1
|
Fan F, Guo R, Pan K, Xu H, Chu X. Mucus and mucin: changes in the mucus barrier in disease states. Tissue Barriers 2025:2499752. [PMID: 40338015 DOI: 10.1080/21688370.2025.2499752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/16/2025] [Accepted: 04/21/2025] [Indexed: 05/09/2025] Open
Abstract
In this review we discuss mucus, the viscoelastic secretion from goblet or mucous producing cells that covers and protects all non-keratinized wet epithelial surfaces. In addition to the surface of organs directly contacting with the external environment such as the eyes, this layer provides protection to the underlying gastrointestinal, respiratory and female reproductive tracts by trapping pathogens, irritants, environmental fine particles and potentially harmful foreign substances. Mucins, the primary structural components of mucus, form structurally different mucus layers at different sites in a process regulated by a variety of factors. Currently, more and more studies have shown that the mucus barrier is not only closely related to various intestinal mucus diseases, but also involved in the occurrence and development of various airway diseases and mucus-related diseases, thus it may become a new target for the treatment of various related diseases in the future. Since the dysfunction of the mucous layer is closely related to various pathological processes, in-depth understanding of its molecular mechanism and physiological role is of great theoretical and practical significance for disease prevention and treatment. Here, we discuss different aspects of the mucus layer by focusing on its chemical composition, synthetic pathways, and some of the characteristics of the mucus layer in physiological and pathological situations.
Collapse
Affiliation(s)
- Fangfang Fan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ruihan Guo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Kun Pan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Hongye Xu
- Quality Assurance department, Tongling Institutes for Food and Drug Control, Tongling, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modern Pharmaceutical Preparation, Hefei, Anhui Province, China
| |
Collapse
|
2
|
Monzani R, Gagliardi M, Saverio V, Clemente N, Monzani A, Rabbone I, Nigrelli F, Pellizzaro S, Ferrario E, Saettone S, Pagano N, De Leo L, Lim D, Sblattero D, Corazzari M. Gliadin-dependent UPR induction directly triggers the expression of TG2 and pro-inflammatory cytokines, dysregulates intestinal permeability, and reduces CFTR expression in intestinal epithelial cells of celiac disease patients. Biol Direct 2025; 20:55. [PMID: 40247380 PMCID: PMC12007252 DOI: 10.1186/s13062-025-00644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/28/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Celiac disease (CD) is an autoimmune disorder that primarily affects the gut of genetically predisposed individuals and is triggered by gliadin peptides (PT) produced by the digestion of gluten. Although inappropriate activation of the immune system is thought to be the main trigger of CD, the interaction between PT and intestinal epithelial cells (IECs) remains a key step. Recently, the possible involvement of ER stress in the pathogenesis of CD has been pointed out, although its role is still largely unclear. Therefore, discovering the molecular mechanism(s) activated in IECs exposed to PT represents a unique opportunity to better understand the disease and define new potential therapeutic targets. METHODS In this study we used three different experimental set-ups: intestinal biopsies from CD patients and non-CD control subjects, an in vitro model, based on human CaCo-2 cells, and an ex vivo model, based on our recently described mouse gut-ex-vivo system (GEVS), with the latter two systems were studied after stimulation with gliadin peptides (PT). To understand the signaling pathways involved we monitor the expression of a number of proteins by qPCR, Western blotting, IF, ELISA or a combination of tests. Specifically, we have analyzed the level of CD, ER stress, tissue permeability, and inflammation markers. RESULTS Indeed, our study demonstrated a prompt induction of the transcription factors ATF4, ATF6 and XBP1 in IECs upon PT exposure. Thus, the upregulation of TG2 and downregulation of CFTR were prevented by ER stress inhibition/buffering by a pharmacological chaperone, also leading to restored physiological expression of OCL, CLD-2 and CLD-15, while preventing the expression of IFNγ, IL-15 and IL-17 A. CONCLUSION Overall, our analysis has highlighted the key role of ER stress in the pathogenesis of CD and identified the chemical chaperones as a new potential valuable therapeutic treatment for CD patients.
Collapse
Affiliation(s)
- Romina Monzani
- Department of Health Sciences, School of Medicine, Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Mara Gagliardi
- Department of Health Sciences, School of Medicine, Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy
| | - Valentina Saverio
- Department of Health Sciences, School of Medicine, Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Nausicaa Clemente
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Alice Monzani
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Ivana Rabbone
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Francesca Nigrelli
- Department of Health Sciences, School of Medicine, Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Samuele Pellizzaro
- Department of Life Sciences, University of Trieste, Trieste, 34127, Italy
| | - Emanuele Ferrario
- Department of Health Sciences, School of Medicine, Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Silvia Saettone
- Gastroenterology Unit, Department of Oncological and Specialty Medicine, University Hospital Maggiore della Carità, Novara, Italy
| | - Nico Pagano
- Gastroenterology Unit, Department of Oncological and Specialty Medicine, University Hospital Maggiore della Carità, Novara, Italy
| | - Luigina De Leo
- Institute for Maternal and Child Health, I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Daniele Sblattero
- Department of Life Sciences, University of Trieste, Trieste, 34127, Italy
| | - Marco Corazzari
- Department of Health Sciences, School of Medicine, Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy.
