1
|
Alcala A, Osborne B, Allen B, Seaton-Terry A, Kirkland T, Whalen M. Toll-like receptors in the mechanism of tributyltin-induced production of pro-inflammatory cytokines, IL-1β and IL-6. Toxicology 2022; 472:153177. [PMID: 35405286 PMCID: PMC9081264 DOI: 10.1016/j.tox.2022.153177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
Tributyltin (TBT) is an environmental contaminant due to its use in a variety of applications as a biocide, including in marine anti-fouling paints. It has been detected in a number of human tissues including blood. Previous studies have shown that exposure to TBT increases the cellular production (secretion plus intracellular levels) of the pro-inflammatory cytokines IL-1β and IL-6 by peripheral blood mononuclear cells (PMBCs) and this increase requires MAPK activation. Toll-like receptors (TLR) activate immune cells to produce pro-inflammatory cytokines in response to pathogen associated molecular patterns (PAMPs) and damage associated molecular patterns (DAMPs) leading to activation of MAPKs as well as other intracellular components that regulate cytokine production. The current study shows that selective inhibition of TLRs 4,1/2, and 8 diminishes the ability of TBT to stimulate IL-1β and IL-6 production. However, selective inhibition of TLR3 enhanced the TBT-induced production of IL-1β. This indicates that TBT may be either directly or indirectly interacting with certain TLR receptors as part of its mechanism of stimulating pro-inflammatory cytokine production. These results provide an important advance in understanding TBT stimulation of IL-1β and IL-6, which has the potential to cause chronic inflammation and its attendant pathologies.
Collapse
Affiliation(s)
- Aliyah Alcala
- Departments of Biology and Chemistry, Tennessee State University, Nashville, TN 37209, USA
| | - Brooke Osborne
- Departments of Biology and Chemistry, Tennessee State University, Nashville, TN 37209, USA
| | - Blake Allen
- Departments of Biology and Chemistry, Tennessee State University, Nashville, TN 37209, USA
| | - Aleshia Seaton-Terry
- Departments of Biology and Chemistry, Tennessee State University, Nashville, TN 37209, USA
| | - Toran Kirkland
- Departments of Biology and Chemistry, Tennessee State University, Nashville, TN 37209, USA
| | - Margaret Whalen
- Departments of Biology and Chemistry, Tennessee State University, Nashville, TN 37209, USA.
| |
Collapse
|
2
|
Schjenken JE, Green ES, Overduin TS, Mah CY, Russell DL, Robertson SA. Endocrine Disruptor Compounds-A Cause of Impaired Immune Tolerance Driving Inflammatory Disorders of Pregnancy? Front Endocrinol (Lausanne) 2021; 12:607539. [PMID: 33912131 PMCID: PMC8072457 DOI: 10.3389/fendo.2021.607539] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Endocrine disrupting compounds (EDCs) are prevalent and ubiquitous in our environment and have substantial potential to compromise human and animal health. Amongst the chronic health conditions associated with EDC exposure, dysregulation of reproductive function in both females and males is prominent. Human epidemiological studies demonstrate links between EDC exposure and infertility, as well as gestational disorders including miscarriage, fetal growth restriction, preeclampsia, and preterm birth. Animal experiments show EDCs administered during gestation, or to either parent prior to conception, can interfere with gamete quality, embryo implantation, and placental and fetal development, with consequences for offspring viability and health. It has been presumed that EDCs operate principally through disrupting hormone-regulated events in reproduction and fetal development, but EDC effects on maternal immune receptivity to pregnancy are also implicated. EDCs can modulate both the innate and adaptive arms of the immune system, to alter inflammatory responses, and interfere with generation of regulatory T (Treg) cells that are critical for pregnancy tolerance. Effects of EDCs on immune cells are complex and likely exerted by both steroid hormone-dependent and hormone-independent pathways. Thus, to better understand how EDCs impact reproduction and pregnancy, it is imperative to consider how immune-mediated mechanisms are affected by EDCs. This review will describe evidence that several EDCs modify elements of the immune response relevant to pregnancy, and will discuss the potential for EDCs to disrupt immune tolerance required for robust placentation and optimal fetal development.
Collapse
Affiliation(s)
- John E. Schjenken
- Adelaide Medical School and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The Hunter Medical Research Institute, New Lambton Heights and the University of Newcastle, Newcastle, NSW, Australia
| | - Ella S. Green
- Adelaide Medical School and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Tenuis S. Overduin
- Adelaide Medical School and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Chui Yan Mah
- Adelaide Medical School and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Darryl L. Russell
- Adelaide Medical School and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Sarah A. Robertson
- Adelaide Medical School and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Sarah A. Robertson,
| |
Collapse
|
3
|
Lawrence S, Ismail F, Jamal SZ, Whalen MM. Tributyltin stimulates synthesis of interferon gamma and tumor necrosis factor alpha in human lymphocytes. J Appl Toxicol 2018; 38:1081-1090. [PMID: 29532501 PMCID: PMC5997500 DOI: 10.1002/jat.3617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/20/2022]
Abstract
Tributyltin (TBT) is found in human blood and other tissues and thus is of considerable concern as to its effects on human health. Previous studies have demonstrated that TBT has detrimental effects on immune function. Recently, we found that exposures to TBT caused increased secretion of two important proinflammatory cytokines, tumor necrosis factor alpha (TNFα) and interferon gamma (IFNγ). Elevation of either of these cytokines has the potential to cause chronic inflammation, which is an important factor in a number of diseases including cancer. The current study examined the mechanism of TBT-induced elevations of TNFα and IFNγ secretion and found that the p38 mitogen-activated protein kinase pathway was essential to the ability of TBT to stimulate secretion. Additionally, this study demonstrated that increased secretion of these cytokines was due to TBT-induced increases in their overall synthesis, rather than simply being due to an increase in the release of already formed proteins. The TBT-induced increases in synthesis were evident within 6 hours of exposure. The p38 mitogen-activated protein kinase pathway is also necessary for the TBT-induced increases in both TNFα and IFNγ synthesis. The role of increased transcription of TNFα and IFNγ mRNA in response to TBT exposures as a possible explanation for the increased synthesis of these cytokines was also examined. It was found that increased mRNA levels did not appear to explain fully the increases in either TNFα or IFNγ synthesis. Thus, TBT is able to increase secretion of two important proinflammatory cytokines by increasing their synthesis.
