1
|
Joshi P, Nascimento HSD, Kang SY, Lee M, Vanga MG, Lee SH, Ku B, Miranda MDS, Lee MY. Dynamic Culture of Bioprinted Liver Tumor Spheroids in a Pillar/Perfusion Plate for Predictive Screening of Anticancer Drugs. Biotechnol Bioeng 2025; 122:995-1009. [PMID: 39821523 DOI: 10.1002/bit.28924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/13/2024] [Accepted: 01/02/2025] [Indexed: 01/19/2025]
Abstract
Recent advancements in three-dimensional (3D) cell culture technologies, such as cell spheroids, organoids, and 3D bioprinted tissue constructs, have significantly improved the physiological relevance of in vitro models. These models better mimic tissue structure and function, closely emulating in vivo characteristics and enhancing phenotypic analysis, critical for basic research and drug screening in personalized cancer therapy. Despite their potential, current 3D cell culture platforms face technical challenges, which include user-unfriendliness in long-term dynamic cell culture, incompatibility with rapid cell encapsulation in biomimetic hydrogels, and low throughput for compound screening. To address these issues, we developed a 144-pillar plate with sidewalls and slits (144PillarPlate) and a complementary 144-perfusion plate with perfusion wells and reservoirs (144PerfusionPlate) for dynamic 3D cell culture and predictive compound screening. To accelerate biomimetic tissue formation, small Hep3B liver tumor spheroids suspended in alginate were printed and encapsulated on the 144PillarPlate rapidly by using microsolenoid valve-driven 3D bioprinting technology. The microarray bioprinting technology enabled precise and rapid loading of small spheroids in alginate on the pillar plate, facilitating reproducible and scalable formation of large tumor spheroids with minimal manual intervention. The bioprinted Hep3B spheroids on the 144PillarPlate were dynamically cultured in the 144PerfusionPlate and tested with anticancer drugs to measure drug effectiveness and determine the concentration required to inhibit 50% of the cell viability (IC50 value). The perfusion plate enabled the convenient dynamic culture of tumor spheroids and facilitated the dynamic testing of anticancer drugs with increased sensitivity. It is envisioned that the integration of microarray bioprinting of tumor spheroids onto the pillar plate, along with dynamic 3D cell culture in the perfusion plate, could more accurately replicate tumor microenvironments. This advancement has the potential to enhance the predictive drug screening process in personalized cancer therapy significantly.
Collapse
Affiliation(s)
- Pranav Joshi
- Bioprinting Laboratories Inc., Dallas, Texas, USA
| | - Hamilton Silva do Nascimento
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
- Institute of Veterinary Medicine, Federal University of Para, Castanhal, Brazil
| | - Soo-Yeon Kang
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Minseong Lee
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | | | | | - Bosung Ku
- MBD Co. Ltd., Suwon, Republic of Korea
| | | | - Moo-Yeal Lee
- Bioprinting Laboratories Inc., Dallas, Texas, USA
- Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| |
Collapse
|
2
|
Joshi P, Kang SY, Acharya P, Vanga MG, Lee MY. High-Throughput Assessment of Metabolism-Mediated Neurotoxicity by Co-Culture of Neurospheres and Liver Spheroids. Curr Protoc 2024; 4:e70023. [PMID: 39373184 PMCID: PMC11460526 DOI: 10.1002/cpz1.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The liver's role in the biotransformation of chemicals is critical for both augmented toxicity and detoxification. However, there has been a significant lack of effort to integrate biotransformation into in vitro neurotoxicity testing. Traditional in vitro neurotoxicity testing systems are unable to assess the qualitative and quantitative differences between parent chemicals and their metabolites as they would occur in the human body. As a result, traditional in vitro toxicity screening systems cannot incorporate hepatic biotransformation to predict the neurotoxic potential of chemical metabolites. To bridge this gap, a high-throughput, metabolism-mediated neurotoxicity testing system has been developed, which combines metabolically competent HepaRG cell spheroids with a three-dimensional (3D) culture of ReNcell VM human neural progenitor cell line. The article outlines protocols for generating HepaRG cell spheroids using an ultralow attachment (ULA) 384-well plate and for cultivating ReNcell VM in 3D on a 384-pillar plate with sidewalls and slits (384PillarPlate). Metabolically sensitive test compounds are introduced into the ULA 384-well plate containing HepaRG spheroids and then tested with 3D-cultured ReNcell VM on the 384PillarPlate. This configuration permits the in situ generation of metabolites by HepaRG cells and their subsequent testing on neurospheres. By analyzing cell viability data, researchers can determine the IC50 values for each compound, thus evaluating metabolism-mediated neurotoxicity. © 2024 Wiley Periodicals LLC. Basic Protocol 1: HepaRG spheroid culture in an ultralow attachment (ULA) 384-well plate and the assessment of drug-metabolizing enzyme (DME) activities Basic Protocol 2: 3D neural stem cell (NSC) culture on a 384PillarPlate and compound treatment for the assessment of metabolism-mediated neurotoxicity Basic Protocol 3: Image acquisition, processing, and data analysis.
