1
|
Baidya SK, Banerjee S, Ghosh B, Jha T, Adhikari N. A fragment-based exploration of diverse MMP-9 inhibitors through classification-dependent structural assessment. J Mol Graph Model 2024; 126:108671. [PMID: 37976979 DOI: 10.1016/j.jmgm.2023.108671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Matrix metalloproteinases (MMPs) are belonging to the Zn2+-dependent metalloenzymes. These can degenerate the extracellular matrix (ECM) that is entailed with various biological processes. Among the MMP family members, MMP-9 is associated with several pathophysiological circumstances. Apart from wound healing, remodeling of bone, inflammatory mechanisms, and rheumatoid arthritis, MMP-9 has also significant roles in tumor invasion and metastasis. Therefore, MMP-9 has been in the spotlight of anticancer drug discovery programs for more than a decade. In this present study, classification-based QSAR techniques along with fragment-based data mining have been carried out on divergent MMP-9 inhibitors to point out the important structural attributes. This current study may be able to elucidate the importance of several pivotal molecular fragments such as sulfonamide, hydroxamate, i-butyl, and ethoxy functions for imparting potential MMP-9 inhibition. These observations are in correlation with the ligand-bound co-crystal structures of MMP-9. Therefore, these findings are beneficial for the design and discovery of effective MMP-9 inhibitors in the future.
Collapse
Affiliation(s)
- Sandip Kumar Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
2
|
Bennani FE, Doudach L, Karrouchi K, El rhayam Y, Rudd CE, Ansar M, El Abbes Faouzi M. Design and prediction of novel pyrazole derivatives as potential anti-cancer compounds based on 2D-2D-QSAR study against PC-3, B16F10, K562, MDA-MB-231, A2780, ACHN and NUGC cancer cell lines. Heliyon 2022; 8:e10003. [PMID: 35965973 PMCID: PMC9372603 DOI: 10.1016/j.heliyon.2022.e10003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/22/2022] [Accepted: 07/14/2022] [Indexed: 01/20/2023] Open
Abstract
Despite the decades of scientific studies for developing promising new therapies, cancer remains a major cause of illness and mortality, worldwide. Several cancer types are the major topic of research in drug discovery programs due to their global incidence cases and growing frequency. In the present study, using two different statistical approaches PCA (principal component analysis) and PLS (partial least squares), six 2D-QSAR (quantitative structure activity relationship) models have been developed for the set of compounds retrieved against seven cancer cell lines vizPC-3, B16F10, K562, MDA-MB-231, A2780, and ACHN. For the creation and validation of 2D-QSAR models, OECD (Organization for Economic Co-operation and Development) requirements have been strictly followed. All of the generated 2D-QSAR models produce a significant and high correlation coefficient value with several other statistical parameters. Moreover, developed 2D-QSAR models have been used for activity predictions of in-house synthesized 63 pyrazole derivatives compounds. Precisely, most statistically significant and accepted2D-QSAR model generated for each cancer cell line has been used to predict the pIC50 value (anti-cancer activity) of all 63 synthesized pyrazole derivatives. Furthermore, designing of novel pyrazole derivatives has been carried out by substituting the essential functional groups based on the best derived 2D-QSAR models for each cancer cell line, more precisely, based on the most significant molecular descriptors with enhanced anti-cancer activity. Finally, the prediction of the new designed molecules reveals higher pIC50 than the standard compounds.
Collapse
Affiliation(s)
- Fatima Ezzahra Bennani
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, BP6203, Rabat, Morocco
- Laboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, BP6203, Rabat, Morocco
- Division of Immunology-Oncology, Centre de Recherche Hôpital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Corresponding author.