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy.
| |
Collapse
|
3
|
Khademi Z, Mottaghi-Dastjerdi N, Morad H, Sahebkar A. The role of CRISPR-Cas9 and CRISPR interference technologies in the treatment of autoimmune diseases. Autoimmun Rev 2025; 24:103816. [PMID: 40221070 DOI: 10.1016/j.autrev.2025.103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Autoimmune disorders can be described as inappropriate immune responses directed against self-antigens, which account for substantial healthcare concerns around the world. Immunosuppression or immune modulation are the main therapeutic modalities for autoimmune disorders. These modalities, however, impair the ability of the immune system to fight against infections, thereby predisposing to opportunistic diseases. This review explores existing therapies for autoimmune disorders, highlighting their limitations and challenges. Additionally, it describes the potential of CRISPR-Cas9 technology as a novel therapeutic approach to address these challenges.
Collapse
Affiliation(s)
- Zahra Khademi
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Mottaghi-Dastjerdi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Morad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Centre for Research Impact and Outcome, Chitkara University, Rajpura 140417, Punjab, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Enache I, Jinga M, Palaga A, Balaban DV, Galos F, Macovei DM, Popp A. Impact of ESPGHAN no-biopsy strategy on the outcome of celiac disease treatment in children. Front Pediatr 2025; 13:1546711. [PMID: 40181998 PMCID: PMC11965348 DOI: 10.3389/fped.2025.1546711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Aim The European Society for Pediatric Gastroenterology Hepatology and Nutrition (ESPGHAN) allows a no-biopsy diagnostic of celiac disease under certain conditions. We assessed the impact of the diagnostic algorithm on the patient's long-term outcome by comparing the serology-based diagnosed patients to biopsy-proven ones. Methods We reviewed the charts of children presenting with antitransglutaminase IgA titers above ten times upper limit of normal and consecutively diagnosed with celiac disease between 2010 and 2014, a time-period overlapping with ESPGHAN diagnostic guideline change in 2012. Outcome measures for no-biopsy vs. biopsy-proven diagnosed patients were clinical and laboratory findings, compliance to gluten-free diet and to regular visits after one, two and 8-10 years of follow-up. Results Clinical and laboratory, i.e., serum chemistry and autoantibody outcome measures on gluten-free diet clearly showed worse patient healing in the 33 serology-based diagnosed children compared to the 30 biopsy-proven ones. The attendance of the follow-up visits was also higher in the biopsy group. Conclusions Our results indicate that dietary transgressions are common in childhood celiac disease resulting in slow healing. Therefore, there is a need of improvement of the management, with special attention regarding the ESPGHAN no-biopsy criteria diagnosed patients. Our study also indicates that novel treatments adjunctive to diet are warranted in children.
Collapse
Affiliation(s)
- Iulia Enache
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, Bucharest, Romania
| | - Mariana Jinga
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, Bucharest, Romania
| | - Alexandra Palaga
- Department of Pediatrics, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Daniel Vasile Balaban
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, Bucharest, Romania
| | - Felicia Galos
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Pediatrics, Marie-Curie Emergency Children’s Hospital, Bucharest, Romania
| | - Dhea-Maria Macovei
- Department of Pediatrics, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Alina Popp
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Pediatrics, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University and Tampere Hospital, Tampere, Finland
| |
Collapse
|
5
|
Gupta N, Al-Dossari M, El-Gawaad NSA, Alghamdi S, Qusty NF, Babalghith AO, Yadav VK, Niazi P, Mallasiy LO. Lactiplantibacillus plantarum Moderating Effect on Autoimmune Celiac Disease Triggers. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10514-5. [PMID: 40106190 DOI: 10.1007/s12602-025-10514-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
The only approved preventive treatment option GFD remains insufficient to manage Celiac Disease (CeD). A cohort of probiotic bacteria recently indicated that probiotic bacteria such as L. plantarum (LP) have a protective effect on CeD. LP has been a prominent probiotic, studied for numerous modulating properties. This review highlights and summarizes LP's ameliorating effect on various triggers/drivers of CeD. Probiotic LP potential for CeD is noticeable, mainly involving gut microbiota modulation, gluten digestion, intestinal homeostasis, CeD-associated pathogens reduction, and CD4 + T cell regulation. LP supplementation maintains intestinal physiology by improving the ratio of intestinal villus height to crypt depth. Gut microbiota modulation also improves tight junction proteins and the intestinal barrier. LP increases the digestibility of immunoreactive 33-mer gliadin peptides and regulates immune triggers such as CD4 + T cells. LP supplementation may minimize the gastrointestinal symptoms of CeD. Nevertheless, the therapeutic applicability of LP is subjected to significant clinical and nonclinical studies.
