1
|
Berríos-Rolón PJ, Cotto MC, Márquez F. Polycyclic Aromatic Hydrocarbons (PAHs) in Freshwater Systems: A Comprehensive Review of Sources, Distribution, and Ecotoxicological Impacts. TOXICS 2025; 13:321. [PMID: 40278637 PMCID: PMC12031217 DOI: 10.3390/toxics13040321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/06/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
This comprehensive review offers new perspectives on the distribution, sources, and ecotoxicological impacts of polycyclic aromatic hydrocarbons (PAHs) in freshwater systems. Unlike previous reviews, this work integrates recent findings on PAH dynamics within environmental matrices and emphasizes spatiotemporal variability across geographic regions. It critically examines both anthropogenic and natural sources, as well as the physical, chemical, and biological mechanisms driving PAH transport and fate. Special attention is given to the ecotoxicological effects of PAHs on freshwater organisms, including bioaccumulation, endocrine disruption, and genotoxicity. Notably, this review identifies key knowledge gaps and proposes an interdisciplinary framework to assess ecological risk and guide effective monitoring and management strategies for the protection of freshwater ecosystems.
Collapse
Affiliation(s)
| | - María C. Cotto
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Division of Natural Sciences, Technology and Environment, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA;
| | - Francisco Márquez
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Division of Natural Sciences, Technology and Environment, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA;
| |
Collapse
|
2
|
Liu J, Chen Y, Pu H, Chen X, Yang W, Ouyang Z, Pang Q, Fan R. A new mechanism involved in cardiovascular senescence induced by environmentally relevant dose of 16 priority-controlled PAHs. ENVIRONMENT INTERNATIONAL 2025; 197:109326. [PMID: 39970779 DOI: 10.1016/j.envint.2025.109326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/06/2025] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are closely related to the occurrence of cardiovascular diseases, nevertheless the toxicological mechanism remains ambiguous. To verify whether PAHs exposure leads to cardiovascular senescence, 8-week-old male sprague-dawley rats and primary human umbilical vein endothelial cells were exposed to different concentrations of 16 priority-controlled PAHs for 90 d and 48 h respectively. In in vitro study, PAHs exposure promoted aryl hydrocarbon receptor (AhR) activation, and then directly or indirectly inhibited SIRT6 expression leading to telomere dysfunction, which further caused DNA damage and subsequently promoted endothelial cells senescence. But the treatment of CH-223191 (an AhR inhibitor) rescued the aging phenotypes induced by PAHs, suggesting that AhR plays an important role in PAHs-induced endothelial cells senescence. In in vivo study, PAHs exposure raised AhR expression, affected SIRT6-related aging signaling pathway, and induced myocardial and vascular remodeling in rats. Molecular dynamics simulations demonstrated that, in addition to benzo[a]pyrene-7,8-diol-9,10-epoxide (the mediate metabolite of benzo[a]pyrene), typical parent PAHs (phenanthrene, benzo[a]pyrene) can directly bind to known DNA strand binding sites of SIRT6 through hydrophobic force, which was further validated by electrophoretic mobility shift assay. All above indicates for the first time that in addition to classical AhR dependent pathway, parent PAHs may affect DNA damage response and telomere maintenance function of SIRT6, which is a new mechanism of PAHs induced cardiovascular senescence.
Collapse
Affiliation(s)
- Jian Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Yuxin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hao Pu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaolin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wucheng Yang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zedong Ouyang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
3
|
Yu J, Sun J, Ma Y, Niu X, Zhu R, Song H, Liu L, Luo Y, Xia S, Wang J, Li L, Wen S, Li W, Niu X. Multi-organ toxicity caused by PM 2.5 in mice with cardiovascular diseases: The role of PAHs played from the most polluted episodes in China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124330. [PMID: 39904247 DOI: 10.1016/j.jenvman.2025.124330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
PAHs pollutants, as the key toxic components in PM2.5, have been proved to be closely related to the morbidity and mortality of people with cardiovascular diseases, however, their effects on organs and tissues other than cardiovascular/lung systems have not been deeply discussed. Here we collected PM2.5 samples from 2017 to 2020 in Xi'an, the city with one of the highest PM2.5 level in China, investigated the effects of PM2.5-bound PAHs on lung, spleen, liver and kidney by using the ApoE-/- mice model with high-fat diet. Firstly, six key toxic components in PAHs were screened to determine their relative importance in pollutants. The results showed that PAHs had the most significant toxicity in lung, followed by liver, kidney and spleen. In addition, PAHs activated systemic inflammation by enhancing the production of IL-6, particularly through strong protein interactions, mainly via van der Waals forces. This process exacerbated cardiovascular damage and led to elevated levels of pro-inflammatory cytokines circulating in the bloodstream, thereby increasing multi-organ toxicity. The results of this study deepened the understanding of comprehensive impacts of PAHs on cardiovascular patients, and suggest more strict emission source-control strategies on PAHs prevention especially for the susceptible population with cardiovascular diseases.
Collapse
Affiliation(s)
- Jinjin Yu
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yajing Ma
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xinyi Niu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Ruisi Zhu
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huixin Song
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lingyi Liu
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuzhi Luo
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Songyuan Xia
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jingyu Wang
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lingli Li
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Sha Wen
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weifeng Li
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaofeng Niu
- Department of Pharmacy, School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
4
|
Holme JA, Myhre O, Øvrevik J. Adverse neurodevelopment in children associated with prenatal exposure to fine particulate matter (PM 2.5) - Possible roles of polycyclic aromatic hydrocarbons (PAHs) and mechanisms involved. Reprod Toxicol 2024; 130:108718. [PMID: 39276806 DOI: 10.1016/j.reprotox.2024.108718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Prenatal exposure to ambient fine particles (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) has been associated with adverse birth outcomes including neurodevelopmental effects with cognitive and/or behavioral implications in early childhood. As a background we first briefly summarize human studies on PM2.5 and PAHs associated with adverse birth outcomes and modified neurodevelopment. Next, we add more specific information from animal studies and in vitro studies and elucidate possible biological mechanisms. More specifically we focus on the potential role of PAHs attached to PM2.5 and explore whether effects of these compounds may arise from disturbance of placental function or more directly by interfering with neurodevelopmental processes in the fetal brain. Possible molecular initiating events (MIEs) include interactions with cellular receptors such as the aryl hydrocarbon receptor (AhR), beta-adrenergic receptors (βAR) and transient receptor potential (TRP)-channels resulting in altered gene expression. MIE linked to the binding of PAHs to cytochrome P450 (CYP) enzymes and formation of reactive electrophilic metabolites are likely less important. The experimental animal and in vitro studies support the epidemiological findings and suggest steps involved in mechanistic pathways explaining the associations. An overall evaluation of the doses/concentrations used in experimental studies combined with the mechanistic understanding further supports the hypothesis that prenatal PAHs exposure may cause adverse outcomes (AOs) linked to human neurodevelopment. Several MIEs will likely occur simultaneously in various cells/tissues involving several key events (KEs) which relative importance will depend on dose, time, tissue, genetics, other environmental factors, and neurodevelopmental endpoint in study.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, Oslo 0213, Norway.
