1
|
Wang S, Guo D, Chen X, Chen SZ, Cui XW, Han YH, Xiang P. Environmentally relevant concentrations of antimony pose potential risks to human health: An evaluation on human umbilical vein endothelial cells. Toxicol In Vitro 2025; 106:106054. [PMID: 40086647 DOI: 10.1016/j.tiv.2025.106054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Antimony (Sb) ore exploitation and the use of Sb-containing drugs pose known health risks. This study investigated the toxicity of environmentally relevant concentrations of Sb (0.12-12 mg L-1) on human umbilical vein endothelial cells (HUVECs). The 50 % lethal concentration (LC50) of Sb to HUVECs was 11.4 mg L-1. Exposing to high level of Sb induced cell cycle arrest by altering the expression of cell cycle regulators, inhibiting the transitions of G0/G1 to S and S to G2/M. At 1.2 mg L-1 Sb, CKD6 and p21 expressions in HUVECs changed to 0.75 and 1.32 folds that of no-Sb control, respectively (p < 0.01). At 12 mg L-1 Sb, CDK2, CKD6, and p27 expressions decreased by 1.54, 4.41, and 1.54 folds (p < 0.001), while p21 expression increased by 3.03 folds (p < 0.001) as compared to control. Sb also led to cell apoptosis, evidenced by Annexin V-FITC/PI staining and changes in the expressions of Bax (1.21-1.30 folds, p < 0.01) and Bcl-2 (0.65-0.83 folds). Oxidative damage was a pivotal factor driving cell apoptosis, probably through down-regulating antioxidant genes (CAT, GPX1, and GSTP1) and up-regulating stress response genes (HO-1, SOD1, and TrxR1). The elevated H2O2 generated in mitochondria likely contributed to cell apoptosis due to the imbalance in H2O2 metabolism. These findings suggest that environmentally relevant concentrations of Sb can exert cytotoxicity to HUVECs, which should be of potential concern for human cardiovascular disease.
Collapse
Affiliation(s)
- Shanshan Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Dongqian Guo
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Xian Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Su-Zhu Chen
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xi-Wen Cui
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Yong-He Han
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China.
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, Yunnan 650224, China.
| |
Collapse
|
2
|
Molaakbari E, Khosravi A, Salarkia E, Sharifi I, Keyhani A, Bamorovat M, Zarif M, Sharifi F. The synergistic anti-leishmanial effect of photodynamic therapy employing chemotherapy-mediated nanocomposites. Sci Rep 2025; 15:16282. [PMID: 40348806 PMCID: PMC12065788 DOI: 10.1038/s41598-025-01097-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025] Open
Abstract
Cutaneous leishmaniasis (CL) presents a significant therapeutic challenge due to limitations of current treatments like meglumine antimoniate (MAT), including drug resistance and adverse side effects. Photodynamic therapy (PDT) has emerged as a promising, non-invasive alternative. This study explored the synergistic potential of combining PDT with chemotherapy using novel MAT-loaded nanocomposites for enhanced anti-leishmanial activity. A novel nanocomposite, Co-Fe2O4@GO-poly(AMPS-co-AM), was synthesized and characterized using energy-dispersive X-ray spectroscopy (EDX), elemental mapping, and high-resolution transmission electron microscopy (HR-TEM). MAT was immobilized onto the nanocomposite, forming NCMAT. The in vitro anti-leishmanial efficacy of NCMAT against L. tropica was evaluated using flow cytometry, MTT assays, and real-time polymerase chain reaction (PCR) to assess gene expression. The characterization techniques confirmed the successful synthesis and MAT loading of the nanocomposite. In vitro studies demonstrated that NCMAT combined with PDT resulted in a 78% increase in hydroxyl radical production and exhibited a significant reduction (X%) in parasite viability compared to MAT alone. This enhanced activity is likely attributed to increased reactive oxygen species (ROS) production and immunomodulation. Combining nanotechnology with PDT offers a promising approach for treating CL. The Co-Fe2O4@GO-poly(AMPS-co-AM) nanocomposites demonstrated improved therapeutic outcomes in vitro. While these results are encouraging, further research is crucial to evaluate the clinical safety and efficacy of this combined therapeutic strategy.
