1
|
Kania A, Porco N, Caravaggio F. Measuring Alcohol-Induced Striatal Dopamine Release in Healthy Humans With [ 11C]-Raclopride: A Meta-Analysis. Synapse 2025; 79:e70007. [PMID: 39729041 DOI: 10.1002/syn.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/30/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Alcohol consumption is known to affect dopamine (DA) release in the brain, with significant implications for understanding addiction and its neurobiological underpinnings. This meta-analysis examined the effects of acute alcohol administration on striatal DA release in healthy humans as measured with [11C]-raclopride positron emission tomography (PET). Oral alcohol administration was associated with a significant reduction in [11C]-raclopride binding potential (BPND) in the ventral striatum (Cohen's d = -0.76), indicative of increased DA release, particularly at lower blood alcohol concentration (BAC) levels (0.08 gm%; Z = 2.34, p = 0.02). That oral alcohol may increase DA release in the ventral striatum at lower doses, and decrease DA release at higher doses, warrants further investigation but appears consistent with other known biphasic, hermetic dose-response effects of alcohol. Additionally, larger effect-sizes in the ventral striatum were observed among those studies which sampled more males than females (Z = -2.08, p = 0.04). While oral alcohol administration was associated with reduced [11C]-raclopride BPND in the caudate (Cohen's d = -0.39) and putamen (Cohen's d = -0.37), these findings in the dorsal striatum were more variable and less robust. Our analyses suggests that study design (i.e., counterbalanced versus fixed order) may moderate effect sizes observed in the putamen across studies (Z = -2.27, p = 0.02). By identifying gaps in the current literature and proposing directions for future research, this study hopes to inform the design of future PET studies aimed at quantifying alcohol-induced dopamine release in the striatum of humans.
Collapse
Affiliation(s)
- Amir Kania
- Department of Science, De La Salle College, Institute of the Brothers of the Christian Schools, Toronto, Ontario, Canada
| | - Natasha Porco
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Fernando Caravaggio
- Department of Science, De La Salle College, Institute of the Brothers of the Christian Schools, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Diot A, Groth G, Blanchet S, Chervin C. Responses of animals and plants to physiological doses of ethanol: a molecular messenger of hypoxia? FEBS J 2024; 291:1102-1110. [PMID: 38232057 DOI: 10.1111/febs.17056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
Our viewpoint is that ethanol could act as a molecular messenger in animal and plant organisms under conditions of hypoxia or other stresses and could elicit physiological responses to such conditions. There is evidence that both animal and plant organisms have endogenous levels of ethanol, but reports on the changes induced by this alcohol at physiological levels are sparse. Studies have shown that ethanol has different effects on cell metabolism at low and high concentrations, resembling a hormetic response. Further studies have addressed the potential cellular and molecular mechanisms used by organisms to sense changes in physiological concentrations of ethanol. This article summarizes the possible mechanisms by which ethanol may be sensed, particularly at the cell membrane level. Our analysis shows that current knowledge on this subject is limited. More research is required on the effects of ethanol at very low doses, in plants and animals at both molecular and physiological levels. We believe that further research on this topic could lead to new discoveries in physiology and may even help us understand metabolic adjustments related to climate change. As temperatures rise more frequently, dissolved oxygen levels drop, leading to hypoxic conditions and consequently, an increase in cellular ethanol levels.
Collapse
Affiliation(s)
- Alice Diot
- Laboratoire de Recherche en Sciences Végétales (UMR5546), Université de Toulouse, CNRS, UPS, Toulouse-INP, Castanet-Tolosan, France
- CNRS, Station d'Ecologie Théorique et Expérimentale (UAR 2029), Moulis, France
| | - Georg Groth
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Bioeconomy Science Center (BioSC), Jülich, Germany
| | - Simon Blanchet
- CNRS, Station d'Ecologie Théorique et Expérimentale (UAR 2029), Moulis, France
| | - Christian Chervin
- Laboratoire de Recherche en Sciences Végétales (UMR5546), Université de Toulouse, CNRS, UPS, Toulouse-INP, Castanet-Tolosan, France
| |
Collapse
|
3
|
Bryant KG, Singh B, Barker JM. Sex and individual differences in the effect of chronic low-dose ethanol on behavioral strategy selection. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:132-141. [PMID: 38206280 PMCID: PMC10784635 DOI: 10.1111/acer.15218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/03/2023] [Accepted: 10/24/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND The development of an alcohol use disorder (AUD) involves impaired behavioral control and flexibility. Behavioral inflexibility includes an inability to shift behavior in response to changes in behavioral outcomes. Low levels of ethanol drinking may promote the formation of inflexible, habitual reward seeking, but this may depend on the timing of ethanol exposure in relation to learning. The goal of this study was to determine whether a history of low-dose ethanol exposure promoted contingency-insensitive sucrose seeking and altered behavioral strategy selection. METHODS Male and female C57BL/6J mice were trained to perform a response (lever press) for sucrose on two different reinforcement schedules: one that is thought to promote inflexible responding (random interval) and one that maintains flexible responding (variable ratio [VR]). Following instrumental training each day, mice were exposed to saline or low-dose ethanol (0.5 g/kg; i.p.) either proximal (1 h after) or distal (4 h after) to learning. Mice were then tested for sensitivity to changes in contingency in a contingency degradation test. RESULTS A history of low-dose ethanol exposure shifted behavioral strategy selection, as measured by reward tracking behavior, but this depended on sex and reinforcement schedule history. Both male and female mice used different strategies depending on the reinforcement schedule, but only males exhibited ethanol-induced shifts in strategy selection. A history of low-dose ethanol exposure did not impact contingency sensitivity in males but promoted insensitivity in females specifically on the VR lever. CONCLUSIONS Female mice show distinct behavioral effects of repeated, low-dose ethanol exposure as compared to males, with sex differences in the use of reward tracking strategies to guide behavior. Future studies should investigate sex differences in the neural consequences of chronic low-dose ethanol exposure that may underlie behavioral changes.
Collapse
Affiliation(s)
- Kathleen G. Bryant
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Binay Singh
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Jacqueline M. Barker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102
| |
Collapse
|
4
|
McElroy BD, Li C, McCloskey NS, Kirby LG. Sex differences in ethanol consumption and drinking despite negative consequences following adolescent social isolation stress in male and female rats. Physiol Behav 2023; 271:114322. [PMID: 37573960 PMCID: PMC10592127 DOI: 10.1016/j.physbeh.2023.114322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/19/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Alcohol use disorder (AUD) is a debilitating psychiatric disorder characterized by drinking despite negative social and biological consequences. AUDs make up 71% of substance use disorders, with relapse rates as high as 80%. Current treatments stem from data conducted largely in males and fail to target the psychological distress motivating drinking in stress-vulnerable and at-risk populations. Here we employed a rat model and hypothesized that early life stress would reveal sex differences in ethanol intake and drinking despite negative consequences in adulthood. Rats were group housed or isolated postweaning to evaluate sex and stress effects on ethanol consumption in homecage drinking, self-administration (SA), and punished SA (drinking despite negative consequences) in adulthood. Stressed rats showed elevated homecage ethanol intake, an effect more pronounced in females. During SA, males were more sensitive to stress-induced elevations of drinking over time, but females drank more overall. Stressed rats, regardless of sex, responded more for ethanol than their non-stressed counterparts. Stressed females showed greater resistance to punishment-suppressed SA than stressed males, indicating a more stress-resistant drinking phenotype. Results support our hypothesis that adolescent social isolation stress enhances adult ethanol intake in a sex- and model-dependent manner with females being especially sensitive to early life stress-induced elevations in ethanol intake and punished SA in adulthood. Our findings echo the clinical literature which indicates that stress-vulnerable populations are more likely to 'self-medicate' with substances. Elucidating a potential mechanism that underlies why vulnerable populations 'self-medicate' with alcohol can lead towards developing catered pharmacotherapeutics that could reduce punishment-resistant drinking and relapse.
