1
|
Horak I, Horn S, Pieters R. The benefit of using in vitro bioassays to screen agricultural samples for oxidative stress: South Africa's case. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:689-710. [PMID: 37814453 DOI: 10.1080/03601234.2023.2264739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Applied pesticides end up in non-target environments as complex mixtures. When bioavailable, these chemicals pose a threat to living organisms and can induce oxidative stress (OS). In this article, attention is paid to OS and the physiological role of the antioxidant defense system. South African and international literature was reviewed to provide extensive evidence of pesticide-induced OS in non-target organisms, in vivo and in vitro. Although in vitro approaches are used internationally, South African studies have only used in vivo methods. Considering ethical implications, the authors support the use of in vitro bioassays to screen environmental matrices for their OS potential. Since OS responses are initiated and measurable at lower cellular concentrations compared to other toxicity endpoints, in vitro OS bioassays could be used as an early warning sign for the presence of chemical mixtures in non-target environments. Areas of concern in the country could be identified and prioritized without using animal models. The authors conclude that it will be worthwhile for South Africa to include in vitro OS bioassays as part of a battery of tests to screen environmental matrices for biological effects. This will facilitate the development and implementation of biomonitoring programs to safeguard the South African environment.
Collapse
Affiliation(s)
- Ilzé Horak
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Occupational Hygiene and Health Research Initiative, North-West University, Potchefstroom, South Africa
| | - Suranie Horn
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Occupational Hygiene and Health Research Initiative, North-West University, Potchefstroom, South Africa
| | - Rialet Pieters
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Rana I, Nguyen PK, Rigutto G, Louie A, Lee J, Smith MT, Zhang L. Mapping the key characteristics of carcinogens for glyphosate and its formulations: A systematic review. CHEMOSPHERE 2023; 339:139572. [PMID: 37474029 DOI: 10.1016/j.chemosphere.2023.139572] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Glyphosate was classified as a probable human carcinogen (Group 2A) by the International Agency for Research on Cancer (IARC) partially due to strong mechanistic evidence in 2015. Since then, numerous studies of glyphosate and its formulations (GBF) have emerged. These studies can be evaluated for cancer hazard identification with the newly described ten key characteristics (KC) of carcinogens approach. Our objective was to assess all in vivo, ex vivo, and in vitro mechanistic studies of human and experimental animals (mammals) that compared exposure to glyphosate/GBF with low/no exposure counterparts for evidence of the ten KCs. A protocol with our methods adhering to PRISMA guidelines was registered a priori (INPLASY202180045). Two blinded reviewers screened all in vivo, ex vivo, and in vitro studies of glyphosate/GBF exposure in humans/mammals reporting any KC-related outcome available in PubMed before August 2021. Studies that met inclusion criteria underwent data extraction conducted in duplicate for each KC outcome reported along with key aspects of internal/external validity, results, and reference information. These data were used to construct a matrix that was subsequently analyzed in the program R to conduct strength of evidence and quality assessments. Of the 2537 articles screened, 175 articles met inclusion criteria, from which we extracted >50,000 data points related to KC outcomes. Data analysis revealed strong evidence for KC2, KC4, KC5, KC6, KC8, limited evidence for KC1 and KC3, and inadequate evidence for KC7, KC9, and KC10. Notably, our in-depth quality analyses of genotoxicity (KC2) and endocrine disruption (KC8) revealed strong and consistent positive findings. For KC2, we found: 1) studies conducted in humans and human cells provided stronger positive evidence than counterpart animal models; 2) GBF elicited a stronger effect in both human and animal systems when compared to glyphosate alone; and 3) the highest quality studies in humans and human cells consistently revealed strong evidence of genotoxicity. Our analysis of KC8 indicated that glyphosate's ability to modulate hormone levels and estrogen receptor activity is sensitive to both exposure concentration and formulation. The modulations observed provide clear evidence that glyphosate interacts with receptors, alters receptor activation, and modulates the levels and effects of endogenous ligands (including hormones). Our findings strengthen the mechanistic evidence that glyphosate is a probable human carcinogen and provide biological plausibility for previously reported cancer associations in humans, such as non-Hodgkin lymphoma. We identified potential molecular interactions and subsequent key events that were used to generate a probable pathway to lymphomagenesis.
Collapse
Affiliation(s)
- Iemaan Rana
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States
| | - Patton K Nguyen
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States
| | - Gabrielle Rigutto
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States
| | - Allen Louie
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States
| | - Jane Lee
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States
| | - Martyn T Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, United States.
| |
Collapse
|
3
|
Chitolina R, Nicola P, Sachett A, Bevilaqua F, Cunico L, Reginatto A, Bertoncello K, Marins K, Zanatta AP, Medeiros M, Lima AS, Parisotto C, Menegatt JCO, Goetten AF, Zimermann FC, Ramos AT, Portela VM, Barreta MH, Conterato GMM, Zanatta L. Subacute exposure to Roundup® changes steroidogenesis and gene expression of the glutathione-glutaredoxin system in rat ovaries: Implications for ovarian toxicity of this glyphosate-based herbicide. Toxicol Appl Pharmacol 2023; 473:116599. [PMID: 37328116 DOI: 10.1016/j.taap.2023.116599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/03/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
Studies have indicated that glyphosate induces endocrine disruption and may adversely affect the male reproductive system. However, evidence of its effects on ovarian function is poorly understood so far, making further studies necessary on the mechanisms of the glyphosate toxicity in the female reproductive system. The aim of this work was to evaluate the effect of a subacute exposure (28 days) to the glyphosate-based formulation Roundup® (1.05, 10.5 and 105 μg/kg b.w. of glyphosate) on steroidogenesis, oxidative stress, systems involved in cell redox control and histopathological parameters in rat ovaries. Hence we quantify plasma estradiol and progesterone by chemiluminescence; non-protein thiol levels, TBARS, superoxide dismutase and catalase activity by spectrophotometry; gene expression of steroidogenic enzymes and redox systems by real-time PCR; and ovarian follicles by optical microscopy. Our results demonstrated that oral exposure increased progesterone levels and the mRNA expression of 3β-hydroxysteroid dehydrogenase. Histopathological analysis revealed a decrease in the number of primary follicles and an increase in the number of corpus luteum in rats exposed to Roundup®. An imbalance of the oxidative status was also evidenced by decreasing the catalase activity at all groups exposed to the herbicide. Increased lipid peroxidation and gene expression of glutarredoxin and decreased of glutathione reductase were also observed. Our results indicate that Roundup® causes endocrine disruption of hormones related to female fertility and reproduction and changes the oxidative status by altering antioxidant activity, inducing lipid peroxidation, as well as changing the gene expression of the glutathione-glutarredoxin system in rat ovaries.
Collapse
Affiliation(s)
- Rafael Chitolina
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil
| | - Patrícia Nicola
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil
| | - Adrieli Sachett
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil
| | - Fernanda Bevilaqua
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil
| | - Lemen Cunico
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil
| | - Alissara Reginatto
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil
| | - Kanandra Bertoncello
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil
| | - Katiuska Marins
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil
| | - Ana Paula Zanatta
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil
| | - Marta Medeiros
- Universidade Luterana do Brasil, Departamento de Ciências da Saúde, Canoas, RS, Brazil
| | - Acauane S Lima
- Universidade Federal de Santa Catarina, Centro de Ciências Rurais, Campus de Curitibanos, Rodovia Ulisses Gaboardi-Km 3, 89520-000 Curitibanos, SC, Brazil
| | - Cristiane Parisotto
- Universidade Federal de Santa Catarina, Centro de Ciências Rurais, Campus de Curitibanos, Rodovia Ulisses Gaboardi-Km 3, 89520-000 Curitibanos, SC, Brazil
| | - Jean Carlo O Menegatt
- Universidade Federal de Santa Catarina, Centro de Ciências Rurais, Campus de Curitibanos, Rodovia Ulisses Gaboardi-Km 3, 89520-000 Curitibanos, SC, Brazil
| | - André F Goetten
- Universidade Federal de Santa Catarina, Centro de Ciências Rurais, Campus de Curitibanos, Rodovia Ulisses Gaboardi-Km 3, 89520-000 Curitibanos, SC, Brazil
| | - Francielli C Zimermann
- Universidade Federal de Santa Catarina, Centro de Ciências Rurais, Campus de Curitibanos, Rodovia Ulisses Gaboardi-Km 3, 89520-000 Curitibanos, SC, Brazil
| | - Adriano T Ramos
- Universidade Federal de Santa Catarina, Centro de Ciências Rurais, Campus de Curitibanos, Rodovia Ulisses Gaboardi-Km 3, 89520-000 Curitibanos, SC, Brazil
| | - Valério M Portela
- Universidade Federal de Santa Catarina, Centro de Ciências Rurais, Campus de Curitibanos, Rodovia Ulisses Gaboardi-Km 3, 89520-000 Curitibanos, SC, Brazil
| | - Marcos H Barreta
- Universidade Federal de Santa Catarina, Centro de Ciências Rurais, Campus de Curitibanos, Rodovia Ulisses Gaboardi-Km 3, 89520-000 Curitibanos, SC, Brazil
| | - Greicy Michelle M Conterato
- Universidade Federal de Santa Catarina, Centro de Ciências Rurais, Campus de Curitibanos, Rodovia Ulisses Gaboardi-Km 3, 89520-000 Curitibanos, SC, Brazil
| | - Leila Zanatta
- Universidade Comunitária da Região de Chapecó, Avenida Senador Atílio Fontana, 591E, 89809-000 Chapecó, SC, Brazil; Universidade do Estado de Santa Catarina, Centro de Educação Superior do Oeste, Departamento de Enfermagem, Rua 7 de Setembro 77-D, Centro, 89806-152 Chapecó, SC, Brazil.
| |
Collapse
|
4
|
Coalova I, March H, Ríos de Molina MDC, Chaufan G. Individual and joint effects of glyphosate and cypermethrin formulations on two human cell lines. Toxicol Appl Pharmacol 2023; 461:116398. [PMID: 36702315 DOI: 10.1016/j.taap.2023.116398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/26/2022] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
The final effect of pesticides and their mixtures on living organisms is determined by the particular toxicodynamics of the system. Oxidative stress is one of the most studied molecular mechanisms of toxicity due to increasing evidence supporting its association with the toxic effects of different agrochemicals. In the present study we evaluated the presence of redox balance alterations in the cell lines HEp-2 and A549 exposed to formulations of glyphosate (March®) and cypermethrin (Superfina®) used separately or in combination (in a proportion equivalent to that used in soybean fields). We determined the activity of catalase, superoxide dismutase, glutathione S-transferase, intracellular GSH content, content of oxidized proteins (as measure of damage) and intracellular ROS content in both cell lines at two different mixture concentrations. Additionally, we evaluated the presence of statistical interaction to determine if the effect of the mixture on the parameters evaluated was additive, synergistic, or antagonistic. For this purpose, we used the Combination Subthresholding, Cooperative Effect and Statistical Linear Interaction approaches. We found that the interaction between pesticides depended on their concentration and the cellular models studied.
