1
|
Dos Santos MG, Demonceaux M, Schimith LE, Goux M, Solleux C, Muccillo-Baisch AL, Arbo BD, Andre-Miral C, Hort MA. Pharmacokinetic Prediction and Cytotoxicity of New Quercetin Derivatives. Chem Biodivers 2025:e202500119. [PMID: 40345208 DOI: 10.1002/cbdv.202500119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025]
Abstract
Quercetin (QUE) possesses various pharmacological properties; however, its low bioavailability and solubility hinder its beneficial effects. Enzymatic glycosylation has been explored to improve these aspects. In the present study, we used a sucrose phosphorylase variant to catalyze the regioselective transglucosylation of QUE, predicted the pharmacokinetic properties and toxicity of these molecules using in silico tools, and evaluated their cytotoxicity compared to the original molecule and a β-glucosylated derivative of QUE. Three α-glucosylated derivatives were obtained, which demonstrated improved pharmacokinetics, including a higher volume of distribution and lower clearance rate, with minimal likelihood of cytochrome P450 enzyme inhibition compared to QUE. QUE and the β-glucosylated derivative exhibited cytotoxicity in both cell types evaluated, whereas their α-glucosylated derivatives were nontoxic. The results presented provide an insight into the predicted behavior of these molecules in the body and, combined with cytotoxicity evaluation, will serve as a foundation for investigating the biological effects and mechanisms of action of these new molecules.
Collapse
Affiliation(s)
- Michele Goulart Dos Santos
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Marie Demonceaux
- Unit at the Biological Sciences at Biotechnologies, Nantes University, Nantes, France
| | - Lucia Emanueli Schimith
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Marine Goux
- Unit at the Biological Sciences at Biotechnologies, Nantes University, Nantes, France
| | - Claude Solleux
- Unit at the Biological Sciences at Biotechnologies, Nantes University, Nantes, France
| | - Ana Luiza Muccillo-Baisch
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Bruno Dutra Arbo
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Corinne Andre-Miral
- Unit at the Biological Sciences at Biotechnologies, Nantes University, Nantes, France
| | - Mariana Appel Hort
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Liu S, Liu J, Li X, Du X, Yin C, Luo Y, Li C. Fluorescent Particles Based on Aggregation-Induced Emission for Optical Diagnostics of the Central Nervous System. RESEARCH (WASHINGTON, D.C.) 2025; 8:0564. [PMID: 39866911 PMCID: PMC11757665 DOI: 10.34133/research.0564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/22/2024] [Accepted: 12/09/2024] [Indexed: 01/28/2025]
Abstract
In 2001, Tang's team discovered a unique type of luminogens with substantial enhanced fluorescence upon aggregation and introduced the concept of "aggregation-induced emission (AIE)". Unlike conventional fluorescent materials, AIE luminogens (AIEgens) emit weak or no fluorescence in solution but become highly fluorescent in aggregated or solid states, due to a mechanism known as restriction of intramolecular motions (RIM). Initially considered a purely inorganic chemical phenomenon, AIE was later applied in biomedicine to improve the sensitivity of immunoassays. Subsequently, AIE has been extensively explored in various biomedical applications, especially in cell imaging. Early studies achieved nonspecific cell imaging using nontargeted AIEgens, and later, specific cellular imaging was realized through the design of targeted AIEgens. These advancements have enabled the visualization of various biomacromolecules and intracellular organelles, providing valuable insights into cellular microenvironments and statuses. Neurological disorders affect over 3 billion people worldwide, highlighting the urgent need for advanced diagnostic and therapeutic tools. AIEgens offer promising opportunities for imaging the central nervous system (CNS), including nerve cells, neural tissues, and blood vessels. This review focuses on the application of AIEgens in CNS imaging, exploring their roles in the diagnosis of various neurological diseases. We will discuss the evolution and conclude with an outlook on the future challenges and opportunities for AIEgens in clinical diagnostics and therapeutics of CNS disorders.
