1
|
Zheng Y, Tao Y, Zhan X, Wu Q. Nuclear receptor 4A1 (NR4A1) silencing protects hepatocyte against hypoxia-reperfusion injury in vitro by activating liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK) signaling. Bioengineered 2022; 13:8349-8359. [PMID: 35311465 PMCID: PMC9161842 DOI: 10.1080/21655979.2022.2053804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/03/2023] Open
Abstract
The nuclear receptor 4A1 (NR4A1) is widely involved in the regulation of cell survival and is related to ischemic injury in several organs. This research examined the emerging role and mechanism of NR4A1 in hepatocyte ischemia-reperfusion injury (IRI). BRL-3A cells were subjected to hypoxia-reperfusion (H/R) to simulate an IRI model in vitro. The expression of NR4A1 and liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK) pathway-related proteins (LKB1, AMPK, and ACC) was detected by western blotting or RT-qPCR under H/R condition after NR4A1 overexpression or silencing. Then, radicicol, an inhibitor of LKB1 pathway, was used to determine the role of NR4A1 in hepatocyte H/R injury by regulating LKB1. Under the help of CCK-8 assay, cell viability was assessed. The levels of ROS, MDA, and SOD were determined with corresponding kits to evaluate oxidative stress. Additionally, RT-qPCR was employed to analyze the releases of the inflammatory factors. Flow cytometry was applied to estimate the apoptosis and its related proteins, and autophagy-associated proteins were assayed by western blotting. Results indicated that NR4A1 was highly expressed, while proteins in LKB1/AMPK signaling was downregulated in BRL-3A cells exposed to H/R. The activation of LKB1/AMPK pathway could be negatively regulated by NR4A1. Moreover, NR4A1 depletion conspicuously promoted cell viability, inhibited oxidative stress as well as inflammation, and induced apoptosis and autophagy in H/R-stimulated BRL-3A cells, which were reversed after radicicol intervention. Collectively, NR4A1/LKB1/AMPK axis is a new protective pathway involved in hepatocyte IRI, shedding new insights into the improvement of hepatocyte IRI.
Collapse
Affiliation(s)
- Yu Zheng
- Hepatobiliary Pancreatic Surgery Department, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yingying Tao
- Emergency Intensive Care Unit, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Xiaobo Zhan
- Hepatobiliary Pancreatic Surgery Department, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Qi Wu
- Hepatobiliary Pancreatic Surgery Department, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
2
|
Pham L, Kennedy L, Baiocchi L, Meadows V, Ekser B, Kundu D, Zhou T, Sato K, Glaser S, Ceci L, Alpini G, Francis H. Mast cells in liver disease progression: An update on current studies and implications. Hepatology 2022; 75:213-218. [PMID: 34435373 PMCID: PMC9276201 DOI: 10.1002/hep.32121] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/24/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Linh Pham
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Science and Mathematics, Texas A&M University–Central Texas, Killeen, Texas, USA
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | | | - Vik Meadows
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas, USA
| | - Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
3
|
Zhang A, Carroll C, Raigani S, Karimian N, Huang V, Nagpal S, Beijert I, Porte RJ, Yarmush M, Uygun K, Yeh H. Tryptophan Metabolism via the Kynurenine Pathway: Implications for Graft Optimization during Machine Perfusion. J Clin Med 2020; 9:E1864. [PMID: 32549246 PMCID: PMC7355886 DOI: 10.3390/jcm9061864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
Access to liver transplantation continues to be hindered by the severe organ shortage. Extended-criteria donor livers could be used to expand the donor pool but are prone to ischemia-reperfusion injury (IRI) and post-transplant graft dysfunction. Ex situ machine perfusion may be used as a platform to rehabilitate discarded or extended-criteria livers prior to transplantation, though there is a lack of data guiding the utilization of different perfusion modalities and therapeutics. Since amino acid derivatives involved in inflammatory and antioxidant pathways are critical in IRI, we analyzed differences in amino acid metabolism in seven discarded non-steatotic human livers during normothermic- (NMP) and subnormothermic-machine perfusion (SNMP) using data from untargeted metabolomic profiling. We found notable differences in tryptophan, histamine, and glutathione metabolism. Greater tryptophan metabolism via the kynurenine pathway during NMP was indicated by significantly higher kynurenine and kynurenate tissue concentrations compared to pre-perfusion levels. Livers undergoing SNMP demonstrated impaired glutathione synthesis indicated by depletion of reduced and oxidized glutathione tissue concentrations. Notably, ATP and energy charge ratios were greater in livers during SNMP compared to NMP. Given these findings, several targeted therapeutic interventions are proposed to mitigate IRI during liver machine perfusion and optimize marginal liver grafts during SNMP and NMP.
