1
|
Cao X, Wei J, Ge H, Guan D, Zheng Y, Meng X, Qian K, Wang J. Molecular Characterization of Spodoptera frugiperda Heme Oxygenase and Its Involvement in Susceptibility to Chlorantraniliprole. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2313-2321. [PMID: 36705998 DOI: 10.1021/acs.jafc.2c08255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The mammalian heme oxygenase (HO) plays an important role in cytoprotection against oxidative-stress-induced cell damage; however, functional characterization of insect HO is still limited. In this study, cDNA encoding a HO, named SfHO, was cloned from Spodoptera frugiperda. Analysis of the transcription level and enzymatic activity showed that exposure of the LC30 concentration of chlorantraniliprole to the third instar larvae significantly upregulated both the mRNA level and enzymatic activity of SfHO at 24 h after treatment. Further injection of the HO activator, hemin, into the third instar larvae led to the upregulation of SfHO as well as decreased susceptibility of S. frugiperda to chlorantraniliprole. Consistently, overexpression of SfHO increased the Sf9 cell viability under chlorantraniliprole treatment. Strikingly, both RNAi and the dual-luciferase reporter assay in Sf9 cells revealed that, unlike mammalian HO that is regulated by the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), SfHO was not subject to the regulation by cap 'n' collar isoform C (CncC), the Nrf2 homologue in insects. These data provide insights into the function and regulatory mechanism of insect HOs and had applied implications for the control of S. frugiperda.
Collapse
Affiliation(s)
- Xiaoli Cao
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Jiaping Wei
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Huichen Ge
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Daojie Guan
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Yang Zheng
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Xiangkun Meng
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Kun Qian
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| |
Collapse
|
2
|
Yang W, Han J, Gong S, Zhao J, Yu T, Ma J. Cryptotanshinone Suppressed Postmenopausal Osteoporosis by Preventing RANKL-Mediated Osteoclastogenesis against Kidney Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2821984. [PMID: 35132325 PMCID: PMC8817845 DOI: 10.1155/2022/2821984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Cryptotanshinone (CPT), an active component extracted from the root of Salvia miltiorrhiza Bunge, exhibits extensive favorable bioactive properties including anti-inflammatory, antioxidative, antibacterial, and antitumor effects. This study aims to investigate the effects of CPT on osteogenesis and explore related mechanisms both in vivo and in vitro. METHODS In the in vivo experiment, ovariectomized (OVX) female rats were intragastrically administered with CPT at doses of 10 mg/kg and 20 mg/kg for 13 consecutive weeks. Dual-energy X-ray absorptiometry was employed to detect bone mineral density (BMD). ELISA assay was leveraged to detect the biochemical parameters such as BUN and creatinine in the kidney samples. Bone and kidney sections were dyed by H&E and Masson staining kits. In the in vitro experiment, the RAW 264.7 cells were stimulated through the receptor activation of the nuclear factor kappa B ligand (RANKL) to establish an osteoclast differentiation model, and CPT's protective effect against bone loss was evaluated. Differentiated osteoclasts were determined by TRAP staining. While, osteoclast-marker proteins such as NFATc1, c-Fos, and cathepsin K were identified by Western blot. RESULTS The results from in vivo experiments revealed that CPT could elevate bone mass and increase bone formation markers in OVX rats. Intriguingly, CPT administration noticeably ameliorated the kidney injury in OVX rats by suppressing BUN and restoring creatinine levels. Furthermore, the results from in vitro experiments suggested that CPT downregulated the protein expression of osteoclast-associated genes such as cathepsin K, c-Fos, and NFATc1 which hinted the related potential mechanisms. CONCLUSION The evidence from in vivo and in vitro experiments suggested that CPT exerted antiosteoclastogenic effects by inhibiting the activation of osteoclast differentiation followed by suppressing the protein expressions of cathepsin K, c-Fos, and NFATc1 in osteoclast precursors, and it exhibited protective effects against kidney damage, which highlighted its advantage in clinical application.