Collapse
Affiliation(s)
- Shanieek Lawrence
- Departments of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - Farah Ismail
- Departments of Chemistry, Tennessee State University, Nashville, TN, 37209, USA
| | - Sarah Z Jamal
- Departments of Chemistry, Tennessee State University, Nashville, TN, 37209, USA
| | - Margaret M Whalen
- Departments of Chemistry, Tennessee State University, Nashville, TN, 37209, USA
| |
Collapse
|
4
|
Kitamura SI, Akizuki M, Song JY, Nakayama K. Tributyltin exposure increases mortality of nodavirus infected Japanese medaka Oryzias latipes larvae. MARINE POLLUTION BULLETIN 2017; 124:835-838. [PMID: 28222863 DOI: 10.1016/j.marpolbul.2017.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/29/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
We investigated the effect of combined exposure to nodavirus infection and TBT on medaka (Oryzias latipes). Medaka larvae were infected by immersion in medium containing nodavirus at titers of 102.5, 103.5, or 104.5 TCID50/mL. Infected fish then were exposed to TBT at 0, 0.17, 0.52, 1.6, or 4.7μg/L. Of the 12 groups exposed to both stressors, the mortalities of 6 (102.5 TCID50/mL+0.52, 1.6, or 4.7μg/L, 103.5 TCID50/mL+4.7μg/L and 104.5 TCID50/mL+1.6 or 4.7μg/L) were significantly higher than that of each TBT control. Specifically, mortality was 46±5.5% in the group exposed to both 102.5 TCID50/mL virus and 0.52μg/L TBT, which represent the lowest observed effective dose and concentration, respectively, among the 6 groups with increased mortalities. Our results suggest that combined exposure to both stressors suppresses antiviral mechanisms in the fish, thus increasing mortality.
Collapse
Affiliation(s)
- Shin-Ichi Kitamura
- Centre for Marine Environmental Studies (CMES), Ehime University, Matsuyama 790-8577, Japan.
| | - Masaki Akizuki
- Centre for Marine Environmental Studies (CMES), Ehime University, Matsuyama 790-8577, Japan
| | - Jun-Young Song
- Pathology Division, National Fisheries Research and Development Institute, Busan 619-902, Republic of Korea
| | - Kei Nakayama
- Centre for Marine Environmental Studies (CMES), Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|
5
|
Whalen MM, Odman-Ghazi SO. Effects of adenylyl cyclase and protein kinase A inhibition on signaling enzymes in natural killer cells: comparison to tributyltin. Hum Exp Toxicol 2016; 25:333-40. [PMID: 16866191 DOI: 10.1191/0960327106ht630oa] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Natural killer (NK) cells are lymphocytes capable of destroying tumor cells and virally-infected cells without prior sensitization. In a previous study, we found that inhibition of adenylyl cyclase (AC) or cAMP-dependent protein kinase (PKA) decreased the ability of NK cells to destroy tumor cells. We also found that the environmental contaminant tributyltin (TBT), at concentrations of 300 500 nM, decreased tumor-cell lysis by NK cells, as well as their intracellular levels of cAMP. This suggested that the decreases in cAMP associated with TBT (300 500 nM) may, in part, be responsible for loss of cytotoxic function. Here, we investigated the effects of inhibition of AC or PKA on enzymes that are required in the NK tumorolytic process and compared them to those of TBT exposure. The enzymes studied were: the protein tyrosine kinase (PTK), syk; phospholipase C gamma1 (PLCg1); and the mitogen activated protein kinase (MAPK), p44/42. Exposure of NK cells to the AC inhibitor 2?,5?-dideoxyadenosine (DDA) significantly increased the total level of PLCg1 by 67% after 60 min and the level of p44/42 by about 30%. Exposure to the PKA inhibitor H-89 significantly increased the levels of the phosphorylated (activated) p44/42 (90%) after 60 min. Exposure to TBT increased the levels of PLCg1 by about 50%. Previously, we found that exposure to TBT increased the phosphorylation of p44/42 within 5 min. These results indicate that AC inhibition caused alterations of the levels of key enzymes, while decreased PKA activity caused an increase in p44/42 activation. They also suggest that the effects of decreased levels of cAMP on these key cytotoxic signaling proteins may overlap, to a very limited extent, with those of TBT.