Collapse
Affiliation(s)
- Nishant Gupta
- Medical Division, River Engineering Private Limited, Ecotech-3, Greater Noida, India.
| | - M Al-Dossari
- Muhayil Asir, Applied College, King Khalid University, 62529, Abha, Saudi Arabia
| | - N S Abd El-Gawaad
- Muhayil Asir, Applied College, King Khalid University, 62529, Abha, Saudi Arabia
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naeem F Qusty
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University Makkah, Makkah, Saudi Arabia
| | - Virendra Kumar Yadav
- Marwadi University Research Center, Department of Microbiology, Faculty of Sciences, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Parwiz Niazi
- Department of Biology, Faculty of Education, Kandahar University, Kandahar, 3801, Afghanistan
| | - L O Mallasiy
- Muhayil Asir, Applied College, King Khalid University, 61913, Abha, Saudi Arabia
| |
Collapse
|
6
|
Yu T, Gao J, Yuan J, Yin Z, Chen X, Wu Y, Dai R, Yan D, Chen H, Wu Y. Dietary methionine restriction restores wheat gluten-induced celiac-associated small intestine damage in association with affecting butyric acid production by intestinal flora. Food Funct 2025; 16:2461-2473. [PMID: 40018976 DOI: 10.1039/d4fo05757k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Methionine restriction has received some attention in recent years as a novel mode of dietary intervention. Our previous study found that methionine restriction could inhibit the celiac toxic effects of wheat gluten in an in vitro model. However, the role of methionine restriction in gluten-induced celiac intestinal damage remains unclear. The aim of this study was to explore whether dietary methionine restriction could suppress the celiac toxic effects of gluten in an in vivo model, thereby mitigating intestine damage. This study systematically investigated the effects of dietary methionine restriction on celiac characteristic indicators such as symptoms, small intestine damage, and intestinal TG2 and IL-15 expression in a gluten-induced C57BL/6 mouse model. The availability of dietary methionine restriction in different ages (adolescent and adult) was also evaluated. Moreover, mouse cecum contents were assayed and co-analyzed for the metagenome of intestinal flora and target short-chain fatty acid metabolomics, with the goal of further exploring and elucidating critical pathways by which dietary methionine restriction plays a role. We discovered that dietary methionine restriction could effectively ameliorate the gluten-induced celiac-associated small intestine damage by modulating intestinal flora to inhibit butyric acid production. Specifically, dietary methionine restriction could inhibit butyric acid production with the help of s_CAG-485 sp002493045 and s_CAG-475 sp910577815, which in turn affected the mitochondrial function within the intestinal epithelial cells to assist in the repair of intestine damage. This study might provide new insights into modulating dietary patterns to mitigate intestinal damage in celiac disease and the production of novel gluten-free products.
Collapse
Affiliation(s)
- Tian Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Jinyan Gao
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Juanli Yuan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- School of Pharmaceutical Science, Nanchang University, Nanchang 330006, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Zicheng Yin
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Xiao Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Yang Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Ruoyan Dai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Dongxia Yan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, China.
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, Jiangxi, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang, 330047, Jiangxi, China
| |
Collapse
|
7
|
Baldi S, Ruiz-Carnicer Á, Comino I, Sousa C, Amedei A. Editorial: Gluten-related disorders: pathogenesis, diagnosis, and treatment. Front Nutr 2025; 12:1585381. [PMID: 40181939 PMCID: PMC11966402 DOI: 10.3389/fnut.2025.1585381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Affiliation(s)
- Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ángela Ruiz-Carnicer
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Isabel Comino
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Carolina Sousa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
8
|
Srirangan P, Sabina EP. Protective effects of herbal compounds against cyclophosphamide-induced organ toxicity: a pathway-centered approach. Drug Chem Toxicol 2025:1-43. [PMID: 39847469 DOI: 10.1080/01480545.2025.2455442] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/24/2024] [Accepted: 01/14/2025] [Indexed: 01/25/2025]
Abstract
Cyclophosphamide is a key component of numerous chemotherapeutic protocols, demonstrating broad-spectrum efficacy against various malignancies and non-cancerous conditions. This review examines CPM's metabolic pathways, therapeutic applications, and its resulting organ-specific toxicities. Despite its clinical benefits in treating nephrotic syndrome, encephalomyelitis, breast cancer, ovarian cancer, and other diseases, CPM is associated with significant adverse effects on the kidneys, liver, heart, lungs, and intestines. The discussion delves into the molecular mechanisms underlying these toxicities, highlighting dysregulation in key signaling pathways, including Nrf2, NF-κB, MAPK/ERK, and AKT. In addressing these challenges, recent studies have identified various herbal drugs and phytochemicals capable of mitigating CPM-induced toxicity. Notable compounds such as cinnamaldehyde, baicalin, quercetin, and