1
|
Xue Y, Li J, Zhao Z, Li J, Li X, Zhang R, Ren L, Wang L, Zhang W, Luo Z, Abliz Z. Integrating the Preparation of a Tissue Section on Adhesive Tape with an Adsorption Platform Device for Simplified Ambient Mass Spectrometry Imaging Analysis. Anal Chem 2025; 97:9145-9150. [PMID: 40277201 DOI: 10.1021/acs.analchem.5c01648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
As a visualization technology for the in situ characterization of surface material molecules, mass spectrometry imaging (MSI) analysis is being increasingly used in various fields, especially in the biomedical field. However, the preparation of biological tissue section samples for MSI analysis remains time-consuming and labor-intensive, and sample loss or damage occurs frequently. The inability to stably and consecutively obtain suitable section samples and perform concise and efficient imaging analysis limits the analysis throughput. Herein, a preparation method is proposed. It enables consecutive sectioning, batch preservation, and dry processing through the use of ordinary adhesive tape, enhancing the adhesion between section and tape and rapid freeze-drying. Furthermore, based on the air flow assisted desorption electrospray ionization (AFADESI) MSI system, a vacuum adsorption platform is introduced, which simplifies the process of MSI analysis. Moreover, compared with general tape-based MSI methods, the signal intensity of 73%-85% of the annotated ions is improved for positive ion mode. The signal-to-noise (S/N) ratios of characteristic ions in the corresponding regions in the images of the tissue section samples increase by an average of more than two times, and a clearer organ outline can be seen in the images. By integrating the sample preparation method with the adsorption platform, high-throughput imaging of serial whole-body or scattered organ tissue sections can be conducted more easily and concise and efficient MSI analysis can be performed, which will provide a new strategy to meet rapidly growing MSI research demands.
Collapse
Affiliation(s)
- Yingfeng Xue
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jinyi Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhehui Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiaheng Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ling Ren
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Lulu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhigang Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
2
|
Phulara NR, Seneviratne HK. Visualization of Efavirenz-Induced Lipid Alterations in the Mouse Brain Using MALDI Mass Spectrometry Imaging. Curr Protoc 2025; 5:e70108. [PMID: 40007509 DOI: 10.1002/cpz1.70108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
This article highlights experimental procedures and troubleshooting tips for the utilization of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) methods for detecting and visualizing lipid alterations in the mouse brain tissue in response to efavirenz (EFV) treatment. To investigate drug-induced adverse effects, it is becoming increasingly important to understand the spatial alterations of lipid molecules in the target organs. EFV is a non-nucleoside reverse transcriptase inhibitor commonly used for HIV treatment in combination with other antiretrovirals. Importantly, EFV is a drug that is included in the World Health Organization's list of essential medications. However, EFV is known to be associated with neurotoxicity. To date, the mechanisms underlying EFV-induced neurotoxicity have not been fully elucidated. Therefore, it is important to gain understanding of the effect of EFV on the brain. It is known that the brain is composed of different neuroanatomical regions that are abundant in lipids. Described here is the use of a chemical imaging strategy, MALDI MSI, to detect, identify, and visualize the spatial localization of several lipid species across the brain tissue sections along with their alterations in response to EFV treatment. The set of protocols consists of three major parts: lipid detection, identification, and tissue imaging. Lipid detection includes testing different chemical matrices and how they facilitate the detection of analytes, which is then followed by identification. Collision-induced dissociation is employed to verify the identity of the lipid molecules. Lastly, tissue imaging experiments are performed to generate the spatial localization profiles of the lipids. The protocols described in this article can be employed to spatially visualize alterations in the lipid molecules in response to drug treatment. © 2025 Wiley Periodicals LLC. Basic Protocol 1: MALDI mass spectrometry (MALDI MS) profiling experiments for detection of lipids Basic Protocol 2: MALDI MS imaging of lipid molecules in mouse brain tissues Basic Protocol 3: MALDI MS data processing and analysis.