Collapse
Affiliation(s)
- Wenjiu Yang
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
| | - Jing Han
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
| | - Shuo Gong
- Department of Spine Surgery, First Affiliated Hospital of Shandong First Medical University (Shandong Province Qianfoshan Hospital), Jinan, Shandong, China
| | - Jun Zhao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jinfeng Ma
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong, China
| |
Collapse
|
3
|
Wada S, Kanzaki H, Katsumata Y, Yamaguchi Y, Narimiya T, Attucks OC, Nakamura Y, Tomonari H. Bach1 Inhibition Suppresses Osteoclastogenesis via Reduction of the Signaling via Reactive Oxygen Species by Reinforced Antioxidation. Front Cell Dev Biol 2020; 8:740. [PMID: 32850850 PMCID: PMC7417670 DOI: 10.3389/fcell.2020.00740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
Bone destructive diseases such as periodontitis are common worldwide and are caused by excessive osteoclast formation and activation. Receptor activator of nuclear factor-κB ligand (RANKL) is essential factor for osteoclastogenesis. This triggers reactive oxygen species (ROS), which has a key role in intracellular signaling as well exerting cytotoxicity. Cells have protective mechanisms against ROS, such as nuclear factor E2-related factor 2 (Nrf2), which controls the expression of many antioxidant enzyme genes. Conversely, BTB and CNC homology 1 (Bach1), a competitor for Nrf2, transcriptionally represses the expression of anti-oxidant enzymes. Previously, we demonstrated that RANKL induces Bach1 nuclear import and attenuates the expression of Nrf2-mediated antioxidant enzymes, thereby augmenting intracellular ROS signaling and osteoclastogenesis. However, it remains unknown if Bach1 inhibitors attenuate osteoclastogenesis. In this study, we hypothesized that Bach1 inhibition would exert an anti-osteoclastogenic effects via diminishing of intracellular ROS signaling through augmented antioxidation. We used RAW 264.7 cells as osteoclast progenitor cells. Using flow cytometry, we found that Bach1 inhibitors attenuated RANKL-mediated ROS generation, which resulted in the inhibition of osteoclastogenesis. Local injection of a Bach1 inhibitor into the calvaria of male BALB/c mice blocked bone destruction induced by lipopolysaccharide. In conclusion, we demonstrate that Bach1 inhibitor attenuates RANKL-mediated osteoclastogenesis and bone destruction in mice by inducing the expression of Nrf2-regulated antioxidant enzymes that consequently decrease intracellular ROS levels. Bach1 inhibitors have potential in inhibiting bone destructive diseases such as periodontitis, rheumatoid arthritis and osteoporosis.
Collapse
Affiliation(s)
- Satoshi Wada
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Hiroyuki Kanzaki
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Yuta Katsumata
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Yuuki Yamaguchi
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Tsuyoshi Narimiya
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | | | - Yoshiki Nakamura
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Hiroshi Tomonari
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| |
Collapse
|
4
|
Zavaczki E, Gáll T, Zarjou A, Hendrik Z, Potor L, Tóth CZ, Méhes G, Gyetvai Á, Agarwal A, Balla G, Balla J. Ferryl Hemoglobin Inhibits Osteoclastic Differentiation of Macrophages in Hemorrhaged Atherosclerotic Plaques. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3721383. [PMID: 32184915 PMCID: PMC7063196 DOI: 10.1155/2020/3721383] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