curcumin have demonstrated protective effects. Integrating these herbal formulations with CPM therapy is proposed to enhance patient safety and treatment efficacy. This review underscores the influence of CPM on apoptosis and inflammation pathways, which lead to alterations in organ-specific biomarkers. Phytochemicals may exert protective effects by restoring disrupted signaling pathways and normalizing altered biomarkers. The compilation of phytochemicals presented in this review serves as a valuable resource for researchers exploring other herbal products with potential protective effects against CPM toxicity. A significant gap in the current literature is the lack of clinical trials evaluating phytochemicals that mitigate CPM toxicity in vivo. Rigorous clinical studies are necessary to establish the efficacy and safety of herbal formulations in cancer treatment. Such research will clarify the role of natural remedies in complementing conventional therapies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Prathap Srirangan
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore, India
| | - Evan Prince Sabina
- Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore, India
| |
Collapse
|
9
|
Chen WH, Hsu CC, Ho HJ, Smith J, Smith S, Huang HY, Chang HC, Hsiao YC. Rapid Gluten Allergen Detection Using an Integrated Photoimaging Assay and Ionic Liquid Extraction Sensor. ACS OMEGA 2024; 9:49767-49777. [PMID: 39713688 PMCID: PMC11656241 DOI: 10.1021/acsomega.4c08411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
In recent years, food allergies and food sensitivities have remained critical public health problems that affect approximately 15% of the global population. Wheat is a major food source worldwide, but it is also a common food allergen. Celiac disease is chronic immune-mediated enteropathy triggered by exposure to dietary gluten in genetically predisposed individuals; it can be treated only through strict gluten avoidance. Therefore, rapid gluten detection is crucial for protecting the health of patients. Gluten contains two primary water-insoluble proteins: gliadin and glutenin. Gliadin is a key contributor to celiac disease and poses challenges for sample pretreatment owing to its insolubility, thereby reducing the accuracy and sensitivity of detection systems. Rapid sample processing is a critical problem in gliadin detection. In this report, we developed a gliadin sensor system called the integrated food allergy and microorganism sensor (iFAMs). The iFAMs comprises a gliadin lateral flow chip, a one-pot extraction solution, and an image assay app. The iFAMs enables gliadin extraction and detection in under 2 min with high sensitivity (0.04 mg/kg for gliadin, lower than the regulatory limit of 20 mg/kg). Users can easily measure gluten concentrations in samples and quantify gliadin levels using the smartphone-based image assay app. In samples collected from restaurants, the iFAMs successfully detected hidden gluten within "gluten-free" food items. The compact size and user-friendly design of the iFAMs render it suitable for not only consumers but also clinicians, food industries, and regulators to enhance food safety.
Collapse
Affiliation(s)
- Wen-Hao Chen
- Research
and Development Group, Leo Verification
Systems Inc., Powell, Wyoming 82435, United States
- School
of
Biological Sciences, Nanyang Technological
University, 639798 Singapore
| | - Chuan-Chih Hsu
- Department
of Surgery, College of Medicine, Taipei
Medical University, Taipei 110, Taiwan
- Department
of Surgery, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Hsin-Jung Ho
- Technology
Commercialization Center, Taipei Medical
University, Taipei 110, Taiwan
| | - Jill Smith
- Research
and Development Group, Leo Verification
Systems Inc., Powell, Wyoming 82435, United States
| | - Seaton Smith
- Research
and Development Group, Leo Verification
Systems Inc., Powell, Wyoming 82435, United States
| | - Hui-Yin Huang
- Research
and Development Group, Leo Verification
Systems Inc., Powell, Wyoming 82435, United States
| | | | - Yu-Cheng Hsiao
- Graduate
Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei 110, Taiwan
- Cell Physiology
and Molecular Image Research Center, Taipei
Medical University, Taipei 110, Taiwan
- School
of
Biological Sciences, Nanyang Technological
University, 639798 Singapore
| |
Collapse
|
10
|
Hanak T, Andrzejczak OA, Hebelstrup K, Brinch-Pedersen H. Barley's gluten challenge: A path to hordein-free food and malt. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109174. [PMID: 39362126 DOI: 10.1016/j.plaphy.2024.109174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Barley, a vital cereal crop worldwide, is hindered by hordeins, gluten proteins triggering adverse reactions in those with celiac disease (CeD) and non-celiac gluten sensitivity (NCGS). Recent barley breeding advancements focus on creating varieties with reduced hordein content. Researchers have developed ultra-low gluten barley mutants via targeted genetic modifications, showing significantly decreased hordein levels, potentially safe for CeD and NCGS individuals. However, some mutants carry undesirable traits, which are addressed through further breeding and new genomic techniques. These innovative methods offer promising ways to eliminate unwanted traits and transfer the ultra-low gluten characteristic to diverse barley cultivars, expanding dietary choices and potentially transforming the food and beverage industry with gluten-free barley-based products. This review addresses hordeins' impact and ultra-low gluten barley development and proposes using new genomic techniques for safe barley lines.
