1
|
Chuang YT, Liu W, Chien TM, Cheng YB, Jeng JH, Chen CY, Tang JY, Chang HW. Antiproliferative and apoptotic effects of (1R*,12R*)-dolabella-4(16),7,10-triene-3,13-dione (CI-A) in oral cancer cells are mediated by oxidative stress and ERK activation. Int Immunopharmacol 2025; 155:114615. [PMID: 40199136 DOI: 10.1016/j.intimp.2025.114615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
The anticancer effects and mechanisms of the main component (CI-A) of methanol extracts of Clavularia inflat have not been reported. This study explores the anti-oral cancer effect and mechanism of (1R*,12R*)-dolabella-4(16),7,10-triene-3,13-dione (CI-A) and compared with normal cells. CI-A shows oxidative-stress-dependent preferential antiproliferation of oral cancer cells without normal cell toxicity. CI-A triggers cell cycle dysregulation, apoptosis/caspase activation, cellular/mitochondrial ROS induction, glutathione depletion, and oxidative DNA damage in oral cancer but not normal cells. After testing with three MAPK (p38, JNK, and ERK) inhibitors, only the ERK inhibitor (PD98059) protects against CI-A-induced antiproliferation in oral cancer cells. CI-A upregulates phosphorylated ERK in oral cancer cells compared to normal cells. Notably, a ROS inhibitor, N-acetylcysteine (NAC), attenuates all CI-A-modulated changes. Moreover, the CI-A-triggered annexin V-detected apoptosis and caspase 3/8/9 activations of oral cancer cells were downregulated by PD98059. In conclusion, CI-A induces the oxidative-stress- and ERK-dependent antiproliferative and apoptotic mechanism in oral cancer cells and shows the benefit of non-cytotoxicity to normal cells.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Wangta Liu
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Tsu-Ming Chien
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung 820111, Taiwan.
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Jiiang-Huei Jeng
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei 100225, Taiwan.
| | - Ching-Yeu Chen
- Department of Physical Therapy, Tzu-Hui Institute of Technology, Pingtung 92641, Taiwan.
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Center for Cancer Research and Research Center for Molecular Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
2
|
Aschner M, Skalny AV, Martins AC, Tizabi Y, Zaitseva IP, Santamaria A, Lu R, Gluhcheva YY, Tinkov AA. The role of NLRP3 inflammasome activation in proinflammatory and cytotoxic effects of metal nanoparticles. Arch Toxicol 2025; 99:1287-1314. [PMID: 39960653 DOI: 10.1007/s00204-025-03972-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/27/2025] [Indexed: 04/04/2025]
Abstract
Exposure to metal nanoparticles (NPs) is known to induce inflammatory responses in various tissues, thus limiting their therapeutic potential. NOD-like receptor protein 3 (NLRP3) inflammasome activation is an essential component of innate immunity playing a significant role in inflammation and development of inflammatory diseases. Therefore, the objective of the present review was to summarize data on the role of NLRP3 inflammasome in proinflammatory effects induced by metal NPs, and to discuss the underlying molecular mechanisms, including its dependence on the physical and chemical properties of metal NPs. Titanium, zinc, silver, aluminum, iron, cobalt, nickel, vanadium, and tungsten nanoparticles, as well as metal-based quantum dots have all been shown to induce NLRP3 inflammasome activation in vitro in macrophages and monocytes, dendritic cells, keratinocytes, hepatocytes, enterocytes, microglia, astrocytes, lung epithelial cells, endotheliocytes, as well as certain types of cancer cells. In vivo studies confirmed the role of NLRP3 pathway activation in development of colitis, pulmonary inflammation, liver damage, osteolysis, and neuroinflammation induced by various metal nanoparticles. Briefly, particle endocytosis with subsequent lysosomal damage, induction of ROS formation, K+ efflux, increased intracellular Ca2+ levels, and NF-κB pathway activation results in NLRP3 inflammasome complex assembly, caspase-1 activation, and cleavage of pro-IL-1β and pro-IL-18 to mature proinflammatory cytokines, while gasdermin D cleavage induces pyroptotic cell death. Moreover, small-sized and rod-shaped metal NPs exert a more profound stimulatory effect on NLRP3 inflammasome activation, but contrary findings have also been reported. Taken together, it is concluded that NLRP3 inflammasome may mediate both adverse proinflammatory effects of metal nanoparticles, as well as their beneficial effect when used as antitumor agents.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Anatoly V Skalny
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia
| | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, 20059, USA
| | - Irina P Zaitseva
- Laboratory of Ecobiomonitoring and Quality Control and Department of Physical Education, Yaroslavl State University, Yaroslavl, 150003, Russia
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, 04960, Mexico City, Mexico
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yordanka Y Gluhcheva
- Institute of Experimental Morphology, Pathology and Anthropology With Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str., Bl. 25, 1113, Sofia, Bulgaria
| | - Alexey A Tinkov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia
- Laboratory of Ecobiomonitoring and Quality Control and Department of Physical Education, Yaroslavl State University, Yaroslavl, 150003, Russia
| |
Collapse
|
3
|
