs.
Collapse
Affiliation(s)
- Mandy S M Wan
- Division of Structural Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - Reyhan Muhammad
- Division of Structural Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - Marios G Koliopoulos
- Division of Structural Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - Theodoros I Roumeliotis
- Functional Proteomics, Chester Beatty Laboratories, Cancer Biology Division, The Institute of Cancer Research, London, UK
| | - Jyoti S Choudhary
- Functional Proteomics, Chester Beatty Laboratories, Cancer Biology Division, The Institute of Cancer Research, London, UK
| | - Claudio Alfieri
- Division of Structural Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK.
| |
Collapse
|
37
|
Guo Z, Chu C, Lu Y, Zhang X, Xiao Y, Wu M, Gao S, Wong CCL, Zhan X, Wang C. Structure of a SIN3-HDAC complex from budding yeast. Nat Struct Mol Biol 2023:10.1038/s41594-023-00975-z. [PMID: 37081318 DOI: 10.1038/s41594-023-00975-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/23/2023] [Indexed: 04/22/2023]
Abstract
SIN3-HDAC (histone deacetylases) complexes have important roles in facilitating local histone deacetylation to regulate chromatin accessibility and gene expression. Here, we present the cryo-EM structure of the budding yeast SIN3-HDAC complex Rpd3L at an average resolution of 2.6 Å. The structure reveals that two distinct arms (ARM1 and ARM2) hang on a T-shaped scaffold formed by two coiled-coil domains. In each arm, Sin3 interacts with different subunits to create a different environment for the histone deacetylase Rpd3. ARM1 is in the inhibited state with the active site of Rpd3 blocked, whereas ARM2 is in an open conformation with the active site of Rpd3 exposed to the exterior space. The observed asymmetric architecture of Rpd3L is different from those of available structures of other class I HDAC complexes. Our study reveals the organization mechanism of the SIN3-HDAC complex and provides insights into the interaction pattern by which it targets histone deacetylase to chromatin.
Collapse
Affiliation(s)
- Zhouyan Guo
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Chen Chu
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yichen Lu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiaofeng Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yihang Xiao
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
| | - Mingxuan Wu
- Department of Chemistry, School of Science, Westlake University, Hangzhou, China
| | - Shuaixin Gao
- Human Nutrition Program & James Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Xiechao Zhan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Chengcheng Wang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
38
|
Wang C, Guo Z, Chu C, Lu Y, Zhang X, Zhan X. Two assembly modes for SIN3 histone deacetylase complexes. Cell Discov 2023; 9:42. [PMID: 37076472 PMCID: PMC10115800 DOI: 10.1038/s41421-023-00539-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/10/2023] [Indexed: 04/21/2023] Open
Abstract
The switch-independent 3 (SIN3)/histone deacetylase (HDAC) complexes play essential roles in regulating chromatin accessibility and gene expression. There are two major types of SIN3/HDAC complexes (named SIN3L and SIN3S) targeting different chromatin regions. Here we present the cryo-electron microscopy structures of the SIN3L and SIN3S complexes from Schizosaccharomyces pombe (S. pombe), revealing two distinct assembly modes. In the structure of SIN3L, each Sin3 isoform (Pst1 and Pst3) interacts with one histone deacetylase Clr6, and one WD40-containing protein Prw1, forming two lobes. These two lobes are bridged by two vertical coiled-coil domains from Sds3/Dep1 and Rxt2/Png2, respectively. In the structure of SIN3S, there is only one lobe organized by another Sin3 isoform Pst2; each of the Cph1 and Cph2 binds to an Eaf3 molecule, providing two modules for histone recognition and binding. Notably, the Pst1 Lobe in SIN3L and the Pst2 Lobe in SIN3S adopt similar conformation with their deacetylase active sites exposed to the space; however, the Pst3 Lobe in SIN3L is in a compact state with its active center buried inside and blocked. Our work reveals two classical organization mechanisms for the SIN3/HDAC complexes to achieve specific targeting and provides a framework for studying the histone deacetylase complexes.