Collapse
Affiliation(s)
- Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital,
University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jinkuan Liu
- School of Medicine,
University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xue Li
- Juxintang (Chengdu) Biotechnology Co. Ltd., Chengdu 641400, China
| | - Xiaoxin Du
- Office of Scientific Research & Development,
University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cheng Yin
- Department of Neurosurgery, Sichuan Provincial People’s Hospital,
University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yong Luo
- Department of Traditional Chinese Medicine, Sichuan Provincial People’s Hospital,
University of Electronic Science and Technology of China, Chengdu 610031, China
| | - Chenzhong Li
- Juxintang (Chengdu) Biotechnology Co. Ltd., Chengdu 641400, China
- Biomedical Engineering, School of Medicine,
The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
3
|
Zhang W, Oh JH, Zhang W, Aldrich CC, Sirianni RW, Elmquist WF. Central nervous system distributional kinetics of selected histone deacetylase inhibitors. J Pharmacol Exp Ther 2025; 392:100014. [PMID: 39893010 DOI: 10.1124/jpet.124.002170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Histone deacetylase expression and activity are often dysregulated in central nervous system (CNS) tumors, providing a rationale for investigating histone deacetylase inhibitors (HDACIs) in selected brain tumor patients. Although many HDACIs have shown potential in in vitro studies, they have had modest efficacy in vivo. This lack of activity could be due to insufficient CNS exposure to the unbound drug. In this study, we investigated the systemic pharmacokinetics and subsequent CNS distribution of 2 potent HDACIs, vorinostat and quisinostat, in the murine model. Both compounds undergo in vitro degradation in mouse plasma, requiring precautions during sample processing. They also have short half-lives in vivo, in both plasma and the CNS, which may lead to diminished efficacy. Transgenic transporter-deficient mouse models show that the CNS delivery of vorinostat was not limited by the 2 major blood-brain barrier efflux transporters, p-glycoprotein and breast cancer resistance protein. Vorinostat had an unbound CNS tissue-to-plasma partition coefficient of 0.06 ± 0.02. Conversely, the exposure of unbound quisinostat in the brain was only 0.02 ± 0.001 of that in the plasma, and the CNS distribution of quisinostat was limited by the activity of p-glycoprotein. To gain further context for these findings, the CNS distributional kinetics for vorinostat and quisinostat were compared with another hydroxamic acid HDACI, panobinostat. A comprehensive understanding of the CNS target exposure to unbound HDACI, along with known potencies from in vitro testing, can inform the prediction of a therapeutic window for HDACIs that have limited CNS exposure to unbound drug and guide targeted dosing strategies. SIGNIFICANCE STATEMENT: This study indicates that quisinostat and vorinostat are susceptible to enzymatic degradation in the plasma, and to a lesser degree, in the target central nervous system (CNS) tissues. Employing techniques that minimize the postsampling degradation in plasma, brain, and spinal cord, accurate CNS distributional kinetic parameters for these potentially useful compounds were determined. A knowledge of CNS exposure, time to peak, and duration can inform dosing strategies in preclinical and clinical trials in selected CNS tumors.
Collapse
Affiliation(s)
- Wenqiu Zhang
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota.
| | - Ju-Hee Oh
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota
| | - Wenjuan Zhang
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Rachael W Sirianni
- Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts
| | - William F Elmquist
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
4
|
Ntafoulis I, Koolen SLW, van Tellingen O, den Hollander CWJ, Sabel-Goedknegt H, Dijkhuizen S, Haeck J, Reuvers TGA, de Bruijn P, van den Bosch TPP, van Dis V, Gao Z, Dirven CMF, Leenstra S, Lamfers MLM. A Repurposed Drug Selection Pipeline to Identify CNS-Penetrant Drug Candidates for Glioblastoma. Pharmaceuticals (Basel) 2024; 17:1687. [PMID: 39770529 PMCID: PMC11678797 DOI: 10.3390/ph17121687] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Glioblastoma is an aggressive and incurable type of brain cancer. Little progress has been made in the development of effective new therapies in the past decades. The blood-brain barrier (BBB) and drug efflux pumps, which together hamper drug delivery to these tumors, play a pivotal role in the gap between promising preclinical findings and failure in clinical trials. Therefore, selecting drugs that can reach the tumor region in pharmacologically effective concentrations is of major importance. METHODS In the current study, we utilized a drug selection platform to identify candidate drugs by combining in vitro oncological drug screening data and pharmacokinetic (PK) profiles for central nervous system (CNS) penetration using the multiparameter optimization (MPO) score. Furthermore, we developed intracranial patient-derived xenograft (PDX) models that recapitulated the in situ characteristics of glioblastoma and characterized them in terms of vascular integrity, BBB permeability and expression of ATP-binding cassette (ABC) transporters. Omacetaxine mepesuccinate (OMA) was selected as a proof-of-concept drug candidate to validate our drug selection pipeline. RESULTS We assessed OMA's PK profile in three different orthotopic mouse PDX models and found that OMA reaches the brain tumor tissue at concentrations ranging from 2- to 11-fold higher than in vitro IC50 values on patient-derived glioblastoma cell cultures. CONCLUSIONS This study demonstrates that OMA, a drug selected for its in vitro anti-glioma activity and CNS- MPO score, achieves brain tumor tissue concentrations exceeding its in vitro IC50 values in patient-derived glioblastoma cell cultures, as shown in three orthotopic mouse PDX models. We emphasize the importance of such approaches at the preclinical level, highlighting both their significance and limitations in identifying compounds with potential clinical implementation in glioblastoma.