Collapse
Affiliation(s)
- Tobias Hanak
- Crops Genetic and Biotechnology, AU Flakkebjerg, Department of Agroecology, Aarhus University, Slagelse, Denmark.
| | - Olga A Andrzejczak
- Crops Genetic and Biotechnology, AU Flakkebjerg, Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Kim Hebelstrup
- Crops Genetic and Biotechnology, AU Flakkebjerg, Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Henrik Brinch-Pedersen
- Crops Genetic and Biotechnology, AU Flakkebjerg, Department of Agroecology, Aarhus University, Slagelse, Denmark
| |
Collapse
|
11
|
Corlett C, Rodrigues A, Ravikumara M. Coeliac Disease in Children-A Clinical Review Including Novel Treatment Agents. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1650. [PMID: 39459437 PMCID: PMC11509383 DOI: 10.3390/medicina60101650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Coeliac disease (CD) affects almost of 1% of the population, yet remains undiagnosed in the majority. Though the demonstration of enteropathy in duodenal biopsy was traditionally the essential criterion for the diagnosis of coeliac disease, the guidelines published by the European Society of Paediatric Gastroenterology and Nutrition (ESPGHAN) in 2012, and revised in 2020, paved the way to a no-biopsy approach to diagnosis. In a select group of children meeting certain criteria, a definitive diagnosis of CD can now be made without the need for duodenal biopsies. This is being increasingly applied in clinical practice. It is well established that untreated coeliac disease is associated with several chronic adverse health conditions. At present, a strict gluten-free diet remains the only effective treatment for CD. The advances in our understanding of the pathogenesis of CD have led to a search for alternative treatment agents. Several investigational agents are in various phases of clinical trials at present. In this review, we outline the clinical aspects of coeliac disease and summarise various investigational treatment agents.
Collapse
Affiliation(s)
- Chloe Corlett
- Department of Gastroenterology, Children’s Hospital Oxford, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK; (C.C.); (A.R.)
| | - Astor Rodrigues
- Department of Gastroenterology, Children’s Hospital Oxford, Oxford University Hospitals NHS Trust, Oxford OX3 9DU, UK; (C.C.); (A.R.)
| | - Madhur Ravikumara
- Department of Gastroenterology, Perth Children’s Hospital, Perth, WA 6009, Australia
| |
Collapse
|
12
|
Beas R, Altamirano-Farfan E, Izquierdo-Veraza D, Norwood DA, Riva-Moscoso A, Godoy A, Montalvan-Sanchez EE, Ramirez M, Guifarro DA, Kitchin E, Fischer M, Kurada S. Prevalence of celiac disease in systemic lupus erythematosus, sjogren syndrome and systemic sclerosis: A systematic review and meta-analysis. Dig Liver Dis 2024; 56:1475-1482. [PMID: 38584032 DOI: 10.1016/j.dld.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Celiac disease (CeD) is an immune-mediated disorder affecting the small bowel, associated with genetic factors and increasing global prevalence. AIM This study explores the association between CeD, Systemic Lupus Erythematosus (SLE), primary Sjogren syndrome (pSS), and Systemic Sclerosis (SSc). METHODS A systematic review and meta-analysis were conducted following PRISMA guidelines. Searches across multiple databases yielded 2728 articles, with 15 studies selected. Data extraction included study characteristics, prevalence of CeD and CeD antibodies in SLE, pSS, and SSc. Quality assessment utilized the Newcastle-Ottawa Scale. RESULTS The meta-analysis revealed a pooled prevalence of biopsy-proven CeD in SLE, pSS, and SSc of approximately 3%. Seroprevalence of any CeD antibody in SLE, pSS, and SSc ranged from 3% to 10%. Notably, pSS exhibited the highest prevalence at 5.59%. High heterogeneity was observed in seroprevalence across autoimmune conditions. Quality assessment indicated robust methodological quality in the selected studies. CONCLUSION This study highlights a significantly higher prevalence of CeD, especially pSS, compared to the general population. The findings underscore the importance of recognizing elevated CeD antibodies in patients with SLE, pSS and SSc emphasizing the need for early detection and comprehensive care for gastrointestinal symptoms in these conditions.
