1
|
Shen SY, Wu C, Yang ZQ, Wang KX, Shao ZH, Yan W. Advances in cannabinoid receptors pharmacology: from receptor structural insights to ligand discovery. Acta Pharmacol Sin 2025; 46:1495-1510. [PMID: 39910211 PMCID: PMC12098862 DOI: 10.1038/s41401-024-01472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/26/2024] [Indexed: 02/07/2025]
Abstract
The medicinal and recreational uses of Cannabis sativa have been recognized for thousands of years. Today, cannabis-derived medicines are used to treat a variety of conditions, including chronic pain, epilepsy, multiple sclerosis, and chemotherapy-induced nausea. However, cannabis use disorder (CUD) has become the third most prevalent substance use disorder globally. Cannabinoid receptors are the primary targets that mediate the effects of cannabis and its analogs. Despite their importance, the mechanisms of modulation and the full therapeutic potential of cannabinoid receptors remain unclear, hindering the development of the next generation of cannabinoid-based drugs. This review summarizes the discovery and medicinal potential of phytocannabinoids and explores the distribution, signaling pathways, and functional roles of cannabinoid receptors. It also discusses classical cannabinoid drugs, as well as agonists, antagonists, and inverse agonists, which serve as key therapeutic agents. Recent advancements in the development of allosteric drugs are highlighted, with a focus on positive and negative allosteric modulators (PAMs and NAMs) that target CB1 and CB2 receptors. The identification of multiple allosteric sites on the CB1 receptor and the structural basis for allosteric modulation are emphasized, along with the structure-based discovery of ago-BAMs for CB1. This review concludes by examining the future potential of allosteric modulators in cannabinoid drug development, noting that ongoing progress in cannabinoid-derived drugs continues to open new avenues for therapeutic use and paves the way for future research into their full medicinal potential.
Collapse
Affiliation(s)
- Si-Yuan Shen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chao Wu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhi-Qian Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke-Xin Wang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen-Hua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, Frontier Medical Center, Chengdu, 610212, China.
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Valdivia-Padilla AV, Sharma A, Zegbe JA, Morales-Domínguez JF. Metabolomic Characterization and Bioinformatic Studies of Bioactive Compounds in Two Varieties of Psidium guajava L. Leaf by GC-MS Analysis. Int J Mol Sci 2025; 26:2530. [PMID: 40141181 PMCID: PMC11942350 DOI: 10.3390/ijms26062530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
The guava tree (Psidium guajava L.) is a tropical plant from the Myrtaceae family. Leaf extracts from this plant have been used in traditional medicine to treat gastrointestinal disorders and exhibit several functional activities that benefit human health. Different varieties of guava trees produce fruits in colors ranging from white to red and present a characteristic metabolic profile in both their leaves and fruits. This study presents a metabolomic characterization of the leaves from two guava varieties: the Caxcana cultivar with yellow fruits and the S-56 accession with pink fruits. Metabolite profiling was conducted using Gas Chromatography-Mass Spectrometry (GC-MS) on methanol extracts, followed by multivariate statistical analysis, including Principal Component Analysis (PCA), and a heat map visualization of compound concentrations in the two varieties. The results identified β-caryophyllene as the major secondary metabolite present in both varieties, with a relative abundance of 16.46% in the Caxcana variety and 23.06% in the S-56 cultivar. Furthermore, in silico analyses, such as network pharmacology and molecular docking, revealed key interactions with proteins such as CB2, PPARα, BAX, BCL2, and AKT1, suggesting potential therapeutic relevance. These findings highlight the pharmacological potential of guava leaf metabolites in natural product chemistry and drug discovery.
Collapse
Affiliation(s)
- Ana Victoria Valdivia-Padilla
- Centro de Ciencias Básicas, Departamento de Química, Universidad Autónoma de Aguascalientes, Aguascalientes 20131, Mexico;
| | - Ashutosh Sharma
- Centre of Bioengineering, NatProLab, School of Engineering and Sciences, Tecnologico de Monterrey, Querétaro 76130, Mexico;
| | - Jorge A. Zegbe
- Campo Experimental Pabellón, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Km 32.5 Carretera Aguascalientes-Zacatecas, Pabellón de Arteaga, Aguascalientes 20668, Mexico;
| | | |
Collapse
|
3
|
Kim Y, Ghil S. Negative regulation of cannabinoid receptor 2‑induced tumorigenic effect by sphingosine‑1‑phosphate receptor 5 activation. Oncol Rep 2025; 53:41. [PMID: 39918009 DOI: 10.3892/or.2025.8874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/21/2024] [Indexed: 05/08/2025] Open
Abstract
G protein‑coupled receptors (GPCR), also known as seven‑transmembrane proteins, serve a role in transmitting extracellular information into the cellular environment. Type 2 cannabinoid receptors (CB2) and type 5 sphingosine‑1‑phosphate receptor (S1P5) are GPCRs that are activated by biolipids and involved in tumor progression in various cancer types. At present, effects of crosstalk between CB2 and S1P5 receptors on tumor cell proliferation and migration in gliomas are not fully understood. The present study screened S1Ps for potential interactions with CB2 using bioluminescence resonance energy transfer analysis. S1P5 interacted strongly and specifically with CB2. 293T cells were transfected with CB2 tagged with Venus and S1P5 tagged with mCherry to investigate the cellular localization of both receptors. After 24 h, Confocal microscopy analysis revealed that, in the absence of agonists, both receptors were predominantly localized at the plasma membrane. Notably, both receptors were co‑internalized from the membrane to the cytoplasm upon individual and combined activation. The effects of co‑activation of both receptors on tumor progression were investigated using U‑87 MG, the human glioblastoma cell line. Activation of CB2 induced an increase in cell migration and proliferation, which were downregulated following the co‑activation of S1P5. Furthermore, activation of S1P5 significantly attenuated the upregulation of tumor progression‑related genes, including zinc finger protein 91, activating transcription factor 3, Ki67, basic transcription factor 3, and p21, induced by CB2 activation. This suggests that S1P5 exerts a negative regulatory effect on CB2‑mediated tumor progression. The present findings provide evidence of the crosstalk between CB2 and S1P5.
Collapse
MESH Headings
- Humans
- Receptor, Cannabinoid, CB2/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/agonists
- Cell Proliferation
- Cell Movement/drug effects
- Sphingosine-1-Phosphate Receptors/metabolism
- Cell Line, Tumor
- HEK293 Cells
- Glioblastoma/pathology
- Glioblastoma/metabolism
- Glioblastoma/genetics
- Gene Expression Regulation, Neoplastic
- Receptors, Lysosphingolipid/metabolism
- Receptors, Lysosphingolipid/genetics
- Carcinogenesis/genetics
Collapse
Affiliation(s)
- Yuna Kim
- Department of Life Science, Kyonggi University, Suwon, Gyeonggi 16227, Republic of Korea
| | - Sungho Ghil
- Department of Life Science, Kyonggi University, Suwon, Gyeonggi 16227, Republic of Korea
| |
Collapse
|
4
|
Kruk-Slomka M, Dzik A, Biala G. The Effects of Indirect and Direct Modulation of Endocannabinoid System Function on Anxiety-Related Behavior in Mice Assessed in the Elevated Plus Maze Test. Molecules 2025; 30:867. [PMID: 40005177 PMCID: PMC11857936 DOI: 10.3390/molecules30040867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND The endocannabinoid system (ECS) is one of the most important systems modulating functions in the body. The ECS, via cannabinoid (CB: CB1 and CB2) receptors, endocannabinoids occurring in the brain (e.g., anandamide (AEA) and 2-arachidonoylglycerol (2-AG)) and enzymes degrading endocannabinoids in the brain (fatty-acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL)), plays a key role in the regulation of mood and anxiety. However, the effects of cannabinoid compounds on anxiety-related responses are complex and yield mixed results depending on the type of pharmacological manipulation (direct or indirect) of functions of the ECS, as well as the kinds of cannabinoids, dosage and procedure. METHODS The aim of this study was to determine and compare the influence of the direct (via CB receptors ligands) and indirect (via inhibition of enzymes degrading endocannabinoids in the brain) pharmacological modulation of ECS function on anxiety-like responses in mice in the elevated plus maze (EPM) test. For this purpose, in the first step of the experiments, we used selected ligands of CB1, CB1/CB2 and CB2 receptors to assess which types of CB receptors are involved in anxiety-related responses in mice. Next, we used inhibitors of FAAH (which breaks down AEA) or MAGL (which breaks down 2-AG) to assess which endocannabinoid is more responsible for anxiety-related behavior in mice. RESULTS The results of our presented research showed that an acute administration of CB1 receptor agonist oleamide (5-20 mg/kg) had no influence on anxiety-related responses and CB1 receptor antagonist AM 251 (0.25-3 mg/kg) had anxiogenic effects in the EPM test in mice. In turn, an acute administration of mixed CB1/CB2 receptor agonist WIN55,212-2 used at a dose of 1 mg/kg had an anxiolytic effect observed in mice in the EPM test. What is of interest is that both the acute administration of a CB2 receptor agonist (JWH 133 at the doses of 1 and 2 mg/kg) and antagonist (AM 630 at the doses of 0.5-2 mg/kg) had anxiogenic effects in this procedure. Moreover, we revealed that an acute administration of only FAAH inhibitor URB 597 (0.3 mg/kg) had an anxiolytic effect, while MAGL inhibitor JZL 184 (at any used doses (2-40 mg/kg)) after an acute injection had no influence on anxiety behavior in mice, as observed in the EPM test. CONCLUSIONS In our experiments, we confirmed the clearly significant involvement of the ECS in anxiety-related responses. In particular, the pharmacological indirect manipulation of ECS functions is able to elicit promising anxiolytic effects. Therefore, the ECS could be a potential target for novel anxiolytic drugs; however, further studies are needed.