Malhotra M, Chotaliya D, Debnath M, Patel R, Kulkarni A. Varying the hydrophobic core composition of polymeric nanoparticles affects NLRP3 inflammasome activation. Biomater Sci 2024; 12:4790-4805. [PMID: 39140798 DOI: 10.1039/d4bm00580e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Understanding the interactions of nanoparticle carriers with innate immune cells is crucial for informing the design and efficacy of future nano-immunotherapies. An intriguing aspect of their interaction with the immune system has recently emerged, i.e., their ability to activate the NLRP3 inflammasome, a key component of the innate immune response. While the effect of the surface properties of nanoparticles has been extensively investigated in the context of nanoparticle-immune cell interactions, the influence of core composition remains largely unexplored, particularly regarding its impact on inflammasome activation. To shed light on these interactions, we developed a library of supramolecular polymer nanoparticles (SNPs) with different core compositions, varying their hydrophobic quotient by virtue of the side chain length and the repeating units in the polymer construct. The impact of modulating SNP core hydrophobic properties was investigated in macrophages by evaluating their cellular internalization, cytokine release, lysosomal rupture-calcium signaling, calcium flux-mitochondrial ROS production and their ability to activate the NLRP3 inflammasome, providing mechanistic insights into inflammasome activation. We established a direct correlation between increasing the side chain length of the polymer construct, thereby increasing the core hydrophobicity of SNPs and enhanced NLRP3 complex formation, as indicated by ASC speck imaging analysis and the elevated 1L-1β expression. Furthermore, the results demonstrated that the inflammasome signaling cascades and kinetics varied based on the SNP's hydrophobic side chain length and repeating units. Specifically, the nanoparticle with the longest alkyl side chain effectuated NLRP3 activation preferentially through the mitochondrial damage pathway. In vivo evaluation of SNPs in C57BL/6 mice confirmed elevated proinflammatory cytokines, notably with the SNP having the longest C12-alkyl side chain. This confirms that the higher core hydrophobicity composition of the SNP results in inflammasome activation in vivo. In summary, this study established SNP core composition as a novel nanoparticle-associated molecular pattern (NAMP) responsible for NLRP3 inflammasome activation, shedding light on intricate cellular pathways for informed nanoparticle design in immunotherapy and vaccine applications.
Collapse
Affiliation(s)
- Mehak Malhotra
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | - Dhruv Chotaliya
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | - Maharshi Debnath
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, USA.
| | - Ruchi Patel
- Department of Pathology, UMass Chan Medical School-Baystate, Springfield, MA 01107, USA
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, USA.
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
4
|
Wang K, Wang S, Yin J, Yang Q, Yu Y, Chen L. Long-term application of silver nanoparticles in dental restoration materials: potential toxic injury to the CNS. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:52. [PMID: 37855967 PMCID: PMC10587321 DOI: 10.1007/s10856-023-06753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
Silver nanoparticles (AgNPs) have durable and remarkable antimicrobial effects on pathogenic microorganisms, such as bacteria and fungi, in dental plaques. As such, they are widely added to dental restoration materials, including composite resins, denture bases, adhesives, and implants, to solve the problems of denture stomatitis, peri-implant inflammation, and oral infection caused by the long-term use of these dental restoration materials. However, AgNPs can be absorbed into the blood circulatory system through the nasal/oral mucosa, lungs, gastrointestinal tract, skin, and other pathways and then distributed into the lungs, kidneys, liver, spleen, and testes, thereby causing toxic injury to these tissues and organs. It can even be transported across the blood-brain barrier (BBB) and continuously accumulate in brain tissues, causing injury and dysfunction of neurons and glial cells; consequently, neurotoxicity occurs. Other nanomaterials with antibacterial or remineralization properties are added to dental restoration materials with AgNPs. However, studies have yet to reveal the neurotoxicity caused by dental restoration materials containing AgNPs. In this review, we summarize the application of AgNPs in dental restoration materials, the mechanism of AgNPs in cytotoxicity and toxic injury to the BBB, and the related research on the accumulation of AgNPs to cause changes of neurotoxicity. We also discuss the mechanisms of neurotoxicity caused by AgNPs and the mode and rate of AgNPs released from dental restorative materials added with AgNPs to evaluate the probability of neurotoxic injury to the central nervous system (CNS), and then provide a theoretical basis for developing new composite dental restoration materials. Mechanism of neurotoxicity caused by AgNPs: AgNPs in the blood circulation enter the brain tissue after being transported across the BBB through transendothelial cell pathway and paracellular transport pathway, and continuously accumulate in brain tissue, causing damage and dysfunction of neurons and glial cells which ultimately leads to neurotoxicity. The uptake of AgNPs by neurons, astrocytes and microglia causes damage to these cells. AgNPs with non-neurotoxic level often increases the secretion of a variety of cytokines, up-regulates the expression of metallothionein in glial cells, even up-regulates autophagy and inflammation response to protect neurons from the toxic damage of AgNPs. However, the protective effect of glial cells induced by AgNPs exposure to neurotoxic levels is insufficient, which leads to neuronal damage and dysfunction and even neuronal programmed cell death, eventually cause neurotoxicity.