Collapse
Affiliation(s)
- Renato Beas
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | | | - Dalton A Norwood
- Division of Preventive Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Ambar Godoy
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Mirian Ramirez
- Ruth Lilly Medical Library, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniel A Guifarro
- Internal Medicine, John H. Stroger, Jr. Hospital of Cook County, Chicago, USA
| | - Emily Kitchin
- Division of Rheumatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Monika Fischer
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Satya Kurada
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
13
|
Grant JE, Chamberlain SR, Collins M. Elevated rates of GI-focused inflammatory illnesses in trichotillomania and skin picking disorder: A survey study. Gen Hosp Psychiatry 2024; 90:194-195. [PMID: 38862332 DOI: 10.1016/j.genhosppsych.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Affiliation(s)
- Jon E Grant
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, United States of America.
| | - Samuel R Chamberlain
- Department of Psychiatry, Faculty of Medicine, University of Southampton, UK and NHS Southern Gambling Service / Southern Health NHS Foundation Trust, Southampton, UK
| | - Madison Collins
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, United States of America
| |
Collapse
|
14
|
Buriánek F, Gege C, Marinković P. New developments in celiac disease treatments. Drug Discov Today 2024; 29:104113. [PMID: 39067614 DOI: 10.1016/j.drudis.2024.104113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Celiac disease (CeD), an autoimmune disorder triggered by gluten, affects around 1% of the global population. Standard treatment is a strict gluten-free diet (GFD), which poses significant challenges due to dietary restrictions, cross-contamination and subsequent persistent intestinal inflammation. This underscores the need for new treatment options addressing the complex pathophysiology of CeD. Recent research focuses on developing drugs that target intestinal barrier regeneration, gluten peptide modification, immune response alteration, and gut microbial ecosystem modulation. These approaches offer potential for more effective management of CeD beyond GFD. Gluten-independent treatments may be particularly relevant under the FDA's draft guidance for CeD, which emphasizes drug development as an adjunct to GFD for patients with ongoing signs and symptoms of CeD despite strict GFD.
Collapse
|
15
|
Sharma L, Rahman F, Sharma RA. The emerging role of biotechnological advances and artificial intelligence in tackling gluten sensitivity. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 39145745 DOI: 10.1080/10408398.2024.2392158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Gluten comprises an intricate network of hundreds of related but distinct proteins, mainly "gliadins" and "glutenins," which play a vital role in determining the rheological properties of wheat dough. However, ingesting gluten can trigger severe conditions in susceptible individuals, including celiac disease, wheat allergy, or non-celiac gluten sensitivity, collectively known as gluten-related disorders. This review provides a panoramic view, delving into the various aspects of gluten-triggered disorders, including symptoms, diagnosis, mechanism, and management. Though a gluten-free diet remains the primary option to manage gluten-related disorders, the emerging microbial and plant biotechnology tools are playing a transformative role in reducing the immunotoxicity of gluten. The enzymatic hydrolysis of gluten and the development of gluten-reduced/free wheat lines using RNAi and CRISPR/Cas technology are laying the foundation for creating safer wheat products. In addition to biotechnological interventions, the emerging artificial intelligence technologies are also bringing about a paradigm shift in the diagnosis and management of gluten-related disorders. Here, we provide a comprehensive overview of the latest developments and the potential these technologies hold for tackling gluten sensitivity.
Collapse
Affiliation(s)
- Lakshay Sharma
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani (BITS Pilani), Pilani, India
| | - Farhanur Rahman
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani (BITS Pilani), Pilani, India
| | - Rita A Sharma
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani (BITS Pilani), Pilani, India
- National Agri-Food Biotechnology Institute (NABI), Mohali, India
| |
Collapse
|
16
|
Sewa AS, Besser HA, Mathews II, Khosla C. Structural and mechanistic analysis of Ca 2+-dependent regulation of transglutaminase 2 activity using a Ca 2+-bound intermediate state. Proc Natl Acad Sci U S A 2024; 121:e2407066121. [PMID: 38959038 PMCID: PMC11252922 DOI: 10.1073/pnas.2407066121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
Mammalian transglutaminases, a family of Ca2+-dependent proteins, are implicated in a variety of diseases. For example, celiac disease (CeD) is an autoimmune disorder whose pathogenesis requires transglutaminase 2 (TG2) to deamidate select glutamine residues in diet-derived gluten peptides. Deamidation involves the formation of transient γ-glutamyl thioester intermediates. Recent studies have revealed that in addition to the deamidated gluten peptides themselves, their corresponding thioester intermediates are also pathogenically relevant. A mechanistic understanding of this relevance is hindered by the absence of any structure of Ca2+-bound TG2. We report the X-ray crystallographic structure of human TG2 bound to an inhibitory gluten peptidomimetic and two Ca2+ ions in sites previously designated as S1 and S3. Together with additional structure-guided experiments, this structure provides a mechanistic explanation for how S1 regulates formation of an inhibitory disulfide bond in TG2, while also establishing that S3 is essential for γ-glutamyl thioester formation. Furthermore, our crystallographic findings and associated analyses have revealed that i) two interacting residues, H305 and E363, play a critical role in resolving the thioester intermediate into an isopeptide bond (transamidation) but not in thioester hydrolysis (deamidation); and ii) residues N333 and K176 stabilize preferred TG2 substrates and inhibitors via hydrogen bonding to nonreactive backbone atoms. Overall, the intermediate-state conformer of TG2 reported here represents a superior model to previously characterized conformers for both transition states of the TG2-catalyzed reaction.