Collapse
MESH Headings
- Animals
- Endocannabinoids/metabolism
- Anxiety/drug therapy
- Anxiety/metabolism
- Mice
- Male
- Amidohydrolases/metabolism
- Amidohydrolases/antagonists & inhibitors
- Monoacylglycerol Lipases/metabolism
- Monoacylglycerol Lipases/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Behavior, Animal/drug effects
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/agonists
- Maze Learning/drug effects
- Brain/metabolism
- Brain/drug effects
- Cannabinoids/pharmacology
- Elevated Plus Maze Test
- Piperidines/pharmacology
- Arachidonic Acids
- Polyunsaturated Alkamides
Collapse
Affiliation(s)
- Marta Kruk-Slomka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland;
- Experimental Medicine Center (OMD), Medical University of Lublin, Jaczewskiego 8D, 20-090 Lublin, Poland
| | - Agnieszka Dzik
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland;
- Experimental Medicine Center (OMD), Medical University of Lublin, Jaczewskiego 8D, 20-090 Lublin, Poland
| | - Grazyna Biala
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland;
- Experimental Medicine Center (OMD), Medical University of Lublin, Jaczewskiego 8D, 20-090 Lublin, Poland
| |
Collapse
|
5
|
Simonaro CM, Yasuda M, Schuchman EH. Endocannabinoid receptor 2 is a potential biomarker and therapeutic target for the lysosomal storage disorders. J Inherit Metab Dis 2025; 48:e12813. [PMID: 39569490 PMCID: PMC11670223 DOI: 10.1002/jimd.12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
Herein, we studied the expression of endocannabinoid receptor 2 (CB2R), a known inflammation mediator, in several lysosomal storage disorder (LSD) animal models and evaluated it as a potential biomarker and therapeutic target for these diseases. CB2R was highly elevated in the plasma of Farber disease and mucopolysaccharidosis (MPS) type IIIA mice, followed by Fabry disease and MPS type I mice. Mice with acid sphingomyelinase-deficient Niemann-Pick disease (ASMD) and rats with MPS type VI exhibited little or no plasma CB2R elevation. High-level expression of CB2R was also observed in tissues of Farber and MPS IIIA mice. Treatment of MPS IIIIA patient cells with CB2R agonists led to a reduction of CB2R and monocyte chemoattractant protein-1 (MCP-1), a chemotactic factor that is elevated in this LSD. Treatment of MPS IIIA mice with one of these agonists (JWH133) led to a reduction of plasma and tissue CB2R and MCP-1, a reduction of glial fibrillary acidic protein (GFAP) in the brain, and an improvement in hanging test performance. JWH133 treatment of Farber disease mice also led to a reduction of MCP-1 in tissues and plasma, and treatment of these mice by enzyme replacement therapy (ERT) led to a reduction of plasma CB2R, indicating its potential to monitor treatment response. Overall, these findings suggest that CB2R should be further examined as a potential therapeutic target for the LSDs and may also be a useful biomarker to monitor the impact of therapies.
Collapse
Affiliation(s)
- Calogera M. Simonaro
- Department of Genetics & Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Makiko Yasuda
- Department of Genetics & Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Edward H. Schuchman
- Department of Genetics & Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
6
|
Lamberti A, Serafini M, Aprile S, Bhela IP, Goutsiou G, Pessolano E, Fernandez-Ballester G, Ferrer-Montiel A, Di Martino RMC, Fernandez-Carvajal A, Pirali T. The multicomponent Passerini reaction as a means of accessing diversity in structure, activity and properties: Soft and hard vanilloid/cannabinoid modulators. Eur J Med Chem 2024; 279:116845. [PMID: 39265249 DOI: 10.1016/j.ejmech.2024.116845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/23/2024] [Accepted: 08/22/2024] [Indexed: 09/14/2024]
Abstract
A growing body of evidence points to the existence of a crosstalk between the endovanilloid (EV)- and the endocannabinoid (EC) systems, leading to the concept of a single system based on a shared set of endogenous ligands and regulation mechanisms. The EV/EC system encompasses the ion channel TRPV1, the G protein coupled receptors CB1 and CB2, their endogenous ligands and the enzymes for biosynthesis and inactivation. Disorders in which the EV/EC interaction is involved are inflammation, pain, neurodegenerative diseases and disorders of bones and skin. In the present paper, with the aim of targeting the EV/EC system, the Passerini reaction is used in a diversity-oriented approach to generate a series of α-acyloxycarboxamides bearing different substructures that resemble endogenous ligands. Compounds have been screened for activity on TRPV1, CB1 and CB2 and metabolic stability in skin cells, liver subcellular fractions and plasma. This protocol allowed to generate agents characterized by a diverse activity on TRPV1, CB1 and CB2, as well as heterogeneous metabolic stability that could allow different routes of administration, from soft drugs for topical treatment of skin diseases to hard drugs for systemic use in inflammation and pain. Compared to natural mediators, these compounds have a better drug-likeness. Among them, 41 stands out as an agonist endowed with a well-balanced activity on both TRPV1 and CB2, high selectivity over TRPM8, TRPA1 and CB1, metabolic stability and synthetic accessibility.
Collapse
Affiliation(s)
- Angela Lamberti
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - Marta Serafini
- Department of Pharmaceutical Sciences, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Silvio Aprile
- Department of Pharmaceutical Sciences, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Irene Preet Bhela
- Department of Pharmaceutical Sciences, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Georgia Goutsiou
- Department of Pharmaceutical Sciences, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Emanuela Pessolano
- Department of Pharmaceutical Sciences, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Gregorio Fernandez-Ballester
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - Antonio Ferrer-Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - Rita Maria Concetta Di Martino
- Department of Pharmaceutical Sciences, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy.
| | - Asia Fernandez-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain.
| | - Tracey Pirali
- Department of Pharmaceutical Sciences, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| |
Collapse
|
7
|
Liu G, Jia D, Li W, Huang Z, Shan R, Huang C. Trifluoro-Icaritin Ameliorates Neuroinflammation Against Complete Freund's Adjuvant-Induced Microglial Activation by Improving CB2 Receptor-Mediated IL-10/β-endorphin Signaling in the Spinal Cord of Rats. J Neuroimmune Pharmacol 2024; 19:53. [PMID: 39387998 DOI: 10.1007/s11481-024-10152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
The underlying pathogenesis of chronic inflammatory pain is greatly complex, but the relevant therapies are still unavailable. Development of effective candidates for chronic inflammatory pain is highly urgent. We previously identified that trifluoro-icaritin (ICTF) exhibited a significant therapeutic activity against complete Freund's adjuvant (CFA)-induced chronic inflammatory pain, however, the precise mechanisms remain elusive. Here, the paw withdrawal threshold (PWT), paw withdrawal latency (PWL), and CatWalk gait analysis were used to determine the pain-related behaviors. The expression and co-localization of pain-related signaling molecules were detected by Western blot and immunofluorescence staining. Our results demonstrated that ICTF (3.0 mg/kg, i.p.) effectively attenuated mechanical allodynia, thermal hyperalgesia and improved motor dysfunction induced by CFA, and the molecular docking displayed that CB2 receptor may be the therapeutic target of ICTF. Furthermore, ICTF not only up-regulated the levels of CB2 receptor, IL-10, β-endorphin and CD206, but also reduced the expression of P2Y12 receptor, NLRP3, ASC, Caspase-1, IL-1β, CD11b, and iNOS in the spinal cord of CFA rats. Additionally, the immunofluorescence staining from the spinal cord showed that ICTF significantly increased the co-expression between the microglial marker Iba-1 and CB2 receptor, IL-10, β-endorphin, respectively, but markedly decreased the co-localization between Iba-1 and P2Y12 receptor. Conversely, intrathecal administration of CB2 receptor antagonist AM630 dramatically reversed the inhibitory effects of ICTF on CFA-induced chronic inflammatory pain, leading to a promotion of pain hypersensitivity, abnormal gait parameters, microglial activation, and up-regulation of P2Y12 receptor and NLRP3 inflammasome, as well as the inhibition of CB2 receptor and IL-10/β-endorphin cascade. Taken together, these findings highlighted that ICTF alleviated CFA-induced neuroinflammation by enhancing CB2 receptor-mediated IL-10/β-endorphin signaling and suppressing microglial activation in the spinal cord, and uncovered that CB2 receptor may be exploited as a novel and promising target for ICTF treatment of chronic inflammatory pain.