Collapse
Affiliation(s)
- Kaimei Wang
- Guiyang Hospital of Stomatology, Guiyang, Guizhou Province, 563000, China
| | - Shiqi Wang
- The Medical unit of 65651 troops of Chinese people's Liberation Army, Jinzhou, Liaoning Province, 121100, China
| | - Jingju Yin
- Fujian Medical University; Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350002, China
| | - Qiankun Yang
- The Southwest Hospital of Army Medical University, Chongqing, 400038, China
| | - Yi Yu
- Guiyang Hospital of Stomatology, Guiyang, Guizhou Province, 563000, China
| | - Lin Chen
- Hospital of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563100, China.
| |
Collapse
|
5
|
Kanika, Khan R. Functionalized nanomaterials targeting NLRP3 inflammasome driven immunomodulation: Friend or Foe. NANOSCALE 2023; 15:15906-15928. [PMID: 37750698 DOI: 10.1039/d3nr03857b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The advancement in drug delivery systems in recent times has significantly enhanced therapeutic effects by enabling site-specific targeting through nanocarriers. These nanocarriers serve as invaluable tools for pharmacotherapeutic advancements against various disorders that enhance the effectiveness of encapsulated drugs by reducing their toxicity and increasing the efficacy of less potent drugs, thereby improving the therapeutic index. Inflammasomes, protein complexes located in the activated immune cell cytoplasm, regulate the activation of caspases involved in inflammation. However, aberrant activation of inflammasomes can result in uncontrolled tissue responses, contributing to the development of various diseases. Therefore, achieving a precise balance between inflammasome inhibition and activation is crucial for effectively treating inflammatory disorders through targeted functionalized nanocarriers. Despite the wealth of available data on the relevance of functionalized nanocarriers in inflammatory disorders, the nanotechnological potential to modulate inflammasomes has not been adequately explored. In this comprehensive review, we highlight the latest research on the modulation of the inflammasome cascade, both upregulating and downregulating its function, using nanocarriers in the context of inflammatory disorders. The utilization of nanocarriers as a therapeutic strategy holds immense potential for researchers aiming to effectively target and modulate inflammasomes in the treatment of inflammatory disorders, thus improving disease severity outcomes.
Collapse
Affiliation(s)
- Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, 5 Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, 5 Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| |
Collapse
|
6
|
Mallineni SK, Sakhamuri S, Kotha SL, AlAsmari ARGM, AlJefri GH, Almotawah FN, Mallineni S, Sajja R. Silver Nanoparticles in Dental Applications: A Descriptive Review. Bioengineering (Basel) 2023; 10:327. [PMID: 36978718 PMCID: PMC10044905 DOI: 10.3390/bioengineering10030327] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Silver nanoparticles have been a recent focus of many researchers in dentistry, and their potential uses and benefits have drawn attention in dentistry and medicine. The fabrication and utilization of nanoscale substances and structures are at the core of the rapidly developing areas of nanotechnology. They are often used in the dental industry because they prevent bacteria from making nanoparticles, oxides, and biofilms. They also stop the metabolism of bacteria. Silver nanoparticles (AgNPs) are a type of zero-dimensional material with different shapes. Dentistry has to keep up with changing patient needs and new technology. Silver nanoparticles (AgNPs) can be used in dentistry for disinfection and preventing infections in the oral cavity. One of the most interesting metallic nanoparticles used in biomedical applications is silver nanoparticles (AgNPs). The dental field has found promising uses for silver nanoparticles (AgNPs) in the elimination of plaque and tartar, as well as the elimination of bacterial and fungal infections in the mouth. The incorporation of AgNPs into dental materials has been shown to significantly enhance patients' oral health, leading to their widespread use. This review focuses on AgNP synthesis, chemical properties, biocompatibility, uses in various dental fields, and biomaterials used in dentistry. With an emphasis on aspects related to the inclusion of silver nanoparticles, this descriptive review paper also intends to address the recent developments of AgNPs in dentistry.
Collapse
Affiliation(s)
- Sreekanth Kumar Mallineni
- Pediatric Dentistry, Dr. Sulaiman Al Habib Hospital, Ar Rayyan, Riyadh 14212, Saudi Arabia
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
- Center for Transdisciplinary Research (CFTR), Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Srinivasulu Sakhamuri
- Department of Conservative Dentistry & Endodontics, Narayana Dental College and Hospital, Nellore 523004, Andhra Pradesh, India
| | - Sree Lalita Kotha
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | | | - Fatmah Nasser Almotawah
- Preventive Dentistry Department, Pediatric Dentistry Division, College of Dentistry, Riyadh Elm University, Riyadh 13244, Saudi Arabia
| | - Sahana Mallineni
- Department of Periodontology, Krishna Institute of Medical Sciences, Nellore 523001, Andhra Pradesh, India
| | - Rishitha Sajja
- Clinical Data Management, Global Data Management and Centralized Monitoring, Global Development Operations, Bristol Myers Squibb, Pennington, NJ 07922, USA
| |
Collapse
|
7
|
Coutinho Almeida-da-Silva CL, Cabido LF, Chin WC, Wang G, Ojcius DM, Li C. Interactions between silica and titanium nanoparticles and oral and gastrointestinal epithelia: Consequences for inflammatory diseases and cancer. Heliyon 2023; 9:e14022. [PMID: 36938417 PMCID: PMC10020104 DOI: 10.1016/j.heliyon.2023.e14022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/21/2023] Open
Abstract
Engineered nanoparticles (NPs) composed of elements such as silica and titanium, smaller than 100 nm in diameter and their aggregates, are found in consumer products such as cosmetics, food, antimicrobials and drug delivery systems, and oral health products such as toothpaste and dental materials. They may also interact accidently with epithelial tissues in the intestines and oral cavity, where they can aggregate into larger particles and induce inflammation through pathways such as inflammasome activation. Persistent inflammation can lead to precancerous lesions. Both the particles and lesions are difficult to detect in biopsies, especially in clinical settings that screen large numbers of patients. As diagnosis of early stages of disease can be lifesaving, there is growing interest in better understanding interactions between NPs and epithelium and developing rapid imaging techniques that could detect foreign particles and markers of inflammation in epithelial tissues. NPs can be labelled with fluorescence or radioactive isotopes, but it is challenging to detect unlabeled NPs with conventional imaging techniques. Different current imaging techniques such as synchrotron radiation X-ray fluorescence spectroscopy are discussed here. Improvements in imaging techniques, coupled with the use of machine learning tools, are needed before diagnosis of particles in biopsies by automated imaging could move usefully into the clinic.
