1
|
Mukty SA, Hasan R, Bhuia MS, Saha AK, Rahman US, Khatun MM, Bithi SA, Ansari SA, Ansari IA, Islam MT. Assessment of sedative activity of fraxin: In vivo approach along with receptor binding affinity and molecular interaction with GABAergic system. Drug Dev Res 2024; 85:e22250. [PMID: 39154218 DOI: 10.1002/ddr.22250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/17/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Insomnia is a sleep disorder in which you have trouble falling and/or staying asleep. This research aims to evaluate the sedative effects of fraxin (FX) on sleeping mice induced by thiopental sodium (TS). In addition, a molecular docking study was conducted to investigate the molecular processes underlying these effects. The study used adult male Swiss albino mice and administered FX (10 and 20 mg/kg, i.p.) and diazepam (DZP) (2 mg/kg) either separately or in combination within the different groups to examine their modulatory effects. After a period of 30 min, the mice that had been treated were administered (TS: 20 mg/kg, i.p.) to induce sleep. The onset of sleep for the mice and the length of their sleep were manually recorded. Additionally, a computational analysis was conducted to predict the role of gamma-aminobutyric acid (GABA) receptors in the sleep process and evaluate their pharmacokinetics and toxicity. The outcomes indicated that FX extended the length of sleep and reduced the time it took to fall asleep. When the combined treatment of FX and DZP showed synergistic sedative action. Also, FX had a binding affinity of -7.2 kcal/mol, while DZP showed -8.4 kcal/mol. The pharmacokinetic investigation of FX demonstrated favorable drug-likeness and strong pharmacokinetic characteristics. Ultimately, FX demonstrated a strong sedative impact in the mouse model, likely via interacting with the GABAA receptor pathways.
Collapse
Affiliation(s)
- Sonaly Akter Mukty
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
| | - Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
| | - Anik Kumar Saha
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Umme Sadea Rahman
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
| | - Mst Muslima Khatun
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Sumaya Akter Bithi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
| |
Collapse
|
2
|
Rezoan Hossain M, Zahra Shova FT, Akter M, Shuvo S, Ahmed N, Akter A, Haque M, Salma U, Roman Mogal M, Saha HR, Sarkar BC, Sohel M. Esculetin unveiled: Decoding its anti-tumor potential through molecular mechanisms-A comprehensive review. Cancer Rep (Hoboken) 2024; 7:e1948. [PMID: 38062981 PMCID: PMC10809201 DOI: 10.1002/cnr2.1948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The growing complexity of cancer has made it a significant concern in the medical community. Although cancer research has advanced, it is still challenging to create new effective medications due to the limitations and side effects of existing treatment strategies. These are enforcing the development of some alternative drugs from natural compounds with fewer drawbacks and side effects. AIM Therefore, this review aims to provide up-to-date, crucial, and all-encompassing data on esculetin's anticancer activity, including all relevant molecular and cellular processes based on in vivo and in vitro investigations. RESULTS According to the literature review, esculetin is available in nature and is effective against 16 different types of cancer. The general mechanism shown by esculetin is modulating signaling cascades and its related pathways, like cell proliferation, cell growth, autophagy, apoptosis, necrosis, inflammation, angiogenesis, metastasis, invasion, and DNA damage. Nanoformulation of esculetin improves this natural product's efficacy by improving water solubility. Esculetin's synergistic effects with both natural substances and conventional treatments have been shown, and this method aids in reversing resistance mechanisms by modulating resistance-related proteins. In addition, it has fewer side effects on humans than other phytochemicals and standard drugs with some good pharmacokinetic features. CONCLUSION Therefore, until standard chemotherapeutics are available in pharmaceutical markets, esculetin should be used as a therapeutic drug against various cancer types.