| | - Latifa Doudach
- Department of Biomedical Engineering Medical Physiology, Higher School of Technical Education of Rabat, Mohammed V University in Rabat, BP6203, Rabat, Morocco
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, BP6203, Rabat, Morocco
| | - Youssef El rhayam
- Agro-Resources Laboratory, Organic Polymers and Process Engineering (LRGP) / Organic and Polymer Chemistry Team (ECOP), Faculty of Sciences Ibn Tofail University, Kenitra, Morocco
| | - Christopher E. Rudd
- Division of Immunology-Oncology, Centre de Recherche Hôpital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Department of Microbiology, Infection and Immunology, Faculty of Medicine, Université de Montreal, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University Health Center, McGill University, Montreal, QC, Canada
| | - M’hammed Ansar
- Laboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, BP6203, Rabat, Morocco
| | - My El Abbes Faouzi
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, BP6203, Rabat, Morocco
| |
Collapse
|
3
|
Yadav V, Banerjee S, Baidya SK, Adhikari N, Jha T. Applying comparative molecular modelling techniques on diverse hydroxamate-based HDAC2 inhibitors: an attempt to identify promising structural features for potent HDAC2 inhibition. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:1-22. [PMID: 34979835 DOI: 10.1080/1062936x.2021.2013317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Histone deacetylase 2 (HDAC2) has been implicated in a variety of cardiovascular and neurodegenerative disorders as well as in cancers. Thus, HDAC2 has become an exclusive target for anticancer drug development. Therefore, the development of newer HDAC2 inhibitors in disease conditions is a prime goal to restrain such a scenario. Although a handful of HDAC inhibitors was accepted for the treatment of HDAC-related disease conditions, the non-selective nature of these entities is one of the major setbacks in the treatment of specific HDAC isoform-related pathophysiology. In this framework, the analyses of pre-existing molecules are essential to identify the important structural features that can fulfil the requirements for the cap and linker moieties to obtain potent and effective HDAC2 inhibition. Thus, in this study, the implementation of a combined comparative 2D and 3D molecular modelling techniques was done on a group of 92 diverse hydroxamate derivatives having a wide range of HDAC2 inhibitory potency. Besides other crucial features, this study upheld the importance of groups like triazole and benzyl moieties along with the molecular fields that are crucial for regulating HDAC2 inhibition. The outcomes of this study may be employed for the designing of HDAC2 inhibitors in future.
Collapse
Affiliation(s)
- V Yadav
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S K Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - N Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - T Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
4
|
Sadik K, Byadi S, Hachim ME, Hamdani NE, Podlipnik Č, Aboulmouhajir A. Multi-QSAR approaches for investigating the relationship between chemical structure descriptors of Thiadiazole derivatives and their corrosion inhibition performance. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Adhikari N, Banerjee S, Baidya SK, Ghosh B, Jha T. Robust classification-based molecular modelling of diverse chemical entities as potential SARS-CoV-2 3CL pro inhibitors: theoretical justification in light of experimental evidences. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:473-493. [PMID: 34011224 DOI: 10.1080/1062936x.2021.1914721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
COVID-19 is the most unanticipated incidence of 2020 affecting the human population worldwide. Currently, it is utmost important to produce novel small molecule anti-SARS-CoV-2 drugs urgently that can save human lives globally. Based on the earlier SARS-CoV and MERS-CoV infection along with the general characters of coronaviral replication, a number of drug molecules have been proposed. However, one of the major limitations is the lack of experimental observations with different drug molecules. In this article, 70 diverse chemicals having experimental SARS-CoV-2 3CLproinhibitory activity were accounted for robust classification-based QSAR analysis statistically validated with 4 different methodologies to recognize the crucial structural features responsible for imparting the activity. Results obtained from all these methodologies supported and validated each other. Important observations obtained from these analyses were also justified with the ligand-bound crystal structure of SARS-CoV-2 3CLpro enzyme. Our results suggest that molecules should contain a 2-oxopyrrolidine scaffold as well as a methylene (hydroxy) sulphonic acid warhead in proper orientation to achieve higher inhibitory potency against SARS-CoV-2 3CLpro. Outcomes of our study may be able to design and discover highly effective SARS-CoV-2 3CLpro inhibitors as potential anticoronaviral therapy to crusade against COVID-19.