Collapse
Affiliation(s)
- Chengcheng Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China.
| | - Zhouyan Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China
| | - Chen Chu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China
| | - Yichen Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China
| | - Xiaofeng Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China
| | - Xiechao Zhan
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
39
|
RDW K, KR S, A C, LC4 J, SW H, SM C. Histone Deacetylases (HDACs) maintain expression of the pluripotent gene network via recruitment of RNA polymerase II to coding and non-coding loci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535398. [PMID: 37066171 PMCID: PMC10104071 DOI: 10.1101/2023.04.06.535398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Histone acetylation is a dynamic modification regulated by the opposing actions of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Deacetylation of histone tails results in chromatin tightening and therefore HDACs are generally regarded as transcriptional repressors. Counterintuitively, simultaneous deletion of Hdac1 and Hdac2 in embryonic stem cells (ESC) reduced expression of pluripotent transcription factors, Oct4, Sox2 and Nanog (OSN). By shaping global histone acetylation patterns, HDACs indirectly regulate the activity of acetyl-lysine readers, such as the transcriptional activator, BRD4. We used inhibitors of HDACs and BRD4 (LBH589 and JQ1 respectively) in combination with precision nuclear run-on and sequencing (PRO-seq) to examine their roles in defining the ESC transcriptome. Both LBH589 and JQ1 caused a marked reduction in the pluripotent network. However, while JQ1 treatment induced widespread transcriptional pausing, HDAC inhibition caused a reduction in both paused and elongating polymerase, suggesting an overall reduction in polymerase recruitment. Using enhancer RNA (eRNA) expression to measure enhancer activity we found that LBH589-sensitive eRNAs were preferentially associated with super-enhancers and OSN binding sites. These findings suggest that HDAC activity is required to maintain pluripotency by regulating the OSN enhancer network via the recruitment of RNA polymerase II.
Collapse
Affiliation(s)
- Kelly RDW
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 9HN, UK
| | - Stengel KR
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue Chanin Building, Bronx, NY 10461
| | - Chandru A
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD
| | - Johnson LC4
- Locate Bio Limited, MediCity, Thane Road, Beeston, Nottingham, NG90 6BH
| | - Hiebert SW
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cowley SM
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 9HN, UK
| |
Collapse
|
40
|
Zuo M, Tong R, He X, Liu Y, Liu J, Liu S, Liu Y, Cao J, Ma L. FOXO signaling pathway participates in oxidative stress-induced histone deacetylation. Free Radic Res 2023; 57:47-60. [PMID: 36927283 DOI: 10.1080/10715762.2023.2190862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
High concentrations of antioxidants can exert pro-oxidative effects, elevate the level of intracellular reactive oxygen species (ROS), and cause oxidative stress in cells. We previously found that high concentrations of curcumin, a natural polyphenol antioxidant, elevated ROS levels and upregulated the expression of histone deacetylase 1 (HDAC1) in human gastric cancer cells (hGCCs); however, its potential mechanisms and subsequent functions have not been elucidated. In the present study, we treated hGCCs with high concentrations of curcumin, detected several indicators of oxidative stress, and investigated the mechanism of curcumin-treatment-mediated HDAC1 upregulation and its effect on histone acetylation. The results showed that curcumin treatment caused oxidative stress in hGCCs and upregulated HDAC1/2 expression via the forkhead box O (FOXO) signaling pathway, ultimately leading to the deacetylation of histones in hGCCs. Moreover, HDAC1/2 mediates the deacetylation of FOXOs and promotes their transcription activities, implying a positive feedback loop between FOXOs and HDAC1/2. These findings present a mechanism by which oxidative stress induces histone deacetylation in hGCCs.