| | - Oddvar Myhre
- Department of Chemical Toxicology, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, Oslo 0316, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, Oslo 0213, Norway
| |
Collapse
|
5
|
Mao Q, Zhu X, Zhang X, Kong Y. Triglyceride-glucose Index and Its combination with obesity indicators mediating the association between 2-hydroxyfluorene and the prevalence of cardiovascular disease: Evidence from the NHANES (2005-2018). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117283. [PMID: 39504874 DOI: 10.1016/j.ecoenv.2024.117283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) were increasingly recognized as a group of environmental pollutants associated with various health issues. The rise in their prevalence in the environment was concerning. Yet, the effects of PAH exposure on cardiovascular diseases (CVDs) were still not well understood. PURPOSE This study investigated the impact of exposure to 2-hydroxyfluorene on CVDs prevalence, with a special focus on the mediating role of triglyceride-glucose (TyG) index and its combination with obesity indicators. METHOD Using National Health and Nutrition Examination Survey (NHANES) data from 2005 to 2018, this study assessed how 2-hydroxyfluorene affects CVDs prevalence through various statistical techniques. The investigation began with restricted cubic spline (RCS) analysis to explore the relationship between 2-hydroxyfluorene levels and CVDs prevalence. Logistic regression was then used to examine associations within PAH mixtures, alongside the Bayesian Kernel Machine Regression (BKMR) model. Furthermore, the Quantile G-Computation (QG-comp) model was used to evaluate the influence of weights and directions. A mediation analysis was also performed to assess the mediating role of TyG-related indicators on the relationship between 2-hydroxyfluorene and CVDs prevalence. Besides, the association between 2-hydroxyfluorene and the prevalence of each specific CVDs, congestive heart failure, myocardium infarction, angina pectoris and coronary heart disease, was also assessed and so was the mediated effect. Finally, the subgroup analysis was conducted to assess the association in each specific subgroup. RESULT The study, involving 3645 participants, found a significant positive association between 2-hydroxyfluorene exposure and CVD (OR (95 %CI) = 115.8013 (5.0521 ∼ 2654.3248), P=0.0029), with 2-hydroxyfluorene showing the positive contribution to CVDs prevalence within the phthalate mixture. The positive association also existed between 2-hydroxyfluorene and the prevalence of each specific CVDs. TyG and TyGWC (Triglyceride Glucose-Waist Circumference) were identified as mediators in the link between 2-hydroxyfluorene exposure and the prevalence of total CVD and each specific CVD, while TyGBMI (Triglyceride Glucose-Body Mass Index) can only mediate the association between 2-hydroxyfluorene and the prevalence of total CVD, congestive heart failure and angina pectoris CONCLUSION: The findings highlighted a significant association between 2-hydroxyfluorene exposure and CVDs prevalence, with TyG-related indicators acting as mediators.
Collapse
Affiliation(s)
- Qingsong Mao
- Hepatobiliary Pancreatic Surgery, Banan Hospital Affiliated of Chongqing Medical University, Chongqing, China
| | - Xiaoyi Zhu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xinyi Zhang
- College of Education, Wenzhou University, Wenzhou, China
| | - Yuzhe Kong
- Xiangya School of Medicine, Central South University, Changsha, China.
| |
Collapse
|
6
|
Xu K, Wang Q, Zhang Y, Huang Y, Liu Q, Chen M, Wang C. Benzo(a)pyrene exposure impacts cerebrovascular development in zebrafish embryos and the antagonistic effect of berberine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174980. [PMID: 39053545 DOI: 10.1016/j.scitotenv.2024.174980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) widely present in the environment, but their effect on cerebrovascular development has been rarely reported. In this study, dechorionated zebrafish embryos at 24 hpf were exposed to benzo(a)pyrene (BaP) at 0.5, 5 and 50 nM for 48 h, cerebrovascular density showed a significant reduction in the 5 and 50 nM groups. The expression of aryl hydrocarbon receptor (AhR) was significantly increased. Transcriptomic analysis showed that the pathway of positive regulation of vascular development was down-regulated and the pathway of inflammation response was up-regulated. The transcription of main genes related to vascular development, such as vegf, bmper, cdh5, f3b, itgb1 and prkd1, was down-regulated. Addition of AhR-specific inhibitor CH233191 in the 50 nM BaP group rescued cerebrovascular developmental defects and down-regulation of relative genes, suggesting that BaP-induced cerebrovascular defects was AhR-dependent. The cerebrovascular defects were persistent into adult fish raised in clean water, showing that the relative area of vascular network, the length of vessels per unit area and the number of vascular junctions per unit area were significantly decreased in the 50 nM group. Supplementation of berberine (BBR), a naturally derived medicine from a Chinese medicinal herb, alleviated BaP-induced cerebrovascular defects, accompanied by the restoration of altered expression of AhR and relative genes, which might be due to that BBR promoted BaP elimination via enhancing detoxification enzyme activities, suggesting that BBR could be a potential agent in the prevention of cerebrovascular developmental defects caused by PAHs.
Collapse
Affiliation(s)
- Ke Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Qian Wang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, PR China
| | - Ying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Yuehong Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Qingfeng Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Meng Chen
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| |
Collapse
|
7
|
Lim EY, Kim GD. Particulate Matter-Induced Emerging Health Effects Associated with Oxidative Stress and Inflammation. Antioxidants (Basel) 2024; 13:1256. [PMID: 39456509 PMCID: PMC11505051 DOI: 10.3390/antiox13101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Environmental pollution continues to increase with industrial development and has become a threat to human health. Atmospheric particulate matter (PM) was designated as a Group 1 carcinogen by the International Agency for Research on Cancer in 2013 and is an emerging global environmental risk factor that is a major cause of death related to cardiovascular and respiratory diseases. PM is a complex composed of highly reactive organic matter, chemicals, and metal components, which mainly cause excessive production of reactive oxygen species (ROS) that can lead to DNA and cell damage, endoplasmic reticulum stress, inflammatory responses, atherosclerosis, and airway remodeling, contributing to an increased susceptibility to and the exacerbation of various diseases and infections. PM has various effects on human health depending on the particle size, physical and chemical characteristics, source, and exposure period. PM smaller than 5 μm can penetrate and accumulate in the alveoli and circulatory system, causing harmful effects on the respiratory system, cardiovascular system, skin, and brain. In this review, we describe the relationship and mechanism of ROS-mediated cell damage, oxidative stress, and inflammatory responses caused by PM and the health effects on major organs, as well as comprehensively discuss the harmfulness of PM.