Collapse
Affiliation(s)
- N Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S K Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - B Ghosh
- Department of Pharmacy, BITS-Pilani, Hyderabad, India
| | - T Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
6
|
Shi D, An X, Bai Q, Bing Z, Zhou S, Liu H, Yao X. Computational Insight Into the Small Molecule Intervening PD-L1 Dimerization and the Potential Structure-Activity Relationship. Front Chem 2019; 7:764. [PMID: 31781546 PMCID: PMC6861162 DOI: 10.3389/fchem.2019.00764] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/24/2019] [Indexed: 12/25/2022] Open
Abstract
Recently, small-molecule compounds have been reported to block the PD-1/PD-L1 interaction by inducing the dimerization of PD-L1. All these inhibitors had a common scaffold and interacted with the cavity formed by two PD-L1 monomers. This special interactive mode provided clues for the structure-based drug design, however, also showed limitations for the discovery of small-molecule inhibitors with new scaffolds. In this study, we revealed the structure-activity relationship of the current small-molecule inhibitors targeting dimerization of PD-L1 by predicting their binding and unbinding mechanism via conventional molecular dynamics and metadynamics simulation. During the binding process, the representative inhibitors (BMS-8 and BMS-1166) tended to have a more stable binding mode with one PD-L1 monomer than the other and the small-molecule inducing PD-L1 dimerization was further stabilized by the non-polar interaction of Ile54, Tyr56, Met115, Ala121, and Tyr123 on both monomers and the water bridges involved in ALys124. The unbinding process prediction showed that the PD-L1 dimerization kept stable upon the dissociation of ligands. It's indicated that the formation and stability of the small-molecule inducing PD-L1 dimerization was the key factor for the inhibitory activities of these ligands. The contact analysis, R-group based quantitative structure-activity relationship (QSAR) analysis and molecular docking further suggested that each attachment point on the core scaffold of ligands had a specific preference for pharmacophore elements when improving the inhibitory activities by structural modifications. Taken together, the results in this study could guide the structural optimization and the further discovery of novel small-molecule inhibitors targeting PD-L1.
Collapse
Affiliation(s)
- Danfeng Shi
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Xiaoli An
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Qifeng Bai
- School of Basic Medical Science, Lanzhou University, Lanzhou, China
| | - Zhitong Bing
- School of Basic Medical Science, Lanzhou University, Lanzhou, China
- Institute of Modern Physics of Chinese Academy of Sciences, Lanzhou, China
| | - Shuangyan Zhou
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou, China
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| |
Collapse
|
7
|
Han D, Tan J, Men J, Li C, Zhang X. Quantitative Structure Activity/Pharmacokinetics Relationship Studies of HIV-1 Protease Inhibitors Using Three Modelling Methods. Med Chem 2019; 17:396-406. [PMID: 31448716 DOI: 10.2174/1573406415666190826154505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/21/2019] [Accepted: 08/05/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND HIV-1 protease inhibitor (PIs) is a good choice for AIDS patients. Nevertheless, for PIs, there are several bugs in clinical application, like drug resistance, the large dose, the high costs and so on, among which, the poor pharmacokinetics property is one of the important reasons that leads to the failure of its clinical application. OBJECTIVE We aimed to build computational models for studying the relationship between PIs structure and its pharmacological activities. METHODS We collected experimental values of koff/Ki and structures of 50 PIs through a careful literature and database search. Quantitative structure activity/pharmacokinetics relationship (QSAR/QSPR) models were constructed by support vector machine (SVM), partial-least squares regression (PLSR) and back-propagation neural network (BPNN). RESULTS For QSAR models, SVM, PLSR and BPNN all generated reliable prediction models with the r2 of 0.688, 0.768 and 0.787, respectively, and r2pred of 0.748, 0.696 and 0.640, respectively. For QSPR models, the optimum models of SVM, PLSR and BPNN obtained the r2 of 0.952, 0.869 and 0.960, respectively, and the r2pred of 0.852, 0.628 and 0.814, respectively. CONCLUSION Among these three modelling methods, SVM showed superior ability than PLSR and BPNN both in QSAR/QSPR modelling of PIs, thus, we suspected that SVM was more suitable for predicting activities of PIs. In addition, 3D-MoRSE descriptors may have a tight relationship with the Ki values of PIs, and the GETAWAY descriptors have significant influence on both koff and Ki in PLSR equations.