Collapse
Affiliation(s)
| | - Leticia Ferreira Cabido
- Department of Oral and Maxillofacial Surgery, University of the Pacific, San Francisco, CA, USA
| | - Wei-Chun Chin
- Department of Bioengineering, University of California, Merced, CA, USA
| | - Ge Wang
- Department of Biomedical Engineering, Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, San Francisco, CA, USA
| | - Changqing Li
- Department of Bioengineering, University of California, Merced, CA, USA
| |
Collapse
|
8
|
Oxidative-Stress-Mediated ER Stress Is Involved in Regulating Manoalide-Induced Antiproliferation in Oral Cancer Cells. Int J Mol Sci 2023; 24:ijms24043987. [PMID: 36835397 PMCID: PMC9965613 DOI: 10.3390/ijms24043987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Manoalide provides preferential antiproliferation of oral cancer but is non-cytotoxic to normal cells by modulating reactive oxygen species (ROS) and apoptosis. Although ROS interplays with endoplasmic reticulum (ER) stress and apoptosis, the influence of ER stress on manoalide-triggered apoptosis has not been reported. The role of ER stress in manoalide-induced preferential antiproliferation and apoptosis was assessed in this study. Manoalide induces a higher ER expansion and aggresome accumulation of oral cancer than normal cells. Generally, manoalide differentially influences higher mRNA and protein expressions of ER-stress-associated genes (PERK, IRE1α, ATF6, and BIP) in oral cancer cells than in normal cells. Subsequently, the contribution of ER stress on manoalide-treated oral cancer cells was further examined. ER stress inducer, thapsigargin, enhances the manoalide-induced antiproliferation, caspase 3/7 activation, and autophagy of oral cancer cells rather than normal cells. Moreover, N-acetylcysteine, an ROS inhibitor, reverses the responses of ER stress, aggresome formation, and the antiproliferation of oral cancer cells. Consequently, the preferential ER stress of manoalide-treated oral cancer cells is crucial for its antiproliferative effect.
Collapse
|
9
|
McCourt KM, Cochran J, Abdelbasir SM, Carraway ER, Tzeng TRJ, Tsyusko OV, Vanegas DC. Potential Environmental and Health Implications from the Scaled-Up Production and Disposal of Nanomaterials Used in Biosensors. BIOSENSORS 2022; 12:1082. [PMID: 36551049 PMCID: PMC9775545 DOI: 10.3390/bios12121082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Biosensors often combine biological recognition elements with nanomaterials of varying compositions and dimensions to facilitate or enhance the operating mechanism of the device. While incorporating nanomaterials is beneficial to developing high-performance biosensors, at the stages of scale-up and disposal, it may lead to the unmanaged release of toxic nanomaterials. Here we attempt to foster connections between the domains of biosensors development and human and environmental toxicology to encourage a holistic approach to the development and scale-up of biosensors. We begin by exploring the toxicity of nanomaterials commonly used in biosensor design. From our analysis, we introduce five factors with a role in nanotoxicity that should be considered at the biosensor development stages to better manage toxicity. Finally, we contextualize the discussion by presenting the relevant stages and routes of exposure in the biosensor life cycle. Our review found little consensus on how the factors presented govern nanomaterial toxicity, especially in composite and alloyed nanomaterials. To bridge the current gap in understanding and mitigate the risks of uncontrolled nanomaterial release, we advocate for greater collaboration through a precautionary One Health approach to future development and a movement towards a circular approach to biosensor use and disposal.
Collapse
Affiliation(s)
- Kelli M McCourt
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lancing, MI 48824, USA
| | - Jarad Cochran
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Sabah M Abdelbasir
- Central Metallurgical Research and Development Institute, P.O. Box 87, Helwan 11421, Egypt
| | - Elizabeth R Carraway
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
| | - Tzuen-Rong J Tzeng
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Diana C Vanegas
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lancing, MI 48824, USA
- Interdisciplinary Group for Biotechnology Innovation and Ecosocial Change (BioNovo), Universidad del Valle, Cali 76001, Colombia
| |
Collapse
|
10
|
Cameron SJ, Sheng J, Hosseinian F, Willmore WG. Nanoparticle Effects on Stress Response Pathways and Nanoparticle-Protein Interactions. Int J Mol Sci 2022; 23:7962. [PMID: 35887304 PMCID: PMC9323783 DOI: 10.3390/ijms23147962] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are increasingly used in a wide variety of applications and products; however, NPs may affect stress response pathways and interact with proteins in biological systems. This review article will provide an overview of the beneficial and detrimental effects of NPs on stress response pathways with a focus on NP-protein interactions. Depending upon the particular NP, experimental model system, and dose and exposure conditions, the introduction of NPs may have either positive or negative effects. Cellular processes such as the development of oxidative stress, the initiation of the inflammatory response, mitochondrial function, detoxification, and alterations to signaling pathways are all affected by the introduction of NPs. In terms of tissue-specific effects, the local microenvironment can have a profound effect on whether an NP is beneficial or harmful to cells. Interactions of NPs with metal-binding proteins (zinc, copper, iron and calcium) affect both their structure and function. This review will provide insights into the current knowledge of protein-based nanotoxicology and closely examines the targets of specific NPs.
