1
|
Kuldell JC, Kaplan CD. RNA Polymerase II Activity Control of Gene Expression and Involvement in Disease. J Mol Biol 2025; 437:168770. [PMID: 39214283 PMCID: PMC11781076 DOI: 10.1016/j.jmb.2024.168770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Gene expression is dependent on RNA Polymerase II (Pol II) activity in eukaryotes. In addition to determining the rate of RNA synthesis for all protein coding genes, Pol II serves as a platform for the recruitment of factors and regulation of co-transcriptional events, from RNA processing to chromatin modification and remodeling. The transcriptome can be shaped by changes in Pol II kinetics affecting RNA synthesis itself or because of alterations to co-transcriptional events that are responsive to or coupled with transcription. Genetic, biochemical, and structural approaches to Pol II in model organisms have revealed critical insights into how Pol II works and the types of factors that regulate it. The complexity of Pol II regulation generally increases with organismal complexity. In this review, we describe fundamental aspects of how Pol II activity can shape gene expression, discuss recent advances in how Pol II elongation is regulated on genes, and how altered Pol II function is linked to human disease and aging.
Collapse
Affiliation(s)
- James C Kuldell
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States
| | - Craig D Kaplan
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States.
| |
Collapse
|
2
|
Doreswamy N, Horstmanshof L. Generative AI Decision-Making Attributes in Complex Health Services: A Rapid Review. Cureus 2025; 17:e78257. [PMID: 40026934 PMCID: PMC11871968 DOI: 10.7759/cureus.78257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
The advent of Generative Artificial Intelligence (Generative AI or GAI) marks a significant inflection point in AI development. Long viewed as the epitome of reasoning and logic, Generative AI incorporates programming rules that are normative. However, it also has a descriptive component based on its programmers' subjective preferences and any discrepancies in the underlying data. Generative AI generates both truth and falsehood, supports both ethical and unethical decisions, and is neither transparent nor accountable. These factors pose clear risks to optimal decision-making in complex health services such as health policy and health regulation. It is important to examine how Generative AI makes decisions both from a rational, normative perspective and from a descriptive point of view to ensure an ethical approach to Generative AI design, engineering, and use. The objective is to provide a rapid review that identifies and maps attributes reported in the literature that influence Generative AI decision-making in complex health services. This review provides a clear, reproducible methodology that is reported in accordance with a recognised framework and Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 standards adapted for a rapid review. Inclusion and exclusion criteria were developed, and a database search was undertaken within four search systems: ProQuest, Scopus, Web of Science, and Google Scholar. The results include articles published in 2023 and early 2024. A total of 1,550 articles were identified. After removing duplicates, 1,532 articles remained. Of these, 1,511 articles were excluded based on the selection criteria and a total of 21 articles were selected for analysis. Learning, understanding, and bias were the most frequently mentioned Generative AI attributes. Generative AI brings the promise of advanced automation, but carries significant risk. Learning and pattern recognition are helpful, but the lack of a moral compass, empathy, consideration for privacy, and a propensity for bias and hallucination are detrimental to good decision-making. The results suggest that there is, perhaps, more work to be done before Generative AI can be applied to complex health services.