Collapse
Grants
- NO. 2021B614 Science and Technology Project of Administration of Chinese Medicine, Jiangxi Province, China
- NO. HX202207 Horizontal Project of Gannan Medical University, Jiangxi Province, China
- No.ZD201904 University-level Key Project of Gannan Medical University, Jiangxi Province, China
- No. 20204469 Health Commission General Science and Technology Program, Jiangxi Province, China
- No. 31160213 National Natural Science Foundation of China
- No. 20142BCBC22008 Talent Project of Department of Scientific and Technology, Jiangxi Province, China
Collapse
Affiliation(s)
- Guangsen Liu
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Dandan Jia
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Weiwei Li
- School of Public Health and Health management, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Zhihua Huang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Reai Shan
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, P. R. China.
- Department of Anesthesiology, First Affiliated Hospital of Gannan Medical University, Jiangxi, 341000, P. R. China.
- Ganzhou Key Laboratory of Anesthesiology, Ganzhou, 341000, P. R. China.
| | - Cheng Huang
- Department of Physiology, School of Basic Medicine Sciences, Gannan Medical University, Ganzhou, 341000, P. R. China.
- School of Public Health and Health management, Gannan Medical University, Ganzhou, 341000, P. R. China.
| |
Collapse
|
8
|
Foyzun T, Whiting M, Velasco KK, Jacobsen JC, Connor M, Grimsey NL. Single nucleotide polymorphisms in the cannabinoid CB 2 receptor: Molecular pharmacology and disease associations. Br J Pharmacol 2024; 181:2391-2412. [PMID: 38802979 DOI: 10.1111/bph.16383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 05/29/2024] Open
Abstract
Preclinical evidence implicating cannabinoid receptor 2 (CB2) in various diseases has led researchers to question whether CB2 genetics influence aetiology or progression. Associations between conditions and genetic loci are often studied via single nucleotide polymorphism (SNP) prevalence in case versus control populations. In the CNR2 coding exon, ~36 SNPs have high overall population prevalence (minor allele frequencies [MAF] ~37%), including non-synonymous SNP (ns-SNP) rs2501432 encoding CB2 63Q/R. Interspersed are ~27 lower frequency SNPs, four being ns-SNPs. CNR2 introns also harbour numerous SNPs. This review summarises CB2 ns-SNP molecular pharmacology and evaluates evidence from ~70 studies investigating CB2 genetic variants with proposed linkage to disease. Although CNR2 genetic variation has been associated with a wide variety of conditions, including osteoporosis, immune-related disorders, and mental illnesses, further work is required to robustly validate CNR2 disease links and clarify specific mechanisms linking CNR2 genetic variation to disease pathophysiology and potential drug responses.
Collapse
Affiliation(s)
- Tahira Foyzun
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Maddie Whiting
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kate K Velasco
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jessie C Jacobsen
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Mark Connor
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
9
|
Qi A, Han X, Quitalig M, Wu J, Christov PP, Jeon K, Jana S, Kim K, Engers DW, Lindsley CW, Rodriguez AL, Niswender CM. The cannabinoid CB 2 receptor positive allosteric modulator EC21a exhibits complicated pharmacology in vitro. J Recept Signal Transduct Res 2024; 44:151-159. [PMID: 39575892 PMCID: PMC11636628 DOI: 10.1080/10799893.2024.2431986] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 12/07/2024]
Abstract
Schizophrenia is a complex disease involving the dysregulation of numerous brain circuits and patients exhibit positive symptoms (hallucinations, delusions), negative symptoms (anhedonia), and cognitive impairments. We have shown that the antipsychotic efficacy of positive allosteric modulators (PAMs) of both the M4 muscarinic receptor and metabotropic glutamate receptor 1 (mGlu1) involve the retrograde activation of the presynaptic cannabinoid type-2 (CB2) receptor, indicating that CB2 activation or potentiation could result in a novel therapeutic strategy for schizophrenia. We used two complementary assays, receptor-mediated phosphoinositide hydrolysis and GIRK channel activation, to characterize a CB2 PAM scaffold, represented by the compound EC21a, to explore its potential as a starting point to optimize therapeutics for schizophrenia. These studies revealed that EC21a acts as an allosteric inverse agonist at CB2 in both assays and exhibits a mixed allosteric agonist/negative allosteric modulator profile at CB1 depending upon the assay used for profiling. A series of compounds related to EC21a also functioned as CB2 inverse agonists. Overall, these results suggest that EC21a exhibits complicated and potentially assay-dependent pharmacology, which may impact interpretation of in vivo studies.
Collapse
MESH Headings
- Allosteric Regulation/drug effects
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Humans
- Schizophrenia/drug therapy
- Schizophrenia/pathology
- Schizophrenia/metabolism
- Schizophrenia/genetics
- Animals
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/genetics
- CHO Cells
- Antipsychotic Agents/pharmacology
- Cricetulus
Collapse
Affiliation(s)
- Aidong Qi
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Xueqing Han
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Marc Quitalig
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Jessica Wu
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Plamen P Christov
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - KyuOk Jeon
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Somnath Jana
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Kwangho Kim
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Darren W Engers
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Craig W Lindsley
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Alice L Rodriguez
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Colleen M Niswender
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
10
|
Glenn NAK, Finlay DB, Carruthers ER, Mountjoy KG, Walker CS, Grimsey NL. RAMP and MRAP accessory proteins have selective effects on expression and signalling of the CB 1, CB 2, GPR18 and GPR55 cannabinoid receptors. Br J Pharmacol 2024; 181:2212-2231. [PMID: 37085333 DOI: 10.1111/bph.16095] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/10/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Receptor activity-modifying proteins (RAMPs) and melanocortin receptor accessory proteins (MRAPs) modulate expression and signalling of calcitonin and melanocortin GPCRs. Interactions with other GPCRs have also been reported. The cannabinoid receptors, CB1 and CB2, and two putative cannabinoid receptors, GPR18 and GPR55, exhibit substantial intracellular expression and there are discrepancies in ligand responsiveness between studies. We investigated whether interactions with RAMPs or MRAPs could explain these phenomena. EXPERIMENTAL APPROACH Receptors and accessory proteins were co-expressed in HEK-293 cells. Selected receptors were studied at basal expression levels and also with enhanced expression produced by incorporation of a preprolactin signal sequence/peptide (pplss). Cell surface and total expression of receptors and accessory proteins were quantified using immunocytochemistry. Signalling was measured using cAMP (CAMYEL) and G protein dissociation (TRUPATH Gα13) biosensors. KEY RESULTS MRAP2 enhanced surface and total expression of GPR18. Pplss-GPR18 increased detection of cell surface MRAP2. MRAP1α and MRAP2 reduced GPR55 surface and total expression, correlating with reduced constitutive, but not agonist-induced, signalling. GPR55, pplss-CB1 and CB2 reduced detection of MRAP1α at the cell surface. Pplss-CB1 agonist potency was reduced by MRAP2 in Gα13 but not cAMP assays, consistent with MRAP2 reducing pplss-CB1 expression. Some cannabinoid receptors increased RAMP2 or RAMP3 total expression without influencing surface expression. CONCLUSIONS AND IMPLICATIONS Mutual influences on expression and/or function for specific accessory protein-receptor pairings raises the strong potential for physiological and disease-relevant consequences. Sequestration and/or hetero-oligomerisation of cannabinoid receptors with accessory proteins is a possible novel mechanism for receptor crosstalk. LINKED ARTICLES This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
MESH Headings
- Humans
- HEK293 Cells
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, Cannabinoid/metabolism
- Signal Transduction
- Receptor, Cannabinoid, CB1/metabolism
- Receptor Activity-Modifying Proteins/metabolism
- Receptor, Cannabinoid, CB2/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/genetics
Collapse
Affiliation(s)
- Nathaniel A K Glenn
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - David B Finlay
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Emma R Carruthers
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Kathleen G Mountjoy
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Christopher S Walker
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
11
|
Carruthers ER, Grimsey NL. Cannabinoid CB 2 receptor orthologues; in vitro function and perspectives for preclinical to clinical translation. Br J Pharmacol 2024; 181:2247-2269. [PMID: 37349984 DOI: 10.1111/bph.16172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Cannabinoid CB2 receptor agonists are in development as therapeutic agents, including for immune modulation and pain relief. Despite promising results in rodent preclinical studies, efficacy in human clinical trials has been marginal to date. Fundamental differences in ligand engagement and signalling responses between the human CB2 receptor and preclinical model species orthologues may contribute to mismatches in functional outcomes. This is a tangible possibility for the CB2 receptor in that there is a relatively large degree of primary amino acid sequence divergence between human and rodent. Here, we summarise CB2 receptor gene and protein structure, assess comparative molecular pharmacology between CB2 receptor orthologues, and review the current status of preclinical to clinical translation for drugs targeted at the CB2 receptor, focusing on comparisons between human, mouse and rat receptors. We hope that raising wider awareness of, and proposing strategies to address, this additional challenge in drug development will assist in ongoing efforts toward successful therapeutic translation of drugs targeted at the CB2 receptor. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Emma R Carruthers
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
12
|
Raïch I, Lillo J, Rivas-Santisteban R, Rebassa JB, Capó T, Santandreu M, Cubeles-Juberias E, Reyes-Resina I, Navarro G. Potential of CBD Acting on Cannabinoid Receptors CB 1 and CB 2 in Ischemic Stroke. Int J Mol Sci 2024; 25:6708. [PMID: 38928415 PMCID: PMC11204117 DOI: 10.3390/ijms25126708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke is one of the leading causes of death. It not only affects adult people but also many children. It is estimated that, every year, 15 million people suffer a stroke worldwide. Among them, 5 million people die, while 5 million people are left permanently disabled. In this sense, the research to find new treatments should be accompanied with new therapies to combat neuronal death and to avoid developing cognitive impairment and dementia. Phytocannabinoids are among the compounds that have been used by mankind for the longest period of history. Their beneficial effects such as pain regulation or neuroprotection are widely known and make them possible therapeutic agents with high potential. These compounds bind cannabinoid receptors CB1 and CB2. Unfortunately, the psychoactive side effect has displaced them in the vast majority of areas. Thus, progress in the research and development of new compounds that show efficiency as neuroprotectors without this psychoactive effect is essential. On the one hand, these compounds could selectively bind the CB2 receptor that does not show psychoactive effects and, in glia, has opened new avenues in this field of research, shedding new light on the use of cannabinoid receptors as therapeutic targets to combat neurodegenerative diseases such as Alzheimer's, Parkinson's disease, or stroke. On the other hand, a new possibility lies in the formation of heteromers containing cannabinoid receptors. Heteromers are new functional units that show new properties compared to the individual protomers. Thus, they represent a new possibility that may offer the beneficial effects of cannabinoids devoid of the unwanted psychoactive effect. Nowadays, the approval of a mixture of CBD (cannabidiol) and Δ9-THC (tetrahydrocannabinol) to treat the neuropathic pain and spasticity in multiple sclerosis or purified cannabidiol to combat pediatric epilepsy have opened new therapeutic possibilities in the field of cannabinoids and returned these compounds to the front line of research to treat pathologies as relevant as stroke.