Collapse
Affiliation(s)
- Anna Zhang
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Tufts University School of Medicine, Boston, MA 02111, USA
| | - Cailah Carroll
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Siavash Raigani
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Negin Karimian
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Viola Huang
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Sonal Nagpal
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Irene Beijert
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Division of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, 9700 Groningen, The Netherlands;
| | - Robert J. Porte
- Division of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, 9700 Groningen, The Netherlands;
| | - Martin Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (A.Z.); (C.C.); (S.R.); (N.K.); (V.H.); (S.N.); (I.B.); (M.Y.); (K.U.)
- Shriners Hospital for Children, Boston, MA 02114, USA
| | - Heidi Yeh
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
4
|
Activation mechanisms and multifaceted effects of mast cells in ischemia reperfusion injury. Exp Cell Res 2019; 376:227-235. [DOI: 10.1016/j.yexcr.2019.01.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/20/2019] [Accepted: 01/31/2019] [Indexed: 12/16/2022]
|
5
|
He D, Guo Z, Pu JL, Zheng DF, Wei XF, Liu R, Tang CY, Wu ZJ. Resveratrol preconditioning protects hepatocytes against hepatic ischemia reperfusion injury via Toll-like receptor 4/nuclear factor-κB signaling pathway in vitro and in vivo. Int Immunopharmacol 2016; 35:201-209. [PMID: 27064547 DOI: 10.1016/j.intimp.2016.03.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/11/2016] [Accepted: 03/28/2016] [Indexed: 01/14/2023]
Abstract
The purpose of this study was to investigate the protective effect of resveratrol against hepatic ischemia reperfusion injury (HIRI) and explore the potential underlying mechanism. Resveratrol-pretreated BRL-3A (rat liver) cells and rats underwent hypoxia/reoxygenation and hepatic ischemia/reperfusion, respectively. BRL-3A cell damage was evaluated, and the mRNA and protein expression of related signal molecules was assessed in cell model. The protein expression of related signal molecules was also assessed in rat model. Inflammatory cytokines levels were determined in the cell supernatant and rat serum while rat liver function and hepatocyte apoptosis were assessed. The results revealed that resveratrol significantly enhanced cell viability, inhibited cell apoptosis, and decreased levels of lactate dehydrogenase (LDH) and production of tumor necrosis factor-α (TNF-α) and interleukin-(IL)-1β in the cell supernatant. In addition, resveratrol ameliorated elevated Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB, and the depressed inhibitor of NF-κB (IκB)-α caused by hypoxia/reoxygenation stimulation in BRL-3A cells. Moreover, resveratrol inhibited the translocation of NF-κB p65 after the stimulation of hypoxia/reoxygenation in BRL-3A cells. In vivo assays revealed that resveratrol reduced levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and liver pathological changes, while it alleviated hepatocyte apoptosis, negatively mediated the production of TNF-α and IL-1β in serum, and reversed TLR4/NF-κB signaling pathway caused by hepatic ischemia/reperfusion stimulation in liver tissues. The results indicate that resveratrol protected hepatocytes against HIRI, which may be mediated in part via the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Diao He
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhen Guo
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun-Liang Pu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dao-Feng Zheng
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xu-Fu Wei
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Cheng-Yong Tang
- Department of Clinical Pharmacology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Zhong-Jun Wu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
El-Shitany NA, El-Desoky K. Cromoglycate, not ketotifen, ameliorated the injured effect of warm ischemia/reperfusion in rat liver: role of mast cell degranulation, oxidative stress, proinflammatory cytokine, and inducible nitric oxide synthase. Drug Des Devel Ther 2015; 9:5237-46. [PMID: 26396497 PMCID: PMC4577270 DOI: 10.2147/dddt.s88337] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Hepatic ischemia/reperfusion (ISCH/REP) is a major clinical problem that is considered to be the most common cause of postoperative liver failure. Recently, mast cells have been proposed to play an important role in the pathophysiology of ISCH/REP in many organs. In contrast, the role played by mast cells during ISCH/REP-induced liver damage has remained an issue of debate. This study aimed to investigate the protective role of mast cells in order to search for an effective therapeutic agent that could protect against fatal ISCH/REP-induced liver damage. A model of warm ISCH/REP was induced in the liver of rats. Four groups of rats were used in this study: Group I: SHAM (normal saline, intravenously [iv]); Group II: ISCH/REP; Group III: sodium cromoglycate + ISCH/REP (CROM + ISCH/REP), and Group IV: ketotifen (KET) + ISCH/REP (KET + ISCH/REP). Liver damage was assessed both histopathologically and biochemically. Mast cell degranulation was assessed histochemically. Lipid peroxidation (malondialdehyde [MDA]) as well as the levels of glutathione (GSH), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α), the formation of nitric oxide (NO), and the expression of inducible NO synthase (iNOS) were determined. The results of this study revealed increased mast cell degranulation in the liver during the acute phase of ISCH/REP. Moreover, CROM, but not KET, decreased the activity of alanine aminotransferase, aspartate aminotransferase, and lactic dehydrogenase and maintained normal liver tissue histology. Both CROM and KET protected against mast cell degranulation in the liver. In addition, both CROM and KET decreased IL-6 and TNF-α. However, CROM, but not KET, decreased MDA formation and increased GSH. Furthermore, KET, but not CROM, increased both NO formation and iNOS expression. In conclusion, this study clearly demonstrated mast cell degranulation in warm ISCH/REP in the liver of rats. More importantly, CROM, but not KET, ameliorated the effect of ISCH/REP-induced injury in rat liver. CROM may protect the liver through mast cell stabilization, inhibition of TNF-α, IL-6, MDA, and iNOS and increased GSH. KET may maintain ISCH/REP-induced liver injury through the NO/iNOS pathway.
Collapse
Affiliation(s)
- Nagla A El-Shitany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Karema El-Desoky
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
7
|
Histamine deficiency exacerbates myocardial injury in acute myocardial infarction through impaired macrophage infiltration and increased cardiomyocyte apoptosis. Sci Rep 2015; 5:13131. [PMID: 26278136 PMCID: PMC4642534 DOI: 10.1038/srep13131] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/20/2015] [Indexed: 11/08/2022] Open
Abstract
Histamine is a biogenic amine that is widely distributed and has multiple functions, but the role it plays in acute myocardial infarction (AMI) remains unclear. In this study, we investigated the origin and contribution of endogenous histamine to AMI. Histidine decarboxylase (HDC) is the unique enzyme responsible for histamine generation. Using HDC-EGFP bacterial artificial chromosome (BAC) transgenic mice in which EGFP expression is controlled by the HDC promoter, we identified HDC expression primarily in CD11b(+)Gr-1(+) immature myeloid cells (IMCs) that markedly increase in the early stages of AMI. Deficiency of histamine in HDC knockout mice (HDC(-/-)) reduced cardiac function and exacerbated the injury of infarcted heart. Furthermore, administering either an H1 receptor antagonist (pyrilamine) or an H2 receptor antagonist (cimetidine) demonstrated a protective effect of histamine against myocardial injury. The results of in vivo and in vitro assays showed that histamine deficiency promotes the apoptosis of cardiomyocytes and inhibits macrophage infiltration. In conclusion, CD11b(+)Gr-1(+) IMCs are the predominant HDC-expressing sites in AMI, and histamine plays a protective role in the process of AMI through inhibition of cardiomyocyte apoptosis and facilitation of macrophage infiltration.
Collapse
|
8
|
Propofol Attenuates Small Intestinal Ischemia Reperfusion Injury through Inhibiting NADPH Oxidase Mediated Mast Cell Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:167014. [PMID: 26246867 PMCID: PMC4515292 DOI: 10.1155/2015/167014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/07/2014] [Indexed: 12/14/2022]
Abstract
Both oxidative stress and mast cell (MC) degranulation participate in the process of small intestinal ischemia reperfusion (IIR) injury, and oxidative stress induces MC degranulation. Propofol, an anesthetic with antioxidant property, can attenuate IIR injury. We postulated that propofol can protect against IIR injury by inhibiting oxidative stress subsequent from NADPH oxidase mediated MC activation. Cultured RBL-2H3 cells were pretreated with antioxidant N-acetylcysteine (NAC) or propofol and subjected to hydrogen peroxide (H2O2) stimulation without or with MC degranulator compound 48/80 (CP). H2O2 significantly increased cells degranulation, which was abolished by NAC or propofol. MC degranulation by CP further aggravated H2O2 induced cell degranulation of small intestinal epithelial cell, IEC-6 cells, stimulated by tryptase. Rats subjected to IIR showed significant increases in cellular injury and elevations of NADPH oxidase subunits p47(phox) and gp91(phox) protein expression, increases of the specific lipid peroxidation product 15-F2t-Isoprostane and interleukin-6, and reductions in superoxide dismutase activity with concomitant enhancements in tryptase and β-hexosaminidase. MC degranulation by CP further aggravated IIR injury. And all these changes were attenuated by NAC or propofol pretreatment, which also abrogated CP-mediated exacerbation of IIR injury. It is concluded that pretreatment of propofol confers protection against IIR injury by suppressing NADPH oxidase mediated MC activation.