Intraplaque hemorrhage frequently occurs in atherosclerotic plaques resulting in cell-free hemoglobin, which is oxidized to ferryl hemoglobin (FHb) in the highly oxidative environment. Osteoclast-like cells (OLCs) derived from macrophages signify a counterbalance mechanism for calcium deposition in atherosclerosis. Our aim was to investigate whether oxidized hemoglobin alters osteoclast formation, thereby affecting calcium removal from mineralized atherosclerotic lesions. RANKL- (receptor activator of nuclear factor kappa-Β ligand-) induced osteoclastogenic differentiation and osteoclast activity of RAW264.7 cells were studied in response to oxidized hemoglobin via assessing bone resorption activity, expression of osteoclast-specific genes, and the activation of signalization pathways. OLCs in diseased human carotid arteries were assessed by immunohistochemistry. FHb, but not ferrohemoglobin, decreased bone resorption activity and inhibited osteoclast-specific gene expression (tartrate-resistant acid phosphatase, calcitonin receptor, and dendritic cell-specific transmembrane protein) induced by RANKL. In addition, FHb inhibited osteoclastogenic signaling pathways downstream of RANK (receptor activator of nuclear factor kappa-Β). It prevented the induction of TRAF6 (tumor necrosis factor (TNF) receptor-associated factor 6) and c-Fos, phosphorylation of p-38 and JNK (c-Jun N-terminal kinase), and nuclear translocation of NFκB (nuclear factor kappa-Β) and NFATc1 (nuclear factor of activated T-cells, cytoplasmic 1). These effects were independent of heme oxygenase-1 demonstrated by knocking down HO-1 gene in RAW264.7 cells and in mice. Importantly, FHb competed with RANK for RANKL binding suggesting possible mechanisms by which FHb impairs osteoclastic differentiation. In diseased human carotid arteries, OLCs were abundantly present in calcified plaques and colocalized with regions of calcium deposition, while the number of these cells were lower in hemorrhagic lesions exhibiting accumulation of FHb despite calcium deposition. We conclude that FHb inhibits RANKL-induced osteoclastic differentiation of macrophages and suggest that accumulation of FHb in a calcified area of atherosclerotic lesion with hemorrhage retards the formation of OLCs potentially impairing calcium resorption.
Collapse
Affiliation(s)
- Erzsébet Zavaczki
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, University of Debrecen, Debrecen, Hungary
| | - Tamás Gáll
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Abolfazl Zarjou
- Nephrology Research and Training Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zoltán Hendrik
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, University of Debrecen, Debrecen, Hungary
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Potor
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Kálmán Laki Doctoral School of Biomedical and Clinical Sciences, University of Debrecen, Debrecen, Hungary
| | - Csaba Zsigmond Tóth
- Department of Vascular Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ágnes Gyetvai
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anupam Agarwal
- Nephrology Research and Training Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - György Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - József Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
5
|
Bhatt P, Huang Y, Zhan H, Chen S. Insight Into Microbial Applications for the Biodegradation of Pyrethroid Insecticides. Front Microbiol 2019; 10:1778. [PMID: 31428072 PMCID: PMC6687851 DOI: 10.3389/fmicb.2019.01778] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Pyrethroids are broad-spectrum insecticides and presence of chiral carbon differentiates among various forms of pyrethroids. Microbial approaches have emerged as a popular solution to counter pyrethroid toxicity to marine life and mammals. Bacterial and fungal strains can effectively degrade pyrethroids into non-toxic compounds. Different strains of bacteria and fungi such as Bacillus spp., Raoultella ornithinolytica, Psudomonas flourescens, Brevibacterium sp., Acinetobactor sp., Aspergillus sp., Candida sp., Trichoderma sp., and Candia spp., are used for the biodegradation of pyrethroids. Hydrolysis of ester bond by enzyme esterase/carboxyl esterase is the initial step in pyrethroid biodegradation. Esterase is found in bacteria, fungi, insect and mammalian liver microsome cells that indicates its hydrolysis ability in living cells. Biodegradation pattern and detected metabolites reveal microbial consumption of pyrethroids as carbon and nitrogen source. In this review, we aim to explore pyrethroid degrading strains, enzymes and metabolites produced by microbial strains. This review paper covers in-depth knowledge of pyrethroids and recommends possible solutions to minimize their environmental toxicity.