Collapse
Affiliation(s)
- Isis Coalova
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, IQUIBICEN-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Hugo March
- Agrofina S.A. Thames 122, Piso 1 (B1607), San Isidro, Provincia de Buenos Aires, Argentina.
| | - María Del Carmen Ríos de Molina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, IQUIBICEN-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| | - Gabriela Chaufan
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, IQUIBICEN-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Mehtiyev T, Karaman EF, Ozden S. Alterations in cell viability, reactive oxygen species production, and modulation of gene expression involved in mitogen-activated protein kinase/extracellular regulating kinase signaling pathway by glyphosate and its commercial formulation in hepatocellular carcinoma cells. Toxicol Ind Health 2023; 39:81-93. [PMID: 36625791 DOI: 10.1177/07482337221149571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Glyphosate (N-phosphonomethyl glycine) is a non-selective, organophosphate herbicide widely used in agriculture and forestry. We investigated the possible toxic effects of the glyphosate active compound and its commercial formulation (Roundup Star®) in the human hepatocellular carcinoma (HepG2) cell line, including their effects on the cytotoxicity, cell proliferation, reactive oxygen species (ROS) levels, and expression of oxidative stress-related genes such as HO-1, Hsp70 Nrf2, L-FABP, and Keap1. MTT and NRU tests indicated that the IC50 values of Roundup Star® were 219 and 140 μM, respectively, and because glyphosate failed to induce cell death at the studied concentrations, an IC50 value could not be determined for this cell line. Roundup Star at concentrations of 50 and 100 μM significantly increased (39.58% and 52%, respectively) cell proliferation, which 200 μM of glyphosate increased by 35.38%. ROS levels increased by 27.97% and 44.77% for 25 and 100 μM of Roundup Star and 32.74% and 38.63% for 100 and 200 μM of glyphosate exposure. In conclusion, Roundup Star and glyphosate significantly increased expression levels of selected genes related to the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway. This suggests that ROS production and the MAPK/ERK signaling pathway may be key molecular mechanisms in the toxicity of glyphosate in liver cells.
Collapse
Affiliation(s)
- Toghrul Mehtiyev
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, 37516Istanbul University, Istanbul, Turkey.,Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, 37516Istanbul University, Istanbul, Turkey.,Department of Pharmaceutical Toxicology, Faculty of Pharmacy, 420479Biruni University, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, 37516Istanbul University, Istanbul, Turkey
| |
Collapse
|
6
|
Coperchini F, Greco A, Croce L, Denegri M, Magri F, Rotondi M, Chiovato L. In vitro study of glyphosate effects on thyroid cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120801. [PMID: 36462676 DOI: 10.1016/j.envpol.2022.120801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Glyphosate is a pesticide, which contaminates the environment and exposes workers and general population to its residues present in foods and waters. In soil, Glyphosate is degraded in metabolites, amino-methyl-phosphonic acid (AMPA) being the main one. Glyphosate is considered a potential cancerogenic and endocrine-disruptor agent, however its adverse effects on the thyroid were evaluated only in animal models and in vitro data are still lacking. Aim of this study was to investigate whether exposure to Glyphosate could exert adverse effects on thyroid cells in vitro. Two models (adherent-2D and spheroid-3D) derived from the same cell strain Fisher-rat-thyroid-cell line-5 (FRTL-5) were employed. After exposure to Glyphosate at increasing concentrations (0.0, 0.1-0.25- 0.5-1.0-2.0-10.0 mM) we evaluated cell viability by WST-1 (adherent and spheroids), results being confirmed by propidium-iodide staining (only for spheroids). Proliferation of adherent cells was assessed by crystal violet and trypan-blue assays, the increasing volume of spheroids was taken as a measure of proliferation. We also evaluated the ability of cells to form spheroids after Glyphosate exposure. We assessed changes of reactive-oxygen-species (ROS) by the cell-permeant H2DCFDA. Glyphosate-induced changes of mRNAs encoding for thyroid-related genes (TSHR, TPO, TG, NIS, TTF-1 and PAX8) were evaluated by RT-PCR. Glyphosate reduced cell viability and proliferation in both models, even if at different concentrations. Glyphosate at the highest concentration reduced the ability of FRTL-5 to form spheroids. An increased ROS production was found in both models after exposure to Glyphosate. Finally, Glyphosate increased the mRNA levels of some thyroid related genes (TSHR, TPO, TG and TTF-1) in both models, while it increased the mRNAs of PAX8 and NIS only in the adherent model. The present study supports an adverse effect of Glyphosate on cultured thyroid cells. Glyphosate reduced cell viability and proliferation and increased ROS production in thyroid cells.
Collapse
Affiliation(s)
- Francesca Coperchini
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy
| | - Alessia Greco
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy
| | - Laura Croce
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Marco Denegri
- Unit of Molecular Cardiology, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Flavia Magri
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Mario Rotondi
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Luca Chiovato
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, 27100, Pavia, Italy; Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy.
| |
Collapse
|
7
|
Feiertag K, Karaca M, Fischer B, Heise T, Bloch D, Opialla T, Tralau T, Kneuer C, Marx-Stoelting P. Mixture effects of co-formulants and two plant protection products in a liver cell line. EXCLI JOURNAL 2023; 22:221-236. [PMID: 36998705 PMCID: PMC10043434 DOI: 10.17179/excli2022-5648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/06/2023] [Indexed: 04/01/2023]
Abstract
Plant protection products (PPPs) consist of one or more active substances and several co-formulants. Active substances provide the functionality of the PPP and are consequently evaluated according to standard test methods set by legal data requirements before approval, whereas co-formulants' toxicity is not as comprehensively assessed. However, in some cases mixture effects of active substances and co-formulants might result in increased or different forms of toxicity. In a proof-of-concept study we hence built on previously published results of Zahn et al. (2018[38]) on the mixture toxicity of Priori Xtra® and Adexar® to specifically investigate the influence of co-formulants on the toxicity of these commonly used fungicides. Products, their respective active substances in combination as well as some co-formulants were applied to human hepatoma cell line (HepaRG) in several dilutions. Cell viability analysis, mRNA expression, abundance of xenobiotic metabolizing enzymes and intracellular concentrations of active substances determined by LC-MS/MS analyses demonstrated that the toxicity of the PPPs is influenced by the presence of co-formulants in vitro. PPPs were more cytotoxic than the mix of their active substances. Gene expression profiles of cells treated with the PPPs were similar to those treated with their respective mixture combinations with marked differences. Co-formulants can cause gene expression changes on their own. LC-MS/MS analyses revealed higher intracellular concentrations of active substances in cells treated with PPPs compared to those treated with the respective active substances' mix. Proteomic data showed co-formulants can induce ABC transporters and CYP enzymes. Co-formulants can contribute to the observed increased toxicity of PPPs compared to their active substances in combination due to kinetic interactions, necessitating a more comprehensive evaluation approach.