Collapse
Affiliation(s)
| | - Gun-Dong Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea;
| |
Collapse
|
8
|
Guo K, Ni W, Du L, Zhou Y, Cheng L, Zhou H. Environmental chemical exposures and a machine learning-based model for predicting hypertension in NHANES 2003-2016. BMC Cardiovasc Disord 2024; 24:544. [PMID: 39385080 PMCID: PMC11462799 DOI: 10.1186/s12872-024-04216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/20/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Hypertension is a common disease, often overlooked in its early stages due to mild symptoms. And persistent elevated blood pressure can lead to adverse outcomes such as coronary heart disease, stroke, and kidney disease. There are many risk factors that lead to hypertension, including various environmental chemicals that humans are exposed to, which are believed to be modifiable risk factors for hypertension. OBJECTIVE To investigate the role of environmental chemical exposures in predicting hypertension. METHODS A total of 11,039 eligible participants were obtained from NHANES 2003-2016, and multiple imputation was used to process the missing data, resulting in 5 imputed datasets. 8 Machine learning algorithms were applied to the 5 imputed datasets to establish hypertension prediction models, and the average accuracy score, precision score, recall score, and F1 score were calculated. A generalized linear model was also built to predict the systolic and diastolic blood pressure levels. RESULTS All 8 algorithms had good predictions for hypertension, with Support Vector Machine (SVM) being the best, with accuracy, precision, recall, F1 scores and area under the curve (AUC) of 0.751, 0.699, 0.717, 0.708 and 0.822, respectively. The R2 of the linear model on the training and test sets was 0.28, 0.25 for systolic and 0.06, 0.05 for diastolic blood pressure. CONCLUSIONS In this study, relatively accurate prediction of hypertension was achieved using environmental chemicals with machine learning algorithms, demonstrating the predictive value of environmental chemicals for hypertension.
Collapse
Affiliation(s)
- Kun Guo
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Weicheng Ni
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Leilei Du
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Yimin Zhou
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Ling Cheng
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China
| | - Hao Zhou
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Hospital District, Ouhai District, Wenzhou City, 325000, Zhejiang Province, China.
| |
Collapse
|
9
|
Li A, Chen Y, Du M, Deng K, Cui X, Lin C, Tjakkes GHE, Zhuang X, Hu S. Healthy lifestyles ameliorate an increased risk of periodontitis associated with polycyclic aromatic hydrocarbons. CHEMOSPHERE 2024; 364:143086. [PMID: 39146990 DOI: 10.1016/j.chemosphere.2024.143086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/26/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
The risk of chronic inflammatory diseases has been linked to exposure to polycyclic aromatic hydrocarbons (PAHs). However, limited data are available regarding their impact on periodontitis. This study aims to explore the association between PAHs and periodontitis while also evaluating the potential modifying effects of healthy lifestyles. We included 17,031 participants from the US National Health and Nutrition Examination Survey (NHANES, 2001-2004 and 2009-2014). A meta-analysis-based environment-wide association study (EWAS) was adopted to identify environmental chemicals for the mean probing pocket depth (PPD) and the mean attachment loss (AL). PAHs were further evaluated concerning the cross-sectional association with Mod/Sev periodontitis using multivariable logistic regression models. Moreover, healthy lifestyle scores were estimated to assess their modifying effect on the PAH-periodontitis association. EWAS analysis identified several urinary PAH metabolites as significant risk factors for the mean PPD and AL (false discovery rate <0.05, Q > 0.05). Periodontitis severity was positively associated with eight individual and total PAH concentrations. Stratifying the participants in terms of healthy lifestyle scores did not reveal any association in the healthy group. Moreover, the association weakened in never-smokers and individuals with sufficient physical activity and normal weight. PAH exposure was a risk factor for periodontitis. A healthier lifestyle was observed to offset the risk potentials of PAHs for periodontitis. Smoking cessation, physical activity, and weight loss might be recommended as a healthy lifestyle strategy for ameliorating PAH-related periodontitis.
Collapse
Affiliation(s)
- An Li
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China; Department of Periodontology, Center for Dentistry and Oral Hygiene, University Medical Center Groningen (UMCG), University of Groningen, Groningen, the Netherlands
| | - Yuntao Chen
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Mi Du
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Ke Deng
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Xin Cui
- School of Clinical Medicine, Weifang Medical University, Weifang, China; Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Geerten-Has E Tjakkes
- Department of Periodontology, Center for Dentistry and Oral Hygiene, University Medical Center Groningen (UMCG), University of Groningen, Groningen, the Netherlands
| | - Xiaodong Zhuang
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Shixian Hu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Gastroenterology and Hepatology, UMCG, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
10
|
Lee CY, Wu SW, Yang JJ, Chen WY, Chen CJ, Chen HH, Lee YC, Su CH, Kuan YH. Vascular endothelial dysfunction induced by 3-bromofluoranthene via MAPK-mediated-NFκB pro-inflammatory pathway and intracellular ROS generation. Arch Toxicol 2024; 98:2247-2259. [PMID: 38635053 PMCID: PMC11169047 DOI: 10.1007/s00204-024-03751-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
3-Bromofluoranthene (3-BrFlu) is the secondary metabolite of fluoranthene, which is classified as a polycyclic aromatic hydrocarbon, through bromination and exists in the fine particulate matter of air pollutants. Endothelial dysfunction plays a critical role in the pathogenesis of cardiovascular and vascular diseases. Little is known about the molecular mechanism of 3-BrFlu on endothelial dysfunction in vivo and in vitro assay. In the present study, 3-BrFlu included concentration-dependent changes in ectopic angiogenesis of the sub-intestinal vein and dilation of the dorsal aorta in zebrafish. Disruption of vascular endothelial integrity and up-regulation of vascular endothelial permeability were also induced by 3-BrFlu in a concentration-dependent manner through pro-inflammatory responses in vascular endothelial cells, namely, SVEC4-10 cells. Generation of pro-inflammatory mediator PGE2 was induced by 3-BrFlu through COX2 expression. Expression of COX2 and generation of pro-inflammatory cytokines, including TNFα and IL-6, were induced by 3-BrFlu through phosphorylation of NF-κB p65, which was mediated by phosphorylation of MAPK, including p38 MAPK, ERK and JNK. Furthermore, generation of intracellular ROS was induced by 3-BrFlu, which is associated with the down-regulated activities of the antioxidant enzyme (AOE), including SOD and catalase. We also found that 3-BrFlu up-regulated expression of the AOE and HO-1 induced by 3-BrFlu through Nrf-2 expression. However, the 3-BrFlu-induced upregulation of AOE and HO-1 expression could not be revised the responses of vascular endothelial dysfunction. In conclusion, 3-BrFlu is a hazardous substance that results in vascular endothelial dysfunction through the MAPK-mediated-NFκB pro-inflammatory pathway and intracellular ROS generation.