Collapse
Affiliation(s)
- M M Whalen
- Department of Chemistry, Tennessee State University, Nashville, TN 37209, USA.
| | | |
Collapse
|
6
|
Rana K, Whalen M. Activation of protein kinase C and protein kinase D in human natural killer cells: effects of tributyltin, dibutyltin, and tetrabromobisphenol A. Toxicol Mech Methods 2015; 25:680-8. [PMID: 26228090 DOI: 10.3109/15376516.2015.1070226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Up to now, the ability of target cells to activate protein kinase C (PKC) and protein kinase D (PKD) (which is often a downstream target of PKC) has not been examined in natural killer (NK) lymphocytes. Here we examined whether exposure of human NK cells to lysis sensitive tumor cells activated PKC and PKD. The results of these studies show for the first time that activation of PKC and PKD occurs in response to target cell binding to NK cells. Exposure of NK cells to K562 tumor cells for 10 and 30 min increased phosphorylation/activation of both PKC and PKD by roughly 2-fold. Butyltins (tributyltin (TBT), dibutyltin (DBT)) and brominated compounds (tetrabromobisphenol A (TBBPA)) are environmental contaminants that are found in human blood. Exposures of NK cells to TBT, DBT, or TBBPA decrease NK cell lytic function in part by activating the mitogen-activated protein kinases (MAPKs) that are part of the NK lytic pathway. We established that PKC and PKD are part of the lytic pathway upstream of MAPKs and thus we investigated whether DBT, TBT, and TBBPA exposures activated PKC and PKD. TBT-activated PKC by 2-3-folds at 10 min at concentrations ranging from 50 to 300 nM while DBT caused a 1.3-fold activation at 2.5 µM at 10 min. Both TBT and DBT caused an approximately 2-fold increase in phosphorylation/activation of PKC. Exposures to TBBPA caused no statistically significant changes in either PKC or PKD activation.
Collapse
Affiliation(s)
| | - Margaret Whalen
- b Department of Chemistry , Tennessee State University , Nashville , TN , USA
| |
Collapse
|
7
|
Lawrence S, Reid J, Whalen M. Secretion of interferon gamma from human immune cells is altered by exposure to tributyltin and dibutyltin. ENVIRONMENTAL TOXICOLOGY 2015; 30:559-571. [PMID: 24357260 PMCID: PMC4065226 DOI: 10.1002/tox.21932] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/03/2013] [Indexed: 06/03/2023]
Abstract
Tributyltin (TBT) and dibutyltin (DBT) are widespread environmental contaminants found in food, beverages, and human blood samples. Both of these butyltins (BTs) interfere with the ability of human natural killer (NK) cells to lyse target cells and alter secretion of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) from human immune cells in vitro. The capacity of BTs to interfere with secretion of other pro-inflammatory cytokines has not been examined. Interferon gamma (IFNγ) is a modulator of adaptive and innate immune responses, playing an important role in overall immune competence. This study shows that both TBT and DBT alter secretion of IFNγ from human immune cells. Peripheral blood cell preparations that were increasingly reconstituted were used to determine if exposures to either TBT or DBT affected IFNγ secretion and how the makeup of the cell preparation influenced that effect. IFNγ secretion was examined after 24 h, 48 h, and 6 day exposures to TBT (200 - 2.5 nM) and DBT (5 - 0.05 µM) in highly enriched human NK cells, a monocyte-depleted preparation of PBMCs, and monocyte-containing PBMCs. Both BTs altered IFNγ secretion from immune cells at most of the conditions tested (either increasing or decreasing secretion). However, there was significant variability among donors as to the concentrations and time points that showed changes as well as the baseline secretion of IFNγ. The majority of donors showed an increase in IFNγ secretion in response to at least one concentration of TBT or DBT at a minimum of one length of exposure.
Collapse
Affiliation(s)
- Shanieek Lawrence
- Department of Biological Sciences, Tennessee State University, 3500 John A. Merritt Blvd., Nashville, Tennessee, 37209, USA
| | | | | |
Collapse
|
8
|
Cato A, Celada L, Kibakaya EC, Simmons N, Whalen MM. Brominated flame retardants, tetrabromobisphenol A and hexabromocyclododecane, activate mitogen-activated protein kinases (MAPKs) in human natural killer cells. Cell Biol Toxicol 2014; 30:345-60. [PMID: 25341744 PMCID: PMC4246052 DOI: 10.1007/s10565-014-9289-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/13/2014] [Indexed: 01/10/2023]
Abstract
Natural killer (NK) cells provide a vital surveillance against virally infected cells, tumor cells, and antibody-coated cells through the release of cytolytic mediators and gamma interferon (IFN-γ). Hexabromocyclododecane (HBCD) is a brominated flame retardant used primarily in expanded (EPS) and extruded (XPS) polystyrene foams for thermal insulation in the building and construction industry. Tetrabromobisphenol A (TBBPA) is used both as a reactive and an additive flame retardant in a variety of materials. HBCD and TBBPA contaminate the environment and are found in human blood samples. In previous studies, we have shown that other environmental contaminants, such as the dibutyltin (DBT) and tributyltin (TBT), decrease NK lytic function by activating mitogen-activated protein kinases (MAPKs) in the NK cells. HBCD and TBBPA also interfere with NK cell(s) lytic function. The current study evaluates whether HBCD and/or TBBPA have the capacity to activate MAPKs and MAPK kinases (MAP2Ks). The effects of concentrations of HBCD and TBBPA that inhibited lytic function on the phosphorylation state and total levels of the MAPKs (p44/42, p38, and JNK) and the phosphorylation and total levels of the MAP2Ks (MEK1/2 and MKK3/6) were examined. Results indicate that exposure of human NK cells to 10-0.5 μM HBCD or TBBPA activate MAPKs and MAP2Ks. This HBCD and TBBPA-induced activation of MAPKs may leave them unavailable for activation by virally infected or tumor target cells and thus contributes to the observed decreases in lytic function seen in NK cells exposed to HBCD and TBBPA.