Collapse
Affiliation(s)
- Dan Han
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Jianjun Tan
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Jingrui Men
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Chunhua Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Xiaoyi Zhang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
8
|
Kahraman EN, Saçan MT. Predicting Cytotoxicity and Enzymatic Activity of Diverse Chemicals Using Goldfish Scale Tissue and Topminnow Hepatoma Cell Line-based Data. Mol Inform 2019; 38:e1800127. [PMID: 30730112 DOI: 10.1002/minf.201800127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/06/2019] [Indexed: 01/18/2023]
Abstract
Quantitative structure-toxicity relationship (QSTR) models were built for two in vitro endpoints: cytotoxicity and enzymatic activity of diverse chemicals to goldfish (Crassius auratus) scale tissue (GFS) and topminnow (Poeciliopsis lucida) hepatoma cell line (PLHC-1), respectively. The data sets were based on experimental cytotoxicity measured with uptake of 3-amino-7-dimethylamino-2-methylphenazine hydrochloride dye (Neutral Red assay) representing lysosomal damage and enzymatic activity measured with Ethoxyresorufin-O-deethylase (EROD) induction potency. The descriptors were calculated with DRAGON 6 and SPARTAN 10 software packages. Descriptor selection was made by 'All Subset' and Genetic Algorithm-based features implemented in QSARINS software. The proposed QSTR models validated both internally and externally. Additionally, the QSTR models generated for cytotoxicity and EROD induction potency were used to predict the relevant endpoint values for external set chemicals with structural coverage of 95.0 % and 92.1 %, respectively. A strong correlation of experimental in vivo fish lethality data with predicted in vitro cytotoxicity and EROD induction potency values for external set chemicals was found. It was concluded that the proposed QSTR models might be useful to provide an initial screening and prioritization for these diverse chemicals. Also, regarding the strong correlations between predicted in vitro and experimental in vivo data, the use of QSTR predictions as an alternative to the acute fish toxicity assessment can be claimed.
Collapse
Affiliation(s)
- Elif Nagihan Kahraman
- Ecotoxicology and Chemometrics Laboratory, Institute of Environmental Sciences, Bogazici University, Besiktas/Istanbul, Turkey
| | - Melek Türker Saçan
- Ecotoxicology and Chemometrics Laboratory, Institute of Environmental Sciences, Bogazici University, Besiktas/Istanbul, Turkey
| |
Collapse
|
9
|
Gaikwad R, Ghorai S, Amin SA, Adhikari N, Patel T, Das K, Jha T, Gayen S. Monte Carlo based modelling approach for designing and predicting cytotoxicity of 2-phenylindole derivatives against breast cancer cell line MCF7. Toxicol In Vitro 2018; 52:23-32. [DOI: 10.1016/j.tiv.2018.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/23/2018] [Accepted: 05/31/2018] [Indexed: 12/20/2022]
|
10
|
Amin SA, Adhikari N, Gayen S, Jha T. First Report on the Validated Classification-Based Chemometric Modeling of Human Rhinovirus 3C Protease (HRV 3Cpro) Inhibitors. ACTA ACUST UNITED AC 2018. [DOI: 10.4018/ijqspr.2018070101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Human rhinoviruses (HRVs), a major cause of common cold and upper respiratory infections, may trigger severe respiratory complications like asthma and COPD. To date, no drugs are available in the market which are designed as novel HRV inhibitors despite the involvement of some pharmaceutical companies' due to economical and clinical constraints. HRV 3C protease may be a potential target for drug design as it plays crucial role in viral RNA replication and virion assembly process. Therefore, designing novel HRV 3Cpro inhibitors is necessary and demanding in the field of antiviral drug design. In this article, statistically significant and validated classification-based QSARs of a series of HRV 3Cpro inhibitors were performed for the first time as per the authors' knowledge. Results suggest that oxopyrrolidine and piperidinone rings are favored whereas carboxybenzyl and unsubstituted benzyl functions may be unfavorable. Moreover, this group, along with cyclic alkyl or aryl ring structures may favor HRV 3Cpro inhibition. These observations may be utilized for the design of a higher active anti-HRV agent in future.