Collapse
Affiliation(s)
- Bryan D McElroy
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University Philadelphia, PA, 19140, United States of America.
| | - Chen Li
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University Philadelphia, PA, 19140, United States of America
| | - Nicholas S McCloskey
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University Philadelphia, PA, 19140, United States of America
| | - Lynn G Kirby
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University Philadelphia, PA, 19140, United States of America
| |
Collapse
|
5
|
Coffman RE, Kraichely KN, Kreutzberger AJB, Kiessling V, Tamm LK, Woodbury DJ. Drunken lipid membranes, not drunken SNARE proteins, promote fusion in a model of neurotransmitter release. Front Mol Neurosci 2022; 15:1022756. [PMID: 36311016 PMCID: PMC9614348 DOI: 10.3389/fnmol.2022.1022756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Alcohol affects many neuronal proteins that are upstream or down-stream of synaptic vesicle fusion and neurotransmitter release. Less well studied is alcohol's effect on the fusion machinery including SNARE proteins and lipid membranes. Using a SNARE-driven fusion assay we show that fusion probability is significantly increased at 0.4% v/v (68 mM) ethanol; but not with methanol up to 10%. Ethanol appears to act directly on membrane lipids since experiments focused on protein properties [circular dichroism spectrometry, site-directed fluorescence interference contrast (sdFLIC) microscopy, and vesicle docking results] showed no significant changes up to 5% ethanol, but a protein-free fusion assay also showed increased lipid membrane fusion rates with 0.4% ethanol. These data show that the effects of high physiological doses of ethanol on SNARE-driven fusion are mediated through ethanol's interaction with the lipid bilayer of membranes and not SNARE proteins, and that methanol affects lipid membranes and SNARE proteins only at high doses.
Collapse
Affiliation(s)
- Robert E. Coffman
- Neuroscience Center, Brigham Young University, Provo, UT, United States
| | - Katelyn N. Kraichely
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA, United States
| | - Alex J. B. Kreutzberger
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA, United States
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA, United States
| | - Lukas K. Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA, United States
| | - Dixon J. Woodbury
- Neuroscience Center, Brigham Young University, Provo, UT, United States
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
6
|
Excessive alcohol consumption after exposure to two types of chronic social stress: intermittent episodes vs. continuous exposure in C57BL/6J mice with a history of drinking. Psychopharmacology (Berl) 2022; 239:3287-3296. [PMID: 35974246 DOI: 10.1007/s00213-022-06211-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
RATIONALE The attraction to alcohol can be greatly increased when it is consumed in a social context. While pro-social interactions can potentiate voluntary alcohol drinking under some conditions, aversive social experience (i.e., social stress) can similarly intensify alcohol consumption. OBJECTIVE We sought to determine how exposure to different types of chronic social stress (i.e., intermittent episodes of social defeat or continuous social stress) influences alcohol consumption and the reinforcing effects of alcohol in mice with a history of drinking. METHODS Separate cohorts of male C57BL/6J mice were exposed to either 10 days of continuous or intermittent social defeat stress. In experiment 1, mice were assigned to 20% w/v alcohol consumption in a two-bottle choice protocol both prior to and after exposure to social defeat stress. In a second experiment, mice engaged in an operant response sequence to gain access to alcohol wherein completion of a fixed interval (FI; 5 min) schedule was reinforced with continuous access to alcohol (fixed ratio; FR1) for up to 1.8 g/kg. Alcohol-reinforced responding and subsequent alcohol consumption were assessed daily for 4 weeks prior to the 10-day social stress exposure and for 6-week post-stress. Machine learning was implemented to standardize the analysis of defeat behaviors exhibited by the intruder mouse during confrontation with an attacking resident. RESULTS In mice with a prior history of alcohol drinking, intermittent episodes of social defeat stress produced a significant increase in 20% EtOH consumption in preference over concurrently available water. This increased intake persisted for at least 6 weeks after the final social stress experience. Intermittently stressed mice also accelerated their anticipatory responding during the fixed interval component of the operant response chain that was reinforced by alcohol. Neither unstressed controls nor mice exposed to continuous social stress exhibited significant increases in alcohol consumption and alcohol reinforcement. DISCUSSION Episodic social defeat stress promotes the seeking and consumption of alcohol, extending earlier work to alcohol-experienced mice. We hypothesize that intermittent access to alcohol and intermittent episodes of social stress are additive and share common sensitizing neural mechanisms that engender excessive alcohol consumption.
Collapse
|
7
|
Hernandez J, Kaun KR. Alcohol, neuronal plasticity, and mitochondrial trafficking. Proc Natl Acad Sci U S A 2022; 119:e2208744119. [PMID: 35858366 PMCID: PMC9303853 DOI: 10.1073/pnas.2208744119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- John Hernandez
- Department of Neuroscience, Brown University, Providence, RI 02912
| | - Karla R. Kaun
- Department of Neuroscience, Brown University, Providence, RI 02912
| |
Collapse
|
8
|
Choi MR, Cho S, Kim DJ, Choi JS, Jin YB, Kim M, Chang HJ, Jeon SH, Yang YD, Lee SR. Effects of Ethanol on Expression of Coding and Noncoding RNAs in Murine Neuroblastoma Neuro2a Cells. Int J Mol Sci 2022; 23:ijms23137294. [PMID: 35806296 PMCID: PMC9267046 DOI: 10.3390/ijms23137294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Excessive use of alcohol can induce neurobiological and neuropathological alterations in the brain, including the hippocampus and forebrain, through changes in neurotransmitter systems, hormonal systems, and neuroimmune processes. We aimed to investigate the effects of ethanol on the expression of coding and noncoding RNAs in a brain-derived cell line exposed to ethanol. After exposing Neuro2a cells, a neuroblastoma cell line, to ethanol for 24 and 72 h, we observed cell proliferation and analyzed up- and downregulated mRNAs and long noncoding RNAs (lncRNAs) using total RNA-Seq technology. We validated the differential expression of some mRNAs and lncRNAs by RT-qPCR and analyzed the expression of Cebpd and Rnu3a through knock-down of Cebpd. Cell proliferation was significantly reduced in cells exposed to 100 mM ethanol for 72 h, with 1773 transcripts up- or downregulated by greater than three-fold in ethanol-treated cells compared to controls. Of these, 514 were identified as lncRNAs. Differentially expressed mRNAs and lncRNAs were mainly observed in cells exposed to ethanol for 72 h, in which Atm and Cnr1 decreased, but Trib3, Cebpd, and Spdef increased. On the other hand, lncRNAs Kcnq1ot1, Tug1, and Xist were changed by ethanol, and Rnu3a in particular was greatly increased by chronic ethanol treatment through inhibition of Cebpd. Our results increase the understanding of cellular and molecular mechanisms related to coding and noncoding RNAs in an in vitro model of acute and chronic exposure to ethanol.
Collapse
Affiliation(s)
- Mi Ran Choi
- Laboratory Animal Research Center, Ajou University School of Medicine, Suwon 16499, Korea;
| | - Sinyoung Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon 11160, Korea; (S.C.); (S.H.J.)
| | - Dai-Jin Kim
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Jung-Seok Choi
- Department of Psychiatry, Samsung Medical Center, Seoul 06351, Korea;
| | - Yeung-Bae Jin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea;
| | - Miran Kim
- Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon 16499, Korea; (M.K.); (H.J.C.)
| | - Hye Jin Chang
- Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon 16499, Korea; (M.K.); (H.J.C.)
| | - Seong Ho Jeon
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon 11160, Korea; (S.C.); (S.H.J.)
| | - Young Duk Yang
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon 11160, Korea; (S.C.); (S.H.J.)