Collapse
Affiliation(s)
- Anita Cato
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209
| | - Lindsay Celada
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209
| | | | - Nadia Simmons
- Department of Chemistry, Tennessee State University, Nashville, TN 37209
| | - Margaret M. Whalen
- Department of Chemistry, Tennessee State University, Nashville, TN 37209
| |
Collapse
|
9
|
Celada LJ, Whalen MM. Effects of butyltins on mitogen-activated-protein kinase kinase kinase and Ras activity in human natural killer cells. J Appl Toxicol 2014; 34:1002-11. [PMID: 24038145 PMCID: PMC3868639 DOI: 10.1002/jat.2921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/10/2013] [Accepted: 07/21/2013] [Indexed: 01/05/2023]
Abstract
Butyltins (BTs) contaminate the environment and are found in human blood. BTs, tributyltin (TBT) and dibutyltin (DBT) diminish the cytotoxic function and levels of key proteins of human natural killer (NK) cells. NK cells are an initial immune defense against tumors, virally infected cells and antibody-coated cells and thus critical to human health. The signaling pathways that regulate NK cell functions include mitogen-activated protein kinases (MAPKs). Studies have shown that exposure to BTs leads to activation of specific MAPKs and MAPK kinases (MAP2Ks) in human NK cells. MAP2K kinases (MAP3Ks) are upstream activators of MAP2Ks, which then activate MAPKs. The current study examined if BT-induced activation of MAP3Ks was responsible for MAP2K and thus, MAPK activation. This study examines the effects of TBT and DBT on the total levels of two MAP3Ks, c-Raf and ASK1, as well as activating and inhibitory phosphorylation sites on these MAP3Ks. In addition, the immediate upstream activator of c-Raf, Ras, was examined for BT-induced alterations. Our results show significant activation of the MAP3K, c-Raf, in human NK cells within 10 min of TBT exposure and the MAP3K, ASK1, after 1 h exposures to TBT. In addition, our results suggest that both TBT and DBT affect the regulation of c-Raf.
Collapse
Affiliation(s)
- Lindsay J Celada
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| | | |
Collapse
|
10
|
Wang Y, Wang S, Luo X, Yang Y, Jian F, Wang X, Xie L. The roles of DNA damage-dependent signals and MAPK cascades in tributyltin-induced germline apoptosis in Caenorhabditis elegans. CHEMOSPHERE 2014; 108:231-238. [PMID: 24534158 DOI: 10.1016/j.chemosphere.2014.01.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/23/2013] [Accepted: 01/11/2014] [Indexed: 06/03/2023]
Abstract
The induction of apoptosis is recognized to be a major mechanism of tributyltin (TBT) toxicity. However, the underlying signaling pathways for TBT-induced apoptosis remain unclear. In this study, using the nematode Caenorhabditis elegans, we examined whether DNA damage response (DDR) pathway and mitogen-activated protein kinase (MAPK) signaling cascades are involved in TBT-induced germline apoptosis and cell cycle arrest. Our results demonstrated that exposing worms to TBT at the dose of 10nM for 6h significantly increased germline apoptosis in N2 strain. Germline apoptosis was absent in strains that carried ced-3 or ced-4 loss-of-function alleles, indicating that both caspase protein CED-3 and Apaf-1 protein CED-4 were required for TBT-induced apoptosis. TBT-induced apoptosis was blocked in the Bcl-2 gain-of-function strain ced-9(n1950), whereas TBT induced a minor increase in the BH3-only protein EGL-1 mutated strain egl-1(n1084n3082). Checkpoint proteins HUS-1 and CLK-2 exerted proapoptotic effects, and the null mutation of cep-1, the homologue of tumor suppressor gene p53, significantly inhibited TBT-induced apoptosis. Apoptosis in the loss-of-function strains of ERK, JNK and p38 MAPK signaling pathways were completely or mildly suppressed under TBT stress. These results were supported by the results of mRNA expression levels of corresponding genes. The present study indicated that TBT-induced apoptosis required the core apoptotic machinery, and that DDR genes and MAPK pathways played essential roles in signaling the processes.