Collapse
Affiliation(s)
- Iu Raïch
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Jaume Lillo
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Rafael Rivas-Santisteban
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Joan Biel Rebassa
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Toni Capó
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Montserrat Santandreu
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
| | - Erik Cubeles-Juberias
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
| | - Irene Reyes-Resina
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| | - Gemma Navarro
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (I.R.); (J.B.R.); (T.C.); (M.S.); (E.C.-J.)
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (J.L.); (R.R.-S.)
- Institute of Neuroscience, University of Barcelona (NeuroUB), Campus Mundet, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain
| |
Collapse
|
13
|
Alberga D, Lamanna G, Graziano G, Delre P, Lomuscio MC, Corriero N, Ligresti A, Siliqi D, Saviano M, Contino M, Stefanachi A, Mangiatordi GF. DeLA-DrugSelf: Empowering multi-objective de novo design through SELFIES molecular representation. Comput Biol Med 2024; 175:108486. [PMID: 38653065 DOI: 10.1016/j.compbiomed.2024.108486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
In this paper, we introduce DeLA-DrugSelf, an upgraded version of DeLA-Drug [J. Chem. Inf. Model. 62 (2022) 1411-1424], which incorporates essential advancements for automated multi-objective de novo design. Unlike its predecessor, which relies on SMILES notation for molecular representation, DeLA-DrugSelf employs a novel and robust molecular representation string named SELFIES (SELF-referencing Embedded String). The generation process in DeLA-DrugSelf not only involves substitutions to the initial string representing the starting query molecule but also incorporates insertions and deletions. This enhancement makes DeLA-DrugSelf significantly more adept at executing data-driven scaffold decoration and lead optimization strategies. Remarkably, DeLA-DrugSelf explicitly addresses the SELFIES-related collapse issue, considering only collapse-free compounds during generation. These compounds undergo a rigorous quality metrics evaluation, highlighting substantial advancements in terms of drug-likeness, uniqueness, and novelty compared to the molecules generated by the previous version of the algorithm. To evaluate the potential of DeLA-DrugSelf as a mutational operator within a genetic algorithm framework for multi-objective optimization, we employed a fitness function based on Pareto dominance. Our objectives focused on target-oriented properties aimed at optimizing known cannabinoid receptor 2 (CB2R) ligands. The results obtained indicate that DeLA-DrugSelf, available as a user-friendly web platform (https://www.ba.ic.cnr.it/softwareic/delaself/), can effectively contribute to the data-driven optimization of starting bioactive molecules based on user-defined parameters.
Collapse
Affiliation(s)
- Domenico Alberga
- CNR - Institute of Crystallography, Via Amendola 122/o, 70126, Bari, Italy
| | - Giuseppe Lamanna
- CNR - Institute of Crystallography, Via Amendola 122/o, 70126, Bari, Italy
| | - Giovanni Graziano
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", via E. Orabona, 4, I-70125, Bari, Italy
| | - Pietro Delre
- CNR - Institute of Crystallography, Via Amendola 122/o, 70126, Bari, Italy
| | | | - Nicola Corriero
- CNR - Institute of Crystallography, Via Amendola 122/o, 70126, Bari, Italy
| | - Alessia Ligresti
- CNR - Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Dritan Siliqi
- CNR - Institute of Crystallography, Via Amendola 122/o, 70126, Bari, Italy
| | - Michele Saviano
- CNR - Institute of Crystallography, Via Vivaldi 43, 81100, Caserta, Italy
| | - Marialessandra Contino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", via E. Orabona, 4, I-70125, Bari, Italy
| | - Angela Stefanachi
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", via E. Orabona, 4, I-70125, Bari, Italy
| | | |
Collapse
|
14
|
Tomašević N, Emser FS, Muratspahić E, Gattringer J, Hasinger S, Hellinger R, Keov P, Felkl M, Gertsch J, Becker CFW, Gruber CW. Discovery and development of macrocyclic peptide modulators of the cannabinoid 2 receptor. J Biol Chem 2024; 300:107330. [PMID: 38679329 PMCID: PMC11154713 DOI: 10.1016/j.jbc.2024.107330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024] Open
Abstract
The cannabinoid type 2 receptor (CB2R), a G protein-coupled receptor, is an important regulator of immune cell function and a promising target to treat chronic inflammation and fibrosis. While CB2R is typically targeted by small molecules, including endo-, phyto-, and synthetic cannabinoids, peptides-owing to their size-may offer a different interaction space to facilitate differential interactions with the receptor. Here, we explore plant-derived cyclic cystine-knot peptides as ligands of the CB2R. Cyclotides are known for their exceptional biochemical stability. Recently, they gained attention as G protein-coupled receptor modulators and as templates for designing peptide ligands with improved pharmacokinetic properties over linear peptides. Cyclotide-based ligands for CB2R were profiled based on a peptide-enriched extract library comprising nine plants. Employing pharmacology-guided fractionation and peptidomics, we identified the cyclotide vodo-C1 from sweet violet (Viola odorata) as a full agonist of CB2R with an affinity (Ki) of 1 μM and a potency (EC50) of 8 μM. Leveraging deep learning networks, we verified the structural topology of vodo-C1 and modeled its molecular volume in comparison to the CB2R ligand binding pocket. In a fragment-based approach, we designed and characterized vodo-C1-based bicyclic peptides (vBCL1-4), aiming to reduce size and improve potency. Opposite to vodo-C1, the vBCL peptides lacked the ability to activate the receptor but acted as negative allosteric modulators or neutral antagonists of CB2R. This study introduces a macrocyclic peptide phytocannabinoid, which served as a template for the development of synthetic CB2R peptide modulators. These findings offer opportunities for future peptide-based probe and drug development at cannabinoid receptors.