Collapse
Affiliation(s)
- Agnele S. Sewa
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
| | - Harrison A. Besser
- Department of Chemistry, Stanford University, Stanford, CA94305
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA94305
| | - Irimpan I. Mathews
- Stanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center National Accelerator Laboratory, Menlo Park, CA94025
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA94305
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Sarafan Chemistry, Engineering Medicine and Human Health, Stanford University, Stanford, CA94305
| |
Collapse
|
17
|
Ruiz-Carnicer Á, Segura V, Moreno MDL, Coronel-Rodríguez C, Sousa C, Comino I. Transfer of celiac disease-associated immunogenic gluten peptides in breast milk: variability in kinetics of secretion. Front Immunol 2024; 15:1405344. [PMID: 39034995 PMCID: PMC11257844 DOI: 10.3389/fimmu.2024.1405344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/10/2024] [Indexed: 07/23/2024] Open
Abstract
Background Exposure to antigens is crucial for child immune system development, aiding disease prevention and promoting infant health. Some common food antigen proteins are found in human breast milk. However, it is unclear whether gluten antigens linked to celiac disease (CD) are transmitted through breast milk, potentially impacting the development of the infant's immune system. Objective This study aimed to analyze the passage of gluten immunogenic peptides (GIP) into human breast milk. We evaluated the dynamics of GIP secretion after lactating mothers adopted a controlled gluten-rich diet. Methods We prospectively enrolled 96 non-CD and 23 CD lactating mothers, assessing total proteins and casein in breast milk, and GIP levels in breast milk and urine. Subsequently, a longitudinal study was conducted in a subgroup of 12 non-CD lactating mothers who adopted a controlled gluten-rich diet. GIP levels in breast milk and urine samples were assayed by multiple sample collections over 96 hours. Results Analysis of a single sample revealed that 24% of non-CD lactating mothers on a regular unrestricted diet tested positive for GIP in breast milk, and 90% tested positive in urine, with significantly lower concentrations in breast milk. Nevertheless, on a controlled gluten-rich diet and the collection of multiple samples, GIP were detected in 75% and 100% of non-CD participants in breast milk and urine, respectively. The transfer dynamics in breast milk samples were long-enduring and GIP secretion persisted from 0 to 72 h. In contrast, GIP secretion in urine samples was limited to the first 24 h, with inter-individual variations. In the cohort of CD mothers, 82.6% and 87% tested negative for GIP in breast milk and urine, respectively. Conclusions This study definitively established the presence of GIP in breast milk, with substantial inter-individual variations in secretion dynamics. Our findings provide insights into distinct GIP kinetics observed in sequentially collected breast milk and urine samples, suggesting differential gluten metabolism patterns depending on the organ or system involved. Future research is essential to understand whether GIP functions as sensitizing or tolerogenic agents in the immune system of breastfed infants.
Collapse
Affiliation(s)
- Ángela Ruiz-Carnicer
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Verónica Segura
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - María de Lourdes Moreno
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | | | - Carolina Sousa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Isabel Comino
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| |
Collapse
|
18
|
Transcriptomic analysis of celiac disease treatment with transglutaminase 2 inhibitor. Nat Immunol 2024; 25:1140-1141. [PMID: 38951629 DOI: 10.1038/s41590-024-01870-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
|
19
|
Abadie V, Han AS, Jabri B, Sollid LM. New Insights on Genes, Gluten, and Immunopathogenesis of Celiac Disease. Gastroenterology 2024; 167:4-22. [PMID: 38670280 PMCID: PMC11283582 DOI: 10.1053/j.gastro.2024.03.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024]
Abstract
Celiac disease (CeD) is a gluten-induced enteropathy that develops in genetically susceptible individuals upon consumption of cereal gluten proteins. It is a unique and complex immune disorder to study as the driving antigen is known and the tissue targeted by the immune reaction can be interrogated. This review integrates findings gained from genetic, biochemical, and immunologic studies, which together have revealed mechanisms of gluten peptide modification and HLA binding, thereby enabling a maladapted anti-gluten immune response. Observations in human samples combined with experimental mouse models have revealed that the gluten-induced immune response involves CD4+ T cells, cytotoxic CD8+ T cells, and B cells; their cross-talks are critical for the tissue-damaging response. The emergence of high-throughput technologies is increasing our understanding of the phenotype, location, and presumably function of the gluten-specific cells, which are all required to identify novel therapeutic targets and strategies for CeD.