Collapse
Affiliation(s)
- Chien-Ying Lee
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung, 402, Taiwan, ROC
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Sheng-Wen Wu
- Division of Nephrology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jiann-Jou Yang
- Department of BioMedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsin-Hung Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asia University Hospital, Taichung, Taiwan
- School of Medicine, Institute of Medicine and Public Health, Chung Shan Medical University, Taichung, Taiwan
- Chung Sheng Clinic, Nantou, Taiwan
| | - Yi-Chia Lee
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung, 402, Taiwan, ROC
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Hung Su
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung, 402, Taiwan, ROC.
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
11
|
Liu J, He J, Liao Z, Chen X, Ye Y, Pang Q, Fan R. Environmental dose of 16 priority-controlled PAHs induce endothelial dysfunction: An in vivo and in vitro study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170711. [PMID: 38340817 DOI: 10.1016/j.scitotenv.2024.170711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/24/2023] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) exposure is related to the occurrence of cardiovascular diseases (CVDs). Endothelial dysfunction is considered an initial event of CVDs. To confirm the relationship of PAHs exposure with endothelial dysfunction, 8-week-old male SD rats and primary human umbilical vein endothelial cells (HUVECs) were co-treated with environmental doses of 16 priority-controlled PAHs for 90 d and 48 h, respectively. Results showed that 10× PAHs exposure remarkably raised tumor necrosis factor-α and malonaldehyde levels in rat serum (p < 0.05), but had no effects on interleukin-8 levels and superoxide dismutase activity. The expressions of SIRT1 in HUVECs and rat aorta were attenuated after PAHs treatment. Interestingly, PAHs exposure did not activate the expression of total endothelial nitric oxide synthase (eNOS), but 10× PAHs exposure significantly elevated the expression of phosphorylated eNOS (Ser1177) in HUVECs and repressed it in aortas, accompanied with raised nitrite level both in serum and HUVECs by 48.50-253.70 %. PAHs exposure also led to the augment of endothelin-1 (ET-1) levels by 19.76-38.54 %, angiotensin (Ang II) levels by 20.09-39.69 % in HUVECs, but had no effects on ET-1 and Ang II levels in serum. Additionally, PAHs exposure improved endocan levels both in HUVECs and serum by 305.05-620.48 % and stimulated the THP-1 cells adhered to HUVECs (p < 0.05). After PAHs treatment, the smooth muscle alignment was disordered and the vascular smooth muscle locally proliferated in rat aorta. Notably, the systolic blood pressure of rats exposed to 10× PAHs increased significantly compared with the control ones (131.28 ± 5.20 vs 116.75 ± 5.33 mmHg). In summary, environmental chronic PAHs exposure may result in endothelial dysfunction in SD rats and primary HUVECs. Our research can confirm the cardiovascular damage caused by chronic exposure to PAHs and provide ideas for the prevention or intervention of CVDs affected by environmental factors.
Collapse
Affiliation(s)
- Jian Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jiaying He
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zengquan Liao
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaolin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yufeng Ye
- Medical Imaging Institute of Panyu, Guangzhou 511486, China
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
12
|
Chen W, Ge P, Deng M, Liu X, Lu Z, Yan Z, Chen M, Wang J. Toxicological responses of A549 and HCE-T cells exposed to fine particulate matter at the air-liquid interface. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27375-27387. [PMID: 38512571 PMCID: PMC11052810 DOI: 10.1007/s11356-024-32944-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
Fine particulate matter (PM2.5) can enter the human body in various ways and have adverse effects on human health. Human lungs and eyes are exposed to the air for a long time and are the first to be exposed to PM2.5. The "liquid immersion exposure method" has some limitations that prevent it from fully reflecting the toxic effects of particulate matter on the human body. In this study, the collected PM2.5 samples were chemically analyzed. An air-liquid interface (ALI) model with a high correlation to the in vivo environment was established based on human lung epithelial cells (A549) and immortalized human corneal epithelial cells (HCE-T). The VITROCELL Cloud 12 system was used to distribute PM2.5 on the cells evenly. After exposure for 6 h and 24 h, cell viability, apoptosis rate, reactive oxygen species (ROS) level, expression of inflammatory factors, and deoxyribonucleic acid (DNA) damage were measured. The results demonstrated significant dose- and time-dependent effects of PM2.5 on cell viability, cell apoptosis, ROS generation, and DNA damage at the ALI, while the inflammatory factors showed dose-dependent effects only. It should be noted that even short exposure to low doses of PM2.5 can cause cell DNA double-strand breaks and increased expression of γ-H2AX, indicating significant genotoxicity of PM2.5. Increased abundance of ROS in cells plays a crucial role in the cytotoxicity induced by PM2.5 exposure These findings emphasize the significant cellular damage and genotoxicity that may result from short-term exposure to low levels of PM2.5.