Collapse
Affiliation(s)
- Shana J. Cameron
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - Jessica Sheng
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Farah Hosseinian
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - William G. Willmore
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
11
|
Bekeschus S, Miebach L, Pommerening J, Clemen R, Witzke K. Biological Risk Assessment of Three Dental Composite Materials following Gas Plasma Exposure. Molecules 2022; 27:molecules27144519. [PMID: 35889393 PMCID: PMC9322037 DOI: 10.3390/molecules27144519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 02/06/2023] Open
Abstract
Gas plasma is an approved technology that generates a plethora of reactive oxygen species, which are actively applied for chronic wound healing. Its particular antimicrobial action has spurred interest in other medical fields, such as periodontitis in dentistry. Recent work has indicated the possibility of performing gas plasma-mediated biofilm removal on teeth. Teeth frequently contain restoration materials for filling cavities, e.g., resin-based composites. However, it is unknown if such materials are altered upon gas plasma exposure. To this end, we generated a new in-house workflow for three commonly used resin-based composites following gas plasma treatment and incubated the material with human HaCaT keratinocytes in vitro. Cytotoxicity was investigated by metabolic activity analysis, flow cytometry, and quantitative high-content fluorescence imaging. The inflammatory consequences were assessed using quantitative analysis of 13 different chemokines and cytokines in the culture supernatants. Hydrogen peroxide served as the control condition. A modest but significant cytotoxic effect was observed in the metabolic activity and viability after plasma treatment for all three composites. This was only partially treatment time-dependent and the composites alone affected the cells to some extent, as evident by differential secretion profiles of VEGF, for example. Gas plasma composite modification markedly elevated the secretion of IL6, IL8, IL18, and CCL2, with the latter showing the highest correlation with treatment time (Pearson’s r > 0.95). Cell culture media incubated with gas plasma-treated composite chips and added to cells thereafter could not replicate the effects, pointing to the potential that surface modifications elicited the findings. In conclusion, our data suggest that gas plasma treatment modifies composite material surfaces to a certain extent, leading to measurable but overall modest biological effects.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (L.M.); (J.P.); (R.C.)
- Correspondence: ; Tel.: +49-3834-554-3948
| | - Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (L.M.); (J.P.); (R.C.)
- Department of General, Vascular, Thoracic, and Visceral Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Jonas Pommerening
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (L.M.); (J.P.); (R.C.)
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany;
| | - Ramona Clemen
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; (L.M.); (J.P.); (R.C.)
| | - Katharina Witzke
- Department of Oral, Maxillofacial, and Plastic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany;
| |
Collapse
|
12
|
Yu TJ, Shiau JP, Tang JY, Yen CH, Hou MF, Cheng YB, Shu CW, Chang HW. Physapruin A Induces Reactive Oxygen Species to Trigger Cytoprotective Autophagy of Breast Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11071352. [PMID: 35883843 PMCID: PMC9311569 DOI: 10.3390/antiox11071352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Physalis peruviana-derived physapruin A (PHA) is a potent compound that selectively generates reactive oxygen species (ROS) and induces cancer cell death. Autophagy, a cellular self-clearance pathway, can be induced by ROS and plays a dual role in cancer cell death. However, the role of autophagy in PHA-treated cancer cells is not understood. Our study initially showed that autophagy inhibitors such as bafilomycin A1 enhanced the cytotoxic effects of PHA in breast cancer cell lines, including MCF7 and MDA-MB-231. PHA treatment decreased the p62 protein level and increased LC3-II flux. PHA increased the fluorescence intensity of DAPGreen and DALGreen, which are used to reflect the formation of autophagosome/autolysosome and autolysosome, respectively. ROS scavenger N-acetylcysteine (NAC) decreased PHA-elevated autophagy activity, implying that PHA-induced ROS may be required for autophagy induction in breast cancer cells. Moreover, the autophagy inhibitor increased ROS levels and enhanced PHA-elevated ROS levels, while NAC scavenges the produced ROS resulting from PHA and autophagy inhibitor. In addition, the autophagy inhibitor elevated the PHA-induced proportion of annexin V/7-aminoactinmycin D and cleavage of caspase-3/8/9 and poly (ADP-ribose) polymerase. In contrast, NAC and apoptosis inhibitor Z-VAD-FMK blocked the proportion of annexin V/7-aminoactinmycin D and the activation of caspases. Taken together, PHA induced ROS to promote autophagy, which might play an antioxidant and anti-apoptotic role in breast cancer cells.
Collapse
Affiliation(s)
- Tzu-Jung Yu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (T.-J.Y.); (C.-H.Y.)
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (J.-P.S.); (M.-F.H.)
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (T.-J.Y.); (C.-H.Y.)
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (J.-P.S.); (M.-F.H.)