Collapse
Affiliation(s)
- Yun Wang
- Department of Life Sciences, Huainan Normal University, Huainan, Anhui 232001, PR China.
| | - Shunchang Wang
- Department of Life Sciences, Huainan Normal University, Huainan, Anhui 232001, PR China
| | - Xun Luo
- Department of Life Sciences, Huainan Normal University, Huainan, Anhui 232001, PR China
| | - Yanan Yang
- Department of Life Sciences, Huainan Normal University, Huainan, Anhui 232001, PR China
| | - Fenglei Jian
- Department of Life Sciences, Huainan Normal University, Huainan, Anhui 232001, PR China
| | - Xuemin Wang
- Department of Life Sciences, Huainan Normal University, Huainan, Anhui 232001, PR China
| | - Lucheng Xie
- Department of Life Sciences, Huainan Normal University, Huainan, Anhui 232001, PR China
| |
Collapse
|
11
|
Hurt K, Hurd-Brown T, Whalen M. Tributyltin and dibutyltin alter secretion of tumor necrosis factor alpha from human natural killer cells and a mixture of T cells and natural killer cells. J Appl Toxicol 2013; 33:503-10. [PMID: 23047847 PMCID: PMC3570729 DOI: 10.1002/jat.2822] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/22/2012] [Accepted: 08/22/2012] [Indexed: 01/02/2023]
Abstract
Butyltins (BTs) have been in widespread use. Tributyltin (TBT) has been used as a biocide in a variety of applications and is found in human blood samples. Dibutyltin (DBT) has been used as a stabilizer in polyvinyl chloride plastics and as a de-worming agent in poultry. DBT, like TBT, is found in human blood. Human natural killer (NK) cells are the earliest defense against tumors and viral infections and secrete the cytokine tumor necrosis factor-alpha (TNF-α). TNF-α is an important regulator of adaptive and innate immune responses. TNF-α promotes inflammation and an association between malignant transformation and inflammation has been established. Previously, we have shown that TBT and DBT were able to interfere with the ability of NK cells to lyse tumor target cells. Here we show that BTs alter cytokine secretion by NK cells as well as a mixture of T and NK lymphocytes (T/NK cells). We examined 24-, 48-h and 6-day exposures to TBT (200-2.5 nM) and DBT (5-0.05 μM) on TNF-α secretion by highly enriched human NK cells and T/NK cells. The results indicate that TBT (200-2.5 nM) decreased TNF-α secretion from NK cells. In the T/NK cells, 200 nM TBT decreased secretion whereas 100-5 nM TBT increased secretion of TNF-α. NK cells or T/NK cells exposed to higher concentrations of DBT showed decreased TNF-α secretion whereas lower concentrations showed increased secretion. The effects of BTs on TNF-α secretion are seen at concentrations present in human blood.
Collapse
Affiliation(s)
- Kelsi Hurt
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | | | | |
Collapse
|
12
|
Katika MR, Hendriksen PJ, de Ruijter NC, van Loveren H, Peijnenburg A. Immunocytological and biochemical analysis of the mode of action of bis (tri-n-butyltin) tri-oxide (TBTO) in Jurkat cells. Toxicol Lett 2012; 212:126-36. [DOI: 10.1016/j.toxlet.2012.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/10/2012] [Indexed: 01/09/2023]
|
13
|
Taylor TR, Whalen MM. Ziram activates mitogen-activated protein kinases and decreases cytolytic protein levels in human natural killer cells. Toxicol Mech Methods 2011; 21:577-84. [PMID: 21859362 DOI: 10.3109/15376516.2011.578170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human natural killer (NK) cells are central in immune defense with their ability to lyse tumor cells and virally infected cells. Tumor formation and viral infection may increase if NK cytotoxic function is disrupted. Ziram (zinc dithiocarbamate) is used as an accelerating agent in the production of latex and to protect various fruits and vegetables from fungal infection. Previously, we have shown that exposure to ziram inhibits NK lytic function. Butyltin environmental contaminants, which also inhibit NK lytic function, cause rapid activations of mitogen-activated protein kinases (MAPKs) and decreases in expression of the cytolytic proteins granzyme B and perforin (after 24 h) in exposed NK cells. MAPKs are important regulators of the lytic response of NK cells, and spurious activation of these enzymes by contaminants would leave the NK cells unable to respond to appropriate targets. This study examined the effects of ziram exposures on MAPKs (p44/42, p38, and c-jun-N-terminal kinase) and on levels of cytolytic proteins. Ten-minute to 6-h exposures of NK cells to ziram caused activation of MAPKs, p44/42, and p38. Exposure to ziram for 24 h caused a decrease in granzyme B and perforin levels. MAPK inhibitors were able to prevent these ziram-induced decreases in granzyme B and perforin. These results suggest that ziram-induced MAPK activation is at least in part responsible for decreased cytolytic function in ziram-exposed NK cells. Furthermore, the results indicate that these changes are in common with other environmental contaminants that have been shown to decrease NK lytic function.