Collapse
Affiliation(s)
- Katreece Feiertag
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Berlin, Germany
| | - Mawien Karaca
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Berlin, Germany
| | - Benjamin Fischer
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Berlin, Germany
| | - Tanja Heise
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Berlin, Germany
| | - Denise Bloch
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Berlin, Germany
| | - Tobias Opialla
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Berlin, Germany
| | - Tewes Tralau
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Berlin, Germany
| | - Carsten Kneuer
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Berlin, Germany
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Berlin, Germany
- *To whom correspondence should be addressed: Philip Marx-Stoelting, German Federal Institute for Risk Assessment, Department Pesticides Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; Tel.: +49 30 1841226600, E-mail:
| |
Collapse
|
8
|
Cuzziol Boccioni AP, Lener G, Peluso J, Peltzer PM, Attademo AM, Aronzon C, Simoniello MF, Demonte LD, Repetti MR, Lajmanovich RC. Comparative assessment of individual and mixture chronic toxicity of glyphosate and glufosinate ammonium on amphibian tadpoles: A multibiomarker approach. CHEMOSPHERE 2022; 309:136554. [PMID: 36174726 DOI: 10.1016/j.chemosphere.2022.136554] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The aim of the present study was to assess the ecotoxicity of glyphosate and glufosinate ammonium mixtures on amphibian tadpoles and the potential impact of mixture in aquatic ecosystems health. The bonding properties of the mixture based on computational chemistry and an experimental bioassay on morphology, DNA damage and biochemical biomarkers on tadpoles of the common toad Rhinella arenarum were studied. The results of the density functional theory analysis showed trends of the pesticides clustering to form exothermic mixtures, suggesting the likelihood of hot-spots of pesticides in real aquatic systems. In addition, biological effects of individual pesticides and the mixture were studied on tadpoles over 45 days-chronic bioassay. The bioassay consisted of four treatments: a negative control (CO), 2.5 mg L-1 of a glyphosate-based herbicide (GBH), 2.5 mg L-1 of a glufosinate ammonium-based herbicide (GABH) and their 50:50 (% v/v) mixture (GBH-GABH). Morphological abnormality rates were significantly higher in all herbicide treatments with respect to CO at 48 h of exposure. Abdominal edema was the most frequent type of abnormality recorded at 48 h, 10 and 45 days of exposure. DNA damage was recorded in all herbicides treatments. Thyroxin increased only in GABH treatment. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) significantly increased in GBH treatment, indicating a GBH-neurotoxic effect. Glutathione S-transferase decreased in GABH and GBH-GABH treatments, while catalase decreased in individual GBH and GABH treatments. Overall, teratogenicity, DNA damage, hormonal disruption (T4), and oxidative stress were greater in GABH-treated tadpoles than GBH-treated tadpoles. This study also highlights the robust chemical interaction between the active ingredients of both herbicides, which is reflected on antagonisms in most of analyzed biomarkers, as well as potentiation and additivity in others. Based on our results, the GABH had a higher toxicity than GBH for amphibian tadpoles.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
| | - German Lener
- Instituto de Investigaciones en Físico-Química de Córdoba-CONICET. Departamento de Química Teórica y Computacional. Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Julieta Peluso
- Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (IIIA-UNSAM)-CONICET, Campus Miguelete, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Carolina Aronzon
- Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (IIIA-UNSAM)-CONICET, Campus Miguelete, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - María F Simoniello
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - Luisina D Demonte
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos. Facultad de Ingeniería Química, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos. Facultad de Ingeniería Química, Universidad Nacional Del Litoral, Santa Fe, Argentina
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
9
|
Hassan SA, Beleidy M, El-din YA. Biocompatibility and Surface Roughness of Different Sustainable Dental Composite Blocks: Comprehensive In Vitro Study. ACS OMEGA 2022; 7:34258-34267. [PMID: 36188235 PMCID: PMC9520711 DOI: 10.1021/acsomega.2c03745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
The study purposed to investigate the biocompatibility and sustainability of two computer-aided design/computer-aided manufacturing (CAD/CAM) resin-based composites compared to a resin-modified ceramic in terms of surface roughness, biofilm formation, cytotoxicity, genotoxicity, and cellular changes observed under transmission electron microscopy (TEM). Three CAD/CAM blocks were used, two resin-based composites [Brilliant Crios (BC) and Cerasmart, (CS) and one hybrid ceramic (Vita Enamic (EN)]. Each block was sectioned into 10 × 12 × 2 mm specimens, followed by finishing and polishing. Each specimen was evaluated for surface roughness using 3D optical profilometry and scanned by scanning electron microscopy. Biofilm formation and its relation to surface roughness have been investigated for all tested materials. A Hep-2 cell line was used to investigate the viability through MTT assay. The cytotoxicity of the materials was measured at 24, 48, and 168 h. The activity of P53, caspase 3, and cytochrome C was evaluated to detect the genotoxicity of different groups, followed by TEM tracking of the cellular changes. Statistical analysis was implemented by utilizing a one-way analysis of variance test. The significance was set at P ≤ 0.05. With regard to the surface roughness, no statistically significant differences were shown between groups. BC possessed the highest biofilm formation value, followed by EN and CS, with no significance between them. No correlation between surface roughness of tested materials and biofilm formation was shown. Considering viability, the highest values were recorded for EN, whereas BC showed the lowest values. P53-fold changes in EN were significantly the lowest, indicating less genotoxicity. Within the current study's limitations, BC showed the highest biofilm formation. However, no significant surface roughness difference or correlation with biofilm formation was observed in tested materials. EN showed the lowest cytotoxicity and the highest viability. EN revealed the best compatibility performance among tested materials. On the contrary, the BC exhibited fewer preferences.
Collapse
Affiliation(s)
- Soha A. Hassan
- Associate
Professor of Cell Biology and Genetics Faculty of Dentistry-October
6 University, Giza 12511, Egypt
| | - Marwa Beleidy
- Lecturer
of Fixed Prosthodontics, Faculty of Dentistry, October 6 University, Giza 12511, Egypt
| | - Yasmine Alaa El-din
- Lecturer
of Oral & Maxillofacial Pathology, Faculty of Dentistry, October 6 University, Giza 12511, Egypt
| |
Collapse
|
10
|
Nagy K, Argaw Tessema R, Szász I, Smeirat T, Al Rajo A, Ádám B. Micronucleus Formation Induced by Glyphosate and Glyphosate-Based Herbicides in Human Peripheral White Blood Cells. Front Public Health 2021; 9:639143. [PMID: 34109144 PMCID: PMC8180907 DOI: 10.3389/fpubh.2021.639143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/23/2021] [Indexed: 11/28/2022] Open
Abstract
Glyphosate is the most commonly used herbicide around the world, which led to its accumulation in the environment and consequent ubiquitous human exposure. Glyphosate is marketed in numerous glyphosate-based herbicide formulations (GBHs) that include co-formulants to enhance herbicidal effect of the active ingredient, but are declared as inert substances. However, these other ingredients can have biologic activity on their own and may interact with the glyphosate in synergistic toxicity. In this study, we focused to compare the cytogenetic effect of the active ingredient glyphosate and three marketed GBHs (Roundup Mega, Fozat 480, and Glyfos) by investigating cytotoxicity with fluorescent co-labeling and WST-1 cell viability assay as well as genotoxicity with cytokinesis block micronucleus assay in isolated human mononuclear white blood cells. Glyphosate had no notable cytotoxic activity over the tested concentration range (0-10,000 μM), whereas all the selected GBHs induced significant cell death from 1,000 μM regardless of metabolic activation (S9). Micronucleus (MN) formation induced by glyphosate and its formulations at sub-cytotoxic concentrations (0-100 μM) exhibited a diverse pattern. Glyphosate caused statistically significant increase of MN frequency at the highest concentration (100 μM) after 20-h exposure. Contrarily, Roundup Mega exerted a significant genotoxic effect at 100 μM both after 4- and 20-h exposures; moreover, Glyfos and Fozat 480 also resulted in a statistically significant increase of MN frequency from the concentration of 10 μM after 4-h and 20-h treatment, respectively. The presence of S9 had no effect on MN formation induced by either glyphosate or GBHs. The differences observed in the cytotoxic and genotoxic pattern between the active principle and formulations confirm the previous concept that the presence of co-formulants in the formulations or the interaction of them with the active ingredient is responsible for the increased toxicity of herbicide products, and draw attention to the fact that GBHs are still currently in use, the toxicity of which rivals that of POEA-containing formulations (e.g., Glyfos) already banned in Europe. Hence, it is advisable to subject them to further comprehensive toxicological screening to assess the true health risks of exposed individuals, and to reconsider their free availability to any users.
Collapse
Affiliation(s)
- Károly Nagy
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Roba Argaw Tessema
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - István Szász
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Tamara Smeirat
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Alaa Al Rajo
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Ádám
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- College of Medicine and Health Sciences, Institute of Public Health, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
11
|
Truzzi F, Mandrioli D, Gnudi F, Scheepers PTJ, Silbergeld EK, Belpoggi F, Dinelli G. Comparative Evaluation of the Cytotoxicity of Glyphosate-Based Herbicides and Glycine in L929 and Caco2 Cells. Front Public Health 2021; 9:643898. [PMID: 34026710 PMCID: PMC8138571 DOI: 10.3389/fpubh.2021.643898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Glyphosate, an amino acid analog of glycine, is the most widely applied organophosphate pesticide worldwide and it is an active ingredient of all glyphosate-based herbicides (GBHs), including the formulation "Roundup. " While glycine is an essential amino acid generally recognized safe, both epidemiological and toxicological in vivo and in vitro studies available in literature report conflicting findings on the toxicity of GBHs. In our earlier in vivo studies in Sprague-Dawley rats we observed that exposure to GBHs at doses of glyphosate of 1.75 mg/kg bw/day, induced different toxic effects relating to sexual development, endocrine system, and the alteration of the intestinal microbiome. In the present work, we aimed to comparatively test in in vitro models the cytotoxicity of glycine and GBHs. Methods: We tested the cytotoxic effects of glycine, glyphosate, and its formulation Roundup Bioflow at different doses using MTT and Trypan Blue assays in human Caco2 and murine L929 cell lines. Results: Statistically significant dose-related cytotoxic effects were observed in MTT and Trypan Blue assays in murine (L929) and human (Caco2) cells treated with glyphosate or Roundup Bioflow. No cytotoxic effects were observed for glycine. In L929, Roundup Bioflow treatment showed a mean IC50 value that was significantly lower than glyphosate in both MTT and Trypan Blue assays. In Caco2, Roundup Bioflow treatment showed a mean IC50 value that was significantly lower than glyphosate in the MTT assays, while a comparable IC50 was observed for glyphosate and Roundup Bioflow in Trypan Blue assays. IC50 for glycine could not be estimated because of the lack of cytotoxic effects of the substance. Conclusion: Glyphosate and its formulation Roundup Bioflow, but not glycine, caused dose-related cytotoxic effects in in vitro human and murine models (Caco2 and L929). Our results showed that glycine and its analog glyphosate presented different cytotoxicity profiles. Glyphosate and Roundup Bioflow demonstrate cytotoxicity similar to other organophosphate pesticides (malathion, diazinon, and chlorpyriphos).