Collapse
Affiliation(s)
| | | | | | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
He B, Wang X, Wei L, Kong B, Jin Y, Xie X, Fu Z. β-Cypermethrin and its metabolite 3-phenoxybenzoic acid induce cytotoxicity and block granulocytic cell differentiation in HL-60 cells. Acta Biochim Biophys Sin (Shanghai) 2018; 50:740-747. [PMID: 29945211 DOI: 10.1093/abbs/gmy068] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/30/2018] [Indexed: 12/22/2022] Open
Abstract
The most widely used type II pyrethroid is β-cypermethrin (β-CYP), and 3-phenoxybenzoic acid (3-PBA) is one of its primary metabolites. Although CYP has been shown to pose toxic effects in some immune cells, as of now the immunotoxicity of CYP on immune progenitor cells has not been well studied. In this study, we evaluated the immunotoxicity of β-CYP and 3-PBA on the human promyelocytic leukemia cell line, HL-60. Both β-CYP and 3-PBA reduced cell viability. In addition, both β-CYP and 3-PBA stimulated the intrinsic apoptotic pathway in a dose- and time-dependent manner, while only β-CYP induced cell cycle arrest in G1 stage. Moreover, exposure to β-CYP and 3-PBA at 100 μM inhibited all-trans retinoic acid (ATRA)-induced mRNA expressions of the granulocytic differentiation-related genes, CD11b and CSF-3R. Furthermore, exposure to β-CYP and 3-PBA resulted in a downregulation of the granulocytic differentiation promoting transcriptional factors, PU.1 and C/EBPε. Furthermore, we found that β-CYP and 3-PBA exposure led to elevated levels of cellular reactive oxygen species (ROS), and that pretreatment with N-acetylcysteine (NAC) blocked the toxic effects caused by β-CYP and 3-PBA. The results obtained in the present study provide evidence showing the immunotoxic effects of β-CYP and 3-PBA on promyelocytic cells as well as its possible underlying mechanism.
Collapse
Affiliation(s)
- Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Lai Wei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Baida Kong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoxian Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
7
|
Chueh TC, Hsu LS, Kao CM, Hsu TW, Liao HY, Wang KY, Chen SC. Transcriptome analysis of zebrafish embryos exposed to deltamethrin. ENVIRONMENTAL TOXICOLOGY 2017; 32:1548-1557. [PMID: 27785895 DOI: 10.1002/tox.22376] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/28/2016] [Accepted: 10/05/2016] [Indexed: 06/06/2023]
Abstract
Deltamethrin (DTM), a type II pyrethroid, is one of the most commonly used insecticides. The increased use of pyrethroid leads to potential adverse effects, particularly in sensitive populations such as children and pregnant women. None of the related studies was focused on the transcriptome responses in zebrafish embryos after treatment with DTM; therefore, RNA-seq, a high-throughput method, was performed to analyze the global expression of differential expressed genes (DEGs) in zebrafish embryos treated with DTM (40 and 80 μg/L) from fertilization to 48 h postfertilization (hpf) as compared with that in the control group (without DTM treatment). Two cDNA libraries were generated from treated embryos and one cDNA library from nontreated embryos, respectively. Over 92% of reads mapped to the reference in these three libraries. It was observed that many differential genes were expressed in comparison with embryos before and after DTM. The 20 most differentially expressed upregulated or downregulated genes were majorly involved in the signaling transduction. Validation of selected nine genes expression using qRT-PCR confirmed RNA-seq results. The transcriptome sequences were further subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, showing G-protein-coupled receptor signaling pathway and neuroactive ligand-receptor interaction, respectively, were most enriched. The data from this study contributed to a better understanding of the potential consequences of fish exposed to DTM, to an evaluation of the potential threat of DTM to fish populations in aquatic environments. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1548-1557, 2017.
Collapse
Affiliation(s)
| | - Li-Sung Hsu
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chin-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Tung-Wei Hsu
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Hung-Yu Liao
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Kuan-Yi Wang
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Ssu Ching Chen
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| |
Collapse
|
8
|
Lu SH, Chen TH, Chou TC. Magnolol Inhibits RANKL-induced osteoclast differentiation of raw 264.7 macrophages through heme oxygenase-1-dependent inhibition of NFATc1 expression. JOURNAL OF NATURAL PRODUCTS 2015; 78:61-68. [PMID: 25574844 DOI: 10.1021/np500663y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Magnolol (1) isolated from Magnolia officinalis exhibits many beneficial effects such as anti-inflammatory and antioxidant activity. The aim of this study was to evaluate the effects of magnolol (1) on RANKL-induced osteoclast differentiation and investigate the underlying molecular mechanisms. Treatment with magnolol (1) significantly inhibited osteoclast differentiation of RAW 264.7 macrophages and bone-resorbing activity of osteoclasts in the RANKL-induced system. Moreover, RANKL-activated JNK/ERK/AP-1 and NF-κB signaling, ROS formation, and NFATc1 activation were attenuated by magnolol (1). A novel finding of this study is that magnolol (1) can increase heme oxygenase-1 (HO-1) expression and Nrf2 activation in RANKL-stimulated cells. Blocking HO-1 activity with tin protoporphyrin IX markedly reversed magnolol (1)-mediated inhibition of osteoclast differentiation, NFATc1 nuclear translocation, and MMP-9 activity, suggesting that HO-1 contributes to the attenuation of NFATc1-mediated osteoclastogenesis by magnolol (1). Therefore, the inhibitory effect of magnolol (1) on osteoclast differentiation is due to inhibition of MAPK/c-fos/AP-1 and NF-κB signaling as well as ROS production and up-regulation of HO-1 expression, which ultimately suppresses NFATc1 induction. These findings indicate that magnolol (1) may have potential to treat bone diseases associated with excessive osteoclastogenesis.