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Correspondence: (C.-W.S.); (H.-W.C.); Tel.: +886-7-525-2000 (ext. 5828) (C.-W.S.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (C.-W.S.); (H.-W.C.); Tel.: +886-7-525-2000 (ext. 5828) (C.-W.S.); +886-7-312-1101 (ext. 2691) (H.-W.C.)
| |
Collapse
|
13
|
A turn-on fluorescent probe for palladium(II) detection with a large Stokes shift and lysosomes-targeting ability. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Zhao T, Wang X, Fu L, Yang K. Fusobacterium nucleatum: a new player in regulation of cancer development and therapeutic response. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:436-450. [PMID: 35800370 PMCID: PMC9255244 DOI: 10.20517/cdr.2021.144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 12/15/2022]
Abstract
A dysbiosis in microbial diversity or functionality can promote disease development. Emerging preclinical and clinical evidence emphasizes the interplay between microbiota and both disease evolution and the treatment response of different cancers. One bacterium that has garnered much attention in a few cancer microbiota studies is Fusobacterium nucleaum (Fn). To provide updated knowledge of the functional role of Fn in cancer prevention and management, this review summarizes the relationship among Fn, cancer, and chemoimmunotherapy response, with the potential mechanisms of action also intensively discussed, which will benefit the development of strategies to prevent or treat cancer via Fn-based therapeutic interventions.
Collapse
Affiliation(s)
- Tengda Zhao
- Department of Oral and Maxillofacial Surgery, Department of Health Management Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Xueping Wang
- Sun Yat-sen University Cancer center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Liwu Fu
- Sun Yat-sen University Cancer center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China
| | - Ke Yang
- Department of Oral and Maxillofacial Surgery, Department of Health Management Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| |
Collapse
|
15
|
Liu Q, Liu C, Cai S, He S, Zhao L, Zeng X, Gong J. A highly sensitive sensor for colorimetric detection of palladium(II) in lysosomes and its applications. Dalton Trans 2022; 51:3116-3121. [PMID: 35137740 DOI: 10.1039/d1dt03900h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Considering the scarcity of palladium ion probes with subcellular organelle targeting, especially probes with near-infrared (NIR) emission wavelength fluorophores, our group has been working to overcome this problem and looking forward to providing potential practical tools for exploring the toxicity of palladium ions at the subcellular level. In this paper, a novel colorimetric and NIR fluorescent probe, BHCy-Pd, for the specific detection of palladium ions (Pd2+) in lysosomes via an internal charge-transfer (ICT) mechanism was designed and synthesized. As expected, BHCy-Pd exhibited a rapid, selective, and sensitive response for palladium with an ultralow limit of detection at 5.9 nM, accompanied by a distinct color change from purple to blue. Furthermore, BHCy-Pd can be made into a simple test strip for rapid and easy detection of Pd2+ in practical applications. Importantly, BHCy-Pd is capable of specific distribution in lysosomes, and thus can detect Pd2+ in real-time, thereby providing a potential tool for studying the cytotoxicity of Pd2+ ions at the subcellular level.
Collapse
Affiliation(s)
- Qiuchen Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China. .,School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Chang Liu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China.
| | - Songtao Cai
- Center for Biomedical Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, P. R. China
| | - Song He
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China.
| | - Liancheng Zhao
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China. .,School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xianshun Zeng
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China. .,School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jin Gong
- School of Pharmacy, Weifang Medical University, Weifang, 261053, P. R. China. .,Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China.
| |
Collapse
|
16
|
Nandi D, Shivrayan M, Gao J, Krishna J, Das R, Liu B, Thanyumanavan S, Kulkarni A. Core Hydrophobicity of Supramolecular Nanoparticles Induces NLRP3 Inflammasome Activation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45300-45314. [PMID: 34543013 PMCID: PMC8761361 DOI: 10.1021/acsami.1c14082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Designer nanomaterials capable of delivering immunomodulators to specific immune cells have been extensively studied. However, emerging evidence suggests that several of these nanomaterials can nonspecifically activate NLRP3 inflammasomes, an intracellular multiprotein complex controlling various immune cell functions, leading to undesirable effects. To understand what nanoparticle attributes activate inflammasomes, we designed a multiparametric polymer supramolecular nanoparticle system to modulate various surface and core nanoparticle-associated molecular patterns (NAMPs), one at a time. We also investigated several underlying signaling pathways, including lysosomal rupture-cathepsin B maturation and calcium flux-mitochondrial ROS production, to gain mechanistic insights into NAMPs-mediated inflammasome activation. Here, we report that out of the four NAMPs tested, core hydrophobicity strongly activates and positively correlates with the NLRP3 assembly compared to surface charge, core rigidity, and surface hydrophobicity. Moreover, we demonstrate different signaling inclinations and kinetics followed by differential core hydrophobicity patterns with the most hydrophobic ones exhibiting both lysosomal rupture and calcium influx early on. Altogether, this study will help design the next generation of polymeric nanomaterials for specific regulation of inflammasome activation, aiding efficient immunotherapy and vaccine delivery.