Collapse
Affiliation(s)
- Francesca Truzzi
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Daniele Mandrioli
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Bologna, Italy
| | - Federica Gnudi
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Bologna, Italy
| | - Paul T. J. Scheepers
- Radboud Institute for Health Sciences, Radboud University Medical Center (UMC), Nijmegen, Netherlands
| | - Ellen K. Silbergeld
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Fiorella Belpoggi
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Bologna, Italy
| | - Giovanni Dinelli
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Grilo LF, Martins JD, Cavallaro CH, Nathanielsz PW, Oliveira PJ, Pereira SP. Development of a 96-well based assay for kinetic determination of catalase enzymatic-activity in biological samples. Toxicol In Vitro 2020; 69:104996. [DOI: 10.1016/j.tiv.2020.104996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
|
13
|
Dose-independent genotoxic response in A549 cell line exposed to fungicide Iprodione. Arch Toxicol 2020; 95:1071-1079. [PMID: 33245377 DOI: 10.1007/s00204-020-02954-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/12/2020] [Indexed: 10/22/2022]
Abstract
The fungicide Iprodione is widely applied in vegetables and raises concern for human health. The A549 human lung carcinoma cell line is a suitable model for assessing the toxicological effects of drugs. The goal of this work was to evaluate the genotoxicity and oxidative stress in the A549 cell line exposed to sublethal concentrations from 3 to 100 µg/mL Iprodione considering LC50 = 243.4 µg/mL Iprodione, as determined by the MTT assay. Generalized Linear Mixed Models (GLMM) were performed to determine the association between the responses NDI, MNim and MNib and the explanatory variables. Iprodione and solvent were relativized to the control whereas the concentration was included as numeric variable. ANOVA was used for the comparison of treatments. The coefficients of linear association between the explanatory variables and NDI, and the coefficients of logistic association between explanatory variables and MNim were not significant. However, these coefficients showed significant association with MNib only for Iprodione treatment but not for Iprodione concentration, indicating lack of dose-response relationship. Genotoxicity risk assessment indicated that the increase in Iprodione concentrations increased slightly the probability of belonging to the genotoxic category. ANOVA showed significant differences in MNib, and non-significant differences in NDI and MNim among treatments. The oxidative stress analysis performed at 3, 12, and 25 μg/mL Iprodione showed a significant and linear increase in SOD, and a significant and linear decrease in GSH and GST. The Dunnett test was significant for GSH at 12 and SOD at 25 μg/mL.
Collapse
|
14
|
Bertero A, Rivolta M, Davanzo F, Caloni F. Suspected environmental poisoning by drugs, household products and pesticides in domestic animals. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103471. [PMID: 32818631 DOI: 10.1016/j.etap.2020.103471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Animal poisoning by chemicals (pesticides and household products) and drugs is a frequent occurrence and special attention should be paid to this phenomenon to improve prevention and treatment strategies and because of the fundamental role that animals may play as bioindicators. From January 2017 to March 2019 the Poison Control Centre of Milan (CAV) in collaboration with the University of Milan, collected and analyzed epidemiological data on animal poisoning. During this period, the CAV received a total of 442 enquiries on domestic animal poisoning episodes and, among these, 80.3 % were related to chemicals and drugs. Pesticides and drugs were the two major causes of poisoning (34.1 % and 33.5 %, respectively), followed by household products (29.3 %) and other causative agents (3.1 %, n = 11). In conclusion, these findings can provide useful information for the identification and monitoring of known and emerging toxicants, with positive repercussions on human, animal and environmental health.
Collapse
Affiliation(s)
- Alessia Bertero
- Department of Environmental Science and Policy (ESP), Universitàdegli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| | - Marina Rivolta
- Milan Poison Control Centre, ASST Grande Ospedale Metropolitano Niguarda, Piazza dell'Ospedale Maggiore 3, 20162 Milan, Italy
| | - Franca Davanzo
- Milan Poison Control Centre, ASST Grande Ospedale Metropolitano Niguarda, Piazza dell'Ospedale Maggiore 3, 20162 Milan, Italy
| | - Francesca Caloni
- Department of Environmental Science and Policy (ESP), Universitàdegli Studi di Milano, Via Celoria 10, 20133 Milan, Italy.
| |
Collapse
|
15
|
Singh S, Kumar V, Gill JPK, Datta S, Singh S, Dhaka V, Kapoor D, Wani AB, Dhanjal DS, Kumar M, Harikumar SL, Singh J. Herbicide Glyphosate: Toxicity and Microbial Degradation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7519. [PMID: 33076575 PMCID: PMC7602795 DOI: 10.3390/ijerph17207519] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 01/17/2023]
Abstract
Glyphosate is a non-specific organophosphate pesticide, which finds widespread application in shielding crops against the weeds. Its high solubility in hydrophilic solvents, especially water and high mobility allows the rapid leaching of the glyphosate into the soil leading to contamination of groundwater and accumulation into the plant tissues, therefore intricating the elimination of the herbicides. Despite the widespread application, only a few percentages of the total applied glyphosate serve the actual purpose, dispensing the rest in the environment, thus resulting in reduced crop yields, low quality agricultural products, deteriorating soil fertility, contributing to water pollution, and consequently threatening human and animal life. This review gives an insight into the toxicological effects of the herbicide glyphosate and current approaches to track and identify trace amounts of this agrochemical along with its biodegradability and possible remediating strategies. Efforts have also been made to summarize the biodegradation mechanisms and catabolic enzymes involved in glyphosate metabolism.
Collapse
Affiliation(s)
- Simranjeet Singh
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, India; (S.S.); (V.D.); (D.S.D.)
- Punjab Biotechnology Incubator (PBTI), Phase-V, S.A.S. Nagar, Punjab 160059, India
- Regional Advance Water Testing Laboratory, Department of Water Supply and Sanitation, Phase-II, S.A.S. Nagar 160054, India;
| | - Vijay Kumar
- Regional Ayurveda Research Institute for Drug Development, Gwalior 474009, India;
| | | | - Shivika Datta
- Department of Zoology, Doaba College Jalandhar, Jalandhar 144001, India;
| | - Satyender Singh
- Regional Advance Water Testing Laboratory, Department of Water Supply and Sanitation, Phase-II, S.A.S. Nagar 160054, India;
| | - Vaishali Dhaka
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, India; (S.S.); (V.D.); (D.S.D.)
| | - Dhriti Kapoor
- Department of Botany, Lovely Professional University, Phagwara 144411, India;
| | - Abdul Basit Wani
- Department of Chemistry, Lovely Professional University, Phagwara 144411, India;
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, India; (S.S.); (V.D.); (D.S.D.)
| | - Manoj Kumar
- Department of Life Sciences, Central University Jharkhand, Brambe, Ranchi 835205, India; (M.K.); (S.L.H.)
| | - S. L. Harikumar
- Department of Life Sciences, Central University Jharkhand, Brambe, Ranchi 835205, India; (M.K.); (S.L.H.)
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Phagwara 144411, India; (S.S.); (V.D.); (D.S.D.)
| |
Collapse
|
16
|
Hao Y, Zhang Y, Cheng J, Xu W, Xu Z, Gao J, Tao L. Adjuvant contributes Roundup's unexpected effects on A549 cells. ENVIRONMENTAL RESEARCH 2020; 184:109306. [PMID: 32120119 DOI: 10.1016/j.envres.2020.109306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/16/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Roundup® (RDP) is one of the most representative glyphosate-based herbicides (GBHs), which extensive use increases pressure on environmental safety and potential human health risk. The aim of this study was to investigate whether the adjuvant polyethoxylated tallow amine (POEA) or the herbicidal active ingredient glyphosate isopropylamine salt (GP) in formulation confers RDP cytotoxicity. We demonstrated that RDP and POEA could inhibit the proliferation of human lung A549 cells. Intracellular biochemical assay indicated that collapse of mitochondrial membrane, release of cytochrome c into cytosol, activation of caspase-9/-3, cleavage of poly (ADP-ribose) polymerase (PARP), oxidative DNA damage, DNA single-strand breaks and double-strand breaks are occurred in RDP and POEA treated A549 cells, not occurred in GP treated A549 cells. We conclude that the RDP's effect of apoptosis and DNA damage on human A549 cells is related to the presence of adjuvant POEA in formulation, independent of the herbicidal active ingredient GP. This study would enrich the theoretical basis of the RDP toxicity effects and attract attention on potential human health and environmental safety threat caused by adjuvant.
Collapse
Affiliation(s)
- Youwu Hao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jufang Gao
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
17
|
Agostini LP, Dettogni RS, Dos Reis RS, Stur E, Dos Santos EVW, Ventorim DP, Garcia FM, Cardoso RC, Graceli JB, Louro ID. Effects of glyphosate exposure on human health: Insights from epidemiological and in vitro studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135808. [PMID: 31972943 DOI: 10.1016/j.scitotenv.2019.135808] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 05/27/2023]
Abstract
Glyphosate (GLY) is a broad-spectrum, post-emergent, non-selective and synthetic universal herbicide, whose commercial formulations are referred to as glyphosate-based-herbicides (GBHs). These chemicals and their metabolites can be found in soil, air, water, as well as groundwater and food products. This review summarizes to summarize current in vitro and epidemiological studies investigating the effects of GLY exposure on human health. Recent human cell studies have reported several GLY and GBH toxicological effects and have contributed to a better understanding of the deleterious consequences associated with their exposure. However, these detrimental effects are dependent on the cell type, chemical composition, as well as magnitude and time of exposure, among other factors. Moreover, the deleterious effects of GLY exposure on human health were observed in epidemiological studies; however, most of these studies have not determined the GLY dosage to confirm a direct effect. While GLY toxicity is clear in human cells, epidemiological studies investigating individuals exposed to different levels of GLY have reported contradictory data. Therefore, based on currently available in vitro and epidemiological data, it is not possible to confirm the complete safety of GLY use, which will require additional comprehensive studies in animal models and humans.