Collapse
Affiliation(s)
- Mengna Zuo
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Ruiying Tong
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Xiaoying He
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yang Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Jiwei Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Shujun Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Ying Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Junwei Cao
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Libing Ma
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
41
|
Herath KE, Kodikara IKM, Pflum MKH. Proteomics-based trapping with single or multiple inactive mutants reproducibly profiles histone deacetylase 1 substrates. J Proteomics 2023; 274:104807. [PMID: 36587730 DOI: 10.1016/j.jprot.2022.104807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022]
Abstract
Histone deacetylase 1 (HDAC1) plays a key role in diverse cellular processes. With the aberrant expression of HDAC1 linked to many diseases, including cancers, HDAC inhibitors have been used successfully as therapeutics. HDAC1 has been predominantly associated with histone deacetylation and gene expression. Recently, non-histone substrates have revealed diverse roles of HDAC1 beyond epigenetics. To augment discovery of non-histone substrates, we introduced "substrate trapping" to enrich HDAC1 substrates using an inactive mutant. Herein, we performed a series of proteomics studies to test the robustness of HDAC1 substrate trapping. Based on our recent results documenting that different HDAC1 mutants preferentially bound different substrates, which suggested that multiple mutants could be used for efficient trapping, trapping with three single point mutants simultaneously identified several potential substrates uniquely compared to a single mutant alone. However, a greater number of biologically interesting hits were observed using only a single mutant, which suggests that the C151A HDAC1 mutant is the optimal trap. Importantly, comparing independent trials with a single mutant performed by different experimentalists and HEK293 cell populations, trapping was robust and reproducible. Based on the reproducible trapping data, carnosine N-methyltransferase 1 (CARNMT1) was validated as an HDAC1 substrate. The data document that mutant trapping is an effective method for discovery of unanticipated HDAC substrates. SIGNIFICANCE: Histone deacetylase (HDAC) proteins are well established epigenetic transcriptional regulators that deacetylate histone substrates to control gene expression. More recently, deacetylation of non-histone substrates has linked HDAC activity to functions outside of epigenetics. Given the use of HDAC inhibitor drugs as anti-cancer therapeutics, understanding the full functions of HDAC proteins in cell biology is essential to future drug design. To discover unanticipated non-histone substrates and further characterize HDAC functions, inactive mutants have been used to "trap" putative substrates, which were identified with mass spectrometry-based proteomics analysis. Here multiple trapping studies were performed to test the robustness of using inactive mutants and proteomics for HDAC substrate discovery. The data confirm the value of trapping mutants as effective tools to discover HDAC substrates and link HDAC activity to unexpected biological functions.
Collapse
Affiliation(s)
- Kavinda E Herath
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States of America
| | - Ishadi K M Kodikara
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States of America
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States of America.
| |
Collapse
|
42
|
O’Boyle NM, Helesbeux JJ, Meegan MJ, Sasse A, O’Shaughnessy E, Qaisar A, Clancy A, McCarthy F, Marchand P. 30th Annual GP 2A Medicinal Chemistry Conference. Pharmaceuticals (Basel) 2023; 16:432. [PMID: 36986531 PMCID: PMC10056312 DOI: 10.3390/ph16030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 03/14/2023] Open
Abstract
The Group for the Promotion of Pharmaceutical Chemistry in Academia (GP2A) held their 30th annual conference in August 2022 in Trinity College Dublin, Ireland. There were 9 keynote presentations, 10 early career researcher presentations and 41 poster presentations.