Collapse
Affiliation(s)
- Ioannis Ntafoulis
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (C.M.F.D.); (S.L.)
| | - Stijn L. W. Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Chelsea W. J. den Hollander
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (C.M.F.D.); (S.L.)
| | | | - Stephanie Dijkhuizen
- Department of Neuroscience, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands (Z.G.)
| | - Joost Haeck
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Thom G. A. Reuvers
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Peter de Bruijn
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | | | - Vera van Dis
- Department of Pathology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (T.P.P.v.d.B.)
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands (Z.G.)
| | - Clemens M. F. Dirven
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (C.M.F.D.); (S.L.)
| | - Sieger Leenstra
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (C.M.F.D.); (S.L.)
| | - Martine L. M. Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (C.M.F.D.); (S.L.)
| |
Collapse
|
5
|
Akbar K, Rehman MU, Shah FA, Younas S, Al-Otaibi JS, Khan H. Paroxetine Loaded Nanostructured Lipid Carriers Based In-situ Gel for Brain Delivery via Nasal Route for Enhanced Anti-Depressant Effect: In Vitro Prospect and In Vivo Efficacy. AAPS PharmSciTech 2024; 25:248. [PMID: 39433712 DOI: 10.1208/s12249-024-02954-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024] Open
Abstract
This study focused on developing a thermosensitive gel with nanostructured lipid carriers (NLCs) loaded with paroxetine (PAR) to enhance the treatment and management of depression via nasal administration. Micro emulsion technique was utilized for the PAR-NLCs preparation. The acetyl alcohol and oleic acid were used in the ratio of 76:24. In the NLCs Tween 40, Span40 and Myrj 52 were used as a surfactant. The NLCs were then added into Poloxamer mixture to get thermosensitive NLCs based gel. Characterization, in vitro and in vivo studies were performed to check the efficiency of formulation in drug delivery. The entrapment efficiency of optimized PAR-NLCs was about 90%. The particle size, zeta potential and PDI were 155 ± 1.4 nm, -25.9 ± 0.5 mV, and 0.12 ± 0.01 respectively. The optimized gel showed a gelling temperature of 31.50 ± 0.50°C and a gelling time of 1 ± 0.12 s with a pH of 6, suitable for nasal administration. The in vitro release assay of PAR-NLC-gel showed a cumulative release of about 59% in the first 6 h after comparison with PAR-NLCs which showed almost 100%release. In vivo studies included forced swim test and tail suspension tests showed significant potential for treating depression when compared to PAR-NLCs. PAR-NLCs and NLCs based gel enhanced the tissue architecture and suppressed the expression of TNF-α in brain cortex from histological and immunohistochemical analysis. PAR- NLCs gel-based delivery system can prove to be an effective delivery system for brain targeting through nose for the better management of depression.
Collapse
Affiliation(s)
- Kiran Akbar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Masood Ur Rehman
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Department of Pharmacology and Toxicology College of Pharmacy Prince Sattam bin Abdul Aziz University Saudi Arab, Al-Kharj, Saudi Arabia
| | - Sidra Younas
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
- Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| |
Collapse
|
6
|
Zhang W, Oh JH, Zhang W, Rathi S, Le J, Talele S, Sarkaria JN, Elmquist WF. How Much is Enough? Impact of Efflux Transporters on Drug delivery Leading to Efficacy in the Treatment of Brain Tumors. Pharm Res 2023; 40:2731-2746. [PMID: 37589827 PMCID: PMC10841221 DOI: 10.1007/s11095-023-03574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
The lack of effective chemotherapeutic agents for the treatment of brain tumors is a serious unmet medical need. This can be attributed, in part, to inadequate delivery through the blood-brain barrier (BBB) and the tumor-cell barrier, both of which have active efflux transporters that can restrict the transport of many potentially effective agents for both primary and metastatic brain tumors. This review briefly summarizes the components and function of the normal BBB with respect to drug penetration into the brain and the alterations in the BBB due to brain tumor that could influence drug delivery. Depending on what is rate-limiting a compound's distribution, the limited permeability across the BBB and the subsequent delivery into the tumor cell can be greatly influenced by efflux transporters and these are discussed in some detail. Given these complexities, it is necessary to quantify the extent of brain distribution of the active (unbound) drug to compare across compounds and to inform potential for use against brain tumors. In this regard, the metric, Kp,uu, a brain-to-plasma unbound partition coefficient, is examined and its current use is discussed. However, the extent of active drug delivery is not the only determinant of effective therapy. In addition to Kp,uu, drug potency is an important parameter that should be considered alongside drug delivery in drug discovery and development processes. In other words, to answer the question - How much is enough? - one must consider how much can be delivered with how much needs to be delivered.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Ju-Hee Oh
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Wenqiu Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Sneha Rathi
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Jiayan Le
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Surabhi Talele
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
7
|
Rechberger JS, Bouchal SM, Power EA, Nonnenbroich LF, Nesvick CL, Daniels DJ. Bench-to-bedside investigations of H3 K27-altered diffuse midline glioma: drug targets and potential pharmacotherapies. Expert Opin Ther Targets 2023; 27:1071-1086. [PMID: 37897190 PMCID: PMC11079776 DOI: 10.1080/14728222.2023.2277232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/26/2023] [Indexed: 10/29/2023]
Abstract
INTRODUCTION H3 K27-altered diffuse midline glioma (DMG) is the most common malignant brainstem tumor in the pediatric population. Despite enormous preclinical and clinical efforts, the prognosis remains dismal, with fewer than 10% of patients surviving for two years after diagnosis. Fractionated radiation remains the only standard treatment options for DMG. Developing novel treatments and therapeutic delivery methods is critical to improving outcomes in this devastating disease. AREAS COVERED This review addresses recent advances in molecularly targeted pharmacotherapy and immunotherapy in DMG. The clinical presentation, diagnostic workup, unique pathological challenges, and current clinical trials are highlighted throughout. EXPERT OPINION Promising pharmacotherapies targeting various components of DMG pathology and the application of immunotherapies have the potential to improve patient outcomes. However, novel approaches are needed to truly revolutionize treatment for this tumor. First, combinational therapy should be employed, as DMG can develop resistance to single-agent approaches and many therapies are susceptible to rapid clearance from the brain. Second, drug-tumor residence time, i.e. the time for which a therapeutic is present at efficacious concentrations within the tumor, must be maximized to facilitate a durable treatment response. Engineering extended drug delivery methods with minimal off-tumor toxicity should be a focus of future studies.