Collapse
Affiliation(s)
| | | | | | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
11
|
Perryman AL, Patel JS, Russo R, Singleton E, Connell N, Ekins S, Freundlich JS. Naïve Bayesian Models for Vero Cell Cytotoxicity. Pharm Res 2018; 35:170. [PMID: 29959603 DOI: 10.1007/s11095-018-2439-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/05/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE To advance translational research of potential therapeutic small molecules against infectious microbes, the compounds must display a relative lack of mammalian cell cytotoxicity. Vero cell cytotoxicity (CC50) is a common initial assay for this metric. We explored the development of naïve Bayesian models that can enhance the probability of identifying non-cytotoxic compounds. METHODS Vero cell cytotoxicity assays were identified in PubChem, reformatted, and curated to create a training set with 8741 unique small molecules. These data were used to develop Bayesian classifiers, which were assessed with internal cross-validation, external tests with a set of 193 compounds from our laboratory, and independent validation with an additional diverse set of 1609 unique compounds from PubChem. RESULTS Evaluation with independent, external test and validation sets indicated that cytotoxicity Bayesian models constructed with the ECFP_6 descriptor were more accurate than those that used FCFP_6 fingerprints. The best cytotoxicity Bayesian model displayed predictive power in external evaluations, according to conventional and chance-corrected statistics, as well as enrichment factors. CONCLUSIONS The results from external tests demonstrate that our novel cytotoxicity Bayesian model displays sufficient predictive power to help guide translational research. To assist the chemical tool and drug discovery communities, our curated training set is being distributed as part of the Supplementary Material. Graphical Abstract Naive Bayesian models have been trained with publically available data and offer a useful tool for chemical biology and drug discovery to select for small molecules with a high probability of exhibiting acceptably low Vero cell cytotoxicity.
Collapse
Affiliation(s)
- Alexander L Perryman
- Department of Pharmacology, Physiology and Neuroscience, and Medicine, Rutgers University-New Jersey Medical School, Medical Sciences Building, I-503, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Jimmy S Patel
- Department of Pharmacology, Physiology and Neuroscience, and Medicine, Rutgers University-New Jersey Medical School, Medical Sciences Building, I-503, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Riccardo Russo
- Division of Infectious Diseases, Department of Medicine, and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University-New Jersey Medical School, Medical Sciences Building, I-503, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Eric Singleton
- Division of Infectious Diseases, Department of Medicine, and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University-New Jersey Medical School, Medical Sciences Building, I-503, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Nancy Connell
- Division of Infectious Diseases, Department of Medicine, and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University-New Jersey Medical School, Medical Sciences Building, I-503, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., Main Campus Drive Lab 3510, Raleigh, North Carolina,, 27606, USA
| | - Joel S Freundlich
- Department of Pharmacology, Physiology and Neuroscience, and Medicine, Rutgers University-New Jersey Medical School, Medical Sciences Building, I-503, 185 South Orange Ave, Newark, NJ, 07103, USA. .,Division of Infectious Diseases, Department of Medicine, and the Ruy V. Lourenço Center for the Study of Emerging and Re-emerging Pathogens, Rutgers University-New Jersey Medical School, Medical Sciences Building, I-503, 185 South Orange Ave, Newark, NJ, 07103, USA.
| |
Collapse
|
12
|
Amin SA, Gayen S. Modelling the cytotoxic activity of pyrazolo-triazole hybrids using descriptors calculated from the open source tool “PaDEL-descriptor”. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2016.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Sk. Abdul Amin
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, 470003, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, 470003, India
| |
Collapse
|
13
|
Gaikwad R, Amin SA, Adhikari N, Ghorai S, Jha T, Gayen S. Identification of molecular fingerprints of phenylindole derivatives as cytotoxic agents: a multi-QSAR approach. Struct Chem 2018. [DOI: 10.1007/s11224-018-1094-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Song F, Cui L, Piao J, Liang H, Si H, Duan Y, Zhai H. Quantitative structure-activity relationship and molecular docking studies on designing inhibitors of the perforin. Chem Biol Drug Des 2017; 90:535-544. [PMID: 28296049 DOI: 10.1111/cbdd.12975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/03/2017] [Accepted: 02/24/2017] [Indexed: 01/24/2023]
Abstract
Quantitative structure-activity relationship (QSAR) studies were performed on a series of 5-arylidene-2thioxoimidazolidin-4-ones derivatives as the inhibitors of perforin and to gain insights about the structural determinants for designing new drug molecules. The heuristic method could explore the descriptors responsible for bioactivity and gain a best linear model with R2 .82. Gene expression programming method generated a novel nonlinear function model with R2 .92 for training set and R2 .85 for test set. The predicted IC50 by QSAR, molecular docking analysis, and property explorer applet show that 42a acts as a well-pleasing potent inhibitor for perforin. This study may lay a reliable theoretical foundation for the development of designing perforin inhibitor structures.