Collapse
Affiliation(s)
- Lidiane P Agostini
- Human and Molecular Genetics Center, Department of Biological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Raquel S Dettogni
- Endocrinology and Cell Toxicology Laboratory, Department of Morphology, Federal University of Espirito Santo, Vitoria, Brazil.
| | - Raquel S Dos Reis
- Human and Molecular Genetics Center, Department of Biological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Elaine Stur
- Human and Molecular Genetics Center, Department of Biological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Eldamária V W Dos Santos
- Human and Molecular Genetics Center, Department of Biological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Diego P Ventorim
- Human and Molecular Genetics Center, Department of Biological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Fernanda M Garcia
- Human and Molecular Genetics Center, Department of Biological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| | - Rodolfo C Cardoso
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Science, Texas A&M University, United States of America
| | - Jones B Graceli
- Endocrinology and Cell Toxicology Laboratory, Department of Morphology, Federal University of Espirito Santo, Vitoria, Brazil
| | - Iúri D Louro
- Human and Molecular Genetics Center, Department of Biological Sciences, Federal University of Espirito Santo, Vitoria, Brazil
| |
Collapse
|
18
|
Neto da Silva K, Garbin Cappellaro L, Ueda CN, Rodrigues L, Pertile Remor A, Martins RDP, Latini A, Glaser V. Glyphosate-based herbicide impairs energy metabolism and increases autophagy in C6 astroglioma cell line. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:153-167. [PMID: 32085696 DOI: 10.1080/15287394.2020.1731897] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Several investigators demonstrated that glyphosate formulations produce neurotoxicity associated with oxidative stress, alterations in glutamatergic system, inhibition of acetylcholinesterase activity and mitochondrial dysfunction. However, the underlying molecular mechanisms following exposure to this herbicide on astrocytes are unclear. Thus, the aim of the present study was to determine the activity of enzymes related to energy metabolism, in addition to oxidative stress parameters, mitochondrial mass, nuclear area, and autophagy in astrocytes treated with a glyphosate-based herbicide. Our results showed that 24 h exposure to a glyphosate-based herbicide decreased (1) cell viability, (2) activities of mitochondrial respiratory chain enzymes and creatine kinase (CK), (3) mitochondrial mass, and (4) nuclear area in rat astroglioma cell line (C6 cells). However, non-protein thiol (NPSH) levels were increased but catalase activity was not changed in cells exposed to the herbicide at non-cytotoxic concentrations. Low glyphosate concentrations elevated content of cells positive to autophagy-related proteins. Nuclear factor erythroid 2-related factor (Nrf2), NAD(P)H dehydrogenase [quinone] 1 (NQO1) and PTEN-induced kinase 1 (PINK1) labeling were not markedly altered in cells exposed to glyphosate at the same concentrations that an increase in NPSH levels and positive cells to autophagy were found. It is conceivable that mitochondria and CK may be glyphosate-based herbicides targets. Further, autophagy induction and NPSH increase may be mechanisms initiated to avoid oxidative stress and cell death. However, more studies are needed to clarify the role of autophagy in astrocytes exposed to the herbicide and which components of the formulation might be triggering the effects observed here.
Collapse
Affiliation(s)
- Katriane Neto da Silva
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| | - Laura Garbin Cappellaro
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| | - Caroline Naomi Ueda
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| | - Luana Rodrigues
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| | - Aline Pertile Remor
- Programa De Pós-graduação Em Biociências E Saúde, Universidade Do Oeste De Santa Catarina - Campus Joaçaba, Joaçaba, Brazil
| | - Roberta de Paula Martins
- Departamento De Ciências Da Saúde, Universidade Federal De Santa Catarina - Campus De Araranguá, Araranguá, Brazil
| | - Alexandra Latini
- Laboratório De Bioenergética E Estresse Oxidativo, Departamento De Bioquímica, Universidade Federal De Santa Catarina - Campus De Florianópolis, Florianópolis, Brazil
| | - Viviane Glaser
- Laboratório De Biologia Celular, Coordenadoria Especial De Ciências Biológicas E Agronômicas, Universidade Federal De Santa Catarina - Campus De Curitibanos, Curitibanos, Brazil
| |
Collapse
|
19
|
González-Pleiter M, Cirés S, Wörmer L, Agha R, Pulido-Reyes G, Martín-Betancor K, Rico A, Leganés F, Quesada A, Fernández-Piñas F. Ecotoxicity assessment of microcystins from freshwater samples using a bioluminescent cyanobacterial bioassay. CHEMOSPHERE 2020; 240:124966. [PMID: 31726608 DOI: 10.1016/j.chemosphere.2019.124966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/03/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
The hepatotoxic cyanotoxins microcystins (MCs) are emerging contaminants naturally produced by cyanobacteria. Yet their ecological role remains unsolved, previous research suggests that MCs have allelopathic effects on competing photosynthetic microorganisms, even eliciting toxic effects on other freshwater cyanobacteria. In this context, the bioluminescent recombinant cyanobacterium Anabaena sp. PCC7120 CPB4337 (hereinafter Anabaena) was exposed to extracts of MCs. These were obtained from eight natural samples from freshwater reservoirs that contained MCs with a concentration range of 0.04-11.9 μg MCs L-1. MCs extracts included the three most common MCs variants (MC-LR, MC-RR, MC-YR) in different proportions (MC-LR: 100-0%; MC-RR: 100-0%; MC-YR: 14.2-0%). The Anabaena bioassay based on bioluminescence inhibition has been successfully used to test the toxicity of many emerging contaminants (e.g., pharmaceuticals) but never for cyanotoxins prior to this study. Exposure of Anabaena to MCs extracts induced a decrease in its bioluminescence with effective concentration decreasing bioluminescence by 50% ranging from 0.4 to 50.5 μg MC L-1 in the different samples. Bioluminescence responses suggested an interaction between MCs variants which was analyzed via the Additive Index method (AI), indicating an antagonistic effect (AI < 0) of MC-LR and MC-RR present in the samples. Additionally, MC extracts exposure triggered an increase of intracellular free Ca2+ in Anabaena. In short, this study supports the use of the Anabaena bioassay as a sensitive tool to assess the presence of MCs at environmentally relevant concentrations and opens interesting avenues regarding the interactions between MCs variants and the possible implication of Ca2+ in the mode of action of MCs towards cyanobacteria.
Collapse
Affiliation(s)
- Miguel González-Pleiter
- Departamento de Biología, C/Darwin, 2, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Samuel Cirés
- Departamento de Biología, C/Darwin, 2, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Lars Wörmer
- Organic Geochemistry Group, MARUM-Center for Marine Environmental Sciences, University of Bremen, Leobener Str. 8, 28359, Bremen, Germany
| | - Ramsy Agha
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, Berlin, 12587, Germany
| | - Gerardo Pulido-Reyes
- Departamento de Biología, C/Darwin, 2, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Keila Martín-Betancor
- Departamento de Biología, C/Darwin, 2, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain
| | - Francisco Leganés
- Departamento de Biología, C/Darwin, 2, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Antonio Quesada
- Departamento de Biología, C/Darwin, 2, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | |
Collapse
|
20
|
Nagy K, Tessema RA, Budnik LT, Ádám B. Comparative cyto- and genotoxicity assessment of glyphosate and glyphosate-based herbicides in human peripheral white blood cells. ENVIRONMENTAL RESEARCH 2019; 179:108851. [PMID: 31678731 DOI: 10.1016/j.envres.2019.108851] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/17/2019] [Accepted: 10/20/2019] [Indexed: 05/12/2023]
Abstract
Glyphosate is the most heavily applied active compound of agricultural pesticides. It is solely used in more than 750 different glyphosate-based herbicide formulations (GBHs) that also contain other substances, mostly presumed as inert by regulatory agencies. The toxicity of formulations is currently assessed substance by substance, neglecting possible combined effects in mixtures and many of the findings regarding the toxic effects of glyphosate and GBHs to human cells are inconsistent. This is the first study to investigate and compare the cyto- and genotoxic potential of the active ingredient glyphosate and GBHs in human mononuclear white blood (HMWB) cells. HMWB cells were treated for 4 h at 37 °C with increasing concentrations (1-1000 μM) of glyphosate alone and in three GBHs (Roundup Mega, Fozat 480 and Glyfos) to test cytotoxic effect with fluorescent colabelling and genotoxic effect with comet assay. In addition, each concentration was tested with and without metabolic activation using human liver S9 fraction. We found that glyphosate alone does not induce significant cytotoxicity and genotoxicity over the tested concentration range. Contrarily, GBHs induced statistically significant cell death from 250 μM (Roundup Mega and Glyfos) and 500 μM (Fozat 480), as well as statistically significant increase of DNA damage from 500 μM (Roundup Mega and Glyfos) and 750 μM (Fozat 480); however, the latter observation may not be explained by direct DNA injuries, rather due to the high level of cell death (>70%) exerted by the formulations. Metabolic activation significantly increased the DNA damage levels induced by Glyfos, but not of the other GBHs and of glyphosate. The differences observed in the toxic pattern of formulations and the active principle may be attributed to the higher cytotoxic activity of other ingredients in the formulations or to the interaction of them with the active ingredient glyphosate. Hence, further investigation of formulations is crucial for assessing the true health risks of occupational and environmental exposures.
Collapse
Affiliation(s)
- Károly Nagy
- Division of Occupational Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary.
| | - Roba Argaw Tessema
- Division of Occupational Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Lygia Therese Budnik
- Translational Toxicology and Immunology Unit, Institute for Occupational and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Balázs Ádám
- Division of Occupational Health, Department of Preventive Medicine, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
21
|
Hao Y, Xu W, Gao J, Zhang Y, Yang Y, Tao L. Roundup-Induced AMPK/mTOR-Mediated Autophagy in Human A549 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11364-11372. [PMID: 31542934 DOI: 10.1021/acs.jafc.9b04679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The extensive use of pesticide caused an amount of pressure on the environment and increased the potential human health risk. Glyphosate-based herbicide (GBH) is one of the most widely used pesticides based on a 5-enolpyruvylshikimate-3-phosphate synthase target, which does not exist in vertebrates. Here, we study autophagic effects of the most famous commercial GBH Roundup (RDP) on human A549 cells in vitro. Intracellular biochemical assay indicated opening of mitochondrial permeability transition pore, LC3-II conversion, up-regulation of beclin-1, down-regulation of p62, and the changes in the phosphorylation of AMPK and mTOR induced by RDP in A549 cells. Further experimental results indicated that all the effects induced by RDP were related to its adjuvant polyethoxylated tallow amine, not its herbicidal active ingredient glyphosate isopropylamine salt. All these results showed that RDP has the ability to induce AMPK/mTOR-mediated cell autophagy in human A549 cells. This study would provide a theoretical basis for understanding RDP's autophagic effects on human A549 cells and attract attention on the potential human health risks induced by the adjuvant.