Collapse
Affiliation(s)
- Thyneice R Taylor
- Department of Biological Sciences, Tennessee State University , Nashville, TN 37209 , USA
| | | |
Collapse
|
14
|
Dudimah FD, Abraha A, Wang X, Whalen MM. Activation of p44/42 in human natural killer cells decreases cell-surface protein expression: Relationship to tributyltin-induced alterations of protein expression. Toxicol Mech Methods 2010; 20:544-55. [PMID: 20883105 PMCID: PMC2962685 DOI: 10.3109/15376516.2010.518174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Tributyltin (TBT) activates the mitogen activated protein kinase (MAPK), p44/42 in human natural killer (NK) cells. TBT also reduces NK cytotoxic function and decreases the expression of several NK-cell proteins. To understand the role that p44/42 activation plays in TBT-induced loss of NK cell function, this study investigated how selective activation of p44/42 by phorbol 12-myristate 13-acetate (PMA) affects NK cells. Previously it was shown that PMA caused losses of lytic function similar to those seen with TBT exposures. This study examined activation of p44/42 in the regulation of NK-cell protein expression and how this regulation may explain the protein expression changes seen with TBT exposures. NK cells exposed to PMA were examined for levels of cell-surface proteins, granzyme mRNA, and perforin mRNA expression. The expression of CD11a, CD16, CD18, and CD56 were reduced, perforin mRNA levels were unchanged, and granzyme mRNA levels were increased. To verify that activation of p44/42 was responsible for the alterations seen in CD11a, CD16, CD18, and CD56 with PMA, NK cells were treated with the p44/42 pathway inhibitor (PD98059) prior to PMA exposures. In the presence of PD98059, PMA caused no decreases in the expression of the cell-surface proteins. Results of these studies indicate that the activation of p44/42 may lead to the loss of NK cell cytotoxic function by decreasing the expression of CD11a, CD16, CD18, and CD56. Further, activation of p44/42 appears to be at least in part responsible for the TBT-induced decreases in expression of CD16, CD18, and CD56.
Collapse
Affiliation(s)
- Fred D Dudimah
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | | | | | | |
Collapse
|
15
|
Abraha AB, Rana K, Whalen MM. Role of protein kinase C in TBT-induced inhibition of lytic function and MAPK activation in human natural killer cells. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 59:661-669. [PMID: 20390410 PMCID: PMC2909453 DOI: 10.1007/s00244-010-9520-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/29/2010] [Indexed: 05/29/2023]
Abstract
Human natural killer (NK) cells are lymphocytes that destroy tumor and virally infected cells. Previous studies have shown that exposure of NK cells to tributyltin (TBT) greatly diminishes their ability to destroy tumor cells (lytic function) while activating mitogen-activated protein kinases (MAPK) (p44/42, p38, and JNK) in NK cells. The signaling pathway that regulates NK lytic function appears to include activation of protein kinase C(PKC) as well as MAPK activity. TBT-induced activation of MAPKs would trigger a portion of the NK lytic signaling pathway, which would then leave the NK cell unable to trigger this pathway in response to a subsequent encounter with a target cell. In the present study we evaluated the involvement of PKC in inhibition of NK lysis of tumor cells and activation of MAPKs caused by TBT exposure. TBT caused a 2–3-fold activation of PKC at concentrations ranging from 50 to 300 nM (16–98 ng/ml),indicating that activation of PKC occurs in response to TBT exposure. This would then leave the NK cell unable to respond to targets. Treatment with the PKC inhibitor, bisindolylmaleimide I, caused an 85% decrease in the ability of NK cells to lyse tumor cells, validating the involvement of PKC in the lytic signaling pathway. The role of PKC in the activation of MAPKs by TBT was also investigated using bisindolylmaleimide I. The results indicated that, in NK cells where PKC activation was blocked, there was no activation of the MAPK, p44/42 in response to TBT.However, TBT-induced activation of the MAPKs, p38 and JNK did not require PKC activation. These results indicate the pivotal role of PKC in the TBT-induced loss of NK lytic function including activation of p44/42 by TBT in NK cells.
Collapse
Affiliation(s)
- Abraham B. Abraha
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Krupa Rana
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Margaret M. Whalen
- Department of Chemistry, Tennessee State University, Nashville, TN 37209, USA
| |
Collapse
|
16
|
Dudimah FD, Griffey D, Wang X, Whalen MM. Activation of p44/42 MAPK plays a role in the TBT-induced loss of human natural killer (NK) cell function. Cell Biol Toxicol 2010; 26:435-44. [PMID: 20213532 PMCID: PMC2891216 DOI: 10.1007/s10565-010-9154-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 06/18/2009] [Indexed: 12/24/2022]
Abstract
Natural killer (NK) cells destroy (lyse) tumor cells, virally infected cells, and antibody-coated cells. Previous studies indicated that exposure to the environmental contaminant tributyltin (TBT) decreases the lytic function of NK cells and activates mitogen-activated protein kinases (MAPK), including p44/42 (Aluoch and Whalen Toxicology 209:263-277, 2005). If activation of p44/42 is required for TBT-induced decreases of lytic function, then activation of p44/42 to similar extents by pharmacological agents such as phorbol 12-myristate 13-acetate (PMA) should mimic to some extent changes induced in NK cells with TBT exposures. NK cells were exposed to PMA concentrations between 0.25 and 10 nM for 10 min, 1 h, and 6 h before determining the lytic function ((51)Cr release assay) and phosphorylation state of MAPKs (Western blot). A 1-h exposure of NK cells to 5 nM PMA resulted in a loss of lytic function of 47%. Western blot analysis showed that a 1-h exposure to 5 nM PMA caused a sixfold increase in phospho-p44/42 levels. Previous studies showed a fivefold increase in phospho-p44/42 in response to a 1-h exposure to 300 nM TBT. Exposure to 300 nM TBT caused about a 40% decrease in lytic function. This study supports the hypothesis that p44/42 activation (as seen with TBT exposures) can cause a loss of NK-cell lytic function.