Collapse
Affiliation(s)
- Nav Raj Phulara
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland
| | - Herana Kamal Seneviratne
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland
| |
Collapse
|
3
|
Li H, Chen L, Zhang F, Cai Z. Graph-learning-based machine learning improves prediction and cultivation of commercial-grade marine microalgae Porphyridium. BIORESOURCE TECHNOLOGY 2025; 416:131728. [PMID: 39521188 DOI: 10.1016/j.biortech.2024.131728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/08/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
A graph learning [Binarized Attributed Network Embedding (BANE)] model enhances the single-target and multi-target prediction performances of random forest and eXtreme Gradient Boosting (XGBoost) by learning complex interrelationships between cultivation parameters of Porphyridium. The BANE-XGBoost has the best prediction performance (train R2 > 0.96 and test R2 > 0.87). Based on Shapley Additive Explanation (SHAP) model, illumination intensity, culture time, and KH2PO4 are the most critical factors for Porphyridium growth. The combined facilitating roles of cultivation parameters are found using the SHAP value-based heat map and group. To reach high biomass and daily production rate concurrently, one-way and two-way partial dependent plots models find the optimal conditions. The top 2 critical parameters (illumination intensity and KH2PO4) were selected to verify using the graphical user interface website based on the optimized model and lab experiments, respectively. This study shows thegraph-learning-based model can improve prediction performance and optimize intricate low-carbon microalgal cultivation.
Collapse
Affiliation(s)
- Huankai Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| | - Leijian Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Feng Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
4
|
Qiu T. Mass Spectrometry Imaging for Spatial Toxicology Research. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5104. [PMID: 39624029 PMCID: PMC11612705 DOI: 10.1002/jms.5104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 12/06/2024]
Abstract
The spatial information of xenobiotics distribution, metabolism, and toxicity mechanisms in situ has drawn increasing attention in both pharmaceutical and environmental toxicology research to aid drug development and environmental risk assessments. Mass spectrometry imaging (MSI) provides a label-free, multiplexed, and high-throughput tool to characterize xenobiotics, their metabolites, and endogenous molecules in situ with spatial resolution, providing knowledge on spatially resolved absorption, distribution, metabolism, excretion, and toxicity on the molecular level. In this perspective, we briefly summarize applications of MSI in toxicology on xenobiotic distribution and metabolism, quantification, toxicity mechanisms, and biomarker discovery. We identified several challenges regarding how we can fully harness the power of MSI in both fundamental toxicology research and regulatory practices. First, how can we increase the coverage, sensitivity, and specificity in detecting xenobiotics and their metabolites in complex biological matrices? Second, how can we link the spatial molecular information of xenobiotics to toxicity consequences to understand toxicity mechanisms, predict exposure outcomes, and aid biomarker discovery? Finally, how can we standardize the MSI experiment and data analysis workflow to provide robust conclusions for regulation and drug development? With these questions in mind, we provide our perspectives on the future directions of MSI as a promising tool in spatial toxicology research.
Collapse
Affiliation(s)
- Tian (Autumn) Qiu
- Department of ChemistryMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
5
|
Zhang J, Mao Z, Zhang D, Guo L, Zhao H, Miao M. Mass spectrometry imaging as a promising analytical technique for herbal medicines: an updated review. Front Pharmacol 2024; 15:1442870. [PMID: 39148546 PMCID: PMC11324582 DOI: 10.3389/fphar.2024.1442870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Herbal medicines (HMs) have long played a pivotal role in preventing and treating various human diseases and have been studied widely. However, the complexities present in HM metabolites and their unclear mechanisms of action have posed significant challenges in the modernization of traditional Chinese medicine (TCM). Over the past two decades, mass spectrometry imaging (MSI) has garnered increasing attention as a robust analytical technique that enables the simultaneous execution of qualitative, quantitative, and localization analyses without complex sample pretreatment. With advances in technical solutions, MSI has been extensively applied in the field of HMs. MSI, a label-free ion imaging technique can comprehensively map the spatial distribution of HM metabolites in plant native tissues, thereby facilitating the effective quality control of HMs. Furthermore, the spatial dimension information of small molecule endogenous metabolites within animal tissues provided by MSI can also serve as a supplement to uncover pharmacological and toxicological mechanisms of HMs. In the review, we provide an overview of the three most common MSI techniques. In addition, representative applications in HM are highlighted. Finally, we discuss the current challenges and propose several potential solutions. We hope that the summary of recent findings will contribute to the application of MSI in exploring metabolites and mechanisms of action of HMs.