Collapse
Affiliation(s)
- Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | | | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Astrid Sasse
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Elizabeth O’Shaughnessy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Alina Qaisar
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Aoife Clancy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Florence McCarthy
- School of Chemistry and ABCRF, University College Cork, T12 K8AF Cork, Ireland
| | - Pascal Marchand
- Cibles et Médicaments des Infections et de l’Immunité, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France
| |
Collapse
|
43
|
Ptacek J, Snajdr I, Schimer J, Kutil Z, Mikesova J, Baranova P, Havlinova B, Tueckmantel W, Majer P, Kozikowski A, Barinka C. Selectivity of Hydroxamate- and Difluoromethyloxadiazole-Based Inhibitors of Histone Deacetylase 6 In Vitro and in Cells. Int J Mol Sci 2023; 24:4720. [PMID: 36902164 PMCID: PMC10003107 DOI: 10.3390/ijms24054720] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family of enzymes due to its complex domain organization and cytosolic localization. Experimental data point toward the therapeutic use of HDAC6-selective inhibitors (HDAC6is) for use in both neurological and psychiatric disorders. In this article, we provide side-by-side comparisons of hydroxamate-based HDAC6is frequently used in the field and a novel HDAC6 inhibitor containing the difluoromethyl-1,3,4-oxadiazole function as an alternative zinc-binding group (compound 7). In vitro isotype selectivity screening uncovered HDAC10 as a primary off-target for the hydroxamate-based HDAC6is, while compound 7 features exquisite 10,000-fold selectivity over all other HDAC isoforms. Complementary cell-based assays using tubulin acetylation as a surrogate readout revealed approximately 100-fold lower apparent potency for all compounds. Finally, the limited selectivity of a number of these HDAC6is is shown to be linked to cytotoxicity in RPMI-8226 cells. Our results clearly show that off-target effects of HDAC6is must be considered before attributing observed physiological readouts solely to HDAC6 inhibition. Moreover, given their unparalleled specificity, the oxadiazole-based inhibitors would best be employed either as research tools in further probing HDAC6 biology or as leads in the development of truly HDAC6-specific compounds in the treatment of human disease states.
Collapse
Affiliation(s)
- Jakub Ptacek
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Ivan Snajdr
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Jiri Schimer
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Zsofia Kutil
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Jana Mikesova
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Petra Baranova
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Barbora Havlinova
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Werner Tueckmantel
- StarWise Therapeutics LLC, University Research Park, Inc., Madison, WI 53719, USA
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Alan Kozikowski
- StarWise Therapeutics LLC, University Research Park, Inc., Madison, WI 53719, USA
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Cyril Barinka
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| |
Collapse
|
44
|
Baker IM, Smalley JP, Sabat KA, Hodgkinson JT, Cowley SM. Comprehensive Transcriptomic Analysis of Novel Class I HDAC Proteolysis Targeting Chimeras (PROTACs). Biochemistry 2023; 62:645-656. [PMID: 35948047 PMCID: PMC9910044 DOI: 10.1021/acs.biochem.2c00288] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The class I histone deacetylase (HDAC) enzymes;HDAC1,2 and 3 form the catalytic engine of at least seven structurally distinct multiprotein complexes in cells. These molecular machines play a vital role in the regulation of chromatin accessibility and gene activity via the removal of acetyl moieties from lysine residues within histone tails. Their inhibition via small molecule inhibitors has beneficial effects in a number of disease types, including the clinical treatment of hematological cancers. We have previously reported a library of proteolysis targeting chimeras (PROTACs) incorporating a benzamide-based HDAC ligand (from CI-994), with an alkyl linker and ligand for the von Hippel-Lindau (VHL) E3 ubiquitin ligase that degrade HDAC1-3 at submicromolar concentrations. Here we report the addition of two novel PROTACs (JPS026 and JPS027), which utilize a ligand for the cellular inhibitor of apoptosis (IAP) family of E3 ligases. We found that both VHL (JPS004)- and IAP (JPS026)-based PROTACs degrade HDAC1-3 and induce histone acetylation to a similar degree. However, JPS026 is significantly more potent at inducing cell death in HCT116 cells than is JPS004. RNA sequencing analysis of PROTAC-treated HCT116 cells showed a distinct gene expression signature in which cell cycle and DNA replication machinery are repressed. Components of the mTORC1 and -2 complexes were also reduced, leading to an increase in FOXO3 and downstream target genes that regulate autophagy and apoptosis. In summary, a novel combination of HDAC and IAP ligands generates a PROTAC with a potent ability to stimulate apoptosis and differential gene expression in human cancer cells.