Collapse
Affiliation(s)
- Elahe Molaakbari
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Zarif
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Li P, Ma J, Jiang Y, Yang X, Luo Y, Tao L, Guo X, Gao B. Association between Mixed Heavy Metal Exposure and Arterial Stiffness, with Alkaline Phosphatase Identified as a Mediator. Biol Trace Elem Res 2024:10.1007/s12011-024-04359-2. [PMID: 39218814 DOI: 10.1007/s12011-024-04359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Elevated arterial stiffness has been associated with exposure to heavy metals such as lead (Pb) and cadmium (Cd). However, the collective impact of multiple metals and the underlying mechanisms are not fully elucidated. The purpose of this study was to assess the combined effects of exposure to nine heavy metals on arterial stiffness and explore whether serum alkaline phosphatase (ALP) acts as a mediator in this relationship. In the retrospective analysis, data from 8,700 participants were retrieved from the National Health and Nutrition Examination Survey (NHANES) spanning from 1999 to 2018. Arterial stiffness was measured by estimated pulse wave velocity (ePWV). The cumulative impact of exposure to multiple metals was examined using adaptive elastic-net, environmental risk score, weighted quantile sum regression, and quantile g-computation. Additionally, mediation analysis was conducted to explore the potential mediating role of serum ALP. We found that combined exposure to multiple metals was consistently associated with elevated ePWV, with Ba, Pb, and Sb exhibiting the greatest contributions. Notably, serum ALP partially mediated the associations between individual (Pb, Sb) and mixed metal exposure with ePWV, with mediation proportions at 10.76% for Pb, 18.22% for Sb, and 11.07% for mixed metal exposure. In conclusion, this study demonstrates a clear association between exposure to heavy metals, either individually or in combination, and heightened arterial stiffness. Furthermore, the findings suggest that serum ALP activity may act as a mediator in these relationships.
Collapse
Affiliation(s)
- Pingan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Jianhua Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Yue Jiang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Xinghua Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Yanxia Luo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Lixin Tao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Xiuhua Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China
| | - Bo Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, No.10 Xitoutiao, Youanmen Street, Beijing, 100069, China.
| |
Collapse
|
4
|
Bamorovat M, Sharifi I, Khosravi A, Aflatoonian MR, Agha Kuchak Afshari S, Salarkia E, Sharifi F, Aflatoonian B, Gharachorloo F, Khamesipour A, Mohebali M, Zamani O, Shirzadi MR, Gouya MM. Global Dilemma and Needs Assessment Toward Achieving Sustainable Development Goals in Controlling Leishmaniasis. J Epidemiol Glob Health 2024; 14:22-34. [PMID: 38466368 PMCID: PMC11043315 DOI: 10.1007/s44197-024-00190-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/11/2024] [Indexed: 03/13/2024] Open
Abstract
Leishmaniasis is a disease of poverty that imposes a devastating medical, social, and economic burden on over 1 billion people nationwide. To date, no in-depth study to analyze the major global challenges and needs assessment has been carried out. This investigation aimed to explore a comprehensive narrative review of leishmaniasis's main challenges and initially highlight obstacles that might impede the implementation of control measures. Also, we propose a specific list of priorities for needs assessment. The presence of socioeconomic factors, multiple clinical and epidemiological forms, various Leishmania species, the complexity of the life cycle, the absence of effective drugs and vaccines, and the lack of efficient vector and reservoir control make this organism unique and sophisticated in playing a tangled role to react tricky with its surrounding environments, despite extensive efforts and implementation of all-inclusive former control measures. These facts indicate that the previous strategic plans, financial support, and basic infrastructures connected to leishmaniasis surveillance are still insufficient. Strengthening the leishmaniasis framework in a context of accelerated programmatic action and intensification of cross-cutting activities along with other neglected tropical diseases (NTDs) is confidently expected to result in greater effectiveness, cost-benefit, and fruitful management. Sensitive diagnostics, effective therapeutics, and efficacious vaccines are vital to accelerating advancement toward elimination, and reducing morbidity/mortality and program costs. Collective actions devoted by all sectors and policy-makers can hopefully overcome technical and operational barriers to guarantee that effective and coordinated implementation plans are sustained to meet the road map for NTDs 2021- 2030 goals.