Collapse
Affiliation(s)
- Fred D Dudimah
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | | | | | | |
Collapse
|
17
|
Odman-Ghazi SO, Abraha A, Isom ET, Whalen MM. Dibutyltin activates MAP kinases in human natural killer cells, in vitro. Cell Biol Toxicol 2010; 26:469-79. [PMID: 20333459 PMCID: PMC2892640 DOI: 10.1007/s10565-010-9157-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 02/25/2010] [Indexed: 11/28/2022]
Abstract
Previous studies have shown that dibutyltin (DBT) interferes with the function of human natural killer (NK) cells, diminishing their capacity to destroy tumor cells, in vitro. DBT is a widespread environmental contaminant and has been found in human blood. As NK cells are our primary immune defense against tumor cells, it is important to understand the mechanism by which DBT interferes with their function. The current study examines the effects of DBT exposures on key enzymes in the signaling pathway that regulates NK responsiveness to tumor cells. These include several protein tyrosine kinases (PTKs), mitogen-activated protein kinases (MAPKs), and mitogen-activated protein kinase kinases (MAP2Ks). The results showed that in vitro exposures of NK cells to DBT had no effect on PTKs. However, exposures to DBT for as little as 10 min were able to increase the phosphorylation (activation) of the MAPKs. The DBT-induced activations of these MAPKs appear to be due to DBT-induced activations of the immediate upstream activators of the MAPKs, MAP2Ks. The results suggest that DBT-interference with the MAPK signaling pathway is a consequence of DBT exposures, which could account for DBT-induced decreases in NK function.
Collapse
Affiliation(s)
- Sabah O. Odman-Ghazi
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209
| | - Abraham Abraha
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209
| | - Erica Taylor Isom
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209
| | - Margaret M. Whalen
- Department of Chemistry, Tennessee State University, Nashville, TN 37209
| |
Collapse
|
18
|
Person RJ, Whalen MM. Effects of butyltin exposures on MAP kinase-dependent transcription regulators in human natural killer cells. Toxicol Mech Methods 2010; 20:227-33. [PMID: 20370538 PMCID: PMC2874114 DOI: 10.3109/15376511003746034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Natural killer (NK) cells are a major immune defense mechanism against cancer development and viral infection. The butyltins (BTs), tributyltin (TBT) and dibutyltin (DBT), have been widely used in industrial and other applications and significantly contaminate the environment. Both TBT and DBT have been detected in human blood. These compounds inhibit the lytic and binding function of human NK cells and thus could increase the incidence of cancer and viral infections. Butyltin (BT)-induced loss of NK function is accompanied by activation of mitogen activated protein kinases (MAPKs) and decreases in expression of cell-surface and cytolytic proteins. MAPKs activate components of the transcription regulator AP-1 and activate the transcription regulator Elk-1. Based on the fact that BTs activate MAPKs and alter protein expression, the current study examined the effect of BT exposures on the levels and phosphorylation states of the components of AP-1 and the phosphorylation state of Elk-1. Exposure to 300 nM TBT for 10 min increased the phosphorylation of c-Jun in NK cells. One hour exposures to 300 nM and 200 nM TBT increased the phosphorylation and overall level of c-Jun. During a 300 nM treatment with TBT for 1 h the binding activity of AP-1 was significantly decreased. There were no significant alterations of AP-1 components or of Elk-1 with DBT exposures. Thus, it appears that TBT-induced alterations on phosphorylation, total levels, and binding activity of c-Jun might contribute to, but are not fully responsible for, TBT-induced alterations of NK protein expression.
Collapse
Affiliation(s)
- Rachel J Person
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | | |
Collapse
|
19
|
Lane R, Ghazi SO, Whalen MM. Increases in cytosolic calcium ion levels in human natural killer cells in response to butyltin exposure. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 57:816-25. [PMID: 19365649 PMCID: PMC2765521 DOI: 10.1007/s00244-009-9313-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 03/09/2009] [Indexed: 05/27/2023]
Abstract
This study investigated whether exposures to butyltins (BTs), tributylin (TBT), and dibutyltin (DBT) were able to alter cytosolic calcium levels in human natural killer (NK) cells. Additionally, the effects of cytosolic calcium ion increases on the activation state of mitogen-activated protein kinases (MAPKs) in NK cells were also investigated. NK cells are an intital immune defense against the development of tumors or viral infections. TBT and DBT are widespread environmental contaminants, due to their various industrial applications. Both TBT and DBT have been shown to decrease the ability of NK cells to lyse tumor cells (lytic function). TBT has also been shown to activate MAPKs in NK cells. The results of this study indicated that TBT increased cytosolic calcium levels by as much as 100% after a 60-min exposure to 500 nM TBT, whereas DBT increased cytosolic calcium levels to a much smaller extent (and required higher concentrations). The results also indicated that increases in cytosolic calcium could activate MAPKs but only for a short period of time (5 min), whereas previous studies showed that activation of MAPKs by TBT last for at least 6 h. Thus, it appears that TBT-stimulated increases in cytosolic calcium might contribute to, but are not fully responsible for, TBT-induced activation of MAPKs.