Collapse
Affiliation(s)
- Julian S. Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Samantha M. Bouchal
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Erica A. Power
- Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Leo F. Nonnenbroich
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Cody L. Nesvick
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - David J. Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| |
Collapse
|
8
|
Oh JH, Power EA, Zhang W, Daniels DJ, Elmquist WF. Murine Central Nervous System and Bone Marrow Distribution of the Aurora A Kinase Inhibitor Alisertib: Pharmacokinetics and Exposure at the Sites of Efficacy and Toxicity. J Pharmacol Exp Ther 2022; 383:44-55. [PMID: 36279392 PMCID: PMC9513880 DOI: 10.1124/jpet.122.001268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Important challenges in developing drugs that target central nervous system (CNS) tumors include overcoming barriers for CNS delivery and reducing systemic side effects. Alisertib, an aurora A kinase inhibitor, has been examined for treatment of several CNS tumors in preclinical and clinical studies. In this study, we investigated the distribution of alisertib into the CNS, the site of efficacy for brain tumors, and into the bone marrow, the site of dose-limiting toxicity leading to myelosuppression. Mechanisms influencing site-specific distribution, such as active transport mediated by the efflux proteins, p-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp), were examined. Alisertib exposure to the brain in wild-type mice was less than 1% of that in the plasma, and was evenly distributed throughout various brain regions and the spinal cord. Studies using transporter knockout mice and pharmacological inhibition show that alisertib CNS distribution is influenced by P-gp, but not Bcrp. Conversely, upon systemic administration, alisertib distribution to the bone marrow occurred rapidly, was not significantly limited by efflux transporters, and reached higher concentrations than in the CNS. This study demonstrates that, given an equivalent distributional driving force exposure in plasma, the exposure of alisertib in the brain is significantly less than that in the bone marrow, suggesting that targeted delivery may be necessary to guarantee therapeutic efficacy with minimal risk for adverse events.Therefore, these data suggest that, to improve the therapeutic index when using alisertib for brain tumors, a localized regional delivery, such as convection-enhanced delivery, may be warranted. SIGNIFICANCE STATEMENT: The CNS penetration of alisertib is limited with uniform distribution in various regions of the brain, and P-gp efflux is an important mechanism limiting that CNS distribution. Alisertib rapidly distributes into the bone marrow, a site of toxicity, with a greater exposure than in the CNS, a possible site of efficacy. These results suggest a need to design localized delivery strategies to improve the CNS exposure of alisertib and limit systemic toxicities in the treatment of brain tumors.
Collapse
Affiliation(s)
- Ju-Hee Oh
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (J-H.O., W.Z., W.F.E.); Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota (E.A.P., D.J.D.); and Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota (E.A.P.)
| | - Erica A Power
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (J-H.O., W.Z., W.F.E.); Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota (E.A.P., D.J.D.); and Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota (E.A.P.)
| | - Wenjuan Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (J-H.O., W.Z., W.F.E.); Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota (E.A.P., D.J.D.); and Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota (E.A.P.)
| | - David J Daniels
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (J-H.O., W.Z., W.F.E.); Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota (E.A.P., D.J.D.); and Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota (E.A.P.)