Collapse
Affiliation(s)
- Valérie Abadie
- Department of Medicine, University of Chicago, Chicago, Illinois; Section of Gastroenterology, Nutrition and Hepatology, University of Chicago, Chicago, Illinois; Committee on Immunology, University of Chicago, Chicago, Illinois.
| | - Arnold S Han
- Columbia Center for Translational Immunology, Columbia University, New York, New York; Department of Microbiology and Immunology, Columbia University, New York, New York; Department of Medicine, Digestive and Liver Diseases, Columbia University, New York, New York
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, Illinois; Section of Gastroenterology, Nutrition and Hepatology, University of Chicago, Chicago, Illinois; Committee on Immunology, University of Chicago, Chicago, Illinois; Department of Pathology, University of Chicago, Chicago, Illinois; Department of Pediatrics, University of Chicago, Chicago, Illinois
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
20
|
Silvester JA, Elli L, Khosla C, Tye-Din JA. Past, Present, and Future of Noninvasive Tests to Assess Gluten Exposure, Celiac Disease Activity, and End-Organ Damage. Gastroenterology 2024; 167:159-171. [PMID: 38670279 PMCID: PMC11235091 DOI: 10.1053/j.gastro.2024.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 04/28/2024]
Abstract
Although many biomarkers have been proposed, and several are in widespread clinical use, there is no single readout or combination of readouts that correlates tightly with gluten exposure, disease activity, or end-organ damage in treated patients with celiac disease. Challenges to developing and evaluating better biomarkers include significant interindividual variability-related to immune amplification of gluten exposure and how effects of immune activation are manifest. Furthermore, the current "gold standard" for assessment of end-organ damage, small intestinal biopsy, is itself highly imperfect, such that a marker that is a better reflection of the "ground truth" may indeed appear to perform poorly. The goal of this review was to analyze past and present efforts to establish robust noninvasive tools for monitoring treated patients with celiac disease and to highlight emerging tools that may prove to be useful in clinical practice.
Collapse
Affiliation(s)
- Jocelyn A Silvester
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts; Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Celiac Disease Research Program, Harvard Medical School, Boston, Massachusetts.
| | - Luca Elli
- Center for Prevention and Diagnosis of Celiac Disease, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chaitan Khosla
- Sarafan ChEM-H, Departments of Chemistry and Chemical Engineering, Stanford University, Stanford, California
| | - Jason A Tye-Din
- Immunology Division, Walter and Eliza Hall Institute, Melbourne, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Department of Gastroenterology, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
21
|
Zolnikova O, Dzhakhaya N, Bueverova E, Sedova A, Kurbatova A, Kryuchkova K, Butkova T, Izotov A, Kulikova L, Yurku K, Chekulaev P, Zaborova V. The Contribution of the Intestinal Microbiota to the Celiac Disease Pathogenesis along with the Effectiveness of Probiotic Therapy. Microorganisms 2023; 11:2848. [PMID: 38137992 PMCID: PMC10745538 DOI: 10.3390/microorganisms11122848] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
The development of many human disorders, including celiac disease (CD), is thought to be influenced by the microbiota of the gastrointestinal tract and its metabolites, according to current research. This study's goal was to provide a concise summary of the information on the contribution of the intestinal microbiota to the CD pathogenesis, which was actively addressed while examining the reported pathogenesis of celiac disease (CD). We assumed that a change in gluten tolerance is formed under the influence of a number of different factors, including genetic predisposition and environmental factors. In related investigations, researchers have paid increasing attention to the study of disturbances in the composition of the intestinal microbiota and its functional activity in CD. A key finding of our review is that the intestinal microbiota has gluten-degrading properties, which, in turn, may have a protective effect on the development of CD. The intestinal microbiota contributes to maintaining the integrity of the intestinal barrier, preventing the formation of a "leaky" intestine. On the contrary, a change in the composition of the microbiota can act as a significant link in the pathogenesis of gluten intolerance and exacerbate the course of the disease. The possibility of modulating the composition of the microbiota by prescribing probiotic preparations is being considered. The effectiveness of the use of probiotics containing Lactobacillus and Bifidobacterium bacteria in experimental and clinical studies as a preventive and therapeutic agent has been documented.
Collapse
Affiliation(s)
- Oxana Zolnikova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Natiya Dzhakhaya
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Elena Bueverova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Alla Sedova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Anastasia Kurbatova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Kira Kryuchkova
- Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Tatyana Butkova
- Institute of Biomedical Chemistry, Biobanking Group, 109028 Moscow, Russia; (T.B.); (A.I.); (L.K.)
| | - Alexander Izotov
- Institute of Biomedical Chemistry, Biobanking Group, 109028 Moscow, Russia; (T.B.); (A.I.); (L.K.)
| | - Ludmila Kulikova
- Institute of Biomedical Chemistry, Biobanking Group, 109028 Moscow, Russia; (T.B.); (A.I.); (L.K.)
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Kseniya Yurku
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia;
| | - Pavel Chekulaev
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Victoria Zaborova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| |
Collapse
|