Collapse
Affiliation(s)
- Pranav Joshi
- Bioprinting Laboratories Inc., Dallas, TX 75234, USA
| | - Soo-Yeon Kang
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207-7102, USA
| | - Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207-7102, USA
| | | | - Moo-Yeal Lee
- Bioprinting Laboratories Inc., Dallas, TX 75234, USA
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207-7102, USA
| |
Collapse
|
3
|
Ryoo H, Kimmel H, Rondo E, Underhill GH. Advances in high throughput cell culture technologies for therapeutic screening and biological discovery applications. Bioeng Transl Med 2024; 9:e10627. [PMID: 38818120 PMCID: PMC11135158 DOI: 10.1002/btm2.10627] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 06/01/2024] Open
Abstract
Cellular phenotypes and functional responses are modulated by the signals present in their microenvironment, including extracellular matrix (ECM) proteins, tissue mechanical properties, soluble signals and nutrients, and cell-cell interactions. To better recapitulate and analyze these complex signals within the framework of more physiologically relevant culture models, high throughput culture platforms can be transformative. High throughput methodologies enable scientists to extract increasingly robust and broad datasets from individual experiments, screen large numbers of conditions for potential hits, better qualify and predict responses for preclinical applications, and reduce reliance on animal studies. High throughput cell culture systems require uniformity, assay miniaturization, specific target identification, and process simplification. In this review, we detail the various techniques that researchers have used to face these challenges and explore cellular responses in a high throughput manner. We highlight several common approaches including two-dimensional multiwell microplates, microarrays, and microfluidic cell culture systems as well as unencapsulated and encapsulated three-dimensional high throughput cell culture systems, featuring multiwell microplates, micromolds, microwells, microarrays, granular hydrogels, and cell-encapsulated microgels. We also discuss current applications of these high throughput technologies, namely stem cell sourcing, drug discovery and predictive toxicology, and personalized medicine, along with emerging opportunities and future impact areas.
Collapse
Affiliation(s)
- Hyeon Ryoo
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Hannah Kimmel
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Evi Rondo
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Gregory H. Underhill
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
4
|
Joshi P, Kang SY, Acharya P, Sidhpura D, Lee MY. High-throughput assessment of metabolism-mediated neurotoxicity by combining 3D-cultured neural stem cells and liver cell spheroids. Toxicol In Vitro 2023; 93:105688. [PMID: 37660999 DOI: 10.1016/j.tiv.2023.105688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/13/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Despite the fact that biotransformation in the liver plays an important role in the augmented toxicity and detoxification of chemicals, relatively little efforts have been made to incorporate biotransformation into in vitro neurotoxicity testing. Conventional in vitro systems for neurotoxicity tests lack the capability of investigating the qualitative and quantitative differences between parent chemicals and their metabolites in the human body. Therefore, there is a need for an in vitro toxicity screening system that can incorporate hepatic biotransformation of chemicals and predict the susceptibility of their metabolites to induce neurotoxicity. To address this need, we adopted 3D cultures of metabolically competent HepaRG cell line with ReNcell VM and established a high-throughput, metabolism-mediated neurotoxicity testing system. Briefly, spheroids of HepaRG cells were generated in an ultralow attachment (ULA) 384-well plate while 3D-cultured ReNcell VM was established on a 384-pillar plate with sidewalls and slits (384PillarPlate). Metabolically sensitive test compounds were added in the ULA 384-well plate with HepaRG spheroids and coupled with 3D-cultured ReNcell VM on the 384PillarPlate, which allowed us to generate metabolites in situ by HepaRG cells and test them against neural stem cells. We envision that this approach could be potentially adopted in pharmaceutical and chemical industries when high-throughput screening (HTS) is necessary to assess neurotoxicity of compounds and their metabolites.