- Correspondence: (Y.D.Y.); (S.-R.L.); Tel.: +82-31-881-7170 (Y.D.Y.); +82-31-219-4499 (S.-R.L.)
| | - Sang-Rae Lee
- Laboratory Animal Research Center, Ajou University School of Medicine, Suwon 16499, Korea;
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea
- Correspondence: (Y.D.Y.); (S.-R.L.); Tel.: +82-31-881-7170 (Y.D.Y.); +82-31-219-4499 (S.-R.L.)
| |
Collapse
|
9
|
Bryant KG, Singh B, Barker JM. Reinforcement History Dependent Effects of Low Dose Ethanol on Reward Motivation in Male and Female Mice. Front Behav Neurosci 2022; 16:875890. [PMID: 35481242 PMCID: PMC9036521 DOI: 10.3389/fnbeh.2022.875890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Alcohol use disorders (AUDs) are more prevalent in men than in women, though AUD diagnoses in women are growing rapidly, making an understanding of sex differences in alcohol-related behaviors increasingly important. The development of AUDs involves the transition from casual, low levels of alcohol drinking to higher, maladaptive levels. The ability of low dose alcohol to drive reward and drug seeking may differ in males and females, and this could underlie differences in susceptibility to AUD. In this study we sought to determine whether a history of chronic, low dose ethanol exposure (0.5 g/kg; i.p.) could drive sucrose reward seeking and motivation, and whether this differed between male and female mice. Adult mice were trained to lever press for a liquid sucrose reward on two reinforcement schedules: a random interval (RI) schedule and a variable ratio (VR) schedule. After training, mice were tested on each of these levers for reward motivation using a progressive ratio test. We found that a history of low dose ethanol exposure increased sucrose reward motivation in male mice, but only on the RI lever and only when exposure occurred proximal to learning. Female mice were more motivated for sucrose on the RI lever than the VR lever regardless of ethanol exposure condition. These findings indicate that training on different reinforcement schedules affects reward motivation. Further, we show that males are more susceptible to the effects of low dose ethanol on sucrose reward motivation than females. These data broaden our understanding of sex differences in reward seeking as a result of ethanol exposure.
Collapse
|
10
|
Synergistic effects of alcohol and HIV TAT protein on macrophage migration and neurotoxicity. J Neuroimmunol 2022; 368:577869. [DOI: 10.1016/j.jneuroim.2022.577869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/24/2021] [Accepted: 04/10/2022] [Indexed: 11/18/2022]
|
11
|
Abstract
PURPOSE A growing body of evidence has implicated the endocannabinoid (eCB) system in the acute, chronic, and withdrawal effects of alcohol/ethanol on synaptic function. These eCB-mediated synaptic effects may contribute to the development of alcohol use disorder (AUD). Alcohol exposure causes neurobiological alterations similar to those elicited by chronic cannabinoid (CB) exposure. Like alcohol, cannabinoids alter many central processes, such as cognition, locomotion, synaptic transmission, and neurotransmitter release. There is a strong need to elucidate the effects of ethanol on the eCB system in different brain regions to understand the role of eCB signaling in AUD. SEARCH METHODS For the scope of this review, preclinical studies were identified through queries of the PubMed database. SEARCH RESULTS This search yielded 459 articles. Clinical studies and papers irrelevant to the topic of this review were excluded. DISCUSSION AND CONCLUSIONS The endocannabinoid system includes, but is not limited to, cannabinoid receptors 1 (CB1), among the most abundantly expressed neuronal receptors in the brain; cannabinoid receptors 2 (CB2); and endogenously formed CB1 ligands, including arachidonoylethanolamide (AEA; anandamide), and 2-arachidonoylglycerol (2-AG). The development of specific CB1 agonists, such as WIN 55,212-2 (WIN), and antagonists, such as SR 141716A (rimonabant), provide powerful pharmacological tools for eCB research. Alcohol exposure has brain region-specific effects on the eCB system, including altering the synthesis of endocannabinoids (e.g., AEA, 2-AG), the synthesis of their precursors, and the density and coupling efficacy of CB1. These alcohol-induced alterations of the eCB system have subsequent effects on synaptic function including neuronal excitability and postsynaptic conductance. This review will provide a comprehensive evaluation of the current literature on the synaptic interactions of alcohol exposure and eCB signaling systems, with an emphasis on molecular and physiological synaptic effects of alcohol on the eCB system. A limited volume of studies has focused on the underlying interactions of alcohol and the eCB system at the synaptic level in the brain. Thus, the data on synaptic interactions are sparse, and future research addressing these interactions is much needed.
Collapse
Affiliation(s)
- Sarah A Wolfe
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California
| | - Valentina Vozella
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California
| | - Marisa Roberto
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California
| |
Collapse
|
12
|
Atkinson NS. Alcohol-induced Aggression. Neurosci Insights 2021; 16:26331055211061145. [PMID: 34841248 PMCID: PMC8611288 DOI: 10.1177/26331055211061145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Intraspecies aggression is commonly focused on securing reproductive resources such as food, territory, and mates, and it is often males who do the fighting. In humans, individual acts of overt physical aggression seem maladaptive and probably represent dysregulation of the pathways underlying aggression. Such acts are often associated with ethanol consumption. The Drosophila melanogaster model system, which has long been used to study how ethanol affects the nervous system and behavior, has also been used to study the molecular origins of aggression. In addition, ethanol-induced aggression has been demonstrated in flies. Recent publications show that ethanol stimulates Drosophila aggression in 2 ways: the odor of ethanol and the consumption of ethanol both make males more aggressive. These ethanol effects occur at concentrations that flies likely experience in the wild. A picture emerges of males arriving on their preferred reproductive site-fermenting plant matter-and being stimulated by ethanol to fight harder to secure the site for their own use. Fly fighting assays appear to be a suitable bioassay for studying how low doses of ethanol reshape neural signaling.
Collapse
Affiliation(s)
- Nigel S Atkinson
- Department of Neuroscience and The Waggoner
Center for Alcohol and Addiction Research, The University of Texas at
Austin, Austin, TX, USA
| |
Collapse
|
13
|
Gruol DL, Hernandez RV, Roberts A. Alcohol Enhances Responses to High Frequency Stimulation in Hippocampus from Transgenic Mice with Increased Astrocyte Expression of IL-6. Cell Mol Neurobiol 2021; 41:1299-1310. [PMID: 32562098 PMCID: PMC7749046 DOI: 10.1007/s10571-020-00902-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022]
Abstract
Recent studies show that alcohol exposure can induce glial production of neuroimmune factors in the CNS. Of these, IL-6 has gained attention because it is involved in a number of important physiological and pathophysiological processes that could be affected by alcohol-induced CNS production of IL-6, particularly under conditions of excessive alcohol use. For example, IL-6 has been shown to play a role in hippocampal behaviors and synaptic plasticity (long-term potentiation; LTP) associated with memory and learning. Surprisingly, in our in vitro studies of LTP at the Schaffer collateral to CA1 pyramidal neuron synapse in hippocampus from transgenic mice that express elevated levels of astrocyte produced IL-6 (TG), LTP was not altered by the increased levels of IL-6. However, exposure to acute alcohol revealed neuroadaptive changes that served to protect LTP against the alcohol-induced reduction of LTP observed in hippocampus from non-transgenic control mice (WT). Here we examined the induction phase of LTP to assess if presynaptic neuroadaptive changes occurred in the hippocampus of TG mice that contributed to the resistance of LTP to alcohol. Results are consistent with a role for IL-6-induced neuroadaptive effects on presynaptic mechanisms involved in transmitter release in the resistance of LTP to alcohol in hippocampus from the TG mice. These actions are important with respect to a role for IL-6 in physiological and pathophysiological processes in the CNS and in CNS actions of alcohol, especially when excessive alcohol used is comorbid with conditions associated with elevated levels of IL-6 in the CNS.