Collapse
Affiliation(s)
- Sheng-Hua Lu
- Graduate Institute of Life Sciences, National Defense Medical Center , Taipei, Taiwan
| | | | | |
Collapse
|
9
|
Ilboudo S, Fouche E, Rizzati V, Toé AM, Gamet-Payrastre L, Guissou PI. In vitro impact of five pesticides alone or in combination on human intestinal cell line Caco-2. Toxicol Rep 2014; 1:474-489. [PMID: 28962261 PMCID: PMC5598529 DOI: 10.1016/j.toxrep.2014.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/01/2014] [Accepted: 07/14/2014] [Indexed: 01/24/2023] Open
Abstract
In Burkina Faso, as in most Sahelian countries, the failure to follow good agricultural practices coupled with poor soil and climate conditions in the locust control context lead to high environmental contaminations with pesticide residues. Thus, consumers being orally exposed to a combination of multiple pesticide residues through food and water intake, the digestive tract is a tissue susceptible to be directly exposed to these food contaminants. The aim of our work was to compare in vitro the impact of five desert locust control pesticides (Deltamethrin DTM, Fenitrothion FNT, Fipronil FPN, Lambda-cyalothrine LCT, and Teflubenzuron TBZ) alone and in combination on the human intestinal Caco-2 cells viability and function. Cells were exposed to 0.1–100 μM pesticides for 10 days alone or in mixture (MIX). Our results showed a cytotoxic effect of DTM, FNT, FPN, LCT, and TBZ alone or in combination in human intestinal Caco-2 cells. The most efficient were shown to be FPN and FNT impacting the cell layer integrity and/or barrier function, ALP activity, antioxidant enzyme activity, lipid peroxidation, Akt activation, and apoptosis. The presence of antioxidant reduced lipid peroxidation level and attenuated the pesticides-induced cell toxicity, suggesting that key mechanism of pesticides cytotoxicity may be linked to their pro-oxidative potential. A comparative analysis with the predicted cytotoxic effect of pesticides mixture using mathematical modeling shown that the combination of these pesticides led to synergistic effects rather than to a simple independent or dose addition effect.
Collapse
Affiliation(s)
- Sylvain Ilboudo
- INRA UMR 1331Toxalim (Research centre in food Toxicology), 180 Chemin de Tournefeuille, F-31027 Toulouse, France.,Institut de Recherche en Science de la Santé (IRSS/CNRST), 03, BP 7192, Ouagadougou, Burkina Faso.,Laboratoire de Toxicologie, Environnement et Santé; Ecole Doctorale de la Santé, Université de Ouagadougou, 03, BP 7021, Ouagadougou, Burkina Faso
| | - Edwin Fouche
- INRA UMR 1331Toxalim (Research centre in food Toxicology), 180 Chemin de Tournefeuille, F-31027 Toulouse, France
| | - Virginie Rizzati
- INRA UMR 1331Toxalim (Research centre in food Toxicology), 180 Chemin de Tournefeuille, F-31027 Toulouse, France
| | - Adama M Toé
- Institut de Recherche en Science de la Santé (IRSS/CNRST), 03, BP 7192, Ouagadougou, Burkina Faso
| | - Laurence Gamet-Payrastre
- INRA UMR 1331Toxalim (Research centre in food Toxicology), 180 Chemin de Tournefeuille, F-31027 Toulouse, France
| | - Pierre I Guissou
- Institut de Recherche en Science de la Santé (IRSS/CNRST), 03, BP 7192, Ouagadougou, Burkina Faso.,Laboratoire de Toxicologie, Environnement et Santé; Ecole Doctorale de la Santé, Université de Ouagadougou, 03, BP 7021, Ouagadougou, Burkina Faso
| |
Collapse
|
10
|