Collapse
Affiliation(s)
- Youwu Hao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Jufang Gao
- College of Life Sciences , Shanghai Normal University , Shanghai 200234 , China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Yun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
22
|
Hao Y, Zhang Y, Ni H, Gao J, Yang Y, Xu W, Tao L. Evaluation of the cytotoxic effects of glyphosate herbicides in human liver, lung, and nerve. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:737-744. [PMID: 31232652 DOI: 10.1080/03601234.2019.1633215] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Glyphosate-based herbicides are broad-spectrum pesticides widely used in the world, which is considered a highly safe pesticide due to their target specificity, but recently, there has been an ongoing controversy regarding their carcinogenicity and possible side effects of glyphosate on human health. Commercial glyphosate-based herbicides (GBHs) consist of declared active ingredient (glyphosate salts) and a number of formulants such as ethoxylated formulants (4130®, 3780®, and A-178®). The aim of our study is to investigate whether the toxicity of GBHs is related to formulants. The effects of GBHs on human health were studied at the cellular level based on their toxicity to liver, lungs and nerve tissue. The inhibitory toxicity to cell viability by GBHs was examined with cell-based systems using three human cell lines: HepG2, A549, and SH-SY5Y. Data obtained showed that all tested ethoxylated formulants and their mixtures with declared active ingredient glyphosate isopropylamine salt (GP) have significant inhibitory effect on cell proliferation, while the declared active ingredient has no significant toxicity. Our study demonstrates that the toxic effect of GBH is primarily due to the use of formulants. This result suggests that GP is relatively safe and a new approach for the assessment of toxicity should be made.
Collapse
Affiliation(s)
- Youwu Hao
- School of Pharmacy, East China University of Science and Technology, Shanghai Key Laboratory of Chemical Biology , Shanghai , China
| | - Yang Zhang
- School of Pharmacy, East China University of Science and Technology, Shanghai Key Laboratory of Chemical Biology , Shanghai , China
| | - Hongfei Ni
- School of Pharmacy, East China University of Science and Technology, Shanghai Key Laboratory of Chemical Biology , Shanghai , China
| | - Jufang Gao
- College of Life Sciences, Shanghai Normal University , Shanghai , China
| | - Yun Yang
- School of Pharmacy, East China University of Science and Technology, Shanghai Key Laboratory of Chemical Biology , Shanghai , China
| | - Wenping Xu
- School of Pharmacy, East China University of Science and Technology, Shanghai Key Laboratory of Chemical Biology , Shanghai , China
| | - Liming Tao
- School of Pharmacy, East China University of Science and Technology, Shanghai Key Laboratory of Chemical Biology , Shanghai , China
| |
Collapse
|
23
|
Hao Y, Zhang N, Xu W, Gao J, Zhang Y, Tao L. A natural adjuvant shows the ability to improve the effectiveness of glyphosate application. JOURNAL OF PESTICIDE SCIENCE 2019; 44:106-111. [PMID: 31249469 PMCID: PMC6589406 DOI: 10.1584/jpestics.d18-066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/03/2019] [Indexed: 05/31/2023]
Abstract
Glyphosate is a common herbicide used worldwide, but its adjuvant has not been studied much. A new adjuvant A-178®, based on the coconut shell extracts, has been developed for glyphosate (glyphosate isopropylamine salt: GP). The potency of the new adjuvant was compared with traditional adjuvant polyethoxylated tallow amine (POEA). Field study has shown that A-178® can improve the herbicidal effect of GP formulation, and, as compared with 41% GP mixed with 7% POEA (GPP), 41% GP mixed with 7% A-178® (recommended dose, GPA) is more effective for weed control. GPA improved herbicidal activity against GP alone by 79.27% and against GPP by 27.38% at 500 g a.i./ha. A-178® decreased the surface tension, increased the spreading area of GP, and improved the uptake of GP in cockspur (Echinochloa crus-galli L.). Our results indicated that the new adjuvant shows better ability to improve glyphosate efficacy than does POEA.
Collapse
Affiliation(s)
- Youwu Hao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology
| | - Nan Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology
| | - Jufang Gao
- College of Life and Environmental Sciences, Shanghai Normal University
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology
| |
Collapse
|
24
|
Li WY, Lu P, Xie H, Li GQ, Wang JX, Guo DY, Liang XY. Effects of glyphosate on soybean metabolism in strains bred for glyphosate-resistance. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:523-532. [PMID: 30956433 PMCID: PMC6419695 DOI: 10.1007/s12298-018-0597-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/27/2018] [Indexed: 06/09/2023]
Abstract
To produce high quality, glyphosate-resistant soybeans, we crossed Jinda 73 and glyphosate-resistant RR1 (Roundup Ready First Generation) (RR1) resulting in 34 hybrid strains. To determine the effects of glyphosate on soybean metabolism, we grew the two parents upto the seedling stage, and measured chlorophyll, soluble sugar, malondialdehyde (MDA), relative conductivity and proline. Then, we treated the plants with glyphosate and measured the same factors again. Results showed that the chlorophyll content of Jinda 73 and RR1 decreased after spraying glyphosate. Glyphosate increased the level of soluble sugar, MDA, relative conductivity and proline in Jinda 73, but had no significant effect on RR1. We determined glyphosate resistance of the parents and the 34 hybrid, offspring strains by documenting the growth response in the field after treatment with glyphosate. Results showed that 29 hybrid, offspring strains have complete glyphosate resistance. Polymerase chain reaction (PCR) shows that the strains which have complete resistance to glyphosate have imported the CP4 5-enolpyhruvylshikimate-3- phosphate synthase (CP4 EPSPS) gene successfully. We selected three high quality, glyphosate-resistant strains (F7-3, F7-16 and F7-21), which had higher protein and oil levels as compared with Jinda 73.
Collapse
Affiliation(s)
- Wei-yu Li
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - Ping Lu
- Beijing University of Agriculture, No. 7, Beinong Road, Beijing, 102206 China
| | - Hao Xie
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - Gui-quan Li
- College of Agriculture, Shanxi Agriculture University, Taigu, 030801 Shanxi China
| | - Jing-xuan Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - Dong-yu Guo
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| | - Xing-yu Liang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206 China
| |
Collapse
|
25
|
Chaufan G, Galvano C, Nieves M, Mudry MD, Ríos de Molina MDC, Andrioli NB. Oxidative Response and Micronucleus Centromere Assay in HEp-2 Cells Exposed to Fungicide Iprodione. Chem Res Toxicol 2019; 32:745-752. [DOI: 10.1021/acs.chemrestox.8b00405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gabriela Chaufan
- Laboratorio de Enzimología Estrés y Metabolismo, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Consejo de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires (IQUIBICEN-CONICET), Ciudad Universitaria, Pabellón II, 4° Piso Laboratories. 43-46, C1428EGA Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Cientificas y Técnicas, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Camila Galvano
- GIBE (Grupo de Investigación en Biología Evolutiva), FCEyN-UBA, Facultad de Ciencias Exactas y Naturales, Instituto de Ecología, Genética y Evolución de Buenos Aires - Consejo de Investigaciones Científicas y Técnicas), Universidad de Buenos Aires (IEGEBA−CONICET), Ciudad Universitaria, Pabellón II, 4° Piso Laboratories. 43-46, C1428EGA Buenos Aires, Argentina
| | - Mariela Nieves
- GIBE (Grupo de Investigación en Biología Evolutiva), FCEyN-UBA, Facultad de Ciencias Exactas y Naturales, Instituto de Ecología, Genética y Evolución de Buenos Aires - Consejo de Investigaciones Científicas y Técnicas), Universidad de Buenos Aires (IEGEBA−CONICET), Ciudad Universitaria, Pabellón II, 4° Piso Laboratories. 43-46, C1428EGA Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Cientificas y Técnicas, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Marta D. Mudry
- GIBE (Grupo de Investigación en Biología Evolutiva), FCEyN-UBA, Facultad de Ciencias Exactas y Naturales, Instituto de Ecología, Genética y Evolución de Buenos Aires - Consejo de Investigaciones Científicas y Técnicas), Universidad de Buenos Aires (IEGEBA−CONICET), Ciudad Universitaria, Pabellón II, 4° Piso Laboratories. 43-46, C1428EGA Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Cientificas y Técnicas, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Maria del Carmen Ríos de Molina
- Laboratorio de Enzimología Estrés y Metabolismo, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Consejo de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires (IQUIBICEN-CONICET), Ciudad Universitaria, Pabellón II, 4° Piso Laboratories. 43-46, C1428EGA Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Cientificas y Técnicas, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Nancy B. Andrioli
- GIBE (Grupo de Investigación en Biología Evolutiva), FCEyN-UBA, Facultad de Ciencias Exactas y Naturales, Instituto de Ecología, Genética y Evolución de Buenos Aires - Consejo de Investigaciones Científicas y Técnicas), Universidad de Buenos Aires (IEGEBA−CONICET), Ciudad Universitaria, Pabellón II, 4° Piso Laboratories. 43-46, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
26
|
Centner TJ, Russell L, Mays M. Viewing evidence of harm accompanying uses of glyphosate-based herbicides under US legal requirements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:609-617. [PMID: 30121538 DOI: 10.1016/j.scitotenv.2018.08.156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/08/2018] [Accepted: 08/11/2018] [Indexed: 06/08/2023]
Abstract
Some epidemiological experts feel there is sufficient proof that glyphosate use adversely affects human health, and glyphosate has been labeled as probably carcinogenic by the International Agency for Research on Cancer. Federal law in the United States provides two major options under which health concerns about glyphosate use might be addressed. First, registrations of glyphosate-based herbicides (GBHs) need to be cancelled if the costs are greater that its benefits. Since the cancellation of GBH registrations in the United States would lead to higher maize and soybean prices that would adversely affect food security, further analyses are needed. Second, US law requires consideration of the human dietary risk from pesticide residues, and tolerances of allowable amounts of glyphosate residues allowed to remain in or on food items have been established. Social cost curves depicting three options for regulating GBHs show preferred strategies dependent upon the magnitude of adverse effects on human health and food insecurity. Measures to reduce harm to humans can be identified to ameliorate health damages to allow some uses of GBHs to continue, but only if the evidence supports the conclusion that "no harm will result from aggregate exposure to the pesticide chemical residue."