Collapse
Affiliation(s)
- Fucheng Song
- Department of Public Health, Qingdao University Medical College, Qingdao, Shandong, China
| | - Lianhua Cui
- Department of Public Health, Qingdao University Medical College, Qingdao, Shandong, China
| | - Jinmei Piao
- Department of Public Health, Qingdao University Medical College, Qingdao, Shandong, China
| | - Hui Liang
- Department of Public Health, Qingdao University Medical College, Qingdao, Shandong, China
| | - Hongzong Si
- Institute for Computational Science and Engineering, Laboratory of New Fibrous Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong, China
| | - Yunbo Duan
- Institute for Computational Science and Engineering, Laboratory of New Fibrous Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong, China
| | - Honglin Zhai
- Department of Chemistry, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
15
|
Adhikari N, Amin SA, Ghosh B, Jha T. Shedding light on designing potential meprin β inhibitors through ligand-based robust validated computational approaches: A proposal to chemists! J Biomol Struct Dyn 2017; 36:3003-3022. [DOI: 10.1080/07391102.2017.1374210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata 700032, West Bengal, India
| | - Sk. Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata 700032, West Bengal, India
| | - Balaram Ghosh
- Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17020, Kolkata 700032, West Bengal, India
| |
Collapse
|
16
|
Adhikari N, Amin SA, Saha A, Jha T. Combating breast cancer with non-steroidal aromatase inhibitors (NSAIs): Understanding the chemico-biological interactions through comparative SAR/QSAR study. Eur J Med Chem 2017. [DOI: 10.1016/j.ejmech.2017.05.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Müller J, Aguado A, Laleu B, Balmer V, Ritler D, Hemphill A. In vitro screening of the open source Pathogen Box identifies novel compounds with profound activities against Neospora caninum. Int J Parasitol 2017; 47:801-809. [PMID: 28751177 DOI: 10.1016/j.ijpara.2017.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/01/2017] [Accepted: 06/03/2017] [Indexed: 11/25/2022]
Abstract
Neospora caninum is a major cause of abortion in cattle and represents an important veterinary health problem of great economic significance. The Medicines for Malaria Venture (MMV) Pathogen Box, an open-source collection of 400 compounds with proven anti-infective properties against a wide range of pathogens, was screened against a N. caninum beta-galactosidase reporter strain grown in human foreskin fibroblasts. A primary screening carried out at 1µM yielded 40 compounds that were effective against N. caninum tachyzoites. However, 30 of these compounds also affected the viability of the host cells. The 10 remaining compounds exhibited IC50 values between 4 and 43nM. Three compounds with IC50 values below 10nM, namely MMV676602, MMV688762 and MMV671636, were further characterized in vitro in more detail with respect to inhibition of invasion versus intracellular proliferation, and only MMV671636 had an impact on intracellular proliferation of tachyzoites. This was confirmed by transmission electron microscopy, showing that the primary target of MMV671636 was the mitochondrion. MMV671636 treatment of experimentally infected mice significantly reduced the number of animals with lung and brain infection, and these mice also exhibited a significantly reduced titer of antibodies directed against N. caninum antigens. Thus, MMV671636 is a promising starting point for the development of a future neosporosis therapy.