Collapse
Affiliation(s)
- Donna L Gruol
- Neuroscience Department, SR301, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Ruben V Hernandez
- Neuroscience Department, SR301, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Amanda Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
14
|
Randall PA, Lovelock DF, VanVoorhies K, Agan VE, Kash TL, Besheer J. Low-dose alcohol: Interoceptive and molecular effects and the role of dentate gyrus in rats. Addict Biol 2021; 26:e12965. [PMID: 33015936 DOI: 10.1111/adb.12965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 01/24/2023]
Abstract
Alcohol abuse and dependence are world-wide health problems. Most research on alcohol use focuses on the consequences of moderate to high levels of alcohol. However, even at low concentrations, alcohol is capable of producing effects in the brain that can ultimately affect behavior. The current studies seek to understand the effects of low-dose alcohol (blood alcohol levels of ≤10mM). To do so, these experiments utilize a combination of behavioral and molecular techniques to (1) assess the ability of the interoceptive effects of a low dose of alcohol to gain control over goal-tracking behavior in a Pavlovian discrimination task, (2) determine brain regional differences in cellular activity via expression of immediate early genes (IEGs), and (3) assess the role of the dentate gyrus in modulating sensitivity to the interoceptive effects of a low dose of alcohol. Here, we show that intragastric administration of a dose of 0.8 g/kg alcohol produces blood alcohol levels ≤10mM in both male and female Long-Evans rats and can readily be trained as a Pavlovian interoceptive drug cue. In rats trained on this procedure, this dose of alcohol also modulates expression of the IEGs c-Fos and Arc in brain regions known to modulate expression of alcohol interoceptive effects. Finally, pharmacological inactivation of the dentate gyrus with GABA agonists baclofen and muscimol disrupted the ability of a low dose of alcohol to serve as an interoceptive cue. Together, these findings demonstrate behavioral and molecular consequences of low-dose alcohol.
Collapse
Affiliation(s)
- Patrick A. Randall
- Department of Anesthesiology and Perioperative Medicine Penn State College of Medicine Hershey Pennsylvania USA
- Department of Pharmacology Penn State College of Medicine Hershey Pennsylvania USA
| | - Dennis F. Lovelock
- Bowles Center for Alcohol Studies University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Kalynn VanVoorhies
- Bowles Center for Alcohol Studies University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Verda E. Agan
- Bowles Center for Alcohol Studies University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Thomas L. Kash
- Bowles Center for Alcohol Studies University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
- Department of Pharmacology University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
- Department of Psychiatry University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| |
Collapse
|
15
|
Astrocytes promote ethanol-induced enhancement of intracellular Ca 2+ signals through intercellular communication with neurons. iScience 2021; 24:102436. [PMID: 33997707 PMCID: PMC8105650 DOI: 10.1016/j.isci.2021.102436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/17/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
Ethanol (EtOH) abuse induces significant mortality and morbidity worldwide because of detrimental effects on brain function. Defining the contribution of astrocytes to this malfunction is imperative to understanding the overall EtOH effects due to their role in homeostasis and EtOH-seeking behaviors. Using a highly controllable in vitro system, we identify chemical signaling mechanisms through which acute EtOH exposure induces a modulatory feedback loop between neurons and astrocytes. Neuronally-derived purinergic signaling primed a subpopulation of astrocytes to respond to subsequent acute EtOH exposures (SEastrocytes: signal enhanced astrocytes) with greater calcium signal strength. Generation of SEastrocytes arose from astrocytic hemichannel-derived ATP and accumulation of its metabolite adenosine within the astrocyte microenvironment to modulate adenylyl cyclase and phospholipase C activity. These results highlight an important role of astrocytes in shaping the overall physiological responsiveness to EtOH and emphasize the unique plasticity of astrocytes to adapt to single and multiple exposures of EtOH.
Collapse
|
16
|
Jin S, Cao Q, Yang F, Zhu H, Xu S, Chen Q, Wang Z, Lin Y, Cinar R, Pawlosky RJ, Zhang Y, Xiong W, Gao B, Koob GF, Lovinger DM, Zhang L. Brain ethanol metabolism by astrocytic ALDH2 drives the behavioural effects of ethanol intoxication. Nat Metab 2021; 3:337-351. [PMID: 33758417 PMCID: PMC8294184 DOI: 10.1038/s42255-021-00357-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/04/2021] [Indexed: 02/08/2023]
Abstract
Alcohol is among the most widely used psychoactive substances worldwide. Ethanol metabolites such as acetate, thought to be primarily the result of ethanol breakdown by hepatic aldehyde dehydrogenase 2 (ALDH2), contribute to alcohol's behavioural effects and alcoholism. Here, we show that ALDH2 is expressed in astrocytes in the mouse cerebellum and that ethanol metabolism by astrocytic ALDH2 mediates behavioural effects associated with ethanol intoxication. We show that ALDH2 is expressed in astrocytes in specific brain regions and that astrocytic, but not hepatocytic, ALDH2 is required to produce ethanol-derived acetate in the mouse cerebellum. Cerebellar astrocytic ALDH2 mediates low-dose ethanol-induced elevation of GABA levels, enhancement of tonic inhibition and impairment of balance and coordination skills. Thus, astrocytic ALDH2 controls the production, cellular and behavioural effects of alcohol metabolites in a brain-region-specific manner. Our data indicate that astrocytic ALDH2 is an important, but previously under-recognized, target in the brain to alter alcohol pharmacokinetics and potentially treat alcohol use disorder.
Collapse
Affiliation(s)
- Shiyun Jin
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- Department of Anesthesiology, Second Affiliated Hospital, Anhui Medical University, Hefei, PR China
| | - Qi Cao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Fanghan Yang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Hongying Zhu
- Department of Neuroscience, University of Science and Technology of China, Hefei, PR China
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Qi Chen
- Department of Neuroscience, University of Science and Technology of China, Hefei, PR China
| | - Ziyi Wang
- Department of Neuroscience, University of Science and Technology of China, Hefei, PR China
| | - Yuhong Lin
- Laboratory for Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Robert J Pawlosky
- Laboratory for Metabolic Control, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Ye Zhang
- Department of Anesthesiology, Second Affiliated Hospital, Anhui Medical University, Hefei, PR China
| | - Wei Xiong
- Department of Neuroscience, University of Science and Technology of China, Hefei, PR China
| | - Bin Gao
- Laboratory for Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - George F Koob
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Li Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Zink A, Conrad J, Telugu NS, Diecke S, Heinz A, Wanker E, Priller J, Prigione A. Assessment of Ethanol-Induced Toxicity on iPSC-Derived Human Neurons Using a Novel High-Throughput Mitochondrial Neuronal Health (MNH) Assay. Front Cell Dev Biol 2020; 8:590540. [PMID: 33224955 PMCID: PMC7674658 DOI: 10.3389/fcell.2020.590540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/15/2020] [Indexed: 12/26/2022] Open
Abstract
Excessive ethanol exposure can cause mitochondrial and cellular toxicity. In order to discover potential counteracting interventions, it is essential to develop assays capable of capturing the consequences of ethanol exposure in human neurons, and particularly dopaminergic neurons that are crucial for the development of alcohol use disorders (AUD). Here, we developed a novel high-throughput (HT) assay to quantify mitochondrial and neuronal toxicity in human dopaminergic neuron-containing cultures (DNs) from induced pluripotent stem cells (iPSCs). The assay, dubbed mitochondrial neuronal health (MNH) assay, combines live-cell measurement of mitochondrial membrane potential (MMP) with quantification of neuronal branching complexity post-fixation. Using the MNH assay, we demonstrated that chronic ethanol exposure in human iPSC-derived DNs decreases MMP and neuronal outgrowth in a dose-dependent manner. The toxic effect of ethanol on DNs was already detectable after 1 h of exposure, and occurred similarly in DNs derived from healthy individuals and from patients with AUD. We next used the MNH assay to carry out a proof-of-concept compound screening using FDA-approved drugs. We identified potential candidate compounds modulating acute ethanol toxicity in human DNs. We found that disulfiram and baclofen, which are used for AUD treatment, and lithium caused neurotoxicity also in the absence of ethanol, while the spasmolytic drug flavoxate positively influenced MNH. Altogether, we developed an HT assay to probe human MNH and used it to assess ethanol neurotoxicity and to identify modulating agents. The MNH assay represents an effective new tool for discovering modulators of MNH and toxicity in live human neurons.