Collapse
Affiliation(s)
| | - Fatema Tuj Zahra Shova
- Biotechnology and Genetic EngineeringMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Munni Akter
- Department of MedicalDinajpure Nursing College (Affiliated Rajshahi University)DinajpurBangladesh
| | - Shahporan Shuvo
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Nasim Ahmed
- Department of PharmacyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Afroza Akter
- Departmnet of MicrobiologyNoakhali Science and Technology UniversityNoakhaliBangladesh
| | - Munira Haque
- Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| | - Umme Salma
- Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| | - Md Roman Mogal
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Hasi Rani Saha
- Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| | | | - Md Sohel
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
- Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| |
Collapse
|
3
|
Boudreau A, Richard AJ, Harvey I, Stephens JM. Artemisia scoparia and Metabolic Health: Untapped Potential of an Ancient Remedy for Modern Use. Front Endocrinol (Lausanne) 2021; 12:727061. [PMID: 35211087 PMCID: PMC8861327 DOI: 10.3389/fendo.2021.727061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/16/2021] [Indexed: 11/19/2022] Open
Abstract
Botanicals have a long history of medicinal use for a multitude of ailments, and many modern pharmaceuticals were originally isolated from plants or derived from phytochemicals. Among these, artemisinin, first isolated from Artemisia annua, is the foundation for standard anti-malarial therapies. Plants of the genus Artemisia are among the most common herbal remedies across Asia and Central Europe. The species Artemisia scoparia (SCOPA) is widely used in traditional folk medicine for various liver diseases and inflammatory conditions, as well as for infections, fever, pain, cancer, and diabetes. Modern in vivo and in vitro studies have now investigated SCOPA's effects on these pathologies and its ability to mitigate hepatotoxicity, oxidative stress, obesity, diabetes, and other disease states. This review focuses on the effects of SCOPA that are particularly relevant to metabolic health. Indeed, in recent years, an ethanolic extract of SCOPA has been shown to enhance differentiation of cultured adipocytes and to share some properties of thiazolidinediones (TZDs), a class of insulin-sensitizing agonists of the adipogenic transcription factor PPARγ. In a mouse model of diet-induced obesity, SCOPA diet supplementation lowered fasting insulin and glucose levels, while inducing metabolically favorable changes in adipose tissue and liver. These observations are consistent with many lines of evidence from various tissues and cell types known to contribute to metabolic homeostasis, including immune cells, hepatocytes, and pancreatic beta-cells. Compounds belonging to several classes of phytochemicals have been implicated in these effects, and we provide an overview of these bioactives. The ongoing global epidemics of obesity and metabolic disease clearly require novel therapeutic approaches. While the mechanisms involved in SCOPA's effects on metabolic, anti-inflammatory, and oxidative stress pathways are not fully characterized, current data support further investigation of this plant and its bioactives as potential therapeutic agents in obesity-related metabolic dysfunction and many other conditions.
Collapse
Affiliation(s)
- Anik Boudreau
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Allison J. Richard
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Innocence Harvey
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Jacqueline M. Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
- *Correspondence: Jacqueline M. Stephens,
| |
Collapse
|
4
|
Farhadi P, Yarani R, Dokaneheifard S, Mansouri K. The emerging role of targeting cancer metabolism for cancer therapy. Tumour Biol 2020; 42:1010428320965284. [PMID: 33028168 DOI: 10.1177/1010428320965284] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glucose, as the main consuming nutrient of the body, faces different destinies in cancer cells. Glycolysis, oxidative phosphorylation, and pentose phosphate pathways produce different glucose-derived metabolites and thus affect cells' bioenergetics differently. Tumor cells' dependency to aerobic glycolysis and other cancer-specific metabolism changes are known as the cancer hallmarks, distinct cancer cells from normal cells. Therefore, these tumor-specific characteristics receive the limelight as targets for cancer therapy. Glutamine, serine, and fatty acid oxidation together with 5-lipoxygenase are main pathways that have attracted lots of attention for cancer therapy. In this review, we not only discuss different tumor metabolism aspects but also discuss the metabolism roles in the promotion of cancer cells at different stages and their difference with normal cells. Besides, we dissect the inhibitors potential in blocking the main metabolic pathways to introduce the effective and non-effective inhibitors in the field.
Collapse
Affiliation(s)
- Pegah Farhadi
- Medical Biology Research Center, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Sadat Dokaneheifard
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kamran Mansouri
- Medical Biology Research Center, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Molecular Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Chemical Constituents from Fraxinus hupehensis and Their Antifungal and Herbicidal Activities. Biomolecules 2020; 10:biom10010074. [PMID: 31906487 PMCID: PMC7022268 DOI: 10.3390/biom10010074] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/29/2019] [Accepted: 12/30/2019] [Indexed: 12/19/2022] Open
Abstract
The phytochemical investigation of Fraxinus hupehensis led to the isolation and characterization of ten compounds which were identified as fraxin (1), fraxetin (2), esculetin (3), cichoriin (4), euphorbetin (5), kaempferol-3-O-β-rutinoside (6), oleuropein (7), linoleic acid (8), methyl linoleate (9), and β-sitosterol (10). Structures of the isolated constituents were characterized by 1H NMR, 13C NMR and HRMS. All the compounds, except compounds 3 and 4, were isolated for the first time from this plant. Further, this was the first report for the occurrence of compound 5 in the Fraxinus species. Antifungal activity evaluation showed that compound 2 exhibited significant inhibitory effects against Bipolaris maydis, Sclerotium rolfsii, and Alternaria solani with EC50 values of 0.31 ± 0.01 mmol/L, 10.50 ± 0.02 mmol/L, and 0.40 ± 0.02 mmol/L respectively, compared to the positive control, Carbendazim, with its EC50 values of 0.74 ± 0.01 mmol/L, 1.78 ± 0.01 mmol/L and 1.41 ± 0.00 mmol/L. Herbicidal activity tests showed that compounds 8-10 had strong inhibitory effects against the roots of Echinochloa crus-galli with EC50 values of 1.16 ± 0.23 mmol/L, 1.28 ± 0.58 mmol/L and 1.33 ± 0.35 mmol/L respectively, more potently active than that of the positive control, Cyanazine, with its EC50 values of 1.56 ± 0.44 mmol/L. However, none of the compounds proved to be active against the tested bacteria (Erwinia carotovora, Pseudomonas syringae, and Ralstonia solanacearum).