Collapse
Affiliation(s)
- Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Behnaz Aflatoonian
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Faranak Gharachorloo
- Center for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohebali
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Zamani
- Universal Health Coverage for Communicable Diseases (UHC: CD), World Health Organization, Country Office, Tehran, Iran
| | - Mohammad Reza Shirzadi
- Center for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Mohammad Mahdi Gouya
- Center for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
5
|
Seyedi F, Sharifi I, Khosravi A, Molaakbari E, Tavakkoli H, Salarkia E, Bahraminejad S, Bamorovat M, Dabiri S, Salari Z, Kamali A, Ren G. Comparison of cytotoxicity of Miltefosine and its niosomal form on chick embryo model. Sci Rep 2024; 14:2482. [PMID: 38291076 PMCID: PMC10827708 DOI: 10.1038/s41598-024-52620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/21/2024] [Indexed: 02/01/2024] Open
Abstract
Various drugs have been used for the treatment of leishmaniasis, but they often have adverse effects on the body's organs. In this study, we aimed to explore the effects of one type of drug, Miltefosine (MIL), and its analogue or modifier, liposomal Miltefosine (NMIL), on several fetal organs using both in silico analysis and practical tests on chicken embryos. Our in silico approach involved predicting the affinities of MIL and NMIL to critical proteins involved in leishmaniasis, including Vascular Endothelial Growth Factor A (VEGF-A), the Kinase insert domain receptor (KDR1), and apoptotic-regulator proteins (Bcl-2-associate). We then validated and supported these predictions through in vivo investigations, analyzing gene expression and pathological changes in angiogenesis and apoptotic mediators in MIL- and NMIL-treated chicken embryos. The results showed that NMIL had a more effective action towards VEGF-A and KDR1 in leishmaniasis, making it a better candidate for potential operative treatment during pregnancy than MIL alone. In vivo, studies also showed that chicken embryos under MIL treatment displayed less vascular mass and more degenerative and apoptotic changes than those treated with NMIL. These results suggest that NMIL could be a better treatment option for leishmaniasis during pregnancy.
Collapse
Affiliation(s)
- Fatemeh Seyedi
- Department of Anatomy, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Science, Kerman, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Science, Kerman, Iran.
| | - Elaheh Molaakbari
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Hadi Tavakkoli
- Department of Clinical Science, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Science, Kerman, Iran
| | - Sina Bahraminejad
- Leishmaniasis Research Center, Kerman University of Medical Science, Kerman, Iran
| | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Science, Kerman, Iran
| | - Shahriar Dabiri
- Afzalipour School of Medicine and Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zohreh Salari
- Obstetrics and Gynecology Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Kamali
- Department of Infectious Diseases, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Guogang Ren
- School of Engineering and Computer Science, University of Hertfordshire, Hatfield, AL10 9AB, UK
| |
Collapse
|
6
|
Tan Y, El-Kersh K, Watson SE, Wintergerst KA, Huang J, Cai L. Cardiovascular Effects of Environmental Metal Antimony: Redox Dyshomeostasis as the Key Pathogenic Driver. Antioxid Redox Signal 2023; 38:803-823. [PMID: 36424825 PMCID: PMC10402706 DOI: 10.1089/ars.2022.0185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Significance: Cardiovascular diseases (CVDs) are the leading cause of death worldwide, which may be due to sedentary lifestyles with less physical activity and over nutrition as well as an increase in the aging population; however, the contribution of pollutants, environmental chemicals, and nonessential metals to the increased and persistent CVDs needs more attention and investigation. Among environmental contaminant nonessential metals, antimony has been less addressed. Recent Advances: Among environmental contaminant nonessential metals, several metals such as lead, arsenic, and cadmium have been associated with the increased risk of CVDs. Antimony has been less addressed, but its potential link to CVDs is being gradually recognized. Critical Issues: Several epidemiological studies have revealed the significant deleterious effects of antimony on the cardiovascular system in the absence or presence of other nonessential metals. There has been less focus on whether antimony alone can contribute to the pathogenesis of CVDs and the proposed mechanisms of such possible effects. This review addresses this gap in knowledge by presenting the current available evidence that highlights the potential role of antimony in the pathogenesis of CVDs, most likely via antimony-mediated redox dyshomeostasis. Future Directions: More direct evidence from preclinical and mechanistic studies is urgently needed to evaluate the possible roles of antimony in mitochondrial dysfunction and epigenetic regulation in CVDs. Antioxid. Redox Signal. 38, 803-823.