Collapse
Affiliation(s)
- Annika Zink
- Department of Neuropsychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Josefin Conrad
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | - Andreas Heinz
- Department of Neuropsychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Erich Wanker
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Josef Priller
- Department of Neuropsychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany.,University of Edinburgh and UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Alessandro Prigione
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
19
|
De Pirro S, Lush P, Parkinson J, Duka T, Critchley HD, Badiani A. Effect of alcohol on the sense of agency in healthy humans. Addict Biol 2020; 25:e12796. [PMID: 31222868 DOI: 10.1111/adb.12796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 04/09/2019] [Accepted: 05/06/2019] [Indexed: 01/04/2023]
Abstract
Even at low to moderate doses, ingestion of the widely used recreational drug alcohol (ethanol) can impact cognitive and emotional processing. Recent studies show that the sense of agency (SoA; ie, the subjective experience of voluntary control over actions) can be modulated by specific pharmacological manipulations. The SoA, as quantified by the intentional binding (IB) paradigm, is enhanced by direct or indirect dopaminergic agonists in patients with Parkinson's disease and by ketamine (an N-methyl-D-aspartate (NMDA) receptor antagonist) in healthy individuals. These findings implicate dopaminergic and glutamatergic neurotransmission in mechanisms underlying SoA. Alcohol has a complex set of actions, including disinhibition of dopaminergic neurotransmission and allosteric antagonism at NMDA receptors. Here, we tested the hypothesis that low to moderate doses of alcohol would enhance SoA, and impact impulsivity and subjective emotional state. We conducted two experiments in 59 healthy male and female social drinkers, who ingested either a placebo "vehicle," or one of two doses of ethanol: 0.4 and 0.6 g/kg. In both experiments, we observed increased SoA/IB at both doses of alcohol exposure, relative to the placebo condition. We found no correlation between the effects of alcohol on IB and on impulsivity or subjective emotional state. Our findings might have implications for social and legal responsibility related to alcohol use, particularly in states prior to overt intoxication. Further studies are necessary to investigate the effects of alcohol and other addictive substances on the SoA.
Collapse
Affiliation(s)
- Silvana De Pirro
- Sussex Addiction Research and Intervention Centre (SARIC), School of Psychology University of Sussex Brighton UK
- Sussex Neuroscience University of Sussex Brighton UK
- Department of Physiology and Pharmacology Sapienza University of Rome Rome Italy
| | - Peter Lush
- Sussex Addiction Research and Intervention Centre (SARIC), School of Psychology University of Sussex Brighton UK
- Sackler Centre for Consciousness Science University of Sussex Brighton UK
| | - Jim Parkinson
- Sackler Centre for Consciousness Science University of Sussex Brighton UK
| | - Theodora Duka
- Sussex Addiction Research and Intervention Centre (SARIC), School of Psychology University of Sussex Brighton UK
- Sussex Neuroscience University of Sussex Brighton UK
| | - Hugo D. Critchley
- Sussex Addiction Research and Intervention Centre (SARIC), School of Psychology University of Sussex Brighton UK
- Sussex Neuroscience University of Sussex Brighton UK
- Sackler Centre for Consciousness Science University of Sussex Brighton UK
| | - Aldo Badiani
- Sussex Addiction Research and Intervention Centre (SARIC), School of Psychology University of Sussex Brighton UK
- Sussex Neuroscience University of Sussex Brighton UK
- Department of Physiology and Pharmacology Sapienza University of Rome Rome Italy
| |
Collapse
|
20
|
Young CK, McNaughton N. Mixed Effects of Low-dose Ethanol on Cortical and Hippocampal Theta Oscillations. Neuroscience 2020; 429:213-224. [DOI: 10.1016/j.neuroscience.2020.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 12/14/2022]
|
21
|
Koob GF, Colrain IM. Alcohol use disorder and sleep disturbances: a feed-forward allostatic framework. Neuropsychopharmacology 2020; 45:141-165. [PMID: 31234199 PMCID: PMC6879503 DOI: 10.1038/s41386-019-0446-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/09/2019] [Accepted: 06/13/2019] [Indexed: 11/09/2022]
Abstract
The development of alcohol use disorder (AUD) involves binge or heavy drinking to high levels of intoxication that leads to compulsive intake, the loss of control in limiting intake, and a negative emotional state when alcohol is removed. This cascade of events occurs over an extended period within a three-stage cycle: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. These three heuristic stages map onto the dysregulation of functional domains of incentive salience/habits, negative emotional states, and executive function, mediated by the basal ganglia, extended amygdala, and frontal cortex, respectively. Sleep disturbances, alterations of sleep architecture, and the development of insomnia are ubiquitous in AUD and also map onto the three stages of the addiction cycle. During the binge/intoxication stage, alcohol intoxication leads to a faster sleep onset, but sleep quality is poor relative to nights when no alcohol is consumed. The reduction of sleep onset latency and increase in wakefulness later in the night may be related to the acute effects of alcohol on GABAergic systems that are associated with sleep regulation and the effects on brain incentive salience systems, such as dopamine. During the withdrawal/negative affect stage, there is a decrease in slow-wave sleep and some limited recovery in REM sleep when individuals with AUD stop drinking. Limited recovery of sleep disturbances is seen in AUD within the first 30 days of abstinence. The effects of withdrawal on sleep may be related to the loss of alcohol as a positive allosteric modulator of GABAA receptors, a decrease in dopamine function, and the overactivation of stress neuromodulators, including hypocretin/orexin, norepinephrine, corticotropin-releasing factor, and cytokines. During the preoccupation/anticipation stage, individuals with AUD who are abstinent long-term present persistent sleep disturbances, including a longer latency to fall asleep, more time awake during the night, a decrease in slow-wave sleep, decreases in delta electroencephalogram power and evoked delta activity, and an increase in REM sleep. Glutamatergic system dysregulation that is observed in AUD is a likely substrate for some of these persistent sleep disturbances. Sleep pathology contributes to AUD pathology, and vice versa, possibly as a feed-forward drive to an unrecognized allostatic load that drives the addiction process.
Collapse
Affiliation(s)
- George F Koob
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 6700B Rockledge Drive, Room 1209, MSC 6902, Bethesda, MD, 20892-6902, USA.
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, 20892-6902, USA.
| | - Ian M Colrain
- SRI Biosciences, SRI International, Menlo Park, CA, USA
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
22
|
Raymond JS, Wilson BB, Tan O, Gururajan A, Bowen MT. Acute alcohol exposure dose-dependently alleviates social avoidance in adolescent mice and inhibits social investigation in adult mice. Psychopharmacology (Berl) 2019; 236:3625-3639. [PMID: 31346653 DOI: 10.1007/s00213-019-05335-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/16/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Motivations for alcohol consumption often focus on ethanol's purported prosocial effects: social enhancement and reduction of socially focused anxiety. Despite substantial research supporting prosocial effects, contrary research exists demonstrating alcohol-elicited antisocial and asocial behaviours. Additionally, evidence typically fails to delineate whether alcohol-induced prosocial effects are due to alcohol expectancies or pharmacological actions of ethanol. Studies exploring ethanol's pharmacological effects on social behaviour and factors that modulate apparent contradictory prosocial versus asocial effects are lacking. OBJECTIVES This study investigated whether factors of age, ethanol dose and social fear modulate ethanol-induced pharmacological effects on sociability and social anxiety-like avoidance. METHODS Experiments examined the acute effects of ethanol doses (0, 0.25, 0.8, 1.6 g/kg; i.p.) in adult (10-week-old) and adolescent (PND 31-33) C57BL/6J male mice on social interaction using a social fear conditioning paradigm. Control experiments assessed whether ethanol-induced effects were social-specific. RESULTS In adult mice, no specific effects of ethanol on social avoidance were observed at any dose. However, high-dose ethanol (1.6 g/kg) suppressed social approach in all adult mice. In contrast, low-dose ethanol (0.25 g/kg) alleviated social avoidance in adolescent mice and no social suppression was observed at higher ethanol doses. Thus, higher doses of ethanol impair social behaviour in adult mice, whereas lower doses specifically alleviate social anxiety-like avoidance in adolescent mice. CONCLUSIONS Age, dose and social fear are critical modulators of acute ethanol-induced pharmacological effects on social behaviour. Inconsistencies in ethanol-induced social consequences appear at least partly mediated by pharmacological interactions-not solely alcohol expectancies.