Collapse
|
9
|
Wang R, Huang F, Chen Z, Li S. Downregulation of connexin 32 attenuates hypoxia/reoxygenation injury in liver cells. J Biochem Mol Toxicol 2015; 29:189-97. [PMID: 25530438 DOI: 10.1002/jbt.21684] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/10/2014] [Accepted: 11/15/2014] [Indexed: 01/02/2023]
Abstract
Gap junction intercellular communication is involved in ischemia-reperfusion (IR) injury of organs. Connexins are proteins that are critical to the function of gap junctions. To clarify the role of gap junctions in IR injury in liver cells, the function of gap junctions was modulated in an in vitro hypoxia/reoxygenation (H/R) model. BRL-3A rat liver cells, endogenously expressing connexins Cx32 and Cx43, were used to model the process of hepatic IR injury. Suppression of gap junction activity was achieved genetically, using Cx32-specific small interfering RNA (siRNA), or chemically, with pharmacological inhibitors, oleamide, and 18-α-GA. BRL-3A cells subjected to H/R exhibited reduced cell survival and pathologies indicative of IR injury. Cx32-specific siRNA, oleamide, and 18-α-GA, respectively, decreased gap junction permeability, as assessed by the parachute assay. Pretreatment with Cx32-specific siRNA increased cell survival. Pretreatment with oleamide or 18-α-GA did not improve cell survival. Modulating gap junction by Cx32 gene silencing protected BRL-3A liver cells from H/R.
Collapse
Affiliation(s)
- Ren Wang
- Department of Anaesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | | | | | | |
Collapse
|
10
|
Luo C, Yuan D, Li X, Yao W, Luo G, Chi X, Li H, Irwin MG, Xia Z, Hei Z. Propofol attenuated acute kidney injury after orthotopic liver transplantation via inhibiting gap junction composed of connexin 32. Anesthesiology 2015; 122:72-86. [PMID: 25254904 DOI: 10.1097/aln.0000000000000448] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Postliver transplantation acute kidney injury (AKI) severely affects patient survival, whereas the mechanism is unclear and effective therapy is lacking. The authors postulated that reperfusion induced enhancement of connexin32 (Cx32) gap junction plays a critical role in mediating postliver transplantation AKI and that pretreatment/precondition with the anesthetic propofol, known to inhibit gap junction, can confer effective protection. METHODS Male Sprague-Dawley rats underwent autologous orthotopic liver transplantation (AOLT) in the absence or presence of treatments with the selective Cx32 inhibitor, 2-aminoethoxydiphenyl borate or propofol (50 mg/kg) (n = 8 per group). Also, kidney tubular epithelial (NRK-52E) cells were subjected to hypoxia-reoxygenation and the function of Cx32 was manipulated by three distinct mechanisms: cell culture in different density; pretreatment with Cx32 inhibitors or enhancer; Cx32 gene knock-down (n = 4 to 5). RESULTS AOLT resulted in significant increases of renal Cx32 protein expression and gap junction, which were coincident with increases in oxidative stress and impairment in renal function and tissue injury as compared to sham group. Similarly, hypoxia-reoxygenation resulted in significant cellular injury manifested as reduced cell growth and increased lactate dehydrogenase release, which was significantly attenuated by Cx32 gene knock-down but exacerbated by Cx32 enhancement. Propofol inhibited Cx32 function and attenuated post-AOLT AKI. In NRK-52E cells, propofol reduced posthypoxic reactive oxygen species production and attenuated cellular injury, and the cellular protective effects of propofol were reinforced by Cx32 inhibition but cancelled by Cx32 enhancement. CONCLUSION Cx32 plays a critical role in AOLT-induced AKI and that inhibition of Cx32 function may represent a new and major mechanism whereby propofol reduces oxidative stress and subsequently attenuates post-AOLT AKI.
Collapse
Affiliation(s)
- Chenfang Luo
- From the Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China (C.L., D.Y., X.L., W.Y., G.L., X.C., Z.H.); and Department of Anesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China (H.L., M.G.I., Z.X.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|