Collapse
Affiliation(s)
- Nandini Doreswamy
- Faculty of Health Sciences, Southern Cross University, Lismore, AUS
- Health Sciences, National Coalition of Independent Scholars, Canberra, AUS
| | | |
Collapse
|
3
|
Cosenza G, Pauciullo A. A Comprehensive Analysis of CSN1S2 I and II Transcripts Reveals Significant Genetic Diversity and Allele-Specific Exon Skipping in Ragusana and Amiatina Donkeys. Animals (Basel) 2024; 14:2918. [PMID: 39457849 PMCID: PMC11503821 DOI: 10.3390/ani14202918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The αs2-casein is a phosphoprotein secreted in the milk of most mammals, and it is the most hydrophilic of all caseins. Contrary to genes found in ruminants, in donkeys two different encoding genes for donkey αs2-casein (CSN1S2 I and CSN1S2 II) have been identified. However, unlike in ruminants, the variability at these loci has not been characterized in detail in donkeys until now. In this study, we analyze the transcript profile of the donkey CSN1S2 I and CSN1S2 II genes, and we identify and describe the variability of these loci in the Ragusana and Amiatina breeds reared in Italy. The analysis of the CSN1S2 I Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) products and subsequent sequencing showed, in addition to correctly spliced mRNA, seven other minor mRNAs resulting from differential splicing events involving, in various combinations, entire exons (4, 5, 6, and 11), parts of exons (5' or 3' end of exon 17), or the recognition of intronic sequences as an exon (exon 12'). Similarly, the transcription analysis of the CSN1S2 II gene revealed a remarkable variability in splicing events, mainly concerning the alternative insertion of an extra exon 7 (named 7'); the first 33 bp of exon 13; or the alternative skipping of exons 9, 10, 11, 12, and 15, and their combinations. At the mRNA level for CSN1S2 I, seven SNPs were observed, five of which led to amino acid changes: p.T73>A, p.I109>V, p.I130>V, p.I146>T, and p.D217>Y. Similarly, nine SNPs were observed at the CSN1S2 II locus, seven of which are non-synonymous: p.L63>F, p.H70>Q, p.D90>N, p.129A>T, p.H131>Y, p.E144>G, and p.F157>S. In addition, the DNA sequencing of exon 17 and flanking introns of the CSN1S2 I gene revealed a G>A transition at the splice acceptor site of CSN1S2 I exon 17 (FM946022.1:c.375-1G>A), resulting in an allele-specific skipping of the first 15 nucleotides of this exon, which encode the peptide 176NKINQ180, and the recognition of an in-frame cryptic splicing acceptor site: arAACAAAATCAACCAG. A genotyping method based on restriction fragment length polymorphism (XbaI PCR-RFLP) was set up for this SNP. In the total population studied (105 Ragusana and 14 Amiatina donkeys), the A allele had a frequency of 0.2437 with no evidence of deviation from the Hardy-Weinberg equilibrium. This study adds new knowledge regarding the genetic variability of αs2-caseins in donkeys and may contribute significantly to the genetic improvement of milk production for this species.
Collapse
Affiliation(s)
- Gianfranco Cosenza
- Department of Agriculture, University of Naples Federico II, 80055 Portici, NA, Italy
| | - Alfredo Pauciullo
- Department of Agricultural, Forest and Food Sciences, University of Turin, 10095 Grugliasco, TO, Italy
- National Research Council of Italy, Institute of Animal Production in the Mediterranean Environment, Piazzale Enrico Fermi 1, 80055 Portici, NA, Italy
| |
Collapse
|
4
|
Ren P, Zhang J, Vijg J. Somatic mutations in aging and disease. GeroScience 2024; 46:5171-5189. [PMID: 38488948 PMCID: PMC11336144 DOI: 10.1007/s11357-024-01113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
Time always leaves its mark, and our genome is no exception. Mutations in the genome of somatic cells were first hypothesized to be the cause of aging in the 1950s, shortly after the molecular structure of DNA had been described. Somatic mutation theories of aging are based on the fact that mutations in DNA as the ultimate template for all cellular functions are irreversible. However, it took until the 1990s to develop the methods to test if DNA mutations accumulate with age in different organs and tissues and estimate the severity of the problem. By now, numerous studies have documented the accumulation of somatic mutations with age in normal cells and tissues of mice, humans, and other animals, showing clock-like mutational signatures that provide information on the underlying causes of the mutations. In this review, we will first briefly discuss the recent advances in next-generation sequencing that now allow quantitative analysis of somatic mutations. Second, we will provide evidence that the mutation rate differs between cell types, with a focus on differences between germline and somatic mutation rate. Third, we will discuss somatic mutational signatures as measures of aging, environmental exposure, and activities of DNA repair processes. Fourth, we will explain the concept of clonally amplified somatic mutations, with a focus on clonal hematopoiesis. Fifth, we will briefly discuss somatic mutations in the transcriptome and in our other genome, i.e., the genome of mitochondria. We will end with a brief discussion of a possible causal contribution of somatic mutations to the aging process.
Collapse
Affiliation(s)
- Peijun Ren
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jie Zhang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jan Vijg
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
5
|
Dinep-Schneider O, Appiah E, Dapper A, Patterson S, Vermulst M, Gout JF. Effects of the glyphosate-based herbicide roundup on C. elegans and S. cerevisiae mortality, reproduction, and transcription fidelity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124203. [PMID: 38830529 PMCID: PMC11321929 DOI: 10.1016/j.envpol.2024.124203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
Glyphosate-based weed killers such as Roundup have been implicated in detrimental effects on single- and multicellular eukaryotic model organism health and longevity. However, the mode(s) of action for these effects are currently unknown. In this study, we investigate the impact of exposure to Roundup on two model organisms: Saccharomyces cerevisiae and Caenorhabditis elegans and test the hypothesis that exposure to Roundup decreases transcription fidelity. Population growth assays and motility assays were performed in order to determine the phenotypic effects of Roundup exposure. We also used Rolling-Circle Amplification RNA sequencing to quantify the impact of exposure to Roundup on transcription fidelity in these two model organisms. Our results show that exposure to the glyphosate-based herbicide Roundup increases mortality, reduces reproduction, and increases transcription error rates in C. elegans and S. cerevisiae. We suggest that these effects may be due in part to the involvement of inflammation and oxidative stress, conditions which may also contribute to increases in transcription error rates.