Collapse
Affiliation(s)
- Wankang Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Pengxiang Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Minjun Deng
- Ningxia Meteorological Service Center, Yinchuan, 750002, China
| | - Xiaoming Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhenyu Lu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhansheng Yan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Mindong Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Junfeng Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
13
|
Xu H, Gu Y, Bai Y, Li D, Liu M, Wang Z, Zhang Q, Sun J, Shen Z. Exploration and comparison of the relationship between PAHs and ROS in PM 2.5 emitted from multiple anthropogenic sources in the Guanzhong Plain, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170229. [PMID: 38246388 DOI: 10.1016/j.scitotenv.2024.170229] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Anthropogenic emissions have emerged as an important source of urban atmospheric PM2.5, exacerbating air pollution and the associated health implications. This study analyses PM2.5, originating from major anthropogenic sources (industries, motor vehicles, and solid-fuel combustion for domestic applications) in the Guanzhong Plain in China, along with the parent- (p-), alkylated- (a-), and oxygenated- (o-) polycyclic aromatic hydrocarbons (PAHs) and reactive oxygen species (ROS) levels in PM2.5. Industrial emissions are mainly characterised by high abundances of benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), and benz[a]fluoranthene (BaF). The 4-ring p-PAHs, such as fluoranthene (FLA), pyrene (PYR), benzo[a]anthracene (BaA), and chrysene (CHR) proportions and the diagnostic ratios of indeno[1,2,3-cd]pyrene (IcdP)/[IcdP + benzo[ghi]perylene (BghiP)] and 1-acenaphthenone (1ACO)/[1ACO + 9-fluorenone (9FO)] in motor vehicle emission PM2.5 were higher than the other sources. Household solid fuel combustion features high proportions of methylnaphthalene (M-NAP), i.e., 2 M-NAP and 1 M-NAP and 3-ring p-PAHs. Acenaphthylene (ACY), acenaphthene (ACE), anthracene (ANT), 1,4-chrysenequinone (1,4CHRQ), and reactive oxygen species (ROS) were positively correlated among the three anthropogenic sources. Moreover, the correlations between other PAHs and ROS varied significantly among the three sources. As mixed and compound organic pollutants, 2- and 3-ring p-PAHs were more positively correlated with the ROS activity of household solid fuel combustion sources compared with industrial and motor vehicle sources. Based on the relative contribution of these three sources to PAHs in PM2.5, we estimated the cancer risks of males and females in the Guanzhong area to be 2.95 × 10-6 and 2.87 × 10-6, respectively, exceeding the safety threshold of 1 × 10-6. This study provides a basic dataset for conducting a refined source apportionment of PM2.5 and a scientific basis for further understanding the relationship between PM2.5, PAHs, and ROS in northern China.
Collapse
Affiliation(s)
- Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yunxuan Gu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yunlong Bai
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dan Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Meixuan Liu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zexuan Wang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qian Zhang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
14
|
Liao D, Xiong S, An S, Tao L, Dai L, Tian Y, Chen W, He C, Xu P, Wu N, Liu X, Zhang H, Hu Z, Deng M, Liu Y, Li Q, Shang X, Shen X, Zhou Y. Association of urinary polycyclic aromatic hydrocarbon metabolites with gestational diabetes mellitus and gestational hypertension among pregnant women in Southwest China: A cross-sectional study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123206. [PMID: 38145636 DOI: 10.1016/j.envpol.2023.123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
The association of polycyclic aromatic hydrocarbons (PAHs) with gestational diabetes mellitus (GDM) and gestational hypertension during pregnancy has not yet been established. To investigate the association between PAH exposure and GDM and gestational hypertension, we conducted a cross-sectional study of 4206 pregnant women from the Zunyi birth cohort in southwestern China. Gas chromatography/mass spectrometry was used to detect the urinary levels of 10 monohydroxylated PAHs (OH-PAHs). GDM and gestational hypertension were diagnosed and the relevant information was documented by specialist obstetricians and gynecologists. Logistic regression and restricted cubic spline regression were employed to investigate their single and nonlinear associations. Stratified analyses of pregnancy and body mass index data were conducted to determine their moderating effects on the abovementioned associations. Compared with the first quartile of urinary ∑OH-PAHs, the third or fourth quartile in all study participants was associated with an increased risk of GDM (quartile 3: odds ratio [OR] = 1.35, 95% confidence interval [CI]: 1.03-1.77) and gestational hypertension (quartile 3: OR = 1.88, 95% CI: 1.26-2.81; quartile 4: OR = 1.58, 95% CI: 1.04-2.39), respectively. Nonlinear associations of 1-OH-PYR with GDM (cutoff level: 0.02 μg/g creatinine [Cr]) and 1-OH-PHE with gestational hypertension (cutoff level: 0.06 μg/g Cr) were also observed. In pregnant women with overweight or obesity, 1-OH-PHE and 3-OH-PHE were more strongly associated with gestational hypertension. Our results indicate that exposure to PAH during pregnancy may significantly increase the maternal risks of GDM and gestational hypertension; however, this finding still needs to be confirmed through larger-scale prospective studies and biological evidence.
Collapse
Affiliation(s)
- Dengqing Liao
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Shimin Xiong
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Songlin An
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Lin Tao
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Lulu Dai
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Yingkuan Tian
- Medical Department, Xingyi People's Hospital, Xingyi, 562400, China
| | - Wei Chen
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Caidie He
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Pei Xu
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Nian Wu
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Xiang Liu
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Haonan Zhang
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Zhongmei Hu
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China; Reproductive Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Mingyu Deng
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China; Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Yijun Liu
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Quan Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Xuejun Shang
- Department of Andrology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Xubo Shen
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China.
| |
Collapse
|
15
|
Liu G, Zhou W, Zhang X, Zhu J, Xu X, Li Y, Zhang J, Wen C, Liang L, Liu X, Xu X. Toxicity and oxidative stress of HepG2 and HL-7702 cells induced by PAH4 using oil as a carrier. Food Res Int 2024; 178:113988. [PMID: 38309887 DOI: 10.1016/j.foodres.2024.113988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/05/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), a widespread class of food pollutants, are commonly exposed to humans along with edible oil. The dietary exposure pattern of PAH4 was simulated to study the toxicity and oxidative stress of oil-based PAH4 on hepatocytes. The findings demonstrated that oil-based PAH4 induced cell viability and mitochondrial membrane potential decreased and promoted apoptosis and oxidative stress in a concentration-dependent manner. Benzo[a]pyrene had the strongest toxicity and HL-7702 cells were more sensitive to toxicity than HepG2 cells, due to differences in induced CYP1A enzyme activity. Oil-based PAH4 had greater cytotoxicity than PAH4, attributed to the synergistic effect of oil and PAH4. Furthermore, oil-based PAH4 induced oxidative stress in HepG2 and HL-7702 cells through the same AHR-Nrf2-KEAP1 pathway, which was elucidated by detecting genes and proteins expression. This study lays the foundation for elucidating the harm of dietary exposure to PAHs and reminds us that food composition may increase the harm of PAHs.