Collapse
|
6
|
Wang L, Guo X, Guo X, Zhang X, Ren J. Decitabine promotes apoptosis in mesenchymal stromal cells isolated from patients with myelodysplastic syndromes by inducing reactive oxygen species generation. Eur J Pharmacol 2019; 863:172676. [PMID: 31542488 DOI: 10.1016/j.ejphar.2019.172676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 10/26/2022]
Abstract
Myelodysplastic syndromes (MDSs) are a group of clonal disorders of hematopoietic stem cells, resulting in ineffective hematopoiesis. Previous studies have reported that decitabine (DAC) plays an essential role in cell cycle arrest and cell death induction in multiple cell types. Nevertheless, the effect of decitabine on mesenchymal stromal cells derived from bone marrow of patients with MDSs is not completely clarified. Here, we explored the apoptotic and anti-proliferative effect of DAC on MSCs isolated from patients with MDSs. Treatment with DAC inhibited cell growth in a concentration- and time-dependent manner by inducing apoptosis. We found a positive relationship between cell death triggered by DAC in MSCs and the death receptor family members Fas and FasL mRNA and protein levels (***P < 0.00085), cleaved caspase (-3, -8, and -9) activity, and mitochondrial membrane potential reduction. Additionally, DAC-induced apoptosis was inhibited by Kp7-6, a FasL/Fas antagonist, indicating a crucial role of FasL/Fas, a cell death receptor, in mediating the apoptotic effect of DAC. DAC also induced reactive oxygen species (ROS) generation in MSCs derived from MDSs patients (*P = 0.038). Furthermore, N-acetyl-L-cysteine (NAC), a widely accepted ROS scavenger, efficiently reversed DAC-induced apoptosis by inhibiting ROS generation (***P < 0.00051) in mitochondria and restoring mitochondrial membrane potential. Furthermore, ROS production was found to be a consequence of caspase activation via caspases inhibition. Our data imply that DAC triggers ROS production in human MSCs, which serves as a crucial factor for mitochondrial membrane potential reduction, and DAC induces cell death prior to FasL/Fas stimulation.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Xiaonan Guo
- Department of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Xiaoling Guo
- Department of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Xiaolei Zhang
- Department of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Jinhai Ren
- Department of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
7
|
Mo L, Zeng Z, Li Y, Li D, Yan CY, Xiao S, Huang YH. Animal study of the anti-diarrhea effect and microbial diversity of dark tea produced by the Yao population of Guangxi. Food Funct 2019; 10:1999-2009. [DOI: 10.1039/c9fo00110g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chinese dark teas (CDTs) are a special type of tea traditionally consumed by ethnic minorities around the border regions of China.
Collapse
Affiliation(s)
- Lan Mo
- College of Horticulture
- South China Agricultural University
- Guangzhou
- China
| | - Zhen Zeng
- College of Horticulture
- South China Agricultural University
- Guangzhou
- China
| | - Yun Li
- Infinitus (China) Company Ltd
- Guangzhou
- China
| | - Dan Li
- College of Horticulture
- South China Agricultural University
- Guangzhou
- China
| | - Chang-yu Yan
- College of Horticulture
- South China Agricultural University
- Guangzhou
- China
| | - Sui Xiao
- College of Forestry and Landscape Architecture
- South China Agricultural University
- Guangzhou
- China
| | - Ya-hui Huang
- College of Horticulture
- South China Agricultural University
- Guangzhou
- China
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
| |
Collapse
|
8
|
Rubio V, García-Pérez AI, Herráez A, Diez JC. Different roles of Nrf2 and NFKB in the antioxidant imbalance produced by esculetin or quercetin on NB4 leukemia cells. Chem Biol Interact 2018; 294:158-166. [PMID: 30171828 DOI: 10.1016/j.cbi.2018.08.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/23/2018] [Accepted: 08/17/2018] [Indexed: 01/08/2023]
Abstract
Esculetin (6,7-dihydrocoumarin) and the flavonoid quercetin (3,5,7,3',4' pentahydroxyflavone) are compounds that could change the balance of redox homeostasis. NB4 leukemia cells were treated with 25 μM quercetin for 24 h and with esculetin at either 100 or 500 μM for different times. Quercetin increased the levels of pro-inflammatory NFkB p65 in the nucleus correspondingly reducing them in the cytosol. The levels of NFkB p65 decreased in the nucleus at high esculetin concentration treatments for long times (19 h), concomitantly increasing the levels of anti-inflammatory NFkB p50 in the nucleus. This could suggest formation of inhibitory p50 homodimers possibly related with anti-inflammatory response. Lipoxygenase expression was reduced either by esculetin or quercetin. A significant increase of Nrf2 in the nucleus of NB4 cells treated with 100 μM esculetin for 19 h was observed. Quercetin increased the levels of Nrf2 in the cytosol reducing them in the nucleus. Superoxide dismutase expression increased in NB4 cells treated with esculetin in contrast with quercetin. All these data support a relevant differential role for NFkB and Nrf2 in anti-inflammatory and redox response when apoptosis was induced by esculetin or quercetin in human leukemia NB4 cells.