Collapse
Affiliation(s)
- Jinying Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Zhiguo Mao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Ding Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Lin Guo
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Hui Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Mingsan Miao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Collaborative Innovation Center for Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| |
Collapse
|
6
|
Soltwisch J, Palmer A, Hong H, Majer J, Dreisewerd K, Marshall P. Large-Scale Screening of Pharmaceutical Compounds to Explore the Application Space of On-Tissue MALDI and MALDI-2 Mass Spectrometry. Anal Chem 2024; 96:10294-10301. [PMID: 38864171 DOI: 10.1021/acs.analchem.4c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The successful application of matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) in pharmaceutical research is strongly dependent on the detection of the drug of interest at physiologically relevant concentrations. Here we explored how insufficient sensitivity due to low ionization efficiency and/or the interaction of the drug molecule with the local biochemical environment of the tissue can be mitigated for many compound classes using the recently introduced MALDI-MSI coupled with laser-induced postionization, known as MALDI-2-MSI. Leveraging a MALDI-MSI screen of about 1,200 medicines/drug-like compounds from a broad range of medicinal application areas, we demonstrate a significant improvement in drug detection and the degree of sensitivity uplift by using MALDI-2 versus traditional MALDI. Our evaluation was made under simulated imaging conditions using liver homogenate sections as substrate, onto which the compounds were spotted to mimic biological conditions to the first order. To enable an evaluable detection by both MALDI and MALDI-2 for the majority of employed compounds, we spotted 1 μL of a 10 mM solution using a spotting robot and performed our experiments with a Bruker timsTOF fleX MALDI-2 instrument in both positive and negative ion modes. Specifically, we demonstrate using a large cohort of drug-like compounds that ∼60% of the tested compounds showed a more than 10-fold increase in signal intensity and ∼16% showed a more than 100-fold increase upon use of MALDI-2 postionization. Such increases in sensitivity could help advance pharmaceutical MALDI-MSI applications toward the single-cell level.
Collapse
Affiliation(s)
- Jens Soltwisch
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
| | - Andrew Palmer
- GSK Research & Development, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Hyundae Hong
- GSK Research & Development, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Jan Majer
- GSK Research & Development, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Klaus Dreisewerd
- Institute of Hygiene, University of Münster, 48149 Münster, Germany
| | - Peter Marshall
- GSK Research & Development, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| |
Collapse
|
7
|
Wheeler K, Gosmanov C, Sandoval MJ, Yang Z, McCall LI. Frontiers in Mass Spectrometry-Based Spatial Metabolomics: Current Applications and Challenges in the Context of Biomedical Research. Trends Analyt Chem 2024; 175:117713. [PMID: 40094101 PMCID: PMC11905388 DOI: 10.1016/j.trac.2024.117713] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Metabolites are critical products and mediators of cellular and tissue function, and key signals in cell-to-cell, organ-to-organ and cross-organism communication. Many of these interactions are spatially segregated. Thus, spatial metabolomics can provide valuable insight into healthy tissue function and disease pathogenesis. Here, we review major mass spectrometry-based spatial metabolomics techniques and the biological insights they have enabled, with a focus on brain and microbiota function and on cancer, neurological diseases and infectious diseases. These techniques also present significant translational utility, for example in cancer diagnosis, and for drug development. However, spatial mass spectrometry techniques still encounter significant challenges, including artifactual features, metabolite annotation, open data, and ethical considerations. Addressing these issues represent the future challenges in this field.