Collapse
Affiliation(s)
- Yi Tan
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, Kentucky, USA
| | - Karim El-Kersh
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sara E. Watson
- Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, Kentucky, USA
- Division of Endocrinology, Department of Pediatrics, Norton Children's Hospital, University of Louisville, Louisville, Kentucky, USA
| | - Kupper A. Wintergerst
- Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, Kentucky, USA
- Division of Endocrinology, Department of Pediatrics, Norton Children's Hospital, University of Louisville, Louisville, Kentucky, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Jiapeng Huang
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Cardiovascular and Thoracic Surgery, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Lu Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, Kentucky, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Radiation Oncology; University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
7
|
Mosallanejad S, Mahmoodi M, Tavakkoli H, Khosravi A, Salarkia E, Keyhani A, Dabiri S, Gozashti MH, Pardakhty A, Khodabandehloo H, Pourghadamyari H. Empagliflozin induces apoptotic-signaling pathway in embryonic vasculature: In vivo and in silico approaches via chick’s yolk sac membrane model. Front Pharmacol 2022; 13:970402. [PMID: 36120349 PMCID: PMC9474685 DOI: 10.3389/fphar.2022.970402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
The present investigation was conducted to evaluate the vascular-toxicity of empagliflozin (EMP) in embryonic vasculature. Firstly, the vascular-toxicity of the drug as well as its interaction with apoptotic regulator proteins was predicted via in silico approach. In the next step, the apoptotic-signaling pathway in embryonic vasculature was evaluated using a chick’s YSM model. In silico simulation confirmed vascular-toxicity of EMP. There was also an accurate affinity between EMP, Bax and Bcl-2 (−7.9 kcal/mol). Molecular dynamics assay revealed complex stability in the human body conditions. Furthermore, EMP is suggested to alter Bcl-2 more than BAX. Morphometric quantification of the vessels showed that the apoptotic activity of EMP in embryonic vasculature was related to a marked reduction in vessel area, vessel diameter and mean capillary area. Based on the qPCR and immunohistochemistry assays, enhanced expression level of BAX and reduced expression level of Bcl-2 confirmed apoptotic responses in the vessels of the YSM. We observed that induction of an apoptotic signal can cause the embryonic defect of the vascular system following EMP treatment. The acquired data also raised suspicions that alteration in apoptotic genes and proteins in the vasculature are two critical pathways in vascular-toxicity of EMP.
Collapse
Affiliation(s)
- Saeedeh Mosallanejad
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Mahmoodi
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- *Correspondence: Mehdi Mahmoodi, ; Hossein Pourghadamyari,
| | - Hadi Tavakkoli
- Department of Clinical Sciences, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Afzalipour School of Medicine, Pathology and Stem Cell Research Center, Kerman University of Medical Science, Kerman, Iran
| | - Mohammad Hossein Gozashti
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hadi Khodabandehloo
- Department of Clinical Biochemistry, School of Medicine Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- *Correspondence: Mehdi Mahmoodi, ; Hossein Pourghadamyari,
| |
Collapse
|
8
|
Khosravi A, Sharifi I, Tavakkoli H, Molaakbari E, Bahraminegad S, Salarkia E, Seyedi F, Keyhani A, Salari Z, Sharifi F, Bamorovat M, Afgar A, Dabiri S. Cytotoxicity of Amphotericin B and AmBisome: In Silico and In Vivo Evaluation Employing the Chick Embryo Model. Front Pharmacol 2022; 13:860598. [PMID: 35754489 PMCID: PMC9214246 DOI: 10.3389/fphar.2022.860598] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Leishmaniasis has been identified as a significant disease in tropical and subtropical regions of the world, with Iran being one of the disease-endemic areas. Various treatments have been applied for this disease, and amphotericin B (Amp B) is the second line of treatment. Side effects of this drug have been reported in various organs. The present study investigated the effects of different types of Amp B on fetal organs using in silico and in vivo assays (chicken embryos). In vivo analysis was done by checking pathological changes, angiogenesis, and apoptosis alterations on eggs treated by Amp B and AmBisome. In silico approach was employed to predict the affinity of Amp B and AmBisome to the vascular endothelial growth factor A (VEGF-A), its receptor (KDR1), apoptotic-regulator proteins (Bcl-2-associated X protein (Bax), B-cell lymphoma (Bcl-2), and Caspase-8. The ADME-toxicity prediction reveals that AmBisome possesses a superior pharmacological effect to Amp B. The best result of all the dockings in the Molegro Virtual Docker (MVD) was obtained between Bax, Bcl-2, Caspase-8, KDR1, and VEGF-A targets. Due to the lower Egap (HOMO–LUMO) of AmBisome, the chemical reactivity of AmBisome was higher than that of Amp B. In vivo analysis showed that embryos that received Amp B exhibited less vascular density than AmBisome. Amp B alone significantly increased the expression of apoptosis and decreased angiogenesis genes compared to AmBisome. The histopathology analysis of the treated embryos showed a reduction in the blood vessel collapse and an increase in degenerative and apoptotic–necrotic changes in the embryonic tissues. Overall, the results suggest the potential benefits of AmBisome over Amp B, which might be a better treatment strategy to treat leishmaniasis during pregnancy.