Collapse
Affiliation(s)
- Terence J Centner
- College of Agricultural and Life Sciences, University of Georgia, Athens, GA 30602, USA.
| | - Levi Russell
- College of Agricultural and Life Sciences, University of Georgia, Athens, GA 30602, USA
| | - Matthew Mays
- College of Agricultural and Life Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
27
|
Paumgartten FJR. To be or not to be a carcinogen; delving into the glyphosate classification controversy. BRAZ J PHARM SCI 2019. [DOI: 10.1590/s2175-97902019000118217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
van de Merwe JP, Neale PA, Melvin SD, Leusch FDL. In vitro bioassays reveal that additives are significant contributors to the toxicity of commercial household pesticides. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 199:263-268. [PMID: 29677588 DOI: 10.1016/j.aquatox.2018.03.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Pesticides commonly used around households can contain additives of unknown concentrations and toxicity. Given the likelihood of these chemicals washing into urban waterways, it is important to understand the effects that these additives may have on aquatic organisms. The aim of this study was to compare the toxicity of commercially available household pesticides to that of the active ingredient(s) alone. The toxicity of five household pesticides (three herbicides and two insecticides) was investigated using a bacterial cytotoxicity bioassay and an algal photosynthesis bioassay. The commercial products were up to an order of magnitude more toxic than the active ingredient(s) alone. In addition, two commercial products with the same listed active ingredients in the same ratio had a 600× difference in potency. These results clearly demonstrate that additives in commercial formulations are significant contributors to the toxicity of household pesticides. The toxicity of pesticides in aquatic systems is therefore likely underestimated by conventional chemical monitoring and risk assessment when only the active ingredients are considered. Regulators and customers should require more clarity from pesticide manufacturers about the nature and concentrations of not only the active ingredients, but also additives used in commercial formulations. In addition, monitoring programmes and chemical risk assessments schemes should develop a structured approach to assessing the toxic effects of commercial formulations, including additives, rather than simply those of the listed active ingredients.
Collapse
Affiliation(s)
- Jason P van de Merwe
- Australian Rivers Institute, School of Environment and Science, Griffith University, Qld 4222, Australia.
| | - Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Qld 4222, Australia
| | - Steven D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Qld 4222, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Qld 4222, Australia
| |
Collapse
|
29
|
Redox imbalance caused by pesticides: a review of OPENTOX-related research. Arh Hig Rada Toksikol 2018; 69:126-134. [PMID: 29990294 DOI: 10.2478/aiht-2018-69-3105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 11/20/2022] Open
Abstract
Pesticides are a highly diverse group of compounds and the most important chemical stressors in the environment. Mechanisms that could explain pesticide toxicity are constantly being studied and their interactions at the cellular level are often observed in well-controlled in vitro studies. Several pesticide groups have been found to impair the redox balance in the cell, but the mechanisms leading to oxidative stress for certain pesticides are only partly understood. As our scientific project "Organic pollutants in environment - markers and biomarkers of toxicity (OPENTOX)" is dedicated to studying toxic effects of selected insecticides and herbicides, this review is focused on reporting the knowledge regarding oxidative stress-related phenomena at the cellular level. We wanted to single out the most important facts relevant to the evaluation of our own findings from studies conducted on in vitro cell models.
Collapse
|
30
|
Mao Q, Manservisi F, Panzacchi S, Mandrioli D, Menghetti I, Vornoli A, Bua L, Falcioni L, Lesseur C, Chen J, Belpoggi F, Hu J. The Ramazzini Institute 13-week pilot study on glyphosate and Roundup administered at human-equivalent dose to Sprague Dawley rats: effects on the microbiome. Environ Health 2018; 17:50. [PMID: 29843725 PMCID: PMC5972442 DOI: 10.1186/s12940-018-0394-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/10/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Glyphosate-based herbicides (GBHs) are broad-spectrum herbicides that act on the shikimate pathway in bacteria, fungi, and plants. The possible effects of GBHs on human health are the subject of an intense public debate for both its potential carcinogenic and non-carcinogenic effects, including its effects on microbiome. The present pilot study examines whether exposure to GBHs at doses of glyphosate considered to be "safe" (the US Acceptable Daily Intake - ADI - of 1.75 mg/kg bw/day), starting from in utero, may modify the composition of gut microbiome in Sprague Dawley (SD) rats. METHODS Glyphosate alone and Roundup, a commercial brand of GBHs, were administered in drinking water at doses comparable to the US glyphosate ADI (1.75 mg/kg bw/day) to F0 dams starting from the gestational day (GD) 6 up to postnatal day (PND) 125. Animal feces were collected at multiple time points from both F0 dams and F1 pups. The gut microbiota of 433 fecal samples were profiled at V3-V4 region of 16S ribosomal RNA gene and further taxonomically assigned and assessed for diversity analysis. We tested the effect of exposure on overall microbiome diversity using PERMANOVA and on individual taxa by LEfSe analysis. RESULTS Microbiome profiling revealed that low-dose exposure to Roundup and glyphosate resulted in significant and distinctive changes in overall bacterial composition in F1 pups only. Specifically, at PND31, corresponding to pre-pubertal age in humans, relative abundance for Bacteriodetes (Prevotella) was increased while the Firmicutes (Lactobacillus) was reduced in both Roundup and glyphosate exposed F1 pups compared to controls. CONCLUSIONS This study provides initial evidence that exposures to commonly used GBHs, at doses considered safe, are capable of modifying the gut microbiota in early development, particularly before the onset of puberty. These findings warrant future studies on potential health effects of GBHs in early development such as childhood.
Collapse
Affiliation(s)
- Qixing Mao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1428 Madison, New York, NY 10029 USA
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Fabiana Manservisi
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010 Bentivoglio, Bologna, Italy
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Simona Panzacchi
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010 Bentivoglio, Bologna, Italy
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010 Bentivoglio, Bologna, Italy
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Ilaria Menghetti
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010 Bentivoglio, Bologna, Italy
| | - Andrea Vornoli
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010 Bentivoglio, Bologna, Italy
| | - Luciano Bua
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010 Bentivoglio, Bologna, Italy
| | - Laura Falcioni
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010 Bentivoglio, Bologna, Italy
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison, New York, NY 10029 USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1428 Madison, New York, NY 10029 USA
| | - Fiorella Belpoggi
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010 Bentivoglio, Bologna, Italy
| | - Jianzhong Hu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1428 Madison, New York, NY 10029 USA
| |
Collapse
|
31
|
Panzacchi S, Mandrioli D, Manservisi F, Bua L, Falcioni L, Spinaci M, Galeati G, Dinelli G, Miglio R, Mantovani A, Lorenzetti S, Hu J, Chen J, Perry MJ, Landrigan PJ, Belpoggi F. The Ramazzini Institute 13-week study on glyphosate-based herbicides at human-equivalent dose in Sprague Dawley rats: study design and first in-life endpoints evaluation. Environ Health 2018; 17:52. [PMID: 29843719 PMCID: PMC5972408 DOI: 10.1186/s12940-018-0393-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/10/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Glyphosate-based herbicides (GBHs) are the most widely used pesticides worldwide, and glyphosate is the active ingredient of such herbicides, including the formulation known as Roundup. The massive and increasing use of GBHs results in not only the global burden of occupational exposures, but also increased exposure to the general population. The current pilot study represents the first phase of a long-term investigation of GBHs that we are conducting over the next 5 years. In this paper, we present the study design, the first evaluation of in vivo parameters and the determination of glyphosate and its major metabolite aminomethylphosphonic acid (AMPA) in urine. METHODS We exposed Sprague-Dawley (SD) rats orally via drinking water to a dose of glyphosate equivalent to the United States Acceptable Daily Intake (US ADI) of 1.75 mg/kg bw/day, defined as the chronic Reference Dose (cRfD) determined by the US EPA, starting from prenatal life, i.e. gestational day (GD) 6 of their mothers. One cohort was continuously dosed until sexual maturity (6-week cohort) and another cohort was continuously dosed until adulthood (13-week cohort). Here we present data on general toxicity and urinary concentrations of glyphosate and its major metabolite AMPA. RESULTS Survival, body weight, food and water consumption of the animals were not affected by the treatment with either glyphosate or Roundup. The concentration of both glyphosate and AMPA detected in the urine of SD rats treated with glyphosate were comparable to that observed in animals treated with Roundup, with an increase in relation to the duration of treatment. The majority of glyphosate was excreted unchanged. Urinary levels of the parent compound, glyphosate, were around 100-fold higher than the level of its metabolite, AMPA. CONCLUSIONS Glyphosate concentrations in urine showed that most part of the administered dose was excreted as unchanged parent compound upon glyphosate and Roundup exposure, with an increasing pattern of glyphosate excreted in urine in relation to the duration of treatment. The adjuvants and the other substances present in Roundup did not seem to exert a major effect on the absorption and excretion of glyphosate. Our results demonstrate that urinary glyphosate is a more relevant marker of exposure than AMPA in the rodent model.