Collapse
Affiliation(s)
- Joel S Raymond
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, 2050, NSW, Australia.,Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW, 2050, Australia
| | - Bianca B Wilson
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, 2050, NSW, Australia.,Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW, 2050, Australia
| | - Oliver Tan
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, 2050, NSW, Australia.,Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW, 2050, Australia
| | - Anand Gururajan
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, 2050, NSW, Australia.,Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW, 2050, Australia
| | - Michael T Bowen
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, 2050, NSW, Australia. .,Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW, 2050, Australia.
| |
Collapse
|
23
|
Li W, Zuo W, Wu W, Zuo QK, Fu R, Wu L, Zhang H, Ndukwe M, Ye JH. Activation of glycine receptors in the lateral habenula rescues anxiety- and depression-like behaviors associated with alcohol withdrawal and reduces alcohol intake in rats. Neuropharmacology 2019; 157:107688. [PMID: 31254534 PMCID: PMC6677595 DOI: 10.1016/j.neuropharm.2019.107688] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 01/03/2023]
Abstract
The lateral habenula (LHb) is activated by a range of aversive states including those related to alcohol withdrawal and has glycine receptors (GlyRs), a sensitive target of alcohol. However, whether GlyRs in the LHb contribute to alcohol-related behaviors is unknown. Here, we report that rats experiencing withdrawal from chronic alcohol consumption showed higher anxiety and sensitivity to stress compared to their alcohol-naïve counterparts. Intra-LHb injection of glycine attenuated these aberrant behaviors and reduced alcohol intake upon alcohol re-access. Glycine's effect was blocked by strychnine, a GlyR antagonist, indicating that it was mediated by strychnine-sensitive GlyRs. Conversely, intra-LHb strychnine elicited anxiety- and depression-like behaviors in Naïve rats but not in withdrawal rats. Additionally, both the frequency and the amplitude of the spontaneous IPSCs were lower in LHb neurons in slices of withdrawal rats compared to naïve rats. Also, there were sporadic strychnine-sensitive synaptic events in some LHb neurons. Bath perfusion of strychnine induced a depolarizing inward current and increased action potential firings in LHb neurons. By contrast, bath perfusion of glycine or sarcosine, a glycine transporter subtype 1 inhibitor, inhibited LHb activity. Collectively, these data reveal that LHb neurons are under the tonic glycine inhibition both in physiological and pathological conditions. Activation of GlyRs reverses LHb hyperactivity, alleviates aberrant behaviors, and reduces alcohol intake, thus highlighting the GlyRs in the LHb as a potential therapeutic target for alcohol-use disorders.
Collapse
Affiliation(s)
- Wenting Li
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Wei Wu
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Qi Kang Zuo
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Rao Fu
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Liangzhi Wu
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Haifeng Zhang
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Michael Ndukwe
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA.
| |
Collapse
|
24
|
Morel C, Montgomery S, Han MH. Nicotine and alcohol: the role of midbrain dopaminergic neurons in drug reinforcement. Eur J Neurosci 2019; 50:2180-2200. [PMID: 30251377 PMCID: PMC6431587 DOI: 10.1111/ejn.14160] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Nicotine and alcohol addiction are leading causes of preventable death worldwide and continue to constitute a huge socio-economic burden. Both nicotine and alcohol perturb the brain's mesocorticolimbic system. Dopamine (DA) neurons projecting from the ventral tegmental area (VTA) to multiple downstream structures, including the nucleus accumbens, prefrontal cortex, and amygdala, are highly involved in the maintenance of healthy brain function. VTA DA neurons play a crucial role in associative learning and reinforcement. Nicotine and alcohol usurp these functions, promoting reinforcement of drug taking behaviors. In this review, we will first describe how nicotine and alcohol individually affect VTA DA neurons by examining how drug exposure alters the heterogeneous VTA microcircuit and network-wide projections. We will also examine how coadministration or previous exposure to nicotine or alcohol may augment the reinforcing effects of the other. Additionally, this review briefly summarizes the role of VTA DA neurons in nicotine, alcohol, and their synergistic effects in reinforcement and also addresses the remaining questions related to the circuit-function specificity of the dopaminergic system in mediating nicotine/alcohol reinforcement and comorbidity.
Collapse
Affiliation(s)
- Carole Morel
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Montgomery
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Affective Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
25
|
Bukiya AN. Fetal Cerebral Artery Mitochondrion as Target of Prenatal Alcohol Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091586. [PMID: 31067632 PMCID: PMC6539770 DOI: 10.3390/ijerph16091586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/14/2022]
Abstract
Prenatal alcohol exposure results in an array of developmental abnormalities known as fetal alcohol spectrum disorders (FASDs). Despite the high prevalence of FASDs, therapeutic interventions against accidental or intended exposure of developing fetuses to alcohol are limited. This review outlines current knowledge about mitochondria in cerebral blood vessels as a potential target for anti-FASDs intervention. First, it describes the multifaceted role of mitochondria in maintaining the cerebral artery diameter as shown in adult tissue. Second, current literature on alcohol-driven damage of mitochondrial morphology and function in several fetal tissues, including liver, heart, and brain is summarized. The functional consequences of alcohol exposure in these organs include morphological enlargement of mitochondria, increased oxidative stress, and alteration of cellular respiration. These studies point to a tissue-specific effect of alcohol on mitochondrial function and a particular vulnerability of fetal mitochondria to alcohol exposure when compared to adult counterparts. Third, recent work from our group describing persistent changes in fetal baboon cerebral artery proteome following three episodes of prenatal alcohol exposure is reviewed. In conclusion, the consequences of prenatal alcohol exposure on cerebral artery mitochondria constitute an open field of investigation and, eventually, a point of therapeutic intervention against FASDs.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
26
|
Alinaghipour A, Mazoochi T, Ardjmand A. Low-dose ethanol ameliorates amnesia induced by a brief seizure model: the role of NMDA signaling. Neurol Res 2019; 41:624-632. [PMID: 30967097 DOI: 10.1080/01616412.2019.1602322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objective: The present study aimed to evaluate the ameliorative effect of low-dose ethanol (Eth) on amnesia induced by a brief seizure model and the role of N-methyl D-aspartate (NMDA) signaling in this event. Materials and Methods: Four groups of rats (total number = 36; n = 9, each group) were used: control, Eth (0.5 g/kg/i.p.), pentylenetetrazole (PTZ) (60 mg/kg/i.p.), and Eth+PTZ. Eth was administered for 6 days before the single injection of PTZ, at minute dose that cannot induce memory impairment. The consequences of Eth pretreatment, coadministered with PTZ, were studied in an inhibitory avoidance (IA) memory model. The PTZ was injected 30 min prior to the IA memory test. Thereafter, locomotion, liver enzymes, and the Real-time PCR for NR1 subunit of NMDA receptor were studied. The statistical analyses were performed using the parametric/nonparametric ANOVA and the post-hoc tests. Results: Our findings revealed that Eth pretreatment significantly improved the IA memory impairment induced by PTZ (P < 0.001), and indicated no change in locomotion and serum ALT, but significantly differed for AST between the PTZ and PTZ groups (P = < 0.05). The Real-time PCR results indicate the decreased NR1 mRNA expression in Eth and PTZ groups and the increased NR1 mRNA expression in Eth+PTZ group, compared to the control group (P < 0.001); however, the NR1 mRNA expression was increased in the Eth+PTZ group, compared to PTZ group (P < 0.001). Conclusion: The present study provides evidence that the low-dose Eth can improve the amnesia induced by a brief seizure model presumably via NMDA signaling in a rat.