Collapse
Affiliation(s)
- Pranav Joshi
- Bioprinting Laboratories Inc., 12200 Ford Road, Dallas, TX 75234, United States of America
| | - Soo-Yeon Kang
- Department of Biomedical Engineering, University of North Texas, 3940 North Elm Street, Denton, TX 76207, United States of America
| | - Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, 3940 North Elm Street, Denton, TX 76207, United States of America
| | - Darshita Sidhpura
- Department of Biomedical Engineering, University of North Texas, 3940 North Elm Street, Denton, TX 76207, United States of America
| | - Moo-Yeal Lee
- Bioprinting Laboratories Inc., 12200 Ford Road, Dallas, TX 75234, United States of America; Department of Biomedical Engineering, University of North Texas, 3940 North Elm Street, Denton, TX 76207, United States of America.
| |
Collapse
|
5
|
Das P, Roy A, Nandi A, Neogi I, Diskin-Posner Y, Marks V, Pinkas I, Amer S, Kozuch S, Firer M, Montag M, Grynszpan F. Thioxobimanes. J Org Chem 2023; 88:13475-13489. [PMID: 37712568 PMCID: PMC10563133 DOI: 10.1021/acs.joc.3c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 09/16/2023]
Abstract
Dioxobimanes, colloquially known as bimanes, are a well-established family of N-heterobicyclic compounds that share a characteristic core structure, 1,5-diazabicyclo[3.3.0]octadienedione, bearing two endocyclic carbonyl groups. By sequentially thionating these carbonyls in the syn and anti isomers of the known (Me,Me)dioxobimane, we were able to synthesize a series of thioxobimanes, representing the first heavy-chalcogenide bimane variants. These new compounds were extensively characterized spectroscopically and crystallographically, and their aromaticity was probed computationally. Their potential role as ligands for transition metals was demonstrated by synthesizing a representative gold(I)-thioxobimane complex.
Collapse
Affiliation(s)
- Partha
Jyoti Das
- Department
of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | - Ankana Roy
- Department
of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | - Ashim Nandi
- Department
of Chemistry, Ben-Gurion University, Beer Sheva 841051, Israel
| | - Ishita Neogi
- Department
of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | - Yael Diskin-Posner
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Vered Marks
- Department
of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | - Iddo Pinkas
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Sara Amer
- Department
of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | - Sebastian Kozuch
- Department
of Chemistry, Ben-Gurion University, Beer Sheva 841051, Israel
| | - Michael Firer
- Department
of Chemical Engineering and Biotechnology, Ariel University, Ariel 40700, Israel
| | - Michael Montag
- Department
of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | - Flavio Grynszpan
- Department
of Chemical Sciences, Ariel University, Ariel 40700, Israel
| |
Collapse
|
6
|
Jun HR, Kang HJ, Ju SH, Kim JE, Jeon SY, Ku B, Lee JJ, Kim M, Kim MJ, Choi JJ, Noh JJ, Kim HS, Lee JW, Lee JK, Lee DW. High-throughput organo-on-pillar (high-TOP) array system for three-dimensional ex vivo drug testing. Biomaterials 2023; 296:122087. [PMID: 36924663 DOI: 10.1016/j.biomaterials.2023.122087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/05/2023] [Indexed: 03/09/2023]
Abstract
The development of organoid culture technologies has triggered industrial interest in ex vivo drug test-guided clinical response prediction for precision cancer therapy. The three-dimensional culture encapsulated with basement membrane (BM) components is extremely important in establishing ex vivo organoids and drug sensitivity tests because the BM components confer essential structures resembling tumor histopathology. Although numerous studies have demonstrated three-dimensional culture-based drug screening methods, establishing a large-scale drug-screening platform with matrix-encapsulated tumor cells is challenging because the arrangement of microspots of a matrix-cell droplet onto each well of a microwell plate is inconsistent and difficult to standardize. In addition, relatively low scales and lack of reproducibility discourage the application of three-dimensional organoid-based drug screening data for precision treatment or drug discovery. To overcome these limitations, we manufactured an automated organospotter-integrated high-throughput organo-on-pillar (high-TOP) drug-screening platform. Our system is compatible with various extracellular matrices, including BM extract, Matrigel, collagen, and hydrogel. In addition, it can be readily utilized for high-content analyses by simply exchanging the bottom plates without disrupting the domes. Our system demonstrated considerable robustness, consistency, reproducibility, and biological relevancy in three-dimensional drug sensitivity analyses using Matrigel-encapsulated ovarian cancer cell lines. We also demonstrated proof-of-concept cases representing the clinical feasibility of high-TOP-assisted ex vivo drug tests linked to clinical chemo-response in ovarian cancer patients. In conclusion, our platform provides an automated and standardized method for ex vivo drug-sensitivity-guided clinical response prediction, suggesting effective chemotherapy regimens for patients with cancer.