Collapse
Affiliation(s)
- Kate Wheeler
- Department of Biology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Camil Gosmanov
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | | | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182
| |
Collapse
|
8
|
Dunnington EL, Wong BS, Fu D. Innovative Approaches for Drug Discovery: Quantifying Drug Distribution and Response with Raman Imaging. Anal Chem 2024; 96:7926-7944. [PMID: 38625100 PMCID: PMC11108735 DOI: 10.1021/acs.analchem.4c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Affiliation(s)
| | | | - Dan Fu
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
9
|
Bell HN, Stockwell BR, Zou W. Ironing out the role of ferroptosis in immunity. Immunity 2024; 57:941-956. [PMID: 38749397 PMCID: PMC11101142 DOI: 10.1016/j.immuni.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/20/2024] [Accepted: 03/26/2024] [Indexed: 05/19/2024]
Abstract
Ferroptosis is a type of regulated cell death that drives the pathophysiology of many diseases. Oxidative stress is detectable in many types of regulated cell death, but only ferroptosis involves lipid peroxidation and iron dependency. Ferroptosis originates and propagates from several organelles, including the mitochondria, endoplasmic reticulum, Golgi, and lysosomes. Recent data have revealed that immune cells can both induce and undergo ferroptosis. A mechanistic understanding of how ferroptosis regulates immunity is critical to understanding how ferroptosis controls immune responses and how this is dysregulated in disease. Translationally, more work is needed to produce ferroptosis-modulating immunotherapeutics. This review focuses on the role of ferroptosis in immune-related diseases, including infection, autoimmune diseases, and cancer. We discuss how ferroptosis is regulated in immunity, how this regulation contributes to disease pathogenesis, and how targeting ferroptosis may lead to novel therapies.
Collapse
Affiliation(s)
- Hannah N Bell
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan School of Medicine, Rogel Cancer Center, Ann Arbor, MI, USA; Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA.
| | - Brent R Stockwell
- Department of Biological Sciences, Department of Chemistry, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan School of Medicine, Rogel Cancer Center, Ann Arbor, MI, USA; Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Chen B, Vavrek M, Cancilla MT. From molecules to visuals: Empowering drug discovery and development with mass spectrometry imaging. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5029. [PMID: 38656528 DOI: 10.1002/jms.5029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Over the past three decades, mass spectrometry imaging (MSI) has emerged as a valuable tool for the spatial localization of drugs and metabolites directly from tissue surfaces without the need for labels. MSI offers molecular specificity, making it increasingly popular in the pharmaceutical industry compared to conventional imaging techniques like quantitative whole-body autoradiography (QWBA) and immunohistochemistry, which are unable to distinguish parent drugs from metabolites. Across the industry, there has been a consistent uptake in the utilization of MSI to investigate drug and metabolite distribution patterns, and the integration of MSI with omics technologies in preclinical investigations. To continue the further adoption of MSI in drug discovery and development, we believe there are two key areas that need to be addressed. First, there is a need for accurate quantification of analytes from MSI distribution studies. Second, there is a need for increased interactions with regulatory agencies for guidance on the utility and incorporation of MSI techniques in regulatory filings. Ongoing efforts are being made to address these areas, and it is hoped that MSI will gain broader utilization within the industry, thereby becoming a critical ingredient in driving drug discovery and development.
Collapse
Affiliation(s)
- Bingming Chen
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics, Merck & Co., Inc, Rahway, New Jersey, USA
| | - Marissa Vavrek
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics, Merck & Co., Inc, Rahway, New Jersey, USA
| | - Mark T Cancilla
- Department of Pharmacokinetics, Dynamics, Metabolism & Bioanalytics, Merck & Co., Inc, Rahway, New Jersey, USA
| |
Collapse
|