Collapse
Affiliation(s)
- Virginia Rubio
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Campus Universitario, Universidad de Alcalá, 28871, Alcalá de Henares, Madrid, Spain
| | - Ana I García-Pérez
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Campus Universitario, Universidad de Alcalá, 28871, Alcalá de Henares, Madrid, Spain
| | - Angel Herráez
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Campus Universitario, Universidad de Alcalá, 28871, Alcalá de Henares, Madrid, Spain
| | - José C Diez
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Campus Universitario, Universidad de Alcalá, 28871, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
9
|
Rubio V, García-Pérez AI, Herráez A, Tejedor MC, Diez JC. Esculetin modulates cytotoxicity induced by oxidants in NB4 human leukemia cells. ACTA ACUST UNITED AC 2017; 69:700-712. [DOI: 10.1016/j.etp.2017.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 11/26/2022]
|
10
|
Wang G, Lu M, Yao Y, Wang J, Li J. Esculetin exerts antitumor effect on human gastric cancer cells through IGF-1/PI3K/Akt signaling pathway. Eur J Pharmacol 2017; 814:207-215. [PMID: 28847482 DOI: 10.1016/j.ejphar.2017.08.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/13/2022]
Abstract
In this study, we aimed to investigate the antitumor effect of esculetin, a coumarin derivative extracted from natural plants, on human gastric cancer cells, and to illustrate the potential mechanisms. The results showed that esculetin exhibited anti-proliferative effects against gastric cancer cells and induced their apoptosis in a dose dependent manner with lower toxicity against normal gastric epithelial cells. Mechanism study indicated that esculetin induced gastric cancer MGC-803 cells apoptosis by triggering the activation of mitochondrial apoptotic pathway through reducing the mitochondrial membrane potential (MMP), increasing Bax/Bcl-2 ratio, activating caspase-3 and caspase-9 activity, and increasing cytochrome c release from mitochondria. Further study showed that the pro-apoptotic effects of esculetin were associated with down-regulation of insulin-like growth factor-1/ phosphatidylinositide 3-kinase/protein kinase B (IGF-1/PI3K/Akt) signaling pathway. Activation of IGF-1/PI3K/Akt pathway by IGF-1 abrogated the pro-apoptotic effects of esculetin, while inhibition of IGF-1/PI3K/Akt pathway by triciribine or LY294002 enhanced the pro-apoptotic effects of esculetin. In addition, esculetin inhibited in vivo tumor growth with no obvious toxicity following subcutaneous inoculation of MGC-803 cells in nude mice, and inhibited activation of IGF-1/PI3K/Akt pathway in tumor tissue. CONCLUSION These results indicate that esculetin could inhibit cell proliferation and induce apoptosis of gastric cancer cells through IGF-1/PI3K/Akt mediated mitochondrial apoptosis pathway, and may be a novel effective chemotherapeutic agent against gastric cancer.
Collapse
Affiliation(s)
- Guijun Wang
- The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121001, China
| | - Meili Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121001, China
| | - Yusheng Yao
- The Third Affiliated Hospital, Jinzhou Medical University; Jinzhou 121000, China.
| | - Jing Wang
- The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121001, China
| | - Juan Li
- The Third Affiliated Hospital, Jinzhou Medical University; Jinzhou 121000, China.
| |
Collapse
|
11
|
Esculetin Neutralises Cytotoxicity of t-BHP but Not of H 2O 2 on Human Leukaemia NB4 Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9491045. [PMID: 28367450 PMCID: PMC5359438 DOI: 10.1155/2017/9491045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/09/2017] [Indexed: 01/27/2023]
Abstract
The coumarin esculetin shows antioxidant action on some cell types, both by scavenging ROS and by decreasing ROS production. We have previously demonstrated the induction of apoptosis by esculetin on NB4 human leukaemia cells by an ill-defined mechanism related to ROS levels. In this work, we analyze the effect of the simultaneous treatment with esculetin and two oxidants to observe the early events in the mechanism of esculetin-induced apoptosis. Our results show that, from the early time of 15 min, esculetin acts synergistically with H2O2 to decrease cell viability and metabolic activity and to increase apoptosis in NB4 cells. In contrast, the early oxidative effects of t-BHP are neutralised by esculetin, protecting human leukaemia NB4 cells from apoptosis. Esculetin seems to restrict the increase in peroxides caused by H2O2 or t-BHP in the time interval analyzed. These results contribute to a better understanding of the cytotoxic effect caused by esculetin on NB4 cells. At the same time, the early neutralisation of exogenous oxidants could be of interest to prevent diseases related to oxidative stress imbalance.