Collapse
Affiliation(s)
- Dipika Nandi
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Manisha Shivrayan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Jingjing Gao
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Jithu Krishna
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Ritam Das
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Bin Liu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - S. Thanyumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts, 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts, 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
17
|
Niranjan R, Mishra KP, Tripathi SN, Thakur AK. Proliferation of Lung Epithelial Cells Is Regulated by the Mechanisms of Autophagy Upon Exposure of Soots. Front Cell Dev Biol 2021; 9:662597. [PMID: 34368122 PMCID: PMC8335634 DOI: 10.3389/fcell.2021.662597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Background Soots are known to cause many diseases in humans, but their underlying mechanisms of toxicity are still not known. Here, we report that soots induce cell proliferation of lung epithelial cells via modulating autophagy pathways. Results Fullerene soot and diesel exhaust particles (DEP) induced cell proliferation of lung epithelial, A549 cells via distinct autophagic mechanisms and did not cause cell death. Exposure of fullerene soot protected the cell death of A549 cells, caused by hydrogen peroxide, and inhibited LPS-induced autophagy. Fullerene soot co-localized with the autophagic proteins and inhibited starvation-induced autophagy (downregulated ATG-5, beclin-1, p62, and LC3 expressions) independent of its antioxidant properties. Similarly, it decreased the expression profile of autophagic genes and upregulated the proliferation-responsive gene, Ki-67, in mice. We observed that expressions of fullerene soot-responsive genes (Beclin-1, ATG-5, and p62) were reverted by Akt Inhibitor X, indicating an important role of the Akt pathway. At an elemental level, we found that elemental carbon of fullerene soot may be converted into organic carbon, as measured by OCEC, which may point fullerene soot as a source of carbon. On the other hand, DEP upregulated the expressions of autophagy genes. Akt Inhibitor X did not attenuate DEP-induced cell proliferation and autophagic response. However, an autophagic inhibitor, chloroquine, and significantly inhibited DEP-induced cell proliferation. Conclusion It can be said that distinct autophagic mechanisms are operational in cell proliferation of lung epithelial cells due to soots, which may be responsible for different diseases. Understanding the mechanism of these pathways provides some important targets, which can be utilized for the development of future therapeutics.
Collapse
Affiliation(s)
- Rituraj Niranjan
- Laboratory 6, Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, India.,Talent Search Scientist (TSS-ICMR), currently at, Immunology Laboratory, ICMR-Vector Control Research Centre, Puducherry, India
| | - Kaushal Prasad Mishra
- Laboratory 6, Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, India
| | - Sachchida Nand Tripathi
- Department of Civil Engineering, Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Ashwani Kumar Thakur
- Laboratory 6, Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, India
| |
Collapse
|
18
|
The Role of Melatonin on NLRP3 Inflammasome Activation in Diseases. Antioxidants (Basel) 2021; 10:antiox10071020. [PMID: 34202842 PMCID: PMC8300798 DOI: 10.3390/antiox10071020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
NLRP3 inflammasome is a part of the innate immune system and responsible for the rapid identification and eradication of pathogenic microbes, metabolic stress products, reactive oxygen species, and other exogenous agents. NLRP3 inflammasome is overactivated in several neurodegenerative, cardiac, pulmonary, and metabolic diseases. Therefore, suppression of inflammasome activation is of utmost clinical importance. Melatonin is a ubiquitous hormone mainly produced in the pineal gland with circadian rhythm regulatory, antioxidant, and immunomodulatory functions. Melatonin is a natural product and safer than most chemicals to use for medicinal purposes. Many in vitro and in vivo studies have proved that melatonin alleviates NLRP3 inflammasome activity via various intracellular signaling pathways. In this review, the effect of melatonin on the NLRP3 inflammasome in the context of diseases will be discussed.
Collapse
|
19
|
Zare EN, Zheng X, Makvandi P, Gheybi H, Sartorius R, Yiu CKY, Adeli M, Wu A, Zarrabi A, Varma RS, Tay FR. Nonspherical Metal-Based Nanoarchitectures: Synthesis and Impact of Size, Shape, and Composition on Their Biological Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007073. [PMID: 33710754 DOI: 10.1002/smll.202007073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Metal-based nanoentities, apart from being indispensable research tools, have found extensive use in the industrial and biomedical arena. Because their biological impacts are governed by factors such as size, shape, and composition, such issues must be taken into account when these materials are incorporated into multi-component ensembles for clinical applications. The size and shape (rods, wires, sheets, tubes, and cages) of metallic nanostructures influence cell viability by virtue of their varied geometry and physicochemical interactions with mammalian cell membranes. The anisotropic properties of nonspherical metal-based nanoarchitectures render them exciting candidates for biomedical applications. Here, the size-, shape-, and composition-dependent properties of nonspherical metal-based nanoarchitectures are reviewed in the context of their potential applications in cancer diagnostics and therapeutics, as well as, in regenerative medicine. Strategies for the synthesis of nonspherical metal-based nanoarchitectures and their cytotoxicity and immunological profiles are also comprehensively appraised.
Collapse
Affiliation(s)
| | - Xuanqi Zheng
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Homa Gheybi
- Institute of Polymeric Materials and Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, 53318-17634, Iran
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples, 80131, Italy
| | - Cynthia K Y Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong SAR, China
| | - Mohsen Adeli
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, 68151-44316, Iran
| | - Aimin Wu
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, 34956, Turkey
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Franklin R Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
20
|
Fernandez CC, Sokolonski AR, Fonseca MS, Stanisic D, Araújo DB, Azevedo V, Portela RD, Tasic L. Applications of Silver Nanoparticles in Dentistry: Advances and Technological Innovation. Int J Mol Sci 2021; 22:2485. [PMID: 33801230 PMCID: PMC7957900 DOI: 10.3390/ijms22052485] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 12/13/2022] Open
Abstract
Silver nanoparticles (AgNPs) have been successfully applied in several areas due to their significant antimicrobial activity against several microorganisms. In dentistry, AgNP can be applied in disinfection, prophylaxis, and prevention of infections in the oral cavity. In this work, the use of silver nanoparticles in dentistry and associated technological innovations was analyzed. The scientific literature was searched using PubMed and Scopus databases with descriptors related to the use of silver nanoparticles in dentistry, resulting in 90 open-access articles. The search for patents was restricted to the A61K code (International Patent Classification), using the same descriptors, resulting in 206 patents. The results found were ordered by dental specialties and demonstrated the incorporation of AgNPs in different areas of dentistry. In this context, the search for patents reaffirmed the growth of this technology and the dominance of the USA pharmaceutical industry over AgNPs product development. It could be concluded that nanotechnology is a promising area in dentistry with several applications.