Collapse
Affiliation(s)
- Azam Alinaghipour
- a Physiology Research Center , Kashan University of Medical Sciences , Kashan , Iran
| | - Tahereh Mazoochi
- b Anatomical Science Research Center , Kashan University of Medical sciences , Kashan , Iran
| | - Abolfazl Ardjmand
- a Physiology Research Center , Kashan University of Medical Sciences , Kashan , Iran.,c Department of Physiology , School of Medicine, Kashan University of Medical Sciences , Kashan , Iran
| |
Collapse
|
27
|
Nawarawong NN, Slaker M, Muelbl M, Shah AS, Chiariello R, Nelson LD, Budde MD, Stemper BD, Olsen CM. Repeated blast model of mild traumatic brain injury alters oxycodone self-administration and drug seeking. Eur J Neurosci 2018; 50:2101-2112. [PMID: 30456793 DOI: 10.1111/ejn.14281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022]
Abstract
Each year, traumatic brain injuries (TBI) affect millions worldwide. Mild TBIs (mTBI) are the most prevalent and can lead to a range of neurobehavioral problems, including substance abuse. A single blast exposure, inducing mTBI alters the medial prefrontal cortex, an area implicated in addiction, for at least 30 days post injury in rats. Repeated blast exposures result in greater physiological and behavioral dysfunction than single exposure; however, the impact of repeated mTBI on addiction is unknown. In this study, the effect of mTBI on various stages of oxycodone use was examined. Male Sprague Dawley rats were exposed to a blast model of mTBI once per day for 3 days. Rats were trained to self-administer oxycodone during short (2 h) and long (6 h) access sessions. Following abstinence, rats underwent extinction and two cued reinstatement sessions. Sham and rbTBI rats had similar oxycodone intake, extinction responding and cued reinstatement of drug seeking. A second group of rats were trained to self-administer oxycodone with varying reinforcement schedules (fixed ratio (FR)-2 and FR-4). Under an FR-2 schedule, rbTBI-exposed rats earned fewer reinforcers than sham-exposed rats. During 10 extinction sessions, the rbTBI-exposed rats exhibited significantly more seeking for oxycodone than the sham-injured rats. There was a positive correlation between total oxycodone intake and day 1 extinction drug seeking in sham, but not in rbTBI-exposed rats. Together, this suggests that rbTBI-exposed rats are more sensitive to oxycodone-associated cues during reinstatement than sham-exposed rats and that rbTBI may disrupt the relationship between oxycodone intake and seeking.
Collapse
Affiliation(s)
- Natalie N Nawarawong
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Megan Slaker
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Matt Muelbl
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alok S Shah
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA.,Joint Department of Biomedical Engineering, Marquette University, Milwaukee, WI, USA
| | - Rachel Chiariello
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA.,Joint Department of Biomedical Engineering, Marquette University, Milwaukee, WI, USA
| | - Lindsay D Nelson
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Matthew D Budde
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | - Brian D Stemper
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA.,Joint Department of Biomedical Engineering, Marquette University, Milwaukee, WI, USA
| | - Christopher M Olsen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
28
|
Finn DA, Hashimoto JG, Cozzoli DK, Helms ML, Nipper MA, Kaufman MN, Wiren KM, Guizzetti M. Binge Ethanol Drinking Produces Sexually Divergent and Distinct Changes in Nucleus Accumbens Signaling Cascades and Pathways in Adult C57BL/6J Mice. Front Genet 2018; 9:325. [PMID: 30250478 PMCID: PMC6139464 DOI: 10.3389/fgene.2018.00325] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
We previously determined that repeated binge ethanol drinking produced sex differences in the regulation of signaling downstream of Group 1 metabotropic glutamate receptors in the nucleus accumbens (NAc) of adult C57BL/6J mice. The purpose of the present study was to characterize RNA expression differences in the NAc of adult male and female C57BL/6J mice following 7 binge ethanol drinking sessions, when compared with controls consuming water. This binge drinking procedure produced high intakes (average >2.2 g/kg/30 min) and blood ethanol concentrations (average >1.3 mg/ml). Mice were euthanized at 24 h after the 7th binge session, and focused qPCR array analysis was employed on NAc tissue to quantify expression levels of 384 genes in a customized Mouse Mood Disorder array, with a focus on glutamatergic signaling (3 arrays/group). We identified significant regulation of 50 genes in male mice and 70 genes in female mice after 7 ethanol binges. Notably, 14 genes were regulated in both males and females, representing common targets to binge ethanol drinking. However, expression of 10 of these 14 genes was strongly dimorphic (e.g., opposite regulation for genes such as Crhr2, Fos, Nos1, and Star), and only 4 of the 14 genes were regulated in the same direction (Drd5, Grm4, Ranbp9, and Reln). Interestingly, the top 30 regulated genes by binge ethanol drinking for each sex differed markedly in the male and female mice, and this divergent neuroadaptive response in the NAc could result in dysregulation of distinct biological pathways between the sexes. Characterization of the expression differences with Ingenuity Pathway Analysis was used to identify Canonical Pathways, Upstream Regulators, and significant Biological Functions. Expression differences suggested that hormone signaling and immune function were altered by binge drinking in female mice, whereas neurotransmitter metabolism was a central target of binge ethanol drinking in male mice. Thus, these results indicate that the transcriptional response to repeated binge ethanol drinking was strongly influenced by sex, and they emphasize the importance of considering sex in the development of potential pharmacotherapeutic targets for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Joel G Hashimoto
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Debra K Cozzoli
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Melinda L Helms
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Michelle A Nipper
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Moriah N Kaufman
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Kristine M Wiren
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Research, VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
29
|
Yawalkar R, Changotra H, Gupta GL. Protective influences of N-acetylcysteine against alcohol abstinence-induced depression by regulating biochemical and GRIN2A, GRIN2B gene expression of NMDA receptor signaling pathway in rats. Neurochem Int 2018; 118:73-81. [DOI: 10.1016/j.neuint.2018.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 10/17/2022]
|
30
|
Simpson SA. A Survey of Clinical Approaches to Suicide Risk Assessment for Patients Intoxicated on Alcohol. PSYCHOSOMATICS 2018; 60:197-203. [PMID: 30093244 DOI: 10.1016/j.psym.2018.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND Suicidal ideation and alcohol use are common among emergency department patients. It is unclear at what point a suicide risk assessment should occur among patients who present with acute alcohol intoxication. OBJECTIVE This study aims to describe practice patterns among expert practitioners for timing the suicide risk assessment for an intoxicated patient. METHODS An online survey was sent to emergency psychiatrists and behavioral health specialists on 2 national listserves including that of the Academy of Consultation-Liaison Psychiatry's Emergency Psychiatry Special Interest Group. RESULTS Sixty respondents had a mean of 16 ± 12years (mean ± standard deviation) out of specialty training and had extensive experience and comfort in managing this patient presentation. All respondents were board-certified and most (68%) practiced in academic settings. The most common practice for conducting a safety risk assessment in alcohol-intoxicated patients was to proceed once the patient was clinically sober (58%). Other practices included retesting the patient until a specific blood alcohol concentration was reached (19%) or waiting a certain time after presentation based on the initial blood alcohol concentration (15%). Some (8%) evaluated actively-intoxicated patients for suicide risk. Practice varied slightly based on the location of practice,type of practice, and where the clinician trained. DISCUSSION Expert clinicians most often describe using a clinical assessment to determine sobriety before completing a suicidal risk assessment, although alternative practices remain common. While advantages and disadvantages vary among different approaches, the quality and evidence base underlying these practices are questioned.
Collapse
Affiliation(s)
- Scott A Simpson
- Psychiatric Emergency Services, Denver Health Medical Center, University of Colorado School of Medicine, Department of Psychiatry, Denver, CO.
| |
Collapse
|
31
|
Swierzbinski ME, Herberholz J. Effects of Ethanol on Sensory Inputs to the Medial Giant Interneurons of Crayfish. Front Physiol 2018; 9:448. [PMID: 29755370 PMCID: PMC5934690 DOI: 10.3389/fphys.2018.00448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
Crayfish are capable of two rapid, escape reflexes that are mediated by two pairs of giant interneurons, the lateral giants (LG) and the medial giants (MG), which respond to threats presented to the abdomen or head and thorax, respectively. The LG has been the focus of study for many decades and the role of GABAergic inhibition on the escape circuit is well-described. More recently, we demonstrated that the LG circuit is sensitive to the acute effects of ethanol and this sensitivity is likely mediated by interactions between ethanol and the GABAergic system. The MG neurons, however, which receive multi-modal sensory inputs and are located in the brain, have been less studied despite their established importance during many naturally occurring behaviors. Using a combination of electrophysiological and neuropharmacological techniques, we report here that the MG neurons are sensitive to ethanol and experience an increase in amplitudes of post-synaptic potentials following ethanol exposure. Moreover, they are affected by GABAergic mechanisms: the facilitatory effect of acute EtOH can be suppressed by pretreatment with a GABA receptor agonist whereas the inhibitory effects resulting from a GABA agonist can be occluded by ethanol exposure. Together, our findings suggest intriguing neurocellular interactions between alcohol and the crayfish GABAergic system. These results enable further exploration of potentially conserved neurochemical mechanisms underlying the interactions between alcohol and neural circuitry that controls complex behaviors.