Collapse
|
12
|
Han MH, Park C, Lee DS, Hong SH, Choi IW, Kim GY, Choi SH, Shim JH, Chae JI, Yoo YH, Choi YH. Cytoprotective effects of esculetin against oxidative stress are associated with the upregulation of Nrf2-mediated NQO1 expression via the activation of the ERK pathway. Int J Mol Med 2016; 39:380-386. [DOI: 10.3892/ijmm.2016.2834] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023] Open
|
13
|
Arora R, Sawney S, Saini V, Steffi C, Tiwari M, Saluja D. Esculetin induces antiproliferative and apoptotic response in pancreatic cancer cells by directly binding to KEAP1. Mol Cancer 2016; 15:64. [PMID: 27756327 PMCID: PMC5069780 DOI: 10.1186/s12943-016-0550-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 10/06/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND A handful of studies have exploited antitumor potential of esculetin, a dihydroxy coumarine derivative; the targets to which it binds and the possible downstream mechanism for its cytotoxicity in cancer cells remain to be elucidated. Using pancreatic cancer cell lines as a model system, herein the study was initiated to check the efficacy of esculetin in inhibiting growth of these cancer cells, to decipher mechanism of its action and to predict its direct binding target protein. METHODS The cytotoxicity of esculetin was determined in PANC-1, MIA PaCa-2 and AsPC-1 cell lines; followed by an inspection of intracellular levels of ROS and its associated transcription factor, p65-NF-κB. The interaction between transcription factor, Nrf2 and its regulator KEAP1 was studied in the presence and absence of esculetin. The effect of Nrf2 on gene expression of antioxidant response element pathway was monitored by real time PCR. Thereafter, potential binding target of esculetin was predicted through molecular docking and then confirmed in vitro. RESULTS Esculetin treatment in all three pancreatic cancer cell lines resulted in significant growth inhibition with G1-phase cell cycle arrest and induction of mitochondrial dependent apoptosis through activation of caspases 3, 8 and 9. A notable decrease was observed in intracellular ROS and protein levels of p65-NF-κB in PANC-1 cells on esculetin treatment. Antioxidant response regulator Nrf2 has been reportedly involved in crosstalk with NF-κB. Interaction between Nrf2 and KEAP1 was found to be lost upon esculetin treatment in PANC-1 and MIA Paca-2 cells. Nuclear accumulation of Nrf2 and an upregulation of expression of Nrf2 regulated gene NQO1, observed on esculetin treatment in PANC-1 further supported the activation of Nrf2. To account for the loss of Nrf2-KEAP1 interaction on esculetin treatment, direct binding potential between esculetin and KEAP1 was depicted in silico using molecular docking studies. Pull down assay using esculetin conjugated sepharose beads confirmed the binding between esculetin and KEAP1. CONCLUSIONS We propose that esculetin binds to KEAP1 and inhibits its interaction with Nrf2 in pancreatic cancer cells. This thereby promotes nuclear accumulation of Nrf2 in PANC-1 cells that induces antiproliferative and apoptotic response possibly by attenuating NF-κB.
Collapse
Affiliation(s)
- Rashi Arora
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007 India
| | - Sharad Sawney
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007 India
| | - Vikas Saini
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007 India
| | - Chris Steffi
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007 India
| | - Manisha Tiwari
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007 India
| | - Daman Saluja
- Dr. B.R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007 India
| |
Collapse
|
14
|
Merghoub N, El Btaouri H, Benbacer L, Gmouh S, Trentesaux C, Brassart B, Terryn C, Attaleb M, Madoulet C, Benjouad A, Amzazi S, El Mzibri M, Morjani H. Inula Viscosa Extracts Induces Telomere Shortening and Apoptosis in Cancer Cells and Overcome Drug Resistance. Nutr Cancer 2016; 68:131-43. [PMID: 26771897 DOI: 10.1080/01635581.2016.1115105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Telomerase is activated in human papillomavirus (HPV) positive cervical cancer and targeting telomeres offers a novel anticancer therapeutic strategy. In this study, the telomere targeting properties, the cytotoxic as well as the pro-apoptotic effects of hexane (IV-HE) and dichloromethane (IV-DF) fractions from Inula viscosa L. extracts were investigated on human cervical HeLa and SiHa cancer cells. Our data demonstrate that IV-HE and IV-DF extracts were able to inhibit cell growth in HeLa and SiHa cells in a dose-dependent manner and studied resistant cell lines exhibited a resistance factor less than 2 when treated with the extracts. IV-HE and IV-DF extracts were able to inhibit telomerase activity and to induce telomere shortening as shown by telomeric repeat amplification protocol and TTAGGG telomere length assay, respectively. The sensitivity of fibroblasts to the extracts was increased when telomerase was expressed. Finally, IV-HE and IV-DF were able to induce apoptosis as evidenced by an increase in annexin-V labeling and caspase-3 activity. This study provides the first evidence that the IV-HE and IV-DF extracts from Inula viscosa L. target telomeres induce apoptosis and overcome drug resistance in tumor cells. Future studies will focus on the identification of the molecules involved in the anticancer activity.