Collapse
Affiliation(s)
| | - Eastilan Appiah
- Department of Computer Science and Engineering, Computational Biology, Mississippi State University, Starkville, MS, USA
| | - Amy Dapper
- Department of Biology, Mississippi State University, Starkville, MS, USA
| | - Sarah Patterson
- Department of Computer Science and Engineering, Computational Biology, Mississippi State University, Starkville, MS, USA
| | - Marc Vermulst
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, CA, 90089, USA
| | - Jean-Francois Gout
- Department of Biology, Mississippi State University, Starkville, MS, USA
| |
Collapse
|
6
|
Gao S, Tahara Y, Kool E, Greenberg M. Promoter dependent RNA polymerase II bypass of the epimerizable DNA lesion, Fapy•dG and 8-Oxo-2'-deoxyguanosine. Nucleic Acids Res 2024; 52:7437-7446. [PMID: 38908029 PMCID: PMC11260475 DOI: 10.1093/nar/gkae529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024] Open
Abstract
Formamidopyrimidine (Fapy•dG) is a major lesion arising from oxidation of dG that is produced from a common chemical precursor of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo). In human cells, replication of single-stranded shuttle vectors containing Fapy•dG is more mutagenic than 8-OxodGuo. Here, we present the first data regarding promoter dependent RNA polymerase II bypass of Fapy•dG. 8-OxodGuo bypass was examined side-by-side. Experiments were carried out using double-stranded shuttle vectors in HeLa cell nuclear lysates and in HEK 293T cells. The lesions do not significantly block transcriptional bypass efficiency. Less than 2% adenosine incorporation occurred in cells when the lesions were base paired with dC. Inhibiting base excision repair in HEK 293T cells significantly increased adenosine incorporation, particularly from Fapy•dG:dC bypass which yielded ∼25% adenosine incorporation. No effect was detected upon transcriptional bypass of either lesion in nucleotide excision repair deficient cells. Transcriptional mutagenesis was significantly higher when shuttle vectors containing dA opposite one of the lesions were employed. For Fapy•dG:dA bypass, adenosine incorporation was greater than 85%; whereas 8-OxodGuo:dA yielded >20% point mutations. The combination of more frequent replication mistakes and greater error-prone Pol II bypass suggest that Fapy•dG is more mutagenic than 8-OxodGuo.
Collapse
Affiliation(s)
- Shijun Gao
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yuki Tahara
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
7
|
Gao S, Hou P, Oh J, Wang D, Greenberg MM. Molecular Mechanism of RNA Polymerase II Transcriptional Mutagenesis by the Epimerizable DNA Lesion, Fapy·dG. J Am Chem Soc 2024; 146:6274-6282. [PMID: 38393762 PMCID: PMC10932878 DOI: 10.1021/jacs.3c14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Oxidative DNA lesions cause significant detrimental effects on a living species. Two major DNA lesions resulting from dG oxidation, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo) and formamidopyrimidine (Fapy·dG), are produced from a common chemical intermediate. Fapy·dG is formed in comparable yields under oxygen-deficient conditions. Replicative bypass of Fapy·dG in human cells is more mutagenic than that of 8-OxodGuo. Despite the biological importance of transcriptional mutagenesis, there are no reports of the effects of Fapy·dG on RNA polymerase II (Pol II) activity. Here we perform comprehensive kinetic studies to investigate the impact of Fapy·dG on three key transcriptional fidelity checkpoint steps by Pol II: insertion, extension, and proofreading steps. The ratios of error-free versus error-prone incorporation opposite Fapy·dG are significantly reduced in comparison with undamaged dG. Similarly, Fapy·dG:A mispair is extended with comparable efficiency as that of the error-free, Fapy·dG:C base pair. The α- and β-configurational isomers of Fapy·dG have distinct effects on Pol II insertion and extension. Pol II can preferentially cleave error-prone products by proofreading. To further understand the structural basis of transcription processing of Fapy·dG, five different structures were solved, including Fapy·dG template-loading state (apo), error-free cytidine triphosphate (CTP) binding state (prechemistry), error-prone ATP binding state (prechemistry), error-free Fapy·dG:C product state (postchemistry), and error-prone Fapy·dG:A product state (postchemistry), revealing distinctive nucleotide binding and product states. Taken together, our study provides a comprehensive mechanistic framework for better understanding how Fapy·dG lesions impact transcription and subsequent pathological consequences.