Collapse
Affiliation(s)
- Guoyan Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Wanli Zhou
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xu Zhang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jie Zhu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Xiaowei Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Youdong Li
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jixian Zhang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chaoting Wen
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Li Liang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China.
| | - Xin Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
16
|
Liu J, Li H, Guo Z, Xiao X, Viscardi A, Xiang R, Liu H, Lin X, Han J. The changes and correlation of IL-6 and oxidative stress levels in RAW264.7 macrophage cells induced by PAHs in PM 2.5. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:61. [PMID: 38281271 DOI: 10.1007/s10653-023-01851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
The objective of this study was to investigate the effects of anthracene (Ant) with 3 rings, benzo[a]anthracene (BaA) with 4 rings and benzo[b]fluoranthene (BbF) with 5 rings in fine particulate matter (PM2.5) at different exposure times (4 h and 24 h) and low exposure levels (0 pg/mL, 0.1 pg/mL, 1 pg/mL, 100 pg/mL and 10,000 pg/mL) on RAW264.7 cells. The changes of interleukin-6 (IL-6) and oxidative stress levels in RAW264.7 cells were investigated by methyl-thiazolyl-tetrazolium (MTT) and enzyme-linked immunosorbent assay (ELISA). Pearson correlation analysis was used to analyze the correlation between variables. Ant, BaA and BbF induced the secretion of IL-6 and the occurrence of oxidative stress in RAW264.7 cells. The inflammatory effect and oxidative damage were exacerbated with prolonged exposure time, increasing exposure concentration and increasing number of PAH rings. At the same time, IL-6 was found to have a certain correlation with the levels of ROS, MDA and SOD. Exposure to atmospheric PAHs at low concentrations can also produce toxic effects on cells, IL-6 and oxidative stress work together in cell damage. The study is expected to provide a theoretical and experimental basis for air pollution control and human health promotion.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
- Xi'an Gem Flower Chang Qing Hospital, Xi'an, 710200, China
| | - Hongqiu Li
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Ziwei Guo
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
- Xi'an Gem Flower Chang Qing Hospital, Xi'an, 710200, China
| | - Xiang Xiao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
- Xi'an Gem Flower Chang Qing Hospital, Xi'an, 710200, China
| | - Angelo Viscardi
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Rongqi Xiang
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Haobiao Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Xue Lin
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China
| | - Jing Han
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 712000, Shaanxi, China.
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, China.
- Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
17
|
Zhang Y, Zhao J, Hu Q, Mao H, Wang T. Nitro substituent caused negative impact on occurrence and development of atherosclerotic plaque by PM 2.5-bound polycyclic aromatic compounds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167700. [PMID: 37827309 DOI: 10.1016/j.scitotenv.2023.167700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/07/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
PM2.5 exposure is a significant risk factor for the occurrence and development of atherosclerosis. Polycyclic aromatic hydrocarbons (PAHs) play prominent roles in PM2.5-related toxicity. However, the nitrated derivatives of PAHs, nitrated polycyclic aromatic hydrocarbons (NPAHs), have strong oxidizing properties due to the nitro substituents. Thus, the in vivo and in vitro experiments exposure to benzo[a]pyrene (BaP) and 6-nitro benzo[a]pyrene (NBaP) were conducted to evaluate the effect of nitro substituent on the atherosclerosis due to (or attributable to) PAHs. The results showed that NBaP exposure induced the inhibition of human umbilical vein endothelial cells (HUVECs) viability and cell morphology damage via more severe oxidative stress than BaP exposure. Furthermore, exposure to PM2.5-bound NBaP caused dyslipidemia in the Apolipoprotein E-deficient (ApoE-/-) mice, including the increment of total cholesterol, triglycerides, low-density lipoprotein cholesterol, and malondialdehyde levels, and the decrement of high-density lipoprotein cholesterol levels, superoxide dismutase and glutathione peroxidase levels in serum and aorta. Furthermore, histology showed atherosclerotic plaque in the aorta of ApoE-/- mice. However, there were no significant differences of the physiological and pathological changes between BaP and control groups. Thus, NPAHs induced endothelial dysfunction and dyslipidemia via severe oxidative stress, and further accelerated the occurrence and development of atherosclerosis compared with the parent PAHs. Our findings provide the first evidence that nitro substituent caused much severer negative health impact of polycyclic aromatic compounds, which highlight the significance of NPAHs in health risk estimation of polycyclic aromatic compounds.
Collapse
Affiliation(s)
- Yu Zhang
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental, Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - JingBo Zhao
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental, Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China; School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300071, China
| | - Qian Hu
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental, Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - HongJun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental, Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ting Wang
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental, Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
18
|
John A, Raza H. Azadirachtin Attenuates Carcinogen Benzo(a) Pyrene-Induced DNA Damage, Cell Cycle Arrest, Apoptosis, Inflammatory, Metabolic, and Oxidative Stress in HepG2 Cells. Antioxidants (Basel) 2023; 12:2001. [PMID: 38001854 PMCID: PMC10669168 DOI: 10.3390/antiox12112001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Azadirachtin (AZD), a limonoid from the versatile, tropical neem tree (Azadirachta indica), is well known for its many medicinal, and pharmacological effects. Its effects as an anti-oxidant, anti-inflammatory, and anti-cancer agent are well known. However, not many studies have explored the effects of AZD on toxicities induced by benzo(a)pyrene (B(a)P), a toxic component of cigarette smoke known to cause DNA damage and cell cycle arrest, leading to different kinds of cancer. In the present study, using HepG2 cells, we investigated the protective effects of Azadirachtin (AZD) against B(a)P-induced oxidative/nitrosative and metabolic stress and mitochondrial dysfunction. Treatment with 25 µM B(a)P for 24 h demonstrated an increased production of reactive oxygen species (ROS), followed by increased lipid peroxidation and DNA damage presumably, due to the increased metabolic activation of B(a)P by CYP 450 1A1/1A2 enzymes. We also observed intrinsic and extrinsic apoptosis, alterations in glutathione-dependent redox homeostasis, cell cycle arrest, and inflammation after B(a)P treatment. Cells treated with 25 µM AZD for 24 h showed decreased oxidative stress and apoptosis, partial protection from DNA damage, and an improvement in mitochondrial functions and bioenergetics. The improvement in antioxidant status, anti-inflammatory potential, and alterations in cell cycle regulatory markers qualify AZD as a potential therapeutic in combination with anti-cancer drugs.