Collapse
Affiliation(s)
- India M Baker
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, U.K
| | - Joshua P Smalley
- Leicester Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, Leicester LE1 7RH, U.K
| | - Khadija A Sabat
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, U.K
| | - James T Hodgkinson
- Leicester Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, Leicester LE1 7RH, U.K
| | - Shaun M Cowley
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, U.K
| |
Collapse
|
45
|
Hess L, Moos V, Seiser C. Development of a Cellular Model Mimicking Specific HDAC Inhibitors. Methods Mol Biol 2023; 2589:51-73. [PMID: 36255617 DOI: 10.1007/978-1-0716-2788-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Class I histone deacetylases (HDACs) are important regulators of cellular functions in health and disease. HDAC1, HDAC2, HDAC3, and HDAC8 are promising targets for the treatment of cancer, neurological, and immunological disorders. These enzymes have both catalytic and non-catalytic functions in the regulation of gene expression. We here describe the generation of a genetic toolbox by the CRISPR/Cas9 methodology in nearly haploid human tumor cells. This novel model system allows to discriminate between catalytic and structural functions of class I HDAC enzymes and to mimic the treatment with specific HDAC inhibitors.
Collapse
Affiliation(s)
- Lena Hess
- Center for Anatomy and Cell Biology, Division for Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Verena Moos
- Center for Anatomy and Cell Biology, Division for Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Christian Seiser
- Center for Anatomy and Cell Biology, Division for Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
46
|
Yang Q, Falahati A, Khosh A, Mohammed H, Kang W, Corachán A, Bariani MV, Boyer TG, Al-Hendy A. Targeting Class I Histone Deacetylases in Human Uterine Leiomyosarcoma. Cells 2022; 11:cells11233801. [PMID: 36497061 PMCID: PMC9735512 DOI: 10.3390/cells11233801] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Uterine leiomyosarcoma (uLMS) is the most frequent subtype of uterine sarcoma that presents a poor prognosis, high rates of recurrence, and metastasis. Currently, the molecular mechanism of the origin and development of uLMS is unknown. Class I histone deacetylases (including HDAC1, 2, 3, and 8) are one of the major classes of the HDAC family and catalyze the removal of acetyl groups from lysine residues in histones and cellular proteins. Class I HDACs exhibit distinct cellular and subcellular expression patterns and are involved in many biological processes and diseases through diverse signaling pathways. However, the link between class I HDACs and uLMS is still being determined. In this study, we assessed the expression panel of Class I HDACs in uLMS and characterized the role and mechanism of class I HDACs in the pathogenesis of uLMS. Immunohistochemistry analysis revealed that HDAC1, 2, and 3 are aberrantly upregulated in uLMS tissues compared to adjacent myometrium. Immunoblot analysis demonstrated that the expression levels of HDAC 1, 2, and 3 exhibited a graded increase from normal and benign to malignant uterine tumor cells. Furthermore, inhibition of HDACs with Class I HDACs inhibitor (Tucidinostat) decreased the uLMS proliferation in a dose-dependent manner. Notably, gene set enrichment analysis of differentially expressed genes (DEGs) revealed that inhibition of HDACs with Tucidinostat altered several critical pathways. Moreover, multiple epigenetic analyses suggested that Tucidinostat may alter the transcriptome via reprogramming the oncogenic epigenome and inducing the changes in microRNA-target interaction in uLMS cells. In the parallel study, we also determined the effect of DL-sulforaphane on the uLMS. Our study demonstrated the relevance of class I HDACs proteins in the pathogenesis of malignant uLMS. Further understanding the role and mechanism of HDACs in uLMS may provide a promising and novel strategy for treating patients with this aggressive uterine cancer.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
- Correspondence:
| | - Ali Falahati
- Department of Biology, Yazd University, Yazd 891581841, Iran
| | - Azad Khosh
- Department of Biology, Yazd University, Yazd 891581841, Iran
| | - Hanaa Mohammed
- Anatomy Department, Faculty of Medicine, Sohag University, Sohag 82524, Egypt
| | - Wenjun Kang
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA
| | - Ana Corachán
- Department of Paediatrics, University of Valencia, Obstetrics and Gynecology, 46026 Valencia, Spain