Collapse
Affiliation(s)
- Shijun Gao
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Peini Hou
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Juntaek Oh
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
8
|
Zhang M, Bouland GA, Holstege H, Reinders MJT. Identifying Aging and Alzheimer Disease-Associated Somatic Variations in Excitatory Neurons From the Human Frontal Cortex. Neurol Genet 2023; 9:e200066. [PMID: 37123987 PMCID: PMC10136684 DOI: 10.1212/nxg.0000000000200066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/03/2023] [Indexed: 05/02/2023]
Abstract
Background and Objectives With age, somatic mutations accumulated in human brain cells can lead to various neurologic disorders and brain tumors. Because the incidence rate of Alzheimer disease (AD) increases exponentially with age, investigating the association between AD and the accumulation of somatic mutation can help understand the etiology of AD. Methods We designed a somatic mutation detection workflow by contrasting genotypes derived from whole-genome sequencing (WGS) data with genotypes derived from scRNA-seq data and applied this workflow to 76 participants from the Religious Order Study and the Rush Memory and Aging Project (ROSMAP) cohort. We focused only on excitatory neurons, the dominant cell type in the scRNA-seq data. Results We identified 196 sites that harbored at least 1 individual with an excitatory neuron-specific somatic mutation (ENSM), and these 196 sites were mapped to 127 genes. The single base substitution (SBS) pattern of the putative ENSMs was best explained by signature SBS5 from the Catalogue of Somatic Mutations in Cancer (COSMIC) mutational signatures, a clock-like pattern correlating with the age of the individual. The count of ENSMs per individual also showed an increasing trend with age. Among the mutated sites, we found 2 sites tend to have more mutations in older individuals (16:6899517 [RBFOX1], p = 0.04; 4:21788463 [KCNIP4], p < 0.05). In addition, 2 sites were found to have a higher odds ratio to detect a somatic mutation in AD samples (6:73374221 [KCNQ5], p = 0.01 and 13:36667102 [DCLK1], p = 0.02). Thirty-two genes that harbor somatic mutations unique to AD and the KCNQ5 and DCLK1 genes were used for gene ontology (GO)-term enrichment analysis. We found the AD-specific ENSMs enriched in the GO-term "vocalization behavior" and "intraspecies interaction between organisms." Of interest we observed both age-specific and AD-specific ENSMs enriched in the K+ channel-associated genes. Discussion Our results show that combining scRNA-seq and WGS data can successfully detect putative somatic mutations. The putative somatic mutations detected from ROSMAP data set have provided new insights into the association of AD and aging with brain somatic mutagenesis.
Collapse
Affiliation(s)
- Meng Zhang
- Delft Bioinformatics Lab (M.Z., G.A.B., H.H., M.J.T.R.), Delft University of Technology; Department of Human Genetics (M.Z., H.H.), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC; and Department of Human Genetics (G.A.B., M.J.T.R.), Leiden University Medical Center, the Netherlands
| | - Gerard A Bouland
- Delft Bioinformatics Lab (M.Z., G.A.B., H.H., M.J.T.R.), Delft University of Technology; Department of Human Genetics (M.Z., H.H.), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC; and Department of Human Genetics (G.A.B., M.J.T.R.), Leiden University Medical Center, the Netherlands
| | - Henne Holstege
- Delft Bioinformatics Lab (M.Z., G.A.B., H.H., M.J.T.R.), Delft University of Technology; Department of Human Genetics (M.Z., H.H.), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC; and Department of Human Genetics (G.A.B., M.J.T.R.), Leiden University Medical Center, the Netherlands
| | - Marcel J T Reinders
- Delft Bioinformatics Lab (M.Z., G.A.B., H.H., M.J.T.R.), Delft University of Technology; Department of Human Genetics (M.Z., H.H.), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC; and Department of Human Genetics (G.A.B., M.J.T.R.), Leiden University Medical Center, the Netherlands
| |
Collapse
|