Collapse
Affiliation(s)
| | - Haider Raza
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, 5th Postal Region, Al Ain P.O. Box 15551, United Arab Emirates;
| |
Collapse
|
19
|
Naserinejad N, Costanian C, Birot O, Barboni T, Roudier E. Wildland fire, air pollution and cardiovascular health: is it time to focus on the microvasculature as a risk assessment tool? Front Physiol 2023; 14:1225195. [PMID: 37538378 PMCID: PMC10394245 DOI: 10.3389/fphys.2023.1225195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Climate change favors weather conditions conducive to wildland fires. The intensity and frequency of forest fires are increasing, and fire seasons are lengthening. Exposure of human populations to smoke emitted by these fires increases, thereby contributing to airborne pollution through the emission of gas and particulate matter (PM). The adverse health outcomes associated with wildland fire exposure represent an important burden on the economies and health systems of societies. Even though cardiovascular diseases (CVDs) are the main of cause of the global burden of diseases attributable to PM exposure, it remains difficult to show reliable associations between exposure to wildland fire smoke and cardiovascular disease risk in population-based studies. Optimal health requires a resilient and adaptable network of small blood vessels, namely, the microvasculature. Often alterations of this microvasculature precede the occurrence of adverse health outcomes, including CVD. Biomarkers of microvascular health could then represent possible markers for the early detection of poor cardiovascular outcomes. This review aims to synthesize the current literature to gauge whether assessing the microvasculature can better estimate the cardiovascular impact of wildland fires.
Collapse
Affiliation(s)
- Nazgol Naserinejad
- School of Global Health, Faculty of Health, York University, Toronto, ON, Canada
| | - Christy Costanian
- School of Global Health, Faculty of Health, York University, Toronto, ON, Canada
- Department of Family and Community Medicine, St. Michael’s Hospital, Toronto, ON, Canada
| | - Olivier Birot
- Muscle Health Research Center, School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| | - Toussaint Barboni
- Laboratoire des Sciences Pour l’Environnement (SPE), UMR-CNRS 6134, University of Corsica Pasquale Paoli, Campus Grimaldi, Corte, France
| | - Emilie Roudier
- School of Global Health, Faculty of Health, York University, Toronto, ON, Canada
- Muscle Health Research Center, School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, ON, Canada
| |
Collapse
|
20
|
Jin Z, Gu C, Fan X, Cai J, Bian Y, Song Y, Sun C, Jiang X. Novel insights into the predominant factors affecting the bioavailability of polycyclic aromatic hydrocarbons in industrial contaminated areas using PLS-developed model. CHEMOSPHERE 2023; 319:138033. [PMID: 36736478 DOI: 10.1016/j.chemosphere.2023.138033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Bioavailability is recognized as a useful technical standard for risk assessment and pollution rehabilitation. However, knowledge on the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in contaminated site soils is still limited, especially concerning the influential mechanism. With an abundance of soil collections from nine industrial areas in China, the bioavailabilities, as conceptually defined as bioconcentration factors (BCFs) of PAHs were analyzed using biomimetic extraction of hydroxypropyl-β-cyclodextrin (HPCD). Apart from the total content of PAHs varying with the different pyrogenic sources, the BCFs were greatly dependent on the soil physicochemical properties from the spatial scale and inversely proportional to the number of rings. Pearson correlation analysis indicated a weak relationship between bioavailability and the soil dissolved organic matter (DOM), pH and particle size. To incorporate the soil physicochemical properties and structural characteristics of PAHs determined by density functional theory (DFT), the optimum model for bioavailability was developed for BCFs by partial least square (PLS) analysis. The PLS-derived model was shown to be predictive within the applicability domain (AD). The structural characteristics, e.g., molecular polarizability and frontier orbital energy level that favor the soil adsorption of PAH isomers via dispersion interactions, and electron exchanges were indicated to be more impactful on bioavailability than soil environmental factors. However, soil factors should not be neglected, because the pH, DOM, etc. were significantly influential. It makes sense that the higher DOM causes greater bioavailability via increasing the free-dissolved fractions of PAHs. Interestingly, the effect of pH on bioavailability was spectrally validated by excitation-emission matrix (EEM) fluorescence, showing that the interaction between DOM and pyrene strengthened the fluorescence quenching of chromophores with the decline in pH.
Collapse
Affiliation(s)
- Zhihua Jin
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenggang Gu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiuli Fan
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Cai
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
21
|
Lu L, Ni R. Association between polycyclic aromatic hydrocarbon exposure and hypertension among the U.S. adults in the NHANES 2003-2016: A cross-sectional study. ENVIRONMENTAL RESEARCH 2023; 217:114907. [PMID: 36436553 DOI: 10.1016/j.envres.2022.114907] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
The global burden of hypertension, the major cause of cardiovascular disease (CVD) globally, remains unresolved. Exposure to PM2.5 has been linked to hypertension (HTN) in adults and the elderly globally according to previous studies. Nonetheless, evidence on the association of polycyclic aromatic hydrocarbon (PAH) exposure and HTN risk in the general adult population in the United States was limited. To investigate the relationship between PAH exposure and HTN in adults in the United States, cross-sectional data during 2003 and 2016 from the National Health and Nutrition Examination Survey (NHANES) on a stratified multistage random sample of the civilian non-institutionalized population were utilized. After eliminating individuals with incomplete information of interest, the final analysis contained 8951 subjects aged ≥20. In the multivariate logistic regression model, 1-hydroxynaphthalene and 2-hydroxyfluorene were found positively associated with increased risk of HTN among overall participants after adjusting for the covariates. 1-hydroxynaphthalene and 2-hydroxynaphthalene showed positive associations with HTN risk among overweight participants. In the Bayesian kernel machine regression (BKMR) model, 1-hydroxynaphthalene and 2-hydroxyfluorene presented great importance to HTN risk among overall individuals. In the male subgroup analyses by BKMR, 2-hydroxyfluorene presented a positive effect on HTN risk when the remaining OH-PAHs were set at their 25th, 50th, and 75th percentile. Our findings highlight the complexities of estimating the risk of HTN associated with mixed PAH exposure, and additional longitudinal studies are required to determine the exact link between PAH exposure and HTN risk, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Lingyi Lu
- Xuhui District Center for Disease Control and Prevention, Shanghai, 200237, China
| | - Rong Ni
- Xuhui District Center for Disease Control and Prevention, Shanghai, 200237, China.