Collapse
Affiliation(s)
- Joachim Müller
- Institute for Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Adriana Aguado
- Institute for Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Benoît Laleu
- Medicines for Malaria Venture (MMV), PO Box 1826, 20, Route de Pré-Bois, 1215 Geneva 15, Switzerland
| | - Vreni Balmer
- Institute for Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Dominic Ritler
- Institute for Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute for Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
18
|
Possible anticancer agents: synthesis, pharmacological activity, and molecular modeling studies on some 5-N
-Substituted-2-N-(substituted benzenesulphonyl)-L(+)Glutamines. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1858-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Arthur DE, Uzairu A, Mamza P, Abechi SE, Shallangwa G. Insilco study on the toxicity of anti-cancer compounds tested against MOLT-4 and p388 cell lines using GA-MLR technique. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2016. [DOI: 10.1016/j.bjbas.2016.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
20
|
Amin SA, Adhikari N, Jha T, Gayen S. First molecular modeling report on novel arylpyrimidine kynurenine monooxygenase inhibitors through multi-QSAR analysis against Huntington's disease: A proposal to chemists! Bioorg Med Chem Lett 2016; 26:5712-5718. [PMID: 27838184 DOI: 10.1016/j.bmcl.2016.10.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/30/2016] [Accepted: 10/20/2016] [Indexed: 11/18/2022]
Abstract
Huntington's disease (HD) is caused by mutation of huntingtin protein (mHtt) leading to neuronal cell death. The mHtt induced toxicity can be rescued by inhibiting the kynurenine monooxygenase (KMO) enzyme. Therefore, KMO is a promising drug target to address the neurodegenerative disorders such as Huntington's diseases. Fiftysix arylpyrimidine KMO inhibitors are structurally explored through regression and classification based multi-QSAR modeling, pharmacophore mapping and molecular docking approaches. Moreover, ten new compounds are proposed and validated through the modeling that may be effective in accelerating Huntington's disease drug discovery efforts.
Collapse
Affiliation(s)
- Sk Abdul Amin
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar 470003, Madhya Pradesh, India; Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, PO Box 17020, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, PO Box 17020, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, PO Box 17020, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar 470003, Madhya Pradesh, India
| |
Collapse
|
21
|
Robust design of some selective matrix metalloproteinase-2 inhibitors over matrix metalloproteinase-9 through in silico/fragment-based lead identification and de novo lead modification: Syntheses and biological assays. Bioorg Med Chem 2016; 24:4291-4309. [DOI: 10.1016/j.bmc.2016.07.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/28/2022]
|
22
|
Amin SA, Adhikari N, Jha T, Gayen S. Exploring structural requirements of unconventional Knoevenagel-type indole derivatives as anticancer agents through comparative QSAR modeling approaches. CAN J CHEM 2016. [DOI: 10.1139/cjc-2016-0050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An indole ring system is considered as a versatile scaffold in the pharmaceutical field. In this article, comparative QSAR modeling (2D-QSAR, 3D-QSAR; kNN-MFA and CoMSIA) was performed on some Knoevenagel-type cytotoxic indole derivatives to understand the structural requirements for the cytotoxic property of these compounds. The 2D-QSAR model was statistically significant and imparted high predictive ability (nTrain = 30; R = 0.917; [Formula: see text] = 0.801; [Formula: see text] = 0.757; Q2 = 0.722; nTest = 9; [Formula: see text] = 0.799). A statistically significant 3D-QSAR kNN-MFA model (both with stepwise forward and simulated annealing model selection method) as well as a 3D-QSAR CoMSIA model was developed to identify the key chemical features associated with enhancing the cytotoxic activities of these indoles. The results suggest that the presence of bulky group in R position can cause better cytotoxic activities. Consequently, substitution with cyano group at X portion and cyano/ester/keto/sulphonyl features at Y position is favourable for the cytotoxicity. However, hydrophobic features in R′ region are unfavourable for the biological activity. The chemical and structural features identified from the study may provide important avenues to modulate the structure of these indoles to a desirable biological end point.
Collapse
Affiliation(s)
- Sk. Abdul Amin
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar 470003, (MP), India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P.O. Box 17020, Jadavpur University, Kolkata 700032, (WB), India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P.O. Box 17020, Jadavpur University, Kolkata 700032, (WB), India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar 470003, (MP), India
| |
Collapse
|