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (J-H.O., W.Z., W.F.E.); Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota (E.A.P., D.J.D.); and Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota (E.A.P.)
| |
Collapse
|
9
|
Wang S, Chen Y, Xia C, Yang C, Chen J, Hai L, Wu Y, Yang Z. Synthesis and evaluation of glycosylated quercetin to enhance neuroprotective effects on cerebral ischemia-reperfusion. Bioorg Med Chem 2022; 73:117008. [PMID: 36126445 DOI: 10.1016/j.bmc.2022.117008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022]
Abstract
Quercetin (Que), a polyphenolic flavonoid compound with antioxidant properties has been explicated to have neuroprotective effects on neuronal injury/neurodegenerative diseases. However, low water-solubility, instability and inability to cross the blood-brain barrier (BBB) imped its application. To enhance the neuroprotective effects and improve the potential application of quercetins as a nutraceutical or medicine, we designed and synthesized two types of glycosylated quercetins--Glu-Que and 2Glu-Que through click reaction. Glu-Que and 2Glu-Que improved the water solubility and stability of quercetin, as well as alleviating H2O2-induced neurotoxicity by increasing the cell viability of PC12 cells and reducing the ROS generation. What's more, glycosylated quercetins enhanced neuroprotective effects on cerebral ischemia-reperfusion (I/R). Among the two types of glycosylated quercetin, 2Glu-Que displayed higher neuroprotective potential than Glu-Que. In conclusion, the glycosylated quercetin 2Glu-Que, with better water solubility, bioavailability and brain-targeting ability, significantly enhanced the neuroprotective effects of quercetin, making it a promising nutraceutical or candidate drug in neuroprotection.
Collapse
Affiliation(s)
- Siqi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuting Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chen Xia
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Chunyan Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jian Chen
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Li Hai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Zhongzheng Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Arsiwala TA, Sprowls SA, Blethen KE, Fladeland RA, Wolford CP, Kielkowski BN, Glass MJ, Wang P, Wilson O, Carpenter JS, Ranjan M, Finomore V, Rezai A, Lockman PR. Characterization of passive permeability after low intensity focused ultrasound mediated blood-brain barrier disruption in a preclinical model. Fluids Barriers CNS 2022; 19:72. [PMID: 36076213 PMCID: PMC9461249 DOI: 10.1186/s12987-022-00369-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Systemic drug delivery to the central nervous system is limited by presence of the blood-brain barrier (BBB). Low intensity focused ultrasound (LiFUS) is a non-invasive technique to disrupt the BBB, though there is a lack of understanding of the relationship between LiFUS parameters, such as cavitation dose, time of sonication, microbubble dose, and the time course and magnitude of BBB disruption. Discrepancies in these data arise from experimentation with modified, clinically untranslatable transducers and inconsistent parameters for sonication. In this report, we characterize microbubble and cavitation doses as LiFUS variables as they pertain to the time course and size of BBB opening with a clinical Insightec FUS system. METHODS Female Nu/Nu athymic mice were exposed to LiFUS using the ExAblate Neuro system (v7.4, Insightec, Haifa, Israel) following target verification with magnetic resonance imaging (MRI). Microbubble and cavitation doses ranged from 4-400 μL/kg, and 0.1-1.5 cavitation dose, respectively. The time course and magnitude of BBB opening was evaluated using fluorescent tracers, ranging in size from 105-10,000 Da, administered intravenously at different times pre- or post-LiFUS. Quantitative autoradiography and fluorescence microscopy were used to quantify tracer accumulation in brain. RESULTS We observed a microbubble and cavitation dose dependent increase in tracer uptake within brain after LiFUS. Tracer accumulation was size dependent, with 14C-AIB (100 Da) accumulating to a greater degree than larger markers (~ 625 Da-10 kDa). Our data suggest opening of the BBB via LiFUS is time dependent and biphasic. Accumulation of solutes was highest when administered prior to LiFUS mediated disruption (2-fivefold increases), but was also significantly elevated at 6 h post treatment for both 14C-AIB and Texas Red. CONCLUSION The magnitude of LiFUS mediated BBB opening correlates with concentration of microbubbles, cavitation dose as well as time of tracer administration post-sonication. These data help define the window of maximal BBB opening and applicable sonication parameters on a clinically translatable and commercially available FUS system that can be used to improve passive permeability and accumulation of therapeutics targeting the brain.