Collapse
Affiliation(s)
- Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hadi Tavakkoli
- Department of Clinical Science, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Elaheh Molaakbari
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Sina Bahraminegad
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Seyedi
- Department of Anatomy, School of Medicine, Jiroft University of Medical, Sciences, Jiroft, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zohreh Salari
- Obstetrics and Gynecology Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Afzalipour School of Medicine and Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
9
|
Keyhani A, Sharifi I, Salarkia E, Khosravi A, Tavakoli Oliaee R, Babaei Z, Ghasemi Nejad Almani P, Hassanzadeh S, Kheirandish R, Mostafavi M, Hakimi Parizi M, Alahdin S, Sharifi F, Dabiri S, Shamsi Meymandi S, Khamesipour A, Jafarzadeh A, Bamorovat M. In vitro and in vivo therapeutic potentials of 6-gingerol in combination with amphotericin B for treatment of Leishmania major infection: Powerful synergistic and multifunctional effects. Int Immunopharmacol 2021; 101:108274. [PMID: 34688150 DOI: 10.1016/j.intimp.2021.108274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/21/2022]
Abstract
The ongoing conventional drugs for leishmaniasis treatment are insufficient. The present study aimed to assess 6-gingerol alone and in combination with amphotericin B on Leishmania major stages using experimental and in vivo murine models. Here, arrays of experimental approaches were designed to monitor and evaluate the 6-gingerol potential therapeutic outcomes. The binding affinity of 6-gingerol and IFN-γ was the basis for docking conformations. 6-Gingerol combined with amphotericin B represented a safe mixture, extremely leishmanicidal, a potent antioxidant, induced a remarkable apoptotic index, significantly increased the expression of the Th1-related cytokines (IL-12p40, IFN-γ, and TNF- α), iNOS, and transcription factors (STAT1, c-Fos, and Elk-1). In contrast, the expression of the Th2-related cytokines was significantly downregulated (p < 0.001). This combination was also potent when the lesion appearance was evaluated following three weeks of treatment. The histopathological and immunohistochemical patterns of the murine model represented clusters of CD4+ and CD8+ T lymphocytes which compressed and deteriorated the macrophages harboring Leishman bodies. The primary mode of action of 6-gingerol and amphotericin B involved broad mechanistic insights providing a coherent basis for further clinical study as a potential drug candidate for CL. In conclusion, 6-gingerol with amphotericin B synergistically exerted anti-leishmanial activity in vitro and in vivo and potentiated macrophages' leishmanicidal activity, modulated Th1- and Th2-related phenotypes improved the histopathological changes in the BALB/c mice infected with L. major. They elevated the leukocyte infiltration into the lesions. Therefore, this combination should be considered for treating volunteer patients with CL in clinical studies.
Collapse
Affiliation(s)
- Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Zahra Babaei
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Saeid Hassanzadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Reza Kheirandish
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mashid Mostafavi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Hakimi Parizi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sodabeh Alahdin
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Department of Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Simin Shamsi Meymandi
- Department of Dermatology, Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Huang H, Yang W, Hu J, Jiang Y, Wang J, Shi C, Kang Y, Wang D, Wang C, Yang G. Antitumour metastasis and the antiangiogenic and antitumour effects of a Eimeria stiedae soluble protein. Parasite Immunol 2021; 43:e12825. [PMID: 33507547 DOI: 10.1111/pim.12825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/04/2023]
Abstract
Some protozoa (Plasmodium falciparum, Toxoplasma gondii, etc) are used to treat cancer because they can improve tumour-induced immunosuppression. This study aims to evaluate the antitumour effect of Eimeria stiedae oocyst soluble protein (ESSP). ESSP was extracted, and mice were injected with 5 × 105 CT26 cells in the right axilla, and then, 50 μg of ESSP was intraperitoneally injected for 5 continuous days. The effect of ESSP on tumour immunity was detected by flow cytometry 25 days after the CT26 inoculation. The results showed that ESSP can inhibit the growth of CT26 subcutaneous tumours; significantly increase the expression of MHC I, MHC II, CD80 and CD86 on the surface of splenic dendritic cells; and enhance the level of IL-12 secretion. ESSP induced an increase in the number of NK cells in the mouse spleen, and the levels of IFN-γ and CD107 were upregulated in the NK cells and CD8+ T cells. The number of metastatic nodules in the lung tumours in the mice was significantly reduced, and the number of tubes, area of the loops and total length of the tubes were significantly reduced. ESSP enhances the antitumour immune response and inhibits tumour growth, metastasis and angiogenesis.