Kozakowska M, Szade K, Dulak J, Jozkowicz A. Role of heme oxygenase-1 in postnatal differentiation of stem cells: a possible cross-talk with microRNAs. Antioxid Redox Signal 2014; 20:1827-50. [PMID: 24053682 PMCID: PMC3961774 DOI: 10.1089/ars.2013.5341] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Heme oxygenase-1 (HO-1) converts heme to biliverdin, carbon monoxide, and ferrous ions, but its cellular functions are far beyond heme metabolism. HO-1 via heme removal and degradation products acts as a cytoprotective, anti-inflammatory, immunomodulatory, and proangiogenic protein, regulating also a cell cycle. Additionally, HO-1 can translocate to nucleus and regulate transcription factors, so it can also act independently of enzymatic function. RECENT ADVANCES Recently, a body of evidence has emerged indicating a role for HO-1 in postnatal differentiation of stem and progenitor cells. Maturation of satellite cells, skeletal myoblasts, adipocytes, and osteoclasts is inhibited by HO-1, whereas neurogenic differentiation and formation of cardiomyocytes perhaps can be enhanced. Moreover, HO-1 influences a lineage commitment in pluripotent stem cells and maturation of hematopoietic cells. It may play a role in development of osteoblasts, but descriptions of its exact effects are inconsistent. CRITICAL ISSUES In this review we discuss a role of HO-1 in cell differentiation, and possible HO-1-dependent signal transduction pathways. Among the potential mediators, we focused on microRNA (miRNA). These small, noncoding RNAs are critical for cell differentiation. Recently we have found that HO-1 not only influences expression of specific miRNAs but also regulates miRNA processing enzymes. FUTURE DIRECTIONS It seems that interplay between HO-1 and miRNAs may be important in regulating fates of stem and progenitor cells and needs further intensive studies.
Collapse
Affiliation(s)
- Magdalena Kozakowska
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Krakow, Poland
| | | | | | | |
Collapse
|
11
|
Chi CC, Chou CT, Liang WZ, Jan CR. Effect of the pesticide, deltamethrin, on Ca2+signaling and apoptosis in OC2 human oral cancer cells. Drug Chem Toxicol 2013; 37:25-31. [DOI: 10.3109/01480545.2013.806528] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Im NK, Choi JY, Oh H, Kim YC, Jeong GS. 6,4'-Dihydroxy-7-methoxyflavanone inhibits osteoclast differentiation and function. Biol Pharm Bull 2013; 36:796-801. [PMID: 23420617 DOI: 10.1248/bpb.b12-00964] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
6,4'-Dihydroxy-7-methoxyflavanone (DMF) is a flavonoid isolated from Heartwood Dalbergia odorifera. It has been known that DMF has antioxidant, anti-inflammatory and neuroprotective effects. DMF, however, the efficacy of bone related diseases has not been reported. In this study, we determined DMF's efficacy on osteoclasts differentiation and function using in vitro bone marrow macrophage osteoclast differentiation culture system. DMF inhibited receptor activators of nuclear factor kappa-B ligand (RANKL) induced osteoclastogenesis dose dependently. In addition, DMF decreased osteoclast function through disruption of actin ring formation and consequently suppression of the pit-forming activity of mature osteoclasts. Mechanistically, DMF inhibited RANKL-induced expression of nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1) and c-Fos via inhibition of mitogen activated protein kinases (MAPKs) pathway. Collectively, the inhibition of osteoclasts differentiation and function by DMF suggests that DMF can be a potential therapeutic molecule for osteoclastogenic bone diseases such osteoporosis, rheumatoid arthritis and periodontal diseases.
Collapse
Affiliation(s)
- Nam-Kyung Im
- Institute for New Drug Development, Keimyung University, Dae-gu 704–701, Republic of Korea
| | | | | | | | | |
Collapse
|