Collapse
Affiliation(s)
- Nataša Tomašević
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Fabiola Susanna Emser
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Edin Muratspahić
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jasmin Gattringer
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Simon Hasinger
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Roland Hellinger
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Peter Keov
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Manuel Felkl
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Christian F W Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
15
|
Pędzińska-Betiuk A, Schlicker E, Weresa J, Malinowska B. Re-evaluation of the cardioprotective effects of cannabinoids against ischemia-reperfusion injury according to the IMproving Preclinical Assessment of Cardioprotective Therapies (IMPACT) criteria. Front Pharmacol 2024; 15:1382995. [PMID: 38873412 PMCID: PMC11170160 DOI: 10.3389/fphar.2024.1382995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/05/2024] [Indexed: 06/15/2024] Open
Abstract
Ischemic heart disease, associated with high morbidity and mortality, represents a major challenge for the development of drug-based strategies to improve its prognosis. Results of pre-clinical studies suggest that agonists of cannabinoid CB2 receptors and multitarget cannabidiol might be potential cardioprotective strategies against ischemia-reperfusion injury. The aim of our study was to re-evaluate the cardioprotective effects of cannabinoids against ischemia-reperfusion injury according to the IMproving Preclinical Assessment of Cardioprotective Therapies (IMPACT) criteria published recently by the European Union (EU) CARDIOPROTECTION COST ACTION. To meet the minimum criteria of those guidelines, experiments should be performed (i) on healthy small animals subjected to ischemia with reperfusion lasting for at least 2 hours and (ii) confirmed in small animals with comorbidities and co-medications and (iii) in large animals. Our analysis revealed that the publications regarding cardioprotective effects of CB2 receptor agonists and cannabidiol did not meet all three strict steps of IMPACT. Thus, additional experiments are needed to confirm the cardioprotective activities of (endo)cannabinoids mainly on small animals with comorbidities and on large animals. Moreover, our publication underlines the significance of the IMPACT criteria for a proper planning of preclinical experiments regarding cardiac ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Jolanta Weresa
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
16
|
Kosar M, Sarott RC, Sykes DA, Viray AEG, Vitale RM, Tomašević N, Li X, Ganzoni RLZ, Kicin B, Reichert L, Patej KJ, Gómez-Bouzó U, Guba W, McCormick PJ, Hua T, Gruber CW, Veprintsev DB, Frank JA, Grether U, Carreira EM. Flipping the GPCR Switch: Structure-Based Development of Selective Cannabinoid Receptor 2 Inverse Agonists. ACS CENTRAL SCIENCE 2024; 10:956-968. [PMID: 38799662 PMCID: PMC11117691 DOI: 10.1021/acscentsci.3c01461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 05/29/2024]
Abstract
We report a blueprint for the rational design of G protein coupled receptor (GPCR) ligands with a tailored functional response. The present study discloses the structure-based design of cannabinoid receptor type 2 (CB2R) selective inverse agonists (S)-1 and (R)-1, which were derived from privileged agonist HU-308 by introduction of a phenyl group at the gem-dimethylheptyl side chain. Epimer (R)-1 exhibits high affinity for CB2R with Kd = 39.1 nM and serves as a platform for the synthesis of a wide variety of probes. Notably, for the first time these fluorescent probes retain their inverse agonist functionality, high affinity, and selectivity for CB2R independent of linker and fluorophore substitution. Ligands (S)-1, (R)-1, and their derivatives act as inverse agonists in CB2R-mediated cAMP as well as G protein recruitment assays and do not trigger β-arrestin-receptor association. Furthermore, no receptor activation was detected in live cell ERK1/2 phosphorylation and Ca2+-release assays. Confocal fluorescence imaging experiments with (R)-7 (Alexa488) and (R)-9 (Alexa647) probes employing BV-2 microglial cells visualized CB2R expressed at endogenous levels. Finally, molecular dynamics simulations corroborate the initial docking data in which inverse agonists restrict movement of toggle switch Trp2586.48 and thereby stabilize CB2R in its inactive state.
Collapse
Affiliation(s)
- Miroslav Kosar
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Roman C. Sarott
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - David A. Sykes
- Faculty
of Medicine & Health Sciences, University
of Nottingham, Nottingham NG7 2UH, U.K.
- Centre
of Membrane Proteins and Receptors (COMPARE), University of Birmingham
and University of Nottingham, https://www.birmingham-nottingham.ac.uk/compare
| | - Alexander E. G. Viray
- Department
of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon 97239-3098, United States
| | - Rosa Maria Vitale
- Institute
of Biomolecular Chemistry, National Research
Council, Via Campi Flegrei
34, 80078 Pozzuoli, Italy
| | - Nataša Tomašević
- Center for
Physiology and Pharmacology, Medical University
of Vienna, Schwarzspanierstrasse
17, 1090 Vienna, Austria
| | - Xiaoting Li
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
| | - Rudolf L. Z. Ganzoni
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Bilal Kicin
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Lisa Reichert
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Kacper J. Patej
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Uxía Gómez-Bouzó
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Wolfgang Guba
- Roche
Pharma Research & Early Development, Roche Innovation Center Basel,
F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Peter J. McCormick
- Department
of Pharmacology and Therapeutics, University
of Liverpool, Ashton
Street, Liverpool L69 3GE, U.K.
| | - Tian Hua
- iHuman
Institute, ShanghaiTech University, Shanghai 201210, China
| | - Christian W. Gruber
- Center for
Physiology and Pharmacology, Medical University
of Vienna, Schwarzspanierstrasse
17, 1090 Vienna, Austria
| | - Dmitry B. Veprintsev
- Faculty
of Medicine & Health Sciences, University
of Nottingham, Nottingham NG7 2UH, U.K.
- Centre
of Membrane Proteins and Receptors (COMPARE), University of Birmingham
and University of Nottingham, https://www.birmingham-nottingham.ac.uk/compare
| | - James A. Frank
- Department
of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon 97239-3098, United States
- Vollum
Institute, Oregon Health & Science University, Portland, Oregon 97239-3098, United States
| | - Uwe Grether
- Roche
Pharma Research & Early Development, Roche Innovation Center Basel,
F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Erick M. Carreira
- Laboratorium
für Organische Chemie, Eidgenössische
Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| |
Collapse
|
17
|
Young AP, Szczesniak AM, Hsu K, Kelly ME, Denovan-Wright EM. Enantiomeric Agonists of the Type 2 Cannabinoid Receptor Reduce Retinal Damage during Proliferative Vitreoretinopathy and Inhibit Hyperactive Microglia In Vitro. ACS Pharmacol Transl Sci 2024; 7:1348-1363. [PMID: 38751621 PMCID: PMC11091991 DOI: 10.1021/acsptsci.4c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Microglia are resident immune cells of the central nervous system (CNS) and propagate inflammation following damage to the CNS, including the retina. Proliferative vitreoretinopathy (PVR) is a condition that can emerge following retinal detachment and is characterized by severe inflammation and microglial proliferation. The type 2 cannabinoid receptor (CB2) is an emerging pharmacological target to suppress microglial-mediated inflammation when the eyes or brain are damaged. CB2-knockout mice have exacerbated inflammation and retinal pathology during experimental PVR. We aimed to assess the anti-inflammatory effects of CB2 stimulation in the context of retinal damage and also explore the mechanistic roles of CB2 in microglia function. To target CB2, we used a highly selective agonist, HU-308, as well as its enantiomer, HU-433, which is a putative selective agonist. First, β-arrestin2 and Gαi recruitment was measured to compare activation of human CB2 in an in vitro heterologous expression system. Both agonists were then utilized in a mouse model of PVR, and the effects on retinal damage, inflammation, and cell death were assessed. Finally, we used an in vitro model of microglia to determine the effects of HU-308 and HU-433 on phagocytosis, cytokine release, migration, and intracellular signaling. We observed that HU-308 more strongly recruited both β-arrestin2 and Gαi compared to HU-433. Stimulation of CB2 with either drug effectively blunted LPS- and IFNγ-mediated signaling as well as NO and TNF release from microglia. Furthermore, both drugs reduced IL-6 accumulation, total caspase-3 cleavage, and retinal pathology following the induction of PVR. Ultimately, this work supports that CB2 is a valuable target for drugs to suppress inflammation and cell death associated with infection or sterile retinopathy, although the magnitude of effector recruitment may not be predictive of anti-inflammatory capacity.
Collapse
Affiliation(s)
- Alexander P. Young
- Department
of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Anna-Maria Szczesniak
- Department
of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Karolynn Hsu
- Department
of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Melanie E.M. Kelly
- Department
of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department
of Ophthalmology & Visual Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department
of Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | | |
Collapse
|
18
|
Zhang Q, Zhao Y, Wu J, Zhong W, Huang W, Pan Y. The progress of small molecules against cannabinoid 2 receptor (CB 2R). Bioorg Chem 2024; 144:107075. [PMID: 38218067 DOI: 10.1016/j.bioorg.2023.107075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/03/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024]
Abstract
The two subtypes of cannabinoid receptors (CBR), namely CB1R and CB2R, belong to the G protein-coupled receptor (GPCR) superfamily and are confirmed as potential therapeutic targets for a variety of diseases such as inflammation, neuropathic pain, and immune-related disorders. Since CB1R is mainly distributed in the central nervous system (CNS), it could produce severe psychiatric adverse reactions and addiction. In contrast, CB2R are predominantly distributed in the peripheral immune system with minimal CNS-related side effects. Therefore, more attention has been devoted to the discovery of CB2R ligands. In view of the favorable profile of CB2R, many high-binding affinity and selectivity CB2R ligands have been developed recently. This paper reviews recent research progress on CB2R ligands, including endogenous CB2R ligands, natural compounds, and novel small molecules, in order to provide a reference for subsequent CB2R ligand development.