Collapse
Affiliation(s)
- Simona Panzacchi
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010 Bentivoglio, Bologna, Italy
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010 Bentivoglio, Bologna, Italy
- Department of Agricultural Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Fabiana Manservisi
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010 Bentivoglio, Bologna, Italy
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell’Emilia, Bologna, Italy
| | - Luciano Bua
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010 Bentivoglio, Bologna, Italy
| | - Laura Falcioni
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010 Bentivoglio, Bologna, Italy
| | - Marcella Spinaci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell’Emilia, Bologna, Italy
| | - Giovanna Galeati
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell’Emilia, Bologna, Italy
| | - Giovanni Dinelli
- Department of Agricultural Sciences, University of Bologna, Viale Fanin 44, 40127 Bologna, Italy
| | - Rossella Miglio
- Department of Statistical Sciences, University of Bologna, Via Belle Arti 41, 40126 Bologna, Italy
| | - Alberto Mantovani
- Department of Food safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Stefano Lorenzetti
- Department of Food safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Jianzhong Hu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY 10029 USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Melissa J. Perry
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Ave, Washington, DC 20052 USA
| | - Philip J. Landrigan
- Arnhold Institute for Global Health, Icahn School of Medicine at Mount Sinai, 1216 Fifth Avenue, New York, NY 10029 USA
| | - Fiorella Belpoggi
- Cesare Maltoni Cancer Research Center (CMCRC), Ramazzini Institute (RI), Via Saliceto, 3, 40010 Bentivoglio, Bologna, Italy
| |
Collapse
|
32
|
Zahn E, Wolfrum J, Knebel C, Heise T, Weiß F, Poetz O, Marx-Stoelting P, Rieke S. Mixture effects of two plant protection products in liver cell lines. Food Chem Toxicol 2018; 112:299-309. [DOI: 10.1016/j.fct.2017.12.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 01/22/2023]
|
33
|
Tarazona JV, Court-Marques D, Tiramani M, Reich H, Pfeil R, Istace F, Crivellente F. Glyphosate toxicity and carcinogenicity: a review of the scientific basis of the European Union assessment and its differences with IARC. Arch Toxicol 2017; 91:2723-2743. [PMID: 28374158 PMCID: PMC5515989 DOI: 10.1007/s00204-017-1962-5] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/21/2017] [Indexed: 11/29/2022]
Abstract
Glyphosate is the most widely used herbicide worldwide. It is a broad spectrum herbicide and its agricultural uses increased considerably after the development of glyphosate-resistant genetically modified (GM) varieties. Since glyphosate was introduced in 1974, all regulatory assessments have established that glyphosate has low hazard potential to mammals, however, the International Agency for Research on Cancer (IARC) concluded in March 2015 that it is probably carcinogenic. The IARC conclusion was not confirmed by the EU assessment or the recent joint WHO/FAO evaluation, both using additional evidence. Glyphosate is not the first topic of disagreement between IARC and regulatory evaluations, but has received greater attention. This review presents the scientific basis of the glyphosate health assessment conducted within the European Union (EU) renewal process, and explains the differences in the carcinogenicity assessment with IARC. Use of different data sets, particularly on long-term toxicity/carcinogenicity in rodents, could partially explain the divergent views; but methodological differences in the evaluation of the available evidence have been identified. The EU assessment did not identify a carcinogenicity hazard, revised the toxicological profile proposing new toxicological reference values, and conducted a risk assessment for some representatives uses. Two complementary exposure assessments, human-biomonitoring and food-residues-monitoring, suggests that actual exposure levels are below these reference values and do not represent a public concern.
Collapse
Affiliation(s)
- Jose V Tarazona
- Pesticides Unit, European Food Safety Authority, Via Carlo Magno 1/A, 43126, Parma, Italy.
| | - Daniele Court-Marques
- Pesticides Unit, European Food Safety Authority, Via Carlo Magno 1/A, 43126, Parma, Italy
| | - Manuela Tiramani
- Pesticides Unit, European Food Safety Authority, Via Carlo Magno 1/A, 43126, Parma, Italy
| | - Hermine Reich
- Pesticides Unit, European Food Safety Authority, Via Carlo Magno 1/A, 43126, Parma, Italy
| | - Rudolf Pfeil
- Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Frederique Istace
- Pesticides Unit, European Food Safety Authority, Via Carlo Magno 1/A, 43126, Parma, Italy
| | - Federica Crivellente
- Pesticides Unit, European Food Safety Authority, Via Carlo Magno 1/A, 43126, Parma, Italy
| |
Collapse
|
34
|
Bus JS. IARC use of oxidative stress as key mode of action characteristic for facilitating cancer classification: Glyphosate case example illustrating a lack of robustness in interpretative implementation. Regul Toxicol Pharmacol 2017; 86:157-166. [PMID: 28274811 DOI: 10.1016/j.yrtph.2017.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 11/27/2022]
Abstract
The International Agency for Research on Cancer (IARC) has formulated 10 key characteristics of human carcinogens to incorporate mechanistic data into cancer hazard classifications. The analysis used glyphosate as a case example to examine the robustness of IARC's determination of oxidative stress as "strong" evidence supporting a plausible cancer mechanism in humans. The IARC analysis primarily relied on 14 human/mammalian studies; 19 non-mammalian studies were uninformative of human cancer given the broad spectrum of test species and extensive use of formulations and aquatic testing. The mammalian studies had substantial experimental limitations for informing cancer mechanism including use of: single doses and time points; cytotoxic/toxic test doses; tissues not identified as potential cancer targets; glyphosate formulations or mixtures; technically limited oxidative stress biomarkers. The doses were many orders of magnitude higher than human exposures determined in human biomonitoring studies. The glyphosate case example reveals that the IARC evaluation fell substantially short of "strong" supporting evidence of oxidative stress as a plausible human cancer mechanism, and suggests that other IARC monographs relying on the 10 key characteristics approach should be similarly examined for a lack of robust data integration fundamental to reasonable mode of action evaluations.
Collapse
Affiliation(s)
- James S Bus
- Exponent, Inc., 1800 Diagonal Road, Suite 500, Alexandria, VA 22314, United States.
| |
Collapse
|
35
|
Caloni F, Cortinovis C, Rivolta M, Davanzo F. Suspected poisoning of domestic animals by pesticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 539:331-336. [PMID: 26367188 DOI: 10.1016/j.scitotenv.2015.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 09/01/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
A retrospective study was carried out by reviewing all suspected cases of domestic animal poisoning attributed to pesticides, reported to the Milan Poison Control Centre (MPCC) between January 2011 and December 2013. During this period, pesticides were found to be responsible for 37.3% of all suspected poisoning enquiries received (815). The most commonly species involved was the dog (71.1% of calls) followed by the cat (15.8%), while a limited number of cases involved horses, goats and sheep. Most cases of exposure (47.1%) resulted in mild to moderate clinical signs. The outcome was reported in 59.9% of these cases, with death occurring in 10.4% of them. Insecticides (40.8%) proved to be the most common group of pesticides involved and exposure to pyrethrins-pyrethroids accounted for the majority of calls. According to the MPCC data, there has been a decrease in the number of suspected poisonings cases attributed to pesticides that have been banned by the EU, including aldicarb, carbofuran, endosulfan and paraquat. In contrast, there has been an increase of suspected poisoning cases attributed to the neonicotinoids, imidacloprid and acetamiprid, probably due to their widespread use in recent years. Cases of suspected poisoning that involved exposure to rodenticides accounted for 27.6% of calls received by the MPCC and anticoagulant rodenticides were the primary cause of calls, with many cases involving brodifacoum and bromadiolone. Herbicides were involved in 14.2% of calls related to pesticides and glyphosate was the main culprit in cases involving dogs, cats, horses, goats and sheep. As far as exposure to molluscicides (11.5%) and fungicides (5.9%), most of the cases involved dogs and the suspected poisoning agents were metaldehyde and copper compounds respectively. The data collected are useful in determining trends in poisoning episodes and identifying newly emerging toxicants, thus demonstrating the prevalence of pesticides as causative agents in animal poisonings.
Collapse
Affiliation(s)
- Francesca Caloni
- Department of Health, Animal Science and Food Safety (VESPA), Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy.
| | - Cristina Cortinovis
- Department of Health, Animal Science and Food Safety (VESPA), Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| | - Marina Rivolta
- Milan Poison Control Centre, Ospedale Niguarda Cà Granda, Piazza Ospedale Maggiore 3, 20162 Milan, Italy
| | - Franca Davanzo
- Milan Poison Control Centre, Ospedale Niguarda Cà Granda, Piazza Ospedale Maggiore 3, 20162 Milan, Italy
| |
Collapse
|
36
|
Braconi D, Bernardini G, Santucci A. Saccharomyces cerevisiae as a model in ecotoxicological studies: A post-genomics perspective. J Proteomics 2015; 137:19-34. [PMID: 26365628 DOI: 10.1016/j.jprot.2015.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/29/2015] [Accepted: 09/02/2015] [Indexed: 12/13/2022]
Abstract
The budding yeast Saccharomyces cerevisiae represents a well-consolidated and widely used eukaryotic model, with a number of features that make it an ideal organism to carry out functional toxicological studies. Several advantages are permitted by the use of yeast cells, as the possibility to identify molecular biomarkers, unknown mechanisms of action and novel potential targets. Thanks to the evolutionary conservation, yeast can provide also useful clues allowing the prioritization of more complex analyses and toxicity predictions in higher eukaryotes. The last two decades were incredibly fruitful for yeast "omics", but referring to the analysis of the effects of pesticides on yeast much still remains to be done. Furthermore, a deeper knowledge of the effects of environmental pollutants on biotechnological processes associated with the use of yeasts is to be hoped.
Collapse
Affiliation(s)
- Daniela Braconi
- Dipartimento di Biotecnologie, Chimica e Farmacia, via A. Moro 2, Università degli Studi di Siena, 53100 Siena, Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, via A. Moro 2, Università degli Studi di Siena, 53100 Siena, Italy
| | - Annalisa Santucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, via A. Moro 2, Università degli Studi di Siena, 53100 Siena, Italy.
| |
Collapse
|