Collapse
Affiliation(s)
- Nawal Merghoub
- a Laboratory of Biochemistry and Immunology, Faculty of Sciences, Rabat, Morocco Department of Biology and Medical Research CNESTEN, Rabat, Morocco and MEDyC CNRS UMR 7369, Faculty of Pharmacy , Reims , France
| | | | - Laila Benbacer
- c Department of Biology and Medical Research CNESTEN , Rabat , Morocco
| | - Saïd Gmouh
- d Faculté des Sciences Ben M'sik , Casablanca , Morocco
| | | | | | | | - Mohammed Attaleb
- h Department of Biology and Medical Research CNESTEN , Rabat , Morocco
| | | | - Abdelaziz Benjouad
- j Laboratory of Biochemistry and Immunology, Faculty of Sciences , Rabat , Morocco
| | - Saaïd Amzazi
- j Laboratory of Biochemistry and Immunology, Faculty of Sciences , Rabat , Morocco
| | | | - Hamid Morjani
- l MEDyC CNRS UMR 7369, Faculty of Pharmacy , Reims , France
| |
Collapse
|
15
|
Metformin Induces Cell Cycle Arrest and Apoptosis in Drug-Resistant Leukemia Cells. LEUKEMIA RESEARCH AND TREATMENT 2015; 2015:516460. [PMID: 26688757 PMCID: PMC4673355 DOI: 10.1155/2015/516460] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/18/2015] [Accepted: 09/20/2015] [Indexed: 12/25/2022]
Abstract
Recent epidemiological studies indicate that the antidiabetic drug metformin has chemosensitizing and chemopreventive effects against carcinogenesis. Here, we demonstrate that metformin exerts varying degrees of antitumor activity against human leukemia cells, as reflected by differences in growth inhibition, apoptosis, and alterations to metabolic enzymes. In metformin-sensitive cells, autophagy was not induced but rather it blocked proliferation by means of arresting cells in the S and G2/M phases which was associated with the downregulation of cyclin A, cyclin B1, and cdc2, but not that of cyclin E. In 10E1-CEM cells that overexpress Bcl-2 and are drug-resistant, the effect of metformin on proliferation was more pronounced, also inducing the activation of the caspases 3/7 and hence apoptosis. In all sensitive cells, metformin decreased the Δψm and it modified the expression of enzymes involved in energy metabolism: PKCε (PKCepsilon) and PKCδ (PKCdelta). In sensitive cells, metformin altered PKCε and PKCδ expression leading to a predominance of PKCε over PKCδ which implies a more glycolytic state. The opposite occurs in the nonresponsive cells. In conclusion, we provide new insights into the activity of metformin as an antitumoral agent in leukemia cells that could be related to its capability to modulate energy metabolism.
Collapse
|
16
|
Gunasekaran S, Venkatachalam K, Namasivayam N. p-Methoxycinnamic acid, an active phenylpropanoid induces mitochondrial mediated apoptosis in HCT-116 human colon adenocarcinoma cell line. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:966-974. [PMID: 26546748 DOI: 10.1016/j.etap.2015.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
Among the eight phytochemicals (dihydrocarveol, sinapic acid, vanillic acid, ethylgallate, myrtenol, transcarveol, p-methoxycinnamic acid, and isoferulic acid) we tested, p-methoxycinnamic acid (p-MCA) [10 μM] showed the most potent in vitro growth inhibition on human colon adenocarcinoma (HCT-116 cells). Antiproliferative activity of p-MCA at 24h was associated with DNA damage, morphological changes and the results were comparable with doxorubicin. p-MCA induced phosphatidylserine translocation, increased the levels of reactive oxygen species (ROS), thiobarbituric acid reactive substances (TBARS), protein carbonyl content (PCC) and decreased enzymic antioxidant status (SOD, CAT, GPx) in HCT-116. p-MCA treatment increased the percentage of apoptotic cells, decreased the mitochondrial membrane potential and triggered cytochrome C release to cytosol. The induction of apoptosis by p-MCA was accompanied by an increase in caspase 3 and caspase 9 activities, increased expression of Bax and decreased expression of Bcl-2. Thus p-MCA induces mitochondria mediated intrinsic pathway of apoptosis in HCT-116 and has potential for treatment and prevention of colon cancer.