Collapse
Affiliation(s)
- Clara Couto Fernandez
- Laboratory of Immunology and Molecular Biology, Health Sciences Institute, Federal University of Bahia, Salvador, BA 40140-100, Brazil; (C.C.F.); (M.S.F.)
| | - Ana Rita Sokolonski
- Laboratory of Oral Biochemistry, Health Sciences Institute, Federal University of Bahia, Salvador, BA 40140-100, Brazil; (A.R.S.); (D.B.A.)
| | - Maísa Santos Fonseca
- Laboratory of Immunology and Molecular Biology, Health Sciences Institute, Federal University of Bahia, Salvador, BA 40140-100, Brazil; (C.C.F.); (M.S.F.)
| | - Danijela Stanisic
- Laboratory of Chemical Biology, Institute of Chemistry, State University of Campinas, Campinas, SP 13083-970, Brazil; (D.S.); (L.T.)
| | - Danilo Barral Araújo
- Laboratory of Oral Biochemistry, Health Sciences Institute, Federal University of Bahia, Salvador, BA 40140-100, Brazil; (A.R.S.); (D.B.A.)
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil;
| | - Ricardo Dias Portela
- Laboratory of Immunology and Molecular Biology, Health Sciences Institute, Federal University of Bahia, Salvador, BA 40140-100, Brazil; (C.C.F.); (M.S.F.)
| | - Ljubica Tasic
- Laboratory of Chemical Biology, Institute of Chemistry, State University of Campinas, Campinas, SP 13083-970, Brazil; (D.S.); (L.T.)
| |
Collapse
|
21
|
Fujiwara N, Kitamura N, Yoshida K, Yamamoto T, Ozaki K, Kudo Y. Involvement of Fusobacterium Species in Oral Cancer Progression: A Literature Review Including Other Types of Cancer. Int J Mol Sci 2020; 21:ijms21176207. [PMID: 32867334 PMCID: PMC7504605 DOI: 10.3390/ijms21176207] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation caused by infections has been suggested to be one of the most important cause of cancers. It has recently been shown that there is correlation between intestinal bacteria and cancer development including metastasis. As over 700 bacterial species exist in an oral cavity, it has been concerning that bacterial infection may cause oral cancer. However, the role of bacteria regarding tumorigenesis of oral cancer remains unclear. Several papers have shown that Fusobacterium species deriving the oral cavities, especially, play a crucial role for the development of colorectal and esophageal cancer. F. nucleatum is a well-known oral bacterium involved in formation of typical dental plaque on human teeth and causing periodontal diseases. The greatest characteristic of F. nucleatum is its ability to adhere to various bacteria and host cells. Interestingly, F. nucleatum is frequently detected in oral cancer tissues. Moreover, detection of F. nucleatum is correlated with the clinical stage of oral cancer. Although the detailed mechanism is still unclear, Fusobacterium species have been suggested to be associated with cell adhesion, tumorigenesis, epithelial-to-mesenchymal transition, inflammasomes, cell cycle, etc. in oral cancer. In this review, we introduce the reports focused on the association of Fusobacterium species with cancer development and progression including oral, esophageal, and colon cancers.
Collapse
Affiliation(s)
- Natsumi Fujiwara
- Department of Oral Health Care Promotion, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan; (N.F.); (K.O.)
- Department of Oral Biology & Diagnostic Sciences, The Dental College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Naoya Kitamura
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku 783-8505, Japan; (N.K.); (T.Y.)
| | - Kaya Yoshida
- Department of Oral Health Care Education, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan;
| | - Tetsuya Yamamoto
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku 783-8505, Japan; (N.K.); (T.Y.)
| | - Kazumi Ozaki
- Department of Oral Health Care Promotion, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan; (N.F.); (K.O.)
| | - Yasusei Kudo
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
- Correspondence: ; Tel.: +81-88-633-7325
| |
Collapse
|
22
|
Casein nanoparticles as oral delivery carriers of mequindox for the improved bioavailability. Colloids Surf B Biointerfaces 2020; 195:111221. [PMID: 32652401 DOI: 10.1016/j.colsurfb.2020.111221] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 11/22/2022]
Abstract
Mequindox (Meq) is a promising broad-spectrum antibacterial agent, but the clinical application of Meq has been hampered by its low oral bioavailability. Casein (Cas) can bind to a variety of poorly water-soluble drugs to improve their water solubility through a micellar solubilization mechanism. Here, a low-cost and convenient method was introduced to prepare mequindox-loaded casein nanoparticles (Meq-Cas). Meq-Cas was characterized by several methods including differential scanning calorimetry (DSC), X-ray diffraction (XRD), and fourier transform infrared (FTIR) to illuminate the mutual effect between the drug and carriers. Meq-Cas presented nearly spherical nanoparticles with smooth surfaces and its mean particle size was lower than untreated Cas. Meq-Cas showed a nearly complete release of Meq, which displayed a biphasic drug release pattern in both phosphate-buffered solution (PBS) and simulated gastric fluid (SGF). The relative oral bioavailability of Meq-Cas was found to be about 1.20 times higher than that of the animals treated with Meq suspension (control). These results suggest that Cas is a good candidate to load in Meq for pharmaceutical purposes.
Collapse
|