Collapse
Affiliation(s)
- Tasneem A. Arsiwala
- grid.268154.c0000 0001 2156 6140Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, 1 Medical Center Dr, Morgantown, WV 26506 USA
| | - Samuel A. Sprowls
- grid.268154.c0000 0001 2156 6140Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, 1 Medical Center Dr, Morgantown, WV 26506 USA ,grid.239578.20000 0001 0675 4725Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106 USA
| | - Kathryn E. Blethen
- grid.268154.c0000 0001 2156 6140Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, 1 Medical Center Dr, Morgantown, WV 26506 USA
| | - Ross A. Fladeland
- grid.268154.c0000 0001 2156 6140Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, 1 Medical Center Dr, Morgantown, WV 26506 USA
| | - Cullen P. Wolford
- grid.268154.c0000 0001 2156 6140Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, 1 Medical Center Dr, Morgantown, WV 26506 USA
| | - Brooke N. Kielkowski
- grid.268154.c0000 0001 2156 6140Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, 1 Medical Center Dr, Morgantown, WV 26506 USA
| | - Morgan J. Glass
- grid.268154.c0000 0001 2156 6140Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, 1 Medical Center Dr, Morgantown, WV 26506 USA
| | - Peng Wang
- grid.268154.c0000 0001 2156 6140Rockefeller Neuroscience Institute, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505 USA
| | - Olivia Wilson
- grid.268154.c0000 0001 2156 6140Rockefeller Neuroscience Institute, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505 USA
| | - Jeffrey S. Carpenter
- grid.268154.c0000 0001 2156 6140Rockefeller Neuroscience Institute, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505 USA ,grid.268154.c0000 0001 2156 6140Departments of Neuroscience, Neuroradiology, and Neurosurgery, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505 USA
| | - Manish Ranjan
- grid.268154.c0000 0001 2156 6140Rockefeller Neuroscience Institute, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505 USA ,grid.268154.c0000 0001 2156 6140Departments of Neuroscience, Neuroradiology, and Neurosurgery, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505 USA
| | - Victor Finomore
- grid.268154.c0000 0001 2156 6140Departments of Neuroscience, Neuroradiology, and Neurosurgery, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505 USA
| | - Ali Rezai
- grid.268154.c0000 0001 2156 6140Rockefeller Neuroscience Institute, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505 USA ,grid.268154.c0000 0001 2156 6140Departments of Neuroscience, Neuroradiology, and Neurosurgery, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505 USA
| | - Paul R. Lockman
- grid.268154.c0000 0001 2156 6140Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, HSC, Morgantown, 1 Medical Center Dr, Morgantown, WV 26506 USA ,grid.268154.c0000 0001 2156 6140Departments of Neuroscience, Neuroradiology, and Neurosurgery, West Virginia University, 1 Medical Center Dr, Morgantown, WV 26505 USA
| |
Collapse
|
11
|
Rathi S, Griffith JI, Zhang W, Zhang W, Oh JH, Talele S, Sarkaria JN, Elmquist WF. The influence of the blood-brain barrier in the treatment of brain tumours. J Intern Med 2022; 292:3-30. [PMID: 35040235 DOI: 10.1111/joim.13440] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Brain tumours have a poor prognosis and lack effective treatments. The blood-brain barrier (BBB) represents a major hurdle to drug delivery to brain tumours. In some locations in the tumour, the BBB may be disrupted to form the blood-brain tumour barrier (BBTB). This leaky BBTB enables diagnosis of brain tumours by contrast enhanced magnetic resonance imaging; however, this disruption is heterogeneous throughout the tumour. Thus, relying on the disrupted BBTB for achieving effective drug concentrations in brain tumours has met with little clinical success. Because of this, it would be beneficial to design drugs and drug delivery strategies to overcome the 'normal' BBB to effectively treat the brain tumours. In this review, we discuss the role of BBB/BBTB in brain tumour diagnosis and treatment highlighting the heterogeneity of the BBTB. We also discuss various strategies to improve drug delivery across the BBB/BBTB to treat both primary and metastatic brain tumours. Recognizing that the BBB represents a critical determinant of drug efficacy in central nervous system tumours will allow a more rapid translation from basic science to clinical application. A more complete understanding of the factors, such as BBB-limited drug delivery, that have hindered progress in treating both primary and metastatic brain tumours, is necessary to develop more effective therapies.