Collapse
Affiliation(s)
- Hye Ryeong Jun
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd. Suwon, South Korea
| | - Hyun Ju Kang
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Sung Hun Ju
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd. Suwon, South Korea
| | - Jung Eun Kim
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd. Suwon, South Korea
| | - Sang Youl Jeon
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd. Suwon, South Korea
| | - Bosung Ku
- Central R & D Center, Medical & Bio Decision (MBD) Co., Ltd. Suwon, South Korea
| | - Jae Jun Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Minsung Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Min Jeong Kim
- Department of Obstetrics and Gynecology, Gynecologic Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jung-Joo Choi
- Department of Obstetrics and Gynecology, Gynecologic Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Joseph J Noh
- Department of Obstetrics and Gynecology, Gynecologic Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyun-Soo Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Gynecologic Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Jin-Ku Lee
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, South Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea; Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, South Korea.
| | - Dong Woo Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, South Korea.
| |
Collapse
|
7
|
Joshi P, Patel R, Kang SY, Serbinowski E, Lee MY. Establishment of ion channel and ABC transporter assays in 3D-cultured ReNcell VM on a 384-pillar plate for neurotoxicity potential. Toxicol In Vitro 2022; 82:105375. [PMID: 35550413 DOI: 10.1016/j.tiv.2022.105375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/05/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
Neurotoxicity potential of compounds by inhibition of ion channels and efflux transporters has been studied traditionally using two-dimensionally (2D) cultured cell lines such as CHO and HEK-293 overexpressing the protein of interest. However, these approaches are time consuming and do not recapitulate the activity of ion channels and efflux transporters indigenously expressed in neural stem cells (NSCs) in vivo. To overcome these issues, we established ion channel and transporter assays on a 384-pillar plate with three-dimensionally (3D) cultured ReNcell VM and demonstrated high-throughput measurement of ion channel and transporter activity. RNA sequencing analysis identified major ion channels and efflux transporters expressed in ReNcell VM, followed by validating 3D ReNcell-based ion channel and transporter assays with model compounds. Major ion channel activities were measured by specifically inhibiting potassium channels Kv 7.2 with XE-991 and Kv 4.3 with fluoxetine, and a calcium channel with 2-APB. Activities of major efflux transporters, MDR1, MRP1, and BCRP, were assessed using their respective blockers, verapamil, probenecid, and novobiocin. From this study, we demonstrated that 3D-cultured ReNcell VM on the 384-pillar plate could be a good alternative to rapidly identify environmental chemicals and therapeutic compounds for their role in modulating the activity of ion channels and efflux transporters, potentially leading to neurotoxicity.
Collapse
Affiliation(s)
- Pranav Joshi
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Bioprinting Laboratories Inc, Denton, TX, USA
| | - Rushabh Patel
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Soo-Yeon Kang
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Emily Serbinowski
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Moo-Yeal Lee
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Department of Biomedical Engineering, University of North Texas, Denton, TX, USA.