Collapse
Affiliation(s)
- Haibin Huang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wentao Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jingtao Hu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yanlong Jiang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jianzhong Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yuanhuan Kang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Dan Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
11
|
Dehghani-Soltani S, Eftekhar-Vaghefi SH, Babaee A, Basiri M, Mohammadipoor-Ghasemabad L, Vosough P, Ahmadi-Zeidabadi M. Pulsed and Discontinuous Electromagnetic Field Exposure Decreases Temozolomide Resistance in Glioblastoma by Modulating the Expression of O 6-Methylguanine-DNA Methyltransferase, Cyclin-D1, and p53. Cancer Biother Radiopharm 2020; 36:579-587. [PMID: 32644826 DOI: 10.1089/cbr.2020.3851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background: Glioblastoma is a malignant and very aggressive brain tumor with a poor prognosis. Despite having chemotherapy concomitant with surgery and/or radiation therapy, the median survival of glioblastoma-affected people is less than 1 year. Temozolomide (TMZ) is a chemotherapeutic used as a first line treatment of glioblastoma. Several studies have reported that resistance to TMZ due to overexpression of O6-methylguanine-DNA methyltransferase (MGMT) is the main reason for treatment failure. Several studies described that pulsed-electromagnetic field (EMF) exposure could induce cell death and influence gene expression. Materials and Methods: In this study the authors assessed the effects of EMF (50 Hz, 70 G) on cytotoxicity, cell migration, gene expression, and protein levels in TMZ-treated T98 and A172 cell lines. Results: In this study, the authors show that treatment with a combination of TMZ and EMF enhanced cell death and decreased the migration potential of T98 and A172 cells. The authors also observed overexpression of the p53 gene and downregulation of cyclin-D1 protein in comparison to controls. In addition, T98 cells expressed the MGMT protein following treatment, while the A172 cells did not express MGMT. Conclusion: Their data indicate that EMF exposure improved the cytotoxicity of TMZ on T98 and A172 cells and could partially affect resistance to TMZ in T98 cells.
Collapse
Affiliation(s)
- Samereh Dehghani-Soltani
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed Hassan Eftekhar-Vaghefi
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdolreza Babaee
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Basiri
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Parisa Vosough
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Meysam Ahmadi-Zeidabadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
12
|
Babaee A, Nematollahi-Mahani SN, Dehghani-Soltani S, Shojaei M, Ezzatabadipour M. Photobiomodulation and gametogenic potential of human Wharton's jelly-derived mesenchymal cells. Biochem Biophys Res Commun 2019; 514:239-245. [PMID: 31029424 DOI: 10.1016/j.bbrc.2019.04.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/08/2019] [Indexed: 01/22/2023]
Abstract
Recently, light emitting diode (LED) irradiation has been introduced as a new strategy to enhance proliferation and affect differentiation of stem cells. Human Wharton's jelly-derived mesenchymal (hWJM) cells have unique characteristics that make them an appropriate source of stem cells for use in basic and clinical applications. In this study, we aimed to evaluate the effect of polarized (PL) and non-polarized (NPL) red light irradiation on gametogenic differentiation of hWJM cells in the presence or absence of bone morphogenetic protein 4 (BMP4) and retinoic acid (RA). Exposure of hWJM cells to PL and NPL red LED (625 nm, 1.9 J/cm2) with or without BMP4+RA pre-treatment effectively differentiated them into germ lineage when the gene expression pattern (Fragilis, DAZL, VASA, SCP3 and Acrosin) and protein synthesis (anti-DAZL, anti-VASA, anti-SCP3 and anti-Acrosin antibodies) of the induced cells was evaluated. These data demonstrated that photobiomodulation may be applied for gametogenic differentiation in-vitro.
Collapse
Affiliation(s)
- Abdolreza Babaee
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | | | - Samereh Dehghani-Soltani
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | | | - Massood Ezzatabadipour
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|