Collapse
Affiliation(s)
- Sneha Rathi
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Jessica I Griffith
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Wenjuan Zhang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Wenqiu Zhang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Ju-Hee Oh
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Surabhi Talele
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - William F Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
12
|
Griffith JI, Kim M, Bruce DJ, Peterson CD, Kitto KF, Mohammad AS, Rathi S, Fairbanks CA, Wilcox GL, Elmquist WF. Central Nervous System Distribution of an Opioid Agonist Combination with Synergistic Activity. J Pharmacol Exp Ther 2022; 380:34-46. [PMID: 34663676 PMCID: PMC8969136 DOI: 10.1124/jpet.121.000821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/14/2021] [Indexed: 01/03/2023] Open
Abstract
Novel combinations of specific opioid agonists like loperamide and oxymorphindole targeting the µ- and δ-opioid receptors, respectively, have shown increased potency with minimized opioid-associated risks. However, whether their interaction is pharmacokinetic or pharmacodynamic in nature has not been determined. This study quantitatively determined whether these drugs have a pharmacokinetic interaction that alters systemic disposition or central nervous system (CNS) distribution. We performed intravenous and oral in vivo pharmacokinetic assessments of both drugs after discrete dosing and administration in combination to determine whether the combination had any effect on systemic pharmacokinetic parameters or CNS exposure. Drugs were administered at 5 or 10 mg/kg i.v. or 30 mg/kg orally to institute for cancer research (ICR) mice and 5 mg/kg i.v. to Friend leukemia virus strain B mice of the following genotypes: wild-type, breast cancer resistance protein (Bcrp-/- ) (Bcrp knockout), Mdr1a/b-/- [P-glycoprotein (P-gp) knockout], and Bcrp-/- Mdr1a/b-/- (triple knockout). In the combination, clearance of oxymorphindole (OMI) was reduced by approximately half, and the plasma area under the concentration-time curve (AUC) increased. Consequently, brain and spinal cord AUCs for OMI in the combination also increased proportionately. Both loperamide and OMI are P-gp substrates, but administration of the two drugs in combination does not alter efflux transport at the CNS barriers. Because OMI alone shows appreciable brain penetration but little therapeutic efficacy on its own, and because loperamide's CNS distribution is unchanged in the combination, the mechanism of action for the increased potency of the combination is most likely pharmacodynamic and most likely occurs at receptors in the peripheral nervous system. This combination has favorable characteristics for future development. SIGNIFICANCE STATEMENT: Opioids have yet to be replaced as the most effective treatments for moderate-to-severe pain and chronic pain, but their side effects are dangerous. Combinations of opioids with peripheral activity, such as loperamide and oxymorphindole, would be valuable in that they are effective at much lower doses and have reduced risks for dangerous side effects because the µ-opioid receptor agonist is largely excluded from the CNS.
Collapse
Affiliation(s)
- Jessica I Griffith
- Brain Barriers Research Center (J.I.G., M.K., A.S.M., S.R., W.F.E.), Department of Pharmaceutics (J.I.G., M.K., A.S.M., S.R., C.A.F., W.F.E.), Department of Pharmacology (D.J.B., C.A.F., G.L.W.), Department of Neuroscience (C.D.P., K.F.K., C.A.F., G.L.W.), and Department of Dermatology (G.L.W.), University of Minnesota, Minneapolis Elmquist Laboratory, Minneapolis, Minnesota
| | - Minjee Kim
- Brain Barriers Research Center (J.I.G., M.K., A.S.M., S.R., W.F.E.), Department of Pharmaceutics (J.I.G., M.K., A.S.M., S.R., C.A.F., W.F.E.), Department of Pharmacology (D.J.B., C.A.F., G.L.W.), Department of Neuroscience (C.D.P., K.F.K., C.A.F., G.L.W.), and Department of Dermatology (G.L.W.), University of Minnesota, Minneapolis Elmquist Laboratory, Minneapolis, Minnesota
| | - Daniel J Bruce
- Brain Barriers Research Center (J.I.G., M.K., A.S.M., S.R., W.F.E.), Department of Pharmaceutics (J.I.G., M.K., A.S.M., S.R., C.A.F., W.F.E.), Department of Pharmacology (D.J.B., C.A.F., G.L.W.), Department of Neuroscience (C.D.P., K.F.K., C.A.F., G.L.W.), and Department of Dermatology (G.L.W.), University of Minnesota, Minneapolis Elmquist Laboratory, Minneapolis, Minnesota
| | - Cristina D Peterson
- Brain Barriers Research Center (J.I.G., M.K., A.S.M., S.R., W.F.E.), Department of Pharmaceutics (J.I.G., M.K., A.S.M., S.R., C.A.F., W.F.E.), Department of Pharmacology (D.J.B., C.A.F., G.L.W.), Department of Neuroscience (C.D.P., K.F.K., C.A.F., G.L.W.), and Department of Dermatology (G.L.W.), University of Minnesota, Minneapolis Elmquist Laboratory, Minneapolis, Minnesota
| | - Kelley F Kitto
- Brain Barriers Research Center (J.I.G., M.K., A.S.M., S.R., W.F.E.), Department of Pharmaceutics (J.I.G., M.K., A.S.M., S.R., C.A.F., W.F.E.), Department of Pharmacology (D.J.B., C.A.F., G.L.W.), Department of Neuroscience (C.D.P., K.F.K., C.A.F., G.L.W.), and Department of Dermatology (G.L.W.), University of Minnesota, Minneapolis Elmquist Laboratory, Minneapolis, Minnesota