| |
Collapse
|
8
|
De Simone U, Croce AC, Pignatti P, Buscaglia E, Caloni F, Coccini T. Three dimensional spheroid cell culture of human MSC‐derived neuron‐like cells: new in vitro model to assess magnetite nanoparticle‐induced neurotoxicity effects. J Appl Toxicol 2022; 42:1230-1252. [DOI: 10.1002/jat.4292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre ‐ National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia Italy
| | - Anna Cleta Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR) Pavia Italy
- Department of Biology & Biotechnology University of Pavia Pavia Italy
| | - Patrizia Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia Italy
| | - Eleonora Buscaglia
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre ‐ National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia Italy
| | - Francesca Caloni
- Department of Health, Animal Science and Food Safety Universitá degli Studi di Milano Milan Italy
| | - Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre ‐ National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS Pavia Italy
| |
Collapse
|
9
|
Shrestha S, Lekkala VKR, Acharya P, Siddhpura D, Lee MY. Recent advances in microarray 3D bioprinting for high-throughput spheroid and tissue culture and analysis. Essays Biochem 2021; 65:481-489. [PMID: 34296737 PMCID: PMC9270997 DOI: 10.1042/ebc20200150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/26/2022]
Abstract
Three-dimensional (3D) cell culture in vitro has proven to be more physiologically relevant than two-dimensional (2D) culture of cell monolayers, thus more predictive in assessing efficacy and toxicity of compounds. There have been several 3D cell culture techniques developed, which include spheroid and multicellular tissue cultures. Cell spheroids have been generated from single or multiple cell types cultured in ultralow attachment (ULA) well plates and hanging droplet plates. In general, cell spheroids are formed in a relatively short period of culture, in the absence of extracellular matrices (ECMs), via gravity-driven self-aggregation, thus having limited ability to self-organization in layered structure. On the other hand, multicellular tissue cultures including miniature tissues derived from pluripotent stem cells and adult stem cells (a.k.a. 'organoids') and 3D bioprinted tissue constructs require biomimetic hydrogels or ECMs and show highly ordered structure due to spontaneous self-organization of cells during differentiation and maturation processes. In this short review article, we summarize traditional methods of spheroid and multicellular tissue cultures as well as their technical challenges, and introduce how droplet-based, miniature 3D bioprinting ('microarray 3D bioprinting') can be used to improve assay throughput and reproducibility for high-throughput, predictive screening of compounds. Several platforms including a micropillar chip and a 384-pillar plate developed to facilitate miniature spheroid and tissue cultures via microarray 3D bioprinting are introduced. We excluded microphysiological systems (MPSs) in this article although they are important tissue models to simulate multiorgan interactions.
Collapse
Affiliation(s)
- Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States
| | - Vinod Kumar Reddy Lekkala
- Department of Biomedical Engineering, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States
| | - Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States
| | - Darshita Siddhpura
- Department of Chemical and Biomedical Engineering, Cleveland State University, 2121 Euclid Ave, Cleveland, Ohio 44115, United States
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States
| |
Collapse
|
10
|
Kang SY, Joshi P, Lee MY. High-Throughput Screening of Compound Neurotoxicity Using 3D-Cultured Neural Stem Cells on a 384-Pillar Plate. Curr Protoc 2021; 1:e107. [PMID: 33887124 DOI: 10.1002/cpz1.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Assessing the neurotoxicity of test chemicals has typically been performed using two-dimensionally (2D)-cultured neuronal cell monolayers and animal models. The in vitro 2D cell models are simple and straightforward compared to animal models, which have the disadvantage of being relatively low throughput, expensive, and time consuming. Despite their extensive use in this area of neurotoxicology research, both models often do not accurately recapitulate human outcomes. To bridge this gap and attempt to better replicate what happens in vivo, three-dimensionally (3D) cultured neural stem cells (NSCs) encapsulated in hydrogels on a 384-pillar plate have been developed via miniature 3D bioprinting. This technology allows users to print NSCs on a pillar plate for rapid 3D cell culture as well as high-throughput compound screening. For this, the 384-pillar plate with bioprinted NSCs is sandwiched with a standard 384-well plate with growth medium for 3D culture, allowing researchers to expose the cells to test compounds and stain them with various fluorescent dyes for a suite of high-content imaging assays, including assays for DNA damage, mitochondrial impairment, cell membrane integrity, intracellular glutathione levels, and apoptosis. After acquiring cell images from an automated fluorescence microscope and extracting fluorescence intensities, researchers can obtain the IC50 value of each compound to evaluate critical parameters in neurotoxicity. Here, we provide a detailed description of protocols for cell printing on a 384-pillar plate, 3D NSC culture, compound testing, 3D cell staining, and image acquisition and analysis, which altogether will allow researchers to investigate mechanisms of compound neurotoxicity with 3D-cultured NSCs in a high-throughput manner. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Three-dimensional neural stem cell culture on a 384-pillar plate Basic Protocol 2: Compound treatment and cell staining Basic Protocol 3: Image acquisition, processing, and data analysis.
Collapse
Affiliation(s)
- Soo-Yeon Kang
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio
| | - Pranav Joshi
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio
| | - Moo-Yeal Lee
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio
| |
Collapse
|