Collapse
Affiliation(s)
| | - Ying Zhao
- Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianan Wu
- Hangzhou Medical College, Hangzhou, Zhejiang, China
| | | | - Wenhai Huang
- Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Youlu Pan
- Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Zhao Z, Yan Q, Xie J, Liu Z, Liu F, Liu Y, Zhou S, Pan S, Liu D, Duan J, Liu Z. The intervention of cannabinoid receptor in chronic and acute kidney disease animal models: a systematic review and meta-analysis. Diabetol Metab Syndr 2024; 16:45. [PMID: 38360685 PMCID: PMC10870675 DOI: 10.1186/s13098-024-01283-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024] Open
Abstract
AIM Cannabinoid receptors are components of the endocannabinoid system that affect various physiological functions. We aim to investigate the effect of cannabinoid receptor modulation on kidney disease. METHODS PubMed, Web of Science databases, and EMBASE were searched. Articles selection, data extraction and quality assessment were independently performed by two investigators. The SYRCLE's RoB tool was used to assess the risk of study bias, and pooled SMD using a random-effect model and 95% CIs were calculated. Subgroup analyses were conducted in preselected subgroups, and publication bias was evaluated. We compared the effects of CB1 and CB2 antagonists and/or knockout and agonists and/or genetic regulation on renal function, blood glucose levels, body weight, and pathological damage-related indicators in different models of chronic and acute kidney injury. RESULTS The blockade or knockout of CB1 could significantly reduce blood urea nitrogen [SMD,- 1.67 (95% CI - 2.27 to - 1.07)], serum creatinine [SMD, - 1.88 (95% CI - 2.91 to - 0.85)], and albuminuria [SMD, - 1.60 (95% CI - 2.16 to - 1.04)] in renal dysfunction animals compared with the control group. The activation of CB2 group could significantly reduce serum creatinine [SMD, - 0.97 (95% CI - 1.83 to - 0.11)] and albuminuria [SMD, - 2.43 (95% CI - 4.63 to - 0.23)] in renal dysfunction animals compared with the control group. CONCLUSIONS The results suggest that targeting cannabinoid receptors, particularly CB1 antagonists and CB2 agonists, can improve kidney function and reduce inflammatory responses, exerting a renal protective effect and maintaining therapeutic potential in various types of kidney disease.
Collapse
Affiliation(s)
- Zihao Zhao
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Qianqian Yan
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Junwei Xie
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Zhenjie Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Fengxun Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Yong Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Sijie Zhou
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Shaokang Pan
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
| | - Jiayu Duan
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China.
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Henan Province Research Center For Kidney Disease, Zhengzhou, 450052, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
20
|
Patel M, Grimsey NL, Banister SD, Finlay DB, Glass M. Evaluating signaling bias for synthetic cannabinoid receptor agonists at the cannabinoid CB 2 receptor. Pharmacol Res Perspect 2023; 11:e01157. [PMID: 38018694 PMCID: PMC10685394 DOI: 10.1002/prp2.1157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023] Open
Abstract
The rapid structural evolution and emergence of novel synthetic cannabinoid receptor agonists (SCRAs) in the recreational market remains a key public health concern. Despite representing one of the largest classes of new psychoactive substances, pharmacological data on new SCRAs is limited, particularly at the cannabinoid CB2 receptor (CB2 ). Hence, the current study aimed to characterize the molecular pharmacology of a structurally diverse panel of SCRAs at CB2 , including 4-cyano MPP-BUT7AICA, 4F-MDMB-BUTINACA, AMB-FUBINACA, JWH-018, MDMB-4en-PINACA, and XLR-11. The activity of SCRAs was assessed in a battery of in vitro assays in CB2 -expressing HEK 293 cells: G protein activation (Gαi3 and GαoB ), phosphorylation of ERK1/2, and β-arrestin 1/2 translocation. The activity profiles of the ligands were further evaluated using the operational analysis to identify ligand bias. All SCRAs activated the CB2 signaling pathways in a concentration-dependent manner, although with varying potencies and efficacies. Despite the detection of numerous instances of statistically significant bias, compound activities generally appeared only subtly distinct in comparison with the reference ligand, CP55940. In contrast, the phytocannabinoid THC exhibited an activity profile distinct from the SCRAs; most notably in the translocation of β-arrestins. These findings demonstrate that CB2 is able to accommodate a structurally diverse array of SCRAs to generate canonical agonist activity. Further research is required to elucidate whether the activation of CB2 contributes to the toxicity of these compounds.
Collapse
Affiliation(s)
- Monica Patel
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand
| | - Natasha L. Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | - Samuel D. Banister
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind CentreUniversity of SydneyNew South WalesAustralia
- School of Chemistry, Faculty of ScienceUniversity of SydneyNew South WalesAustralia
| | - David B. Finlay
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand
| | - Michelle Glass
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
21
|
Yuan J, Yang B, Hou G, Xie XQ, Feng Z. Targeting the endocannabinoid system: Structural determinants and molecular mechanism of allosteric modulation. Drug Discov Today 2023; 28:103615. [PMID: 37172889 PMCID: PMC10330941 DOI: 10.1016/j.drudis.2023.103615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Although drugs targeting the orthosteric binding site of cannabinoid receptors (CBRs) have several therapeutic effects on human physiological and pathological conditions, they can also cause serious adverse effects. Only a few orthosteric ligands have successfully passed clinical trials. Recently, allosteric modulation has become a novel option for drug discovery, with fewer adverse effects and the potential to avoid drug overdose. In this review, we highlight novel findings related to the drug discovery of allosteric modulators (AMs) targeting CBRs. We summarize newly synthesized AMs and the reported/predicted allosteric binding sites. We also discuss the structural determinants of the AMs binding as well as the molecular mechanism of CBR allostery.
Collapse
Affiliation(s)
- Jiayi Yuan
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Bo Yang
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Guanyu Hou
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy; National Center of Excellence for Computational Drug Abuse Research; Drug Discovery Institute; Departments of Computational Biology and Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.
| |
Collapse
|
22
|
Mugnaini C, Kostrzewa M, Casini M, Kumar P, Catallo V, Allarà M, Guastaferro L, Brizzi A, Paolino M, Tafi A, Kapatais C, Giorgi G, Vacondio F, Mor M, Corelli F, Ligresti A. Systematic Modification of the Substitution Pattern of the 7-Hydroxy-5-oxopyrazolo[4,3- b]pyridine-6-carboxamide Scaffold Enabled the Discovery of New Ligands with High Affinity and Selectivity for the Cannabinoid Type 2 Receptor. Molecules 2023; 28:4958. [PMID: 37446625 DOI: 10.3390/molecules28134958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Selective ligands of the CB2 receptor are receiving considerable attention due to their potential as therapeutic agents for a variety of diseases. Recently, 7-hydroxy-5-oxopyrazolo[4,3-b]pyridine-6-carboxamide derivatives were shown to act at the CB2 receptor either as agonists or as inverse agonists/antagonists in vitro and to have anti-osteoarthritic activity in vivo. In this article, we report the synthesis, pharmacological profile, and molecular modeling of a series of twenty-three new 7-hydroxy-5-oxopyrazolo[4,3-b]pyridine-6-carboxamides with the aim of further developing this new class of selective CB2 ligands. In addition to these compounds, seven other analogs that had been previously synthesized were included in this study to better define the structure-activity relationship (SAR). Ten of the new compounds studied were found to be potent and selective ligands of the CB2 receptor, with Ki values ranging from 48.46 to 0.45 nM and CB1/CB2 selectivity indices (SI) ranging from >206 to >4739. In particular, compounds 54 and 55 were found to be high-affinity CB2 inverse agonists that were not active at all at the CB1 receptor, whereas 57 acted as an agonist. The functional activity profile of the compounds within this structural class depends mainly on the substitution pattern of the pyrazole ring.
Collapse
Affiliation(s)
- Claudia Mugnaini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Magdalena Kostrzewa
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Marta Casini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Poulami Kumar
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Valeria Catallo
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Marco Allarà
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| | - Laura Guastaferro
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Antonella Brizzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Marco Paolino
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Andrea Tafi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Christelos Kapatais
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Gianluca Giorgi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Federica Vacondio
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Marco Mor
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Federico Corelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Alessia Ligresti
- National Research Council of Italy, Institute of Biomolecular Chemistry, 80078 Pozzuoli, Italy
| |
Collapse
|
23
|
Vasincu A, Rusu RN, Ababei DC, Neamțu M, Arcan OD, Macadan I, Beșchea Chiriac S, Bild W, Bild V. Exploring the Therapeutic Potential of Cannabinoid Receptor Antagonists in Inflammation, Diabetes Mellitus, and Obesity. Biomedicines 2023; 11:1667. [PMID: 37371762 DOI: 10.3390/biomedicines11061667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Recently, research has greatly expanded the knowledge of the endocannabinoid system (ECS) and its involvement in several therapeutic applications. Cannabinoid receptors (CBRs) are present in nearly every mammalian tissue, performing a vital role in different physiological processes (neuronal development, immune modulation, energy homeostasis). The ECS has an essential role in metabolic control and lipid signaling, making it a potential target for managing conditions such as obesity and diabetes. Its malfunction is closely linked to these pathological conditions. Additionally, the immunomodulatory function of the ECS presents a promising avenue for developing new treatments for various types of acute and chronic inflammatory conditions. Preclinical investigations using peripherally restricted CBR antagonists that do not cross the BBB have shown promise for the treatment of obesity and metabolic diseases, highlighting the importance of continuing efforts to discover novel molecules with superior safety profiles. The purpose of this review is to examine the roles of CB1R and CB2Rs, as well as their antagonists, in relation to the above-mentioned disorders.