| | - Afroz S Mohammad
- Brain Barriers Research Center (J.I.G., M.K., A.S.M., S.R., W.F.E.), Department of Pharmaceutics (J.I.G., M.K., A.S.M., S.R., C.A.F., W.F.E.), Department of Pharmacology (D.J.B., C.A.F., G.L.W.), Department of Neuroscience (C.D.P., K.F.K., C.A.F., G.L.W.), and Department of Dermatology (G.L.W.), University of Minnesota, Minneapolis Elmquist Laboratory, Minneapolis, Minnesota
| | - Sneha Rathi
- Brain Barriers Research Center (J.I.G., M.K., A.S.M., S.R., W.F.E.), Department of Pharmaceutics (J.I.G., M.K., A.S.M., S.R., C.A.F., W.F.E.), Department of Pharmacology (D.J.B., C.A.F., G.L.W.), Department of Neuroscience (C.D.P., K.F.K., C.A.F., G.L.W.), and Department of Dermatology (G.L.W.), University of Minnesota, Minneapolis Elmquist Laboratory, Minneapolis, Minnesota
| | - Carolyn A Fairbanks
- Brain Barriers Research Center (J.I.G., M.K., A.S.M., S.R., W.F.E.), Department of Pharmaceutics (J.I.G., M.K., A.S.M., S.R., C.A.F., W.F.E.), Department of Pharmacology (D.J.B., C.A.F., G.L.W.), Department of Neuroscience (C.D.P., K.F.K., C.A.F., G.L.W.), and Department of Dermatology (G.L.W.), University of Minnesota, Minneapolis Elmquist Laboratory, Minneapolis, Minnesota
| | - George L Wilcox
- Brain Barriers Research Center (J.I.G., M.K., A.S.M., S.R., W.F.E.), Department of Pharmaceutics (J.I.G., M.K., A.S.M., S.R., C.A.F., W.F.E.), Department of Pharmacology (D.J.B., C.A.F., G.L.W.), Department of Neuroscience (C.D.P., K.F.K., C.A.F., G.L.W.), and Department of Dermatology (G.L.W.), University of Minnesota, Minneapolis Elmquist Laboratory, Minneapolis, Minnesota
| | - William F Elmquist
- Brain Barriers Research Center (J.I.G., M.K., A.S.M., S.R., W.F.E.), Department of Pharmaceutics (J.I.G., M.K., A.S.M., S.R., C.A.F., W.F.E.), Department of Pharmacology (D.J.B., C.A.F., G.L.W.), Department of Neuroscience (C.D.P., K.F.K., C.A.F., G.L.W.), and Department of Dermatology (G.L.W.), University of Minnesota, Minneapolis Elmquist Laboratory, Minneapolis, Minnesota
| |
Collapse
|
13
|
Hu K, Zhou D, Rao L, Wang P, Xiang C, Chen F. A Multifunctional AIE Nanoprobe as a Drug Delivery Bioimaging and Cancer Treatment System. Front Bioeng Biotechnol 2021; 9:766470. [PMID: 34820365 PMCID: PMC8606747 DOI: 10.3389/fbioe.2021.766470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/13/2021] [Indexed: 12/26/2022] Open
Abstract
Of all malignant brain tumors, glioma is the deadliest and most common, with a poor prognosis. Drug therapy is considered as a promising way to stop the progression of disease and even cure tumors. However, the presence of blood brain barrier (BBB) and blood tumor barrier (BTB) limits the delivery of these therapeutic genes. In this work, an intelligent cell imaging and cancer therapy drug delivery system targeting the blood-brain barrier and the highly expressed transferrin receptors (TfR) in gliomas has been successfully constructed, and an amphiphilic polymer (PLA-PEG-T7/TPE) with aggregation-induced emission (AIE) properties has been designed and successfully synthesized. PLA-PEG-T7/TPE self-assembled polymer micelles showed significant AIE effect in aqueous solution with good biocompatibility. Therefore, it can be used for potential biological imaging applications. In addition, drug-carrying micelles showed typical behavior of regulating drug release. Inhibition of cell proliferation in vitro showed that the drug-loaded micelles had dose-dependent cytotoxicity to LN229 cells. In the in vivo anti-tumor experiment, PLA-PEG-T7/TPE/TMZ had the best therapeutic effect. These results indicated that T7 functionalized PLA-PEG was a promising platform for nasopharyngeal cancer drug combination therapy.
Collapse
Affiliation(s)
- Keqi Hu
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Daquan Zhou
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Linlin Rao
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Peng Wang
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Chunxiang Xiang
- Department of Pathology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Feng Chen
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
14
|
Nanoparticles as a Tool in Neuro-Oncology Theranostics. Pharmaceutics 2021; 13:pharmaceutics13070948. [PMID: 34202660 PMCID: PMC8309086 DOI: 10.3390/pharmaceutics13070948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
The rapid growth of nanotechnology and the development of novel nanomaterials with unique physicochemical characteristics provides potential for the utility of nanomaterials in theranostics, including neuroimaging, for identifying neurodegenerative changes or central nervous system malignancy. Here we present a systematic and thorough review of the current evidence pertaining to the imaging characteristics of various nanomaterials, their associated toxicity profiles, and mechanisms for enhancing tropism in an effort to demonstrate the utility of nanoparticles as an imaging tool in neuro-oncology. Particular attention is given to carbon-based and metal oxide nanoparticles and their theranostic utility in MRI, CT, photoacoustic imaging, PET imaging, fluorescent and NIR fluorescent imaging, and SPECT imaging.
Collapse
|