Collapse
Affiliation(s)
- Sivagami Gunasekaran
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu 608 002, India
| | - Karthikkumar Venkatachalam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu 608 002, India
| | - Nalini Namasivayam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu 608 002, India.
| |
Collapse
|
17
|
HONG SUHYUN, JEONG HUIKYUNG, HAN MINHO, PARK CHEOL, CHOI YUNGHYUN. Esculetin suppresses lipopolysaccharide-induced inflammatory mediators and cytokines by inhibiting nuclear factor-κB translocation in RAW 264.7 macrophages. Mol Med Rep 2014; 10:3241-6. [DOI: 10.3892/mmr.2014.2613] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 10/02/2014] [Indexed: 11/06/2022] Open
|
18
|
Rubio V, Calviño E, García-Pérez A, Herráez A, Diez JC. Human acute promyelocytic leukemia NB4 cells are sensitive to esculetin through induction of an apoptotic mechanism. Chem Biol Interact 2014; 220:129-39. [PMID: 24995577 DOI: 10.1016/j.cbi.2014.06.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 05/08/2014] [Accepted: 06/19/2014] [Indexed: 11/30/2022]
Abstract
Acute promyelocytic leukemia (APL) is a type of cancer, in which immature cells called promyelocytes proliferate abnormally. Human NB4 cell line appears to be a suitable in vitro model to express the characteristics of APL. In this work, we have investigated the effects of esculetin, a coumarin derivative with antioxidant properties, on the viability, the induction of apoptosis and the expression of apoptotic factors in NB4 cells. Cells treated with esculetin at several concentrations (20-500 μM) and for different times (5-24 h) showed a concentration- and time-dependent viability decrease with increased subdiploid DNA production. Esculetin inhibited cell cycle progression and induced DNA fragmentation. Moreover, annexin-V-FITC cytometry assays suggested that increased toxicity is due to both early and late apoptosis. This apoptosis process is be mediated by activation of caspase-3 and caspase-9. Treatments with progressively increasing concentrations (from 100 μM to 500 μM) of esculetin produced a reduction of Bcl2/Bax ratio in NB4 cells at 19 h, without affecting p53 levels. Proapoptotic action of esculetin involves the ERK MAP kinase cascade since increased levels of phosphorylated ERK were observed after those treatments. Increments in the levels of phosphorylated-Akt were also observed. Additionally, esculetin induced the loss of mitochondrial membrane potential with a release of cytochrome c into the cytosol which starts at 6 h of treatment with esculetin and increases up to 24 h. Esculetin induced an increase in superoxide anion at long times of treatment and a reduction of peroxides at short times (1 h) with an observed increase at 2-4 h of treatment. No significant changes in NO production was observed. Esculetin reduced the GSH levels in a time-dependent manner. In summary, the present work shows the cytotoxic action of esculetin as an efficient tool to study apoptosis mechanism induction on NB4 cell line used as a relevant model of APL disease.
Collapse
Affiliation(s)
- Virginia Rubio
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Campus Universitario, Universidad de Alcalá, 28871 Alcalá de Henares (Madrid), Spain
| | - Eva Calviño
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Campus Universitario, Universidad de Alcalá, 28871 Alcalá de Henares (Madrid), Spain
| | - Ana García-Pérez
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Campus Universitario, Universidad de Alcalá, 28871 Alcalá de Henares (Madrid), Spain
| | - Angel Herráez
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Campus Universitario, Universidad de Alcalá, 28871 Alcalá de Henares (Madrid), Spain
| | - José C Diez
- Unidad de Bioquímica y Biología Molecular, Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Campus Universitario, Universidad de Alcalá, 28871 Alcalá de Henares (Madrid), Spain.
| |
Collapse
|
19
|
Bishayee K, Khuda-Bukhsh AR. 5-lipoxygenase antagonist therapy: a new approach towards targeted cancer chemotherapy. Acta Biochim Biophys Sin (Shanghai) 2013; 45:709-19. [PMID: 23752617 DOI: 10.1093/abbs/gmt064] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Leukotrienes are the bioactive group of fatty acids and major constituents of arachidonic acid metabolism molded by the catalytic activity of 5-lipoxygenase (5-LOX). Evidence is accumulating in support of the direct involvement of 5-LOX in the progression of different types of cancer including prostate, lung, colon, and colorectal cancers. Several independent studies now support the correlation between the 5-LOX expression and cancer cell viability, proliferation, cell migration, invasion through extracellular matrix destruction, metastasis, and activation of anti-apoptotic signaling cascades. The involvement of epidermal growth factor receptor and 5-oxo-ETE receptor (OXER1) is the major talking point in the downstream of the 5-LOX pathway, which relates the cancer cells to the proliferative pathways. Antisense technology approaches and use of different kinds of blocker targeted to 5-LOX, FLAP (5-LOX-activating protein), and OXER1 have shown a greater efficiency in combating different cancer cell types. Lastly, suppression of 5-LOX activity that reduces the cell proliferation activity also induces intrinsic mitochondrial apoptotic pathway in either p53-dependent or independent manner. Pharmacological agents that specifically inhibit the LOX-mediated signaling pathways have been used during last few years to treat inflammatory diseases such as asthma and arthritis. Studies of these well-characterized agents are therefore warranted for their use as possible candidates for chemotherapeutic studies against the killer disease cancer.