Collapse
Affiliation(s)
- Alexandru Vasincu
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Răzvan-Nicolae Rusu
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Daniela-Carmen Ababei
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Monica Neamțu
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Oana Dana Arcan
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Ioana Macadan
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Sorin Beșchea Chiriac
- Department of Toxicology, "Ion Ionescu de la Brad" University of Life Sciences, 8 M. Sadoveanu Alley, 700489 Iasi, Romania
| | - Walther Bild
- Department of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
| | - Veronica Bild
- Department of Pharmacodynamics and Clinical Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Center of Biomedical Research of the Romanian Academy, 700506 Iasi, Romania
- Center for Advanced Research and Development in Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
24
|
Grabon W, Rheims S, Smith J, Bodennec J, Belmeguenai A, Bezin L. CB2 receptor in the CNS: from immune and neuronal modulation to behavior. Neurosci Biobehav Rev 2023; 150:105226. [PMID: 37164044 DOI: 10.1016/j.neubiorev.2023.105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/20/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Despite low levels of cannabinoid receptor type 2 (CB2R) expression in the central nervous system in human and rodents, a growing body of evidence shows CB2R involvement in many processes at the behavioral level, through both immune and neuronal modulations. Recent in vitro and in vivo evidence have highlighted the complex role of CB2R under physiological and inflammatory conditions. Under neuroinflammatory states, its activation seems to protect the brain and its functions, making it a promising target in a wide range of neurological disorders. Here, we provide a complete and updated overview of CB2R function in the central nervous system of rodents, spanning from modulation of immune function in microglia but also in other cell types, to behavior and neuronal activity, in both physiological and neuroinflammatory contexts.
Collapse
Affiliation(s)
- Wanda Grabon
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France; Epilepsy Institute IDEE, 59 boulevard Pinel - F-69500 Bron, France.
| | - Sylvain Rheims
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France; Epilepsy Institute IDEE, 59 boulevard Pinel - F-69500 Bron, France; Department of Functional Neurology and Epileptology, Hospices Civils de Lyon - France
| | - Jonathon Smith
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France; Epilepsy Institute IDEE, 59 boulevard Pinel - F-69500 Bron, France
| | - Jacques Bodennec
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France; Epilepsy Institute IDEE, 59 boulevard Pinel - F-69500 Bron, France
| | - Amor Belmeguenai
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France; Epilepsy Institute IDEE, 59 boulevard Pinel - F-69500 Bron, France
| | - Laurent Bezin
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France.
| |
Collapse
|
25
|
Dutta S, Shukla D. Distinct activation mechanisms regulate subtype selectivity of Cannabinoid receptors. Commun Biol 2023; 6:485. [PMID: 37147497 PMCID: PMC10163236 DOI: 10.1038/s42003-023-04868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
Design of cannabinergic subtype selective ligands is challenging because of high sequence and structural similarities of cannabinoid receptors (CB1 and CB2). We hypothesize that the subtype selectivity of designed selective ligands can be explained by the ligand binding to the conformationally distinct states between cannabinoid receptors. Analysis of ~ 700 μs of unbiased simulations using Markov state models and VAMPnets identifies the similarities and distinctions between the activation mechanism of both receptors. Structural and dynamic comparisons of metastable intermediate states allow us to observe the distinction in the binding pocket volume change during CB1 and CB2 activation. Docking analysis reveals that only a few of the intermediate metastable states of CB1 show high affinity towards CB2 selective agonists. In contrast, all the CB2 metastable states show a similar affinity for these agonists. These results mechanistically explain the subtype selectivity of these agonists by deciphering the activation mechanism of cannabinoid receptors.
Collapse
Affiliation(s)
- Soumajit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
26
|
Sharma R, Singh S, Whiting ZM, Molitor M, Vernall AJ, Grimsey NL. Novel Cannabinoid Receptor 2 (CB2) Low Lipophilicity Agonists Produce Distinct cAMP and Arrestin Signalling Kinetics without Bias. Int J Mol Sci 2023; 24:ijms24076406. [PMID: 37047385 PMCID: PMC10094510 DOI: 10.3390/ijms24076406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Cannabinoid Receptor 2 (CB2) is a promising target for treating inflammatory diseases. We designed derivatives of 3-carbamoyl-2-pyridone and 1,8-naphthyridin-2(1H)-one-3-carboxamide CB2-selective agonists with reduced lipophilicity. The new compounds were measured for their affinity (radioligand binding) and ability to elicit cyclic adenosine monophosphate (cAMP) signalling and β-arrestin-2 translocation with temporal resolution (BRET-based biosensors). For the 3-carbamoyl-2-pyridone derivatives, we found that modifying the previously reported compound UOSS77 (also known as S-777469) by appending a PEG2-alcohol via a 3-carbomylcyclohexyl carboxamide (UOSS75) lowered lipophilicity, and preserved binding affinity and signalling profile. The 1,8-naphthyridin-2(1H)-one-3-carboxamide UOMM18, containing a cis configuration at the 3-carboxamide cyclohexyl and with an alcohol on the 4-position of the cyclohexyl, had lower lipophilicity but similar CB2 affinity and biological activity to previously reported compounds of this class. Relative to CP55,940, the new compounds acted as partial agonists and did not exhibit signalling bias. Interestingly, while all compounds shared similar temporal trajectories for maximal efficacy, differing temporal trajectories for potency were observed. Consequently, when applied at sub-maximal concentrations, CP55,940 tended to elicit sustained (cAMP) or increasing (arrestin) responses, whereas responses to the new compounds tended to be transient (cAMP) or sustained (arrestin). In future studies, the compounds characterised here may be useful in elucidating the consequences of differential temporal signalling profiles on CB2-mediated physiological responses.
Collapse
Affiliation(s)
- Raahul Sharma
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (R.S.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Sameek Singh
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand (M.M.); (A.J.V.)
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zak M. Whiting
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (R.S.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Maximilian Molitor
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand (M.M.); (A.J.V.)
- Institute of Pharmaceutical Chemistry, Goethe University, 60438 Frankfurt, Germany
| | - Andrea J. Vernall
- Department of Chemistry, University of Otago, Dunedin 9016, New Zealand (M.M.); (A.J.V.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Natasha L. Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (R.S.)
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
- Correspondence:
| |
Collapse
|
27
|
Li X, Chang H, Bouma J, de Paus LV, Mukhopadhyay P, Paloczi J, Mustafa M, van der Horst C, Kumar SS, Wu L, Yu Y, van den Berg RJBHN, Janssen APA, Lichtman A, Liu ZJ, Pacher P, van der Stelt M, Heitman LH, Hua T. Structural basis of selective cannabinoid CB 2 receptor activation. Nat Commun 2023; 14:1447. [PMID: 36922494 PMCID: PMC10017709 DOI: 10.1038/s41467-023-37112-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Cannabinoid CB2 receptor (CB2R) agonists are investigated as therapeutic agents in the clinic. However, their molecular mode-of-action is not fully understood. Here, we report the discovery of LEI-102, a CB2R agonist, used in conjunction with three other CBR ligands (APD371, HU308, and CP55,940) to investigate the selective CB2R activation by binding kinetics, site-directed mutagenesis, and cryo-EM studies. We identify key residues for CB2R activation. Highly lipophilic HU308 and the endocannabinoids, but not the more polar LEI-102, APD371, and CP55,940, reach the binding pocket through a membrane channel in TM1-TM7. Favorable physico-chemical properties of LEI-102 enable oral efficacy in a chemotherapy-induced nephropathy model. This study delineates the molecular mechanism of CB2R activation by selective agonists and highlights the role of lipophilicity in CB2R engagement. This may have implications for GPCR drug design and sheds light on their activation by endogenous ligands.
Collapse
Affiliation(s)
- Xiaoting Li
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Hao Chang
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jara Bouma
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University, Oncode Institute, Leiden, the Netherlands
| | - Laura V de Paus
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Oncode Institute, Leiden, the Netherlands
| | - Partha Mukhopadhyay
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute of Health/National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute of Health/National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA
| | - Mohammed Mustafa
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Cas van der Horst
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University, Oncode Institute, Leiden, the Netherlands
| | - Sanjay Sunil Kumar
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University, Oncode Institute, Leiden, the Netherlands
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yanan Yu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Richard J B H N van den Berg
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Oncode Institute, Leiden, the Netherlands
| | - Antonius P A Janssen
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Oncode Institute, Leiden, the Netherlands
| | - Aron Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute of Health/National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA.
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Oncode Institute, Leiden, the Netherlands.
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University, Oncode Institute, Leiden, the Netherlands.