| | | | - Thomas G. Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
47
|
Li Y, Meng R, Li S, Gu B, Xu X, Zhang H, Tan X, Shao T, Wang J, Xu D, Wang F. The ZFP541-KCTD19 complex is essential for pachytene progression by activating meiotic genes during mouse spermatogenesis. J Genet Genomics 2022; 49:1029-1041. [PMID: 35341968 DOI: 10.1016/j.jgg.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/29/2022]
Abstract
Meiosis is essential for fertility in sexually reproducing species and this sophisticated process has been extensively studied. Notwithstanding these efforts, key factors involved in meiosis have not been fully characterized. In this study, we investigate the regulatory roles of zinc finger protein 541 (ZFP541) and its interacting protein potassium channel tetramerization domain containing 19 (KCTD19) in spermatogenesis. ZFP541 is expressed from leptotene to the round spermatid stage, while the expression of KCTD19 is initiated in pachytene. Depletion of Zfp541 or Kctd19 leads to infertility in male mice and delays progression from early to mid/late pachynema. In addition, Zfp541-/- spermatocytes show abnormal programmed DNA double-strand break repair, impaired crossover formation and resolution, and asynapsis of the XY chromosomes. ZFP541 interacts with KCTD19, histone deacetylase 1/2 (HDAC1/2), and deoxynucleotidyl transferase terminal-interacting protein 1 (DNTTIP1). Moreover, ZFP541 binds to and activates the expression of genes involved in meiosis and post-meiosis including Kctd19; in turn, KCTD19 promotes the transcriptional activation activity of ZFP541. Taken together, our studies reveal that the ZFP541/KCTD19 signaling complex, acting as a key transcription regulator, plays an indispensable role in male fertility by regulating pachytene progression.
Collapse
Affiliation(s)
- Yushan Li
- The School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Ranran Meng
- College of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences Beijing, Beijing 102206, China
| | - Shanze Li
- College of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences Beijing, Beijing 102206, China
| | - Bowen Gu
- National Institute of Biological Sciences Beijing, Beijing 102206, China
| | - Xiaotong Xu
- National Institute of Biological Sciences Beijing, Beijing 102206, China
| | - Haihang Zhang
- National Institute of Biological Sciences Beijing, Beijing 102206, China
| | - Xinshui Tan
- National Institute of Biological Sciences Beijing, Beijing 102206, China
| | - Tianyu Shao
- National Institute of Biological Sciences Beijing, Beijing 102206, China
| | - Jiawen Wang
- National Institute of Biological Sciences Beijing, Beijing 102206, China
| | - Dan Xu
- National Institute of Biological Sciences Beijing, Beijing 102206, China
| | - Fengchao Wang
- National Institute of Biological Sciences Beijing, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
48
|
Wang X, Rosikiewicz W, Sedkov Y, Mondal B, Martinez T, Kallappagoudar S, Tvardovskiy A, Bajpai R, Xu B, Pruett-Miller SM, Schneider R, Herz HM. The MLL3/4 complexes and MiDAC co-regulate H4K20ac to control a specific gene expression program. Life Sci Alliance 2022; 5:e202201572. [PMID: 35820704 PMCID: PMC9275676 DOI: 10.26508/lsa.202201572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
The mitotic deacetylase complex MiDAC has recently been shown to play a vital physiological role in embryonic development and neurite outgrowth. However, how MiDAC functionally intersects with other chromatin-modifying regulators is poorly understood. Here, we describe a physical interaction between the histone H3K27 demethylase UTX, a complex-specific subunit of the enhancer-associated MLL3/4 complexes, and MiDAC. We demonstrate that UTX bridges the association of the MLL3/4 complexes and MiDAC by interacting with ELMSAN1, a scaffolding subunit of MiDAC. Our data suggest that MiDAC constitutes a negative genome-wide regulator of H4K20ac, an activity which is counteracted by the MLL3/4 complexes. MiDAC and the MLL3/4 complexes co-localize at many genomic regions, which are enriched for H4K20ac and the enhancer marks H3K4me1, H3K4me2, and H3K27ac. We find that MiDAC antagonizes the recruitment of UTX and MLL4 and negatively regulates H4K20ac, and to a lesser extent H3K4me2 and H3K27ac, resulting in transcriptional attenuation of associated genes. In summary, our findings provide a paradigm how the opposing roles of chromatin-modifying components, such as MiDAC and the MLL3/4 complexes, balance the transcriptional output of specific gene expression programs.