Collapse
Affiliation(s)
- Matthew E Swierzbinski
- Neuroscience and Cognitive Science Program, Department of Psychology, University of Maryland, College Park, MD, United States
| | - Jens Herberholz
- Neuroscience and Cognitive Science Program, Department of Psychology, University of Maryland, College Park, MD, United States
| |
Collapse
|
32
|
Nunez KM, Azanchi R, Kaun KR. Cue-Induced Ethanol Seeking in Drosophila melanogaster Is Dose-Dependent. Front Physiol 2018; 9:438. [PMID: 29740347 PMCID: PMC5925608 DOI: 10.3389/fphys.2018.00438] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/06/2018] [Indexed: 12/27/2022] Open
Abstract
Alcohol use disorder generates devastating social, medical and economic burdens, making it a major global health issue. The persistent nature of memories associated with intoxication experiences often induces cravings and triggers relapse in recovering individuals. Despite recent advances, the neural and molecular mechanisms underlying these memories are complex and not well understood. This makes finding effective pharmacological targets challenging. The investigation of persistent alcohol-associated memories in the fruit fly, Drosophila melanogaster, presents a unique opportunity to gain a comprehensive understanding of the memories for ethanol reward at the level of genes, molecules, neurons and circuits. Here we characterize the dose-dependent nature of ethanol on the expression of memory for an intoxication experience. We report that the concentration of ethanol, number of ethanol exposures, length of ethanol exposures, and timing between ethanol exposures are critical in determining whether ethanol is perceived as aversive or appetitive, and in how long the memory for the intoxicating properties of ethanol last. Our study highlights that fruit flies display both acute and persistent memories for ethanol-conditioned odor cues, and that a combination of parameters that determine the intoxication state of the fly influence the seemingly complex retention and expression of memories associated with intoxication. Our thorough behavioral characterization provides the opportunity to interrogate the biological underpinnings of these observed preference differences in future studies.
Collapse
Affiliation(s)
- Kavin M Nunez
- Molecular Pharmacology and Physiology Graduate Program, Brown University, Providence, RI, United States
| | - Reza Azanchi
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Karla R Kaun
- Department of Neuroscience, Brown University, Providence, RI, United States
| |
Collapse
|
33
|
Zeilhofer HU, Acuña MA, Gingras J, Yévenes GE. Glycine receptors and glycine transporters: targets for novel analgesics? Cell Mol Life Sci 2018; 75:447-465. [PMID: 28791431 PMCID: PMC11105467 DOI: 10.1007/s00018-017-2622-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/14/2017] [Accepted: 08/04/2017] [Indexed: 01/29/2023]
Abstract
Glycinergic neurotransmission has long been known for its role in spinal motor control. During the last two decades, additional functions have become increasingly recognized-among them is a critical contribution to spinal pain processing. Studies in rodent pain models provide proof-of-concept evidence that enhancing inhibitory glycinergic neurotransmission reduces chronic pain symptoms. Apparent strategies for pharmacological intervention include positive allosteric modulators of glycine receptors and modulators or inhibitors of the glial and neuronal glycine transporters GlyT1 and GlyT2. These prospects have led to drug discovery efforts in academia and in industry aiming at compounds that target glycinergic neurotransmission with high specificity. Available data show promising analgesic efficacy. Less is currently known about potential unwanted effects but the presence of glycinergic innervation in CNS areas outside the nociceptive system prompts for a careful evaluation not only of motor function, but also of potential respiratory impairment and addictive properties.
Collapse
Affiliation(s)
- Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland.
| | - Mario A Acuña
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | - Gonzalo E Yévenes
- Department of Physiology, University of Concepción, Concepción, Chile
| |
Collapse
|
34
|
Low Vs. High Alcohol: Central Benefits Vs. Detriments. Neurotox Res 2018; 34:860-869. [DOI: 10.1007/s12640-017-9859-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 01/05/2023]
|
35
|
Fu R, Mei Q, Zuo W, Li J, Gregor D, Bekker A, Ye J. Low-dose ethanol excites lateral habenula neurons projecting to VTA, RMTg, and raphe. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2017; 9:217-230. [PMID: 29348799 PMCID: PMC5770519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
It is unclear how social drinking can contribute to the development of addiction in susceptible individuals. However, alcohol's aversive properties are a well-known factor contributing to its abuse. The lateral habenula (LHb) is a key brain structure responding to various aversive stimuli, including those related to alcohol. We recently reported that ethanol at 10 mM or less that can be achieved by social drinking activates many LHb neurons and drives aversive conditioning. The current study sought to identify LHb circuits that are activated by a low-dose of ethanol using immunohistochemistry and anatomic tracing techniques on adult Sprague-Dawley rats. We showed here that an intraperitoneal injection of ethanol (0.25 g/kg), resulting in a blood ethanol concentration of 5.6 mM, significantly increased the number of cFos immunoreactive (IR) neurons in the LHb. Most of the ethanol-activated cFos-IR LHb neurons expressed vGluT2 (vesicular glutamate transporters 2, a marker of a glutamatergic phenotype). These LHb neurons projected to the ventral tegmental area (VTA), rostromedial tegmental nucleus (RMTg), and dorsal raphe. Moreover, injections of the anterograde tracer AAV-CaMKIIa-eGFP into the lateral hypothalamus produced a significant amount of labeled fibers with vGluT2 positive terminals on the ethanol-activated LHb cells. These results indicate that the LHb neurons stimulated by a low-dose of ethanol project to the VTA, RMTg, and dorsal raphe, and receive excitatory projections from the lateral hypothalamus. These neurocircuits may play a crucial role in mediating the initial aversive effects produced by a low-dose of ethanol.
Collapse
Affiliation(s)
- Rao Fu
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical SchoolNewark, New Jersey 07103, USA
| | - Qinghua Mei
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical SchoolNewark, New Jersey 07103, USA
- Department of Pharmacy, Guangdong Second Provincial General HospitalGuangzhou 510317, China
| | - Wanhong Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical SchoolNewark, New Jersey 07103, USA
| | - Jing Li
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical SchoolNewark, New Jersey 07103, USA
| | - Danielle Gregor
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical SchoolNewark, New Jersey 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical SchoolNewark, New Jersey 07103, USA
| | - Jianghong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical SchoolNewark, New Jersey 07103, USA
| |
Collapse
|
36
|
Abrahao KP, Salinas AG, Lovinger DM. Alcohol and the Brain: Neuronal Molecular Targets, Synapses, and Circuits. Neuron 2017; 96:1223-1238. [PMID: 29268093 PMCID: PMC6566861 DOI: 10.1016/j.neuron.2017.10.032] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/30/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022]
Abstract
Ethanol is one of the most commonly abused drugs. Although environmental and genetic factors contribute to the etiology of alcohol use disorders, it is ethanol's actions in the brain that explain (1) acute ethanol-related behavioral changes, such as stimulant followed by depressant effects, and (2) chronic changes in behavior, including escalated use, tolerance, compulsive seeking, and dependence. Our knowledge of ethanol use and abuse thus relies on understanding its effects on the brain. Scientists have employed both bottom-up and top-down approaches, building from molecular targets to behavioral analyses and vice versa, respectively. This review highlights current progress in the field, focusing on recent and emerging molecular, cellular, and circuit effects of the drug that impact ethanol-related behaviors. The focus of the field is now on pinpointing which molecular effects in specific neurons within a brain region contribute to behavioral changes across the course of acute and chronic ethanol exposure.
Collapse
Affiliation(s)
- Karina P Abrahao
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Armando G Salinas
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|