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
28
|
Mahardhika AB, Ressemann A, Kremers SE, Gregório Castanheira MS, Schoeder CT, Müller CE, Pillaiyar T. Design, synthesis, and structure-activity relationships of diindolylmethane derivatives as cannabinoid CB 2 receptor agonists. Arch Pharm (Weinheim) 2023; 356:e2200493. [PMID: 36437108 DOI: 10.1002/ardp.202200493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022]
Abstract
3,3'-Diindolylmethane (DIM), a natural product-derived compound formed upon ingestion of cruciferous vegetables, was recently described to act as a partial agonist of the anti-inflammatory cannabinoid (CB) receptor subtype CB2 . In the present study, we synthesized and evaluated a series of DIM derivatives and determined their affinities for human CB receptor subtypes in radioligand binding studies. Potent compounds were additionally evaluated in functional cAMP accumulation and β-arrestin recruitment assays. Small substituents in the 4-position of both indole rings of DIM were beneficial for high CB2 receptor affinity and efficacy. Di-(4-cyano-1H-indol-3-yl)methane (46, PSB-19837, EC50 : cAMP, 0.0144 µM, 95% efficacy compared to the full standard agonist CP55,940; β-arrestin, 0.0149 µM, 67% efficacy) was the most potent CB2 receptor agonist of the present series. Di-(4-bromo-1H-indol-3-yl)methane (44, PSB-19571) showed higher potency in β-arrestin (EC50 0.0450 µM, 61% efficacy) than in cAMP accumulation assays (EC50 0.509 µM, 85% efficacy) while 3-((1H-indol-3-yl)methyl)-4-methyl-1H-indole (149, PSB-18691) displayed a 19-fold bias for the G protein pathway (EC50 : cAMP, 0.0652 µM; β-arrestin, 1.08 µM). DIM and its analogs act as allosteric CB2 receptor agonists. These potent CB2 receptor agonists have potential as novel drugs for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Andhika B Mahardhika
- Department of Pharmaceutical & Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany.,Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Anastasiia Ressemann
- Department of Pharmaceutical & Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Sarah E Kremers
- Department of Pharmaceutical & Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Mariana S Gregório Castanheira
- Department of Pharmaceutical & Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Clara T Schoeder
- Department of Pharmaceutical & Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany.,Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Christa E Müller
- Department of Pharmaceutical & Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany.,Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Thanigaimalai Pillaiyar
- Department of Pharmaceutical & Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, University of Bonn, Bonn, Germany.,Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Institute of Pharmacy, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
29
|
Graziano G, Delre P, Carofiglio F, Brea J, Ligresti A, Kostrzewa M, Riganti C, Gioè-Gallo C, Majellaro M, Nicolotti O, Colabufo NA, Abate C, Loza MI, Sotelo E, Mangiatordi GF, Contino M, Stefanachi A, Leonetti F. N-adamantyl-anthranil amide derivatives: New selective ligands for the cannabinoid receptor subtype 2 (CB2R). Eur J Med Chem 2023; 248:115109. [PMID: 36657299 DOI: 10.1016/j.ejmech.2023.115109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Cannabinoid type 2 receptor (CB2R) is a G-protein-coupled receptor that, together with Cannabinoid type 1 receptor (CB1R), endogenous cannabinoids and enzymes responsible for their synthesis and degradation, forms the EndoCannabinoid System (ECS). In the last decade, several studies have shown that CB2R is overexpressed in activated central nervous system (CNS) microglia cells, in disorders based on an inflammatory state, such as neurodegenerative diseases, neuropathic pain, and cancer. For this reason, the anti-inflammatory and immune-modulatory potentials of CB2R ligands are emerging as a novel therapeutic approach. The design of selective ligands is however hampered by the high sequence homology of transmembrane domains of CB1R and CB2R. Based on a recent three-arm pharmacophore hypothesis and latest CB2R crystal structures, we designed, synthesized, and evaluated a series of new N-adamantyl-anthranil amide derivatives as CB2R selective ligands. Interestingly, this new class of compounds displayed a high affinity for human CB2R along with an excellent selectivity respect to CB1R. In this respect, compounds exhibiting the best pharmacodynamic profile in terms of CB2R affinity were also evaluated for the functional behavior and molecular docking simulations provided a sound rationale by highlighting the relevance of the arm 1 substitution to prompt CB2R action. Moreover, the modulation of the pro- and anti-inflammatory cytokines production was also investigated to exert the ability of the best compounds to modulate the inflammatory cascade.
Collapse
Affiliation(s)
- Giovanni Graziano
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy
| | - Pietro Delre
- CNR - Institute of Crystallography, Via Giovanni Amendola, 122/O, 70126, Bari, Italy
| | - Francesca Carofiglio
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy
| | - Josè Brea
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Av. Barcelona, 15782, Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Alessia Ligresti
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Magdalena Kostrzewa
- Institute of Biomolecular Chemistry, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Chiara Riganti
- Department of Oncology, University of Turin, Turin, Italy
| | - Claudia Gioè-Gallo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Maria Majellaro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy
| | - Nicola Antonio Colabufo
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy
| | - Carmen Abate
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy; CNR - Institute of Crystallography, Via Giovanni Amendola, 122/O, 70126, Bari, Italy
| | - Maria Isabel Loza
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Av. Barcelona, 15782, Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Eddy Sotelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | | | - Marialessandra Contino
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy.
| | - Angela Stefanachi
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy.
| | - Francesco Leonetti
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E.Orabona 4, 70125, Bari, Italy
| |
Collapse
|
30
|
Deventer MH, Norman C, Reid R, McKenzie C, Nic Daéid N, Stove CP. In vitro characterization of the pyrazole-carrying synthetic cannabinoid receptor agonist 5F-3,5-AB-PFUPPYCA and its structural analogs. Forensic Sci Int 2023; 343:111565. [PMID: 36640535 DOI: 10.1016/j.forsciint.2023.111565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
The synthetic cannabinoid receptor agonist (SCRA) market is undergoing important changes since the enactment of the 2021 class-wide generic SCRA ban in China, one of the most important source countries for new psychoactive substances (NPS). Recently, various compounds with new structural features, synthesized to bypass this legislation, have entered the recreational drug market. Certain monocyclic pyrazole-carrying "FUPPYCA" SCRAs have been sporadically detected since 2015 without gaining further popularity. However, as evidenced by their recent detection in Scottish prisons, 5F-3,5-AB-PFUPPYCA and 3,5-ADB-4en-PFUPPYCA have re-emerged, potentially triggered by the new legislative ban. The aim of this study was to characterize the in vitro intrinsic CB1 and CB2 receptor activation potential of 5F-3,5-AB-PFUPPYCA and 3,5-ADB-4en-PFUPPYCA, as well as 4 analogs (5F-3,5-ADB-PFUPPYCA, 3,5-AB-CHMFUPPYCA, 5,3-AB-CHMFUPPYCA and 5,3-ADB-4en-PFUPPYCA) using live cell β-arrestin 2 recruitment assays. Most analogs were essentially inactive at either CB1 or CB2, with only 3,5-AB-CHMFUPPYCA, 5,3-AB-CHMFUPPYCA and 5,3-ADB-4en-PFUPPYCA showing a limited activation potential at CB1. Furthermore, the importance of the position of the tail structure was demonstrated, with 5,3 regioisomers being more active than their 3,5 analogs. Moreover, all compounds exhibited antagonistic behavior at both receptors, which may be associated with their structural resemblance to cannabinoid antagonists and inverse agonists. Although the 3,5 regioisomers of these "FUPPYCA" SCRAs circumvent the Chinese ban, it is unlikely that these SCRAs will pose a major threat to public health, given the lack of pronounced CB receptor activity.
Collapse
Affiliation(s)
- Marie H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Caitlyn Norman
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Robert Reid
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Craig McKenzie
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK; Chiron AS, Trondheim, Norway
| | - Niamh Nic Daéid
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
31
|
Stasiulewicz A, Lesniak A, Bujalska-Zadrożny M, Pawiński T, Sulkowska JI. Identification of Novel CB2 Ligands through Virtual Screening and In Vitro Evaluation. J Chem Inf Model 2023; 63:1012-1027. [PMID: 36693026 PMCID: PMC9930120 DOI: 10.1021/acs.jcim.2c01503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cannabinoid receptor type 2 (CB2) is a very promising therapeutic target for a variety of potential indications. However, despite the existence of multiple high affinity CB2 ligands, none have yet been approved as a drug. Therefore, it would be beneficial to explore new chemotypes of CB2 ligands. The recent elucidation of CB2 tertiary structure allows for rational hit identification with structure-based (SB) methods. In this study, we established a virtual screening workflow based on SB techniques augmented with ligand-based ones, including molecular docking, MM-GBSA binding energy calculations, pharmacophore screening, and QSAR. We screened nearly 7 million drug-like, commercially available compounds. We selected 16 molecules for in vitro evaluation and identified two novel, selective CB2 antagonists with Ki values of 65 and 210 nM. Both compounds are structurally diverse from CB2 ligands known to date. The established virtual screening protocol may prove useful for hit identification for CB2 and similar molecular targets. The two novel CB2 ligands provide a desired starting point for future optimization and development of potential drugs.
Collapse
Affiliation(s)
- Adam Stasiulewicz
- Department
of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland,Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Anna Lesniak
- Department
of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Magdalena Bujalska-Zadrożny
- Department
of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Tomasz Pawiński
- Department
of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Joanna I. Sulkowska
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland,E-mail:
| |
Collapse
|
32
|
Rosse G. Pyrazolidine Carboxamide Analogs as Selective Agonists of the Cannabinoid 2 Receptor. ACS Med Chem Lett 2022; 13:1837-1838. [DOI: 10.1021/acsmedchemlett.2c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Gerard Rosse
- Arrival Discovery LLC, San Diego, California 92128, United States
| |
Collapse
|
33
|
Smoum R, Grether U, Karsak M, Vernall AJ, Park F, Hillard CJ, Pacher P. Editorial: Therapeutic potential of the cannabinoid CB2 receptor. Front Pharmacol 2022; 13:1039564. [PMID: 36278235 PMCID: PMC9585503 DOI: 10.3389/fphar.2022.1039564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Reem Smoum
- School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Uwe Grether
- Roche Innovation Center Basel, F. Hoffman-La Roche Ltd., Basel, Switzerland
| | - Meliha Karsak
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Cecilia J. Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute of Health/NIAAA, Rockville, MD, United States
| |
Collapse
|