Collapse
Affiliation(s)
- Xiaokang Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, Neuherberg, Germany
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yurii Sedkov
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Baisakhi Mondal
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tanner Martinez
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Satish Kallappagoudar
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrey Tvardovskiy
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, Neuherberg, Germany
| | - Richa Bajpai
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert Schneider
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum München, Neuherberg, Germany
| | - Hans-Martin Herz
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
49
|
Quaas CE, Lin B, Long DT. Transcription suppression is mediated by the HDAC1-Sin3 complex in Xenopus nucleoplasmic extract. J Biol Chem 2022; 298:102578. [PMID: 36220390 PMCID: PMC9650048 DOI: 10.1016/j.jbc.2022.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/24/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022] Open
Abstract
Modification of histones provides a dynamic mechanism to regulate chromatin structure and access to DNA. Histone acetylation, in particular, plays a prominent role in controlling the interaction between DNA, histones, and other chromatin-associated proteins. Defects in histone acetylation patterns interfere with normal gene expression and underlie a wide range of human diseases. Here, we utilize Xenopus egg extracts to investigate how changes in histone acetylation influence transcription of a defined gene construct. We show that inhibition of histone deacetylase 1 and 2 (HDAC1/2) specifically counteracts transcription suppression by preventing chromatin compaction and deacetylation of histone residues H4K5 and H4K8. Acetylation of these sites supports binding of the chromatin reader and transcription regulator BRD4. We also identify HDAC1 as the primary driver of transcription suppression and show that this activity is mediated through the Sin3 histone deacetylase complex. These findings highlight functional differences between HDAC1 and HDAC2, which are often considered to be functionally redundant, and provide additional molecular context for their activity.
Collapse
|
50
|
Van Roy Z, Kielian T. Exploring epigenetic reprogramming during central nervous system infection. Immunol Rev 2022; 311:112-129. [PMID: 35481573 PMCID: PMC9790395 DOI: 10.1111/imr.13079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 12/31/2022]
Abstract
Epigenetics involves the study of various modes of adaptable transcriptional regulation, contributing to cell identity, characteristics, and function. During central nervous system (CNS) infection, epigenetic mechanisms can exert pronounced control over the maturation and antimicrobial properties of nearly every immune cell type. Epigenetics is a relatively new field, with the first mention of these marks proposed only a half-century ago and a substantial body of immunological epigenetic research emerging only in the last few decades. Here, we review the best-characterized epigenetic marks and their functions as well as illustrate how various immune cell populations responding to CNS infection utilize these marks to organize their activation state and inflammatory processes. We also discuss the metabolic and clinical implications of epigenetic marks and the rapidly expanding set of tools available to researchers that are enabling elucidation of increasingly detailed genetic regulatory pathways. These considerations paint an intricate picture of inflammatory regulation, where epigenetic marks influence genetic, signaling, and environmental elements to orchestrate a tailored immunological response to the threat at hand, cementing epigenetics as an important player in immunity.
Collapse
Affiliation(s)
- Zachary Van Roy
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Tammy Kielian
- Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|