Collapse
Affiliation(s)
- Kausik Bishayee
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, India
| | | |
Collapse
|
20
|
AKT signalling and mitochondrial pathways are involved in mushroom polysaccharide-induced apoptosis and G1 or S phase arrest in human hepatoma cells. Food Chem 2013; 138:2130-9. [DOI: 10.1016/j.foodchem.2012.10.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 09/13/2012] [Accepted: 10/15/2012] [Indexed: 01/14/2023]
|
21
|
CHEN YU, HE YUFANG, NAN MINLUN, SUN WENYI, HU JIE, CUI AI, LI FAN, WANG FANG. Novel rotundic acid derivatives: Synthesis, structural characterization and in vitro antitumor activity. Int J Mol Med 2012; 31:353-60. [DOI: 10.3892/ijmm.2012.1206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/16/2012] [Indexed: 11/05/2022] Open
|
22
|
Vázquez R, Riveiro ME, Vermeulen M, Alonso E, Mondillo C, Facorro G, Piehl L, Gómez N, Moglioni A, Fernández N, Baldi A, Shayo C, Davio C. Structure-anti-leukemic activity relationship study of ortho-dihydroxycoumarins in U-937 cells: key role of the δ-lactone ring in determining differentiation-inducing potency and selective pro-apoptotic action. Bioorg Med Chem 2012; 20:5537-49. [PMID: 22925447 DOI: 10.1016/j.bmc.2012.07.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/08/2012] [Accepted: 07/16/2012] [Indexed: 01/26/2023]
Abstract
Previous studies indicated the need of at least one phenolic hydroxyl group in the coumarin core for induction of cytotoxicity in different cell lines. Herein, we present an exhaustive structure-activity relationship study including ortho-dihydroxycoumarins (o-DHC) derivatives, cinnamic acid derivatives (as open-chain coumarin analogues) and 1,2-pyrones (representative of the δ-lactone ring of the coumarin core), carried out to further identify the structural features of o-DHC required to induce leukemic cell differentiation and apoptosis in U-937 cells. Our results show for the first time that the δ-lactone ring positively influences the aforementioned biological effects, by conferring greater potency to compounds with an intact coumarin nucleus. Most tellingly, we reveal herein the crucial role of this molecular portion in determining the selective toxicity that o-DHC show for leukemic cells over normal blood cells. From a pharmacological perspective, our findings point out that o-DHC may be useful prototypes for the development of novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Ramiro Vázquez
- Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental (IBYME)-CONICET, Vuelta de Obligado 2490 (C1428ADN), Buenos Aires, Argentina; Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica-UBA, Junín 954 (C1113AAD), Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
SHIN DONGYEOK, PARK YOUSOO, YANG KWANGMO, KIM GIYOUNG, KIM WUNJAE, HAN MINHO, KANG HOSUNG, CHOI YUNGHYUN. Decitabine, a DNA methyltransferase inhibitor, induces apoptosis in human leukemia cells through intracellular reactive oxygen species generation. Int J Oncol 2012; 41:910-8. [DOI: 10.3892/ijo.2012.1546] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/16/2012] [Indexed: 11/05/2022] Open
|
24
|
Jeong JW, Jin CY, Park C, Hong SH, Kim GY, Jeong YK, Lee JD, Yoo YH, Choi YH. Induction of apoptosis by cordycepin via reactive oxygen species generation in human leukemia cells. Toxicol In Vitro 2011; 25:817-24. [PMID: 21310227 DOI: 10.1016/j.tiv.2011.02.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/29/2011] [Accepted: 02/03/2011] [Indexed: 12/11/2022]
Abstract
Cordycepin (3'-deoxyadenosin), a specific polyadenylation inhibitor, is the main functional component in Cordyceps militaris, one of the top three renowned traditional Chinese medicines. Cordycepin has been shown to possess many pharmacological activities including immunological stimulation, and anti-bacterial, anti-viral, and anti-tumor effects. However, the mechanisms underlying its anti-cancer mechanisms are not yet understood. In this study, the apoptotic effects of cordycepin were investigated in human leukemia cells. Treatment with cordycepin significantly inhibited cell growth in a concentration-dependent manner by inducing apoptosis but not necrosis. This induction was associated with generation of reactive oxygen species (ROS), mitochondrial dysfunction, activation of caspases, and cleavage of poly(ADP-ribose) polymerase protein. However, apoptosis induced by cordycepin was attenuated by caspase inhibitors, indicating an important role for caspases in cordycepin responses. Administration of N-acetyl-l-cysteine, a scavenger of ROS, also significantly inhibited cordycepin-induced apoptosis and activation of caspases. These results support a mechanism whereby cordycepin induces apoptosis of human leukemia cells through a signaling cascade involving a ROS-mediated caspase pathway.
Collapse
Affiliation(s)
- Jin-Woo Jeong
- Department of Biochemistry and Research Institute of Oriental Medicine, Dongeui University College of Oriental Medicine, Busan 614-052, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|