| |
Collapse
|
22
|
Chen Z, Liu P, Xia X, Wang L, Li X. The underlying mechanism of PM2.5-induced ischemic stroke. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119827. [PMID: 35917837 DOI: 10.1016/j.envpol.2022.119827] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Under the background of global industrialization, PM2.5 has become the fourth-leading risk factor for ischemic stroke worldwide, according to the 2019 GBD estimates. This highlights the hazards of PM2.5 for ischemic stroke, but unfortunately, PM2.5 has not received the attention that matches its harmfulness. This article is the first to systematically describe the molecular biological mechanism of PM2.5-induced ischemic stroke, and also propose potential therapeutic and intervention strategies. We highlight the effect of PM2.5 on traditional cerebrovascular risk factors (hypertension, hyperglycemia, dyslipidemia, atrial fibrillation), which were easily overlooked in previous studies. Additionally, the effects of PM2.5 on platelet parameters, megakaryocytes activation, platelet methylation, and PM2.5-induced oxidative stress, local RAS activation, and miRNA alterations in endothelial cells have also been described. Finally, PM2.5-induced ischemic brain pathological injury and microglia-dominated neuroinflammation are discussed. Our ultimate goal is to raise the public awareness of the harm of PM2.5 to ischemic stroke, and to provide a certain level of health guidance for stroke-susceptible populations, as well as point out some interesting ideas and directions for future clinical and basic research.
Collapse
Affiliation(s)
- Zhuangzhuang Chen
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Peilin Liu
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaoshuang Xia
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China
| | - Lin Wang
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China; Tianjin Interdisciplinary Innovation Centre for Health and Meteorology, Tianjin, China.
| |
Collapse
|
23
|
Schöttker B, Larsen EL, Weimann A, Henriksen T, Brenner H, Poulsen HE. Associations of urinary metabolites of oxidized DNA and RNA with the incidence of diabetes mellitus using UPLC-MS/MS and ELISA methods. Free Radic Biol Med 2022; 183:51-59. [PMID: 35307553 DOI: 10.1016/j.freeradbiomed.2022.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND To evaluate the association of urinary oxidized guanine/guanosine (OxGuo) levels with incident type 2 diabetes (T2D) among older adults. METHODS A nested case-control design was applied with 440 cases of incident T2D and 440 controls, randomly sampled from all 65-75 year-old study participants of the ESTHER study, which is a population-based German cohort study with 14 years of follow-up. Analyses of 8-hydroxy-2'-deoxyguanosine (8-oxo-dGuo; DNA oxidation product) and 8-hydroxyguanosine (8-oxo-Guo; RNA oxidation product) were measured by ultra-performance liquid chromatography tandem-mass spectrometry (UPLC-MS/MS). The sum of the two OxGuo molecule concentrations was calculated and called OxGuo-UPLC-MS/MS. The corresponding OxGuo-ELISA levels were measured by Cayman's DNA/RNA oxidative damage ELISA, which detects a mix of 8-oxo-dGuo, 8-oxo-Guo and one other OxGuo molecule. Logistic regression was applied and models were adjusted for age, sex, BMI, HbA1c, and C-reactive protein levels. RESULTS 8-oxo-dGuo and 8-oxo-Guo were highly correlated with each other (r = 0.642) and weakly correlated with OxGuo-ELISA (r = 0.22 and r = 0.14, respectively). OxGuo-ELISA levels were statistically significant associated with T2D incidence (odds ratio (OR) and 95% confidence interval [95%CI] for comparison of top and bottom quartile: 1.77 [1.14; 2.76]). In contrast, the ORs did not increase stepwise from quartile 2 to 4 for neither 8-oxo-Guo, 8-oxo-dGuo levels nor OxGuo-UPLC-MS/MS and comparisons of top and bottom quartile were not statistically significant. In a post-hoc analysis comparing bottom quartile 1 with a combined group of quartile 2-4, the association of OxGuo-UPLC-MS/MS with T2D incidence reached statistical significance (OR [95%CI]: 0.66 [0.46; 0.96]) and was very similar with the one obtained for OxGuo-ELISA (OR [95%CI]: 0.66 [0.45; 0.95]). CONCLUSIONS Although only the measurements of the DNA/RNA oxidative damage ELISA kit of Cayman were statistically significantly associated with T2D incidence in the main analysis, confidence intervals overlapped and the post-hoc analysis showed that results for OxGuo-UPLC-MS/MS were quite comparable.
Collapse
Affiliation(s)
- Ben Schöttker
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany; Network Aging Research, University of Heidelberg, Bergheimer Straße 20, 69115, Heidelberg, Germany.
| | - Emil L Larsen
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Allan Weimann
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Trine Henriksen
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Hermann Brenner
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany; Network Aging Research, University of Heidelberg, Bergheimer Straße 20, 69115, Heidelberg, Germany
| | - Henrik E Poulsen
- Department of Endocrinology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Cardiology, Copenhagen University Hospital - North Zealand, Hillerød, Denmark
| |
Collapse
|
24
|
Bukowska B, Duchnowicz P. Molecular Mechanisms of Action of Selected Substances Involved in the Reduction of Benzo[a]pyrene-Induced Oxidative Stress. Molecules 2022; 27:molecules27041379. [PMID: 35209168 PMCID: PMC8878767 DOI: 10.3390/molecules27041379] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon (PAH) primarily formed by burning of fossil fuels, wood and other organic materials. BaP as group I carcinogen shows mutagenic and carcinogenic effects. One of the important mechanisms of action of (BaP) is its free radical activity, the effect of which is the induction of oxidative stress in cells. BaP induces oxidative stress through the production of reactive oxygen species (ROS), disturbances of the activity of antioxidant enzymes, and the reduction of the level of non-enzymatic antioxidants as well as of cytokine production. Chemical compounds, such as vitamin E, curcumin, quercetin, catechin, cyanidin, kuromanin, berberine, resveratrol, baicalein, myricetin, catechin hydrate, hesperetin, rhaponticin, as well as taurine, atorvastatin, diallyl sulfide, and those contained in green and white tea, lower the oxidative stress induced by BaP. They regulate the expression of genes involved in oxidative stress and inflammation, and therefore can reduce the level of ROS. These substances remove ROS and reduce the level of lipid and protein peroxidation, reduce formation of adducts with DNA, increase the level of enzymatic and non-enzymatic antioxidants and reduce the level of pro-inflammatory cytokines. BaP can undergo chemical modification in the living cells, which results in more reactive metabolites formation. Some of protective substances have the ability to reduce BaP metabolism, and in particular reduce the induction of cytochrome (CYP P450), which reduces the formation of oxidative metabolites, and therefore decreases ROS production. The aim of this review is to discuss the oxidative properties of BaP, and describe protective activities of selected chemicals against BaP activity based on of the latest publications.
Collapse
|