Collapse
Affiliation(s)
- Rhonda Lane
- Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | | | | |
Collapse
|
20
|
Hinkson NC, Whalen MM. Hexabromocyclododecane decreases the lytic function and ATP levels of human natural killer cells. J Appl Toxicol 2009; 29:656-61. [PMID: 19551757 PMCID: PMC2788026 DOI: 10.1002/jat.1453] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study investigates the effect of hexabromocyclododecane (HBCD) on the lytic function of human natural killer (NK) cells and on ATP levels in NK cells. NK cells are capable of lysing tumor cells, virally infected cells, and antibody-coated cells. HBCD is a brominated cyclic alkane used primarily as an additive flame retardant. If HBCD interferes with NK cell function, this could increase risk of tumor development and/or viral infection. NK cells were exposed to various concentrations of HBCD for 24 and 48 h and 6 days before determining lytic function and ATP levels. ATP levels and lytic function were also determined in NK cells that were exposed to HBCD for 1 h followed by 24 and 48 h, and 6 days in HBCD-free media. The results indicated that exposure of NK cells to 10 microm HBCD for 24 h causes a very significant decrease in both NK cell lytic function and ATP levels (93.5 and 90.5%, respectively). Exposure of NK cells to 10 microm HBCD for 1 h followed by 24 h in HBCD-free media showed a progressive and persistent loss of lytic function (89.3%) as well as a decrease in ATP levels (46.1%). The results indicate that HBCD exposures decreased lytic function as well as ATP levels. However, a decrease in lytic function was not necessarily accompanied by a similar decrease in ATP. Importantly, these results also indicate that a brief (1 h) exposure to HBCD causes a progressive loss of lytic function over a 6 day period.
Collapse
Affiliation(s)
- Natasha C Hinkson
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | | |
Collapse
|
21
|
Abraha AB, Whalen MM. The role of p44/42 activation in tributyltin-induced inhibition of human natural killer cells: effects of MEK inhibitors. J Appl Toxicol 2009; 29:165-73. [PMID: 18989867 DOI: 10.1002/jat.1397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Destruction of tumor cells is a key function of natural killer (NK) cells. Previous studies have shown that tributyltin (TBT) can significantly reduce the lytic function of the human NK cells with accompanying increases in the phosphorylation (activation) states of the mitogen activated protein kinases (MAPKs), p44/42. The current studies examine the role of p44/42 activation in the TBT-induced reduction of NK-lytic function, by using MAPK kinase (MEK) inhibitors, PD98059 and U0126. A 1 h treatment with PD98059 or U0126 or both decreased the ability of NK cells to lyse K562 tumor cells. PD98059, U0126 or a combination of both inhibitors were able to completely block TBT-induced activation of p44/42. However, when p44/42 activation was blocked by the presence of PD98059, U0126 or the combination, subsequent exposure to TBT was still able to decrease the lytic function of NK cells. These results indicate that TBT-induced activation of p44/42 occurs via the activation of its upstream activator, MEK, and not by a TBT-induced inhibition of p44/42 phosphatase activity. Additionally, as lytic function was never completely blocked by MEK inhibitors, the results indicate that activation of p44/42 pathway is not solely responsible for the activation of lytic function of freshly isolated human NK cells. Finally, the results showed that TBT-induced activation of p44/42 is not solely responsible for the loss of lytic function.
Collapse
Affiliation(s)
- Abraham B Abraha
- Department of Chemistry, Tennessee State University, Nashville, TN 37209-1561, USA
| | | |
Collapse
|
22
|
Urushibara N, Mitsuhashi S, Sasaki T, Kasai H, Yoshimizu M, Fujita H, Oda A. JNK and p38 MAPK are independently involved in tributyltin-mediated cell death in rainbow trout (Oncorhynchus mykiss) RTG-2 cells. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:468-75. [PMID: 19026764 DOI: 10.1016/j.cbpc.2008.10.109] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/29/2008] [Accepted: 10/29/2008] [Indexed: 11/23/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are a family of Ser/Thr protein kinases that transmit various extracellular signals to the nucleus inducing gene expression, cell proliferation, and apoptosis. Recent studies have revealed that organotin compounds induce apoptosis and MAPK phosphorylation/activation in mammal cells. In this study, we elucidated the cytotoxic mechanism of tributyltin (TBT), a representative organotin compound, in rainbow trout (Oncorhynchus mykiss) RTG-2 cells. TBT treatment resulted in significant caspase activation, characteristic morphological changes, DNA fragmentation, and consequent apoptotic cell death in RTG-2 cells. TBT exposure induced the rapid and sustained accumulation of phosphorylated MAPKs, including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAP kinase (p38 MAPK). Further analysis using pharmacological inhibitors against caspases and MAPKs showed that TBT also induced cell death in a caspase-independent manner and that p38 MAPK is involved in TBT-induced caspase-independent cell death, whereas JNK is involved in the caspase-dependent apoptotic pathway. Thus, TBT employs at least two independent signaling cascades to mediate cell death in RTG-2 cells. To our knowledge, this is the first study revealing the relationship between MAPK activation and TBT cytotoxicity in RTG-2 cells.
Collapse
Affiliation(s)
- Noriko Urushibara
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Holloway LN, Pannell KH, Whalen MM. Effects of a series of triorganotins on ATP levels in human natural killer cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2008; 25:43-50. [PMID: 19122738 PMCID: PMC2245884 DOI: 10.1016/j.etap.2007.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Natural killer (NK) cells are our initial immune defense against viral infections and cancer development. Thus, agents that are able to interfere with their function increase the risk of cancer and/or infection. A series of triorganotins, (trimethyltin (TMT), dimethylphenyltin (DMPT), methyldiphenyltin (MDPT), and triphenyltin (TPT)) have been shown to decrease the lytic function of human NK cells. TPT and MDPT were much more effective than DMPT or TMT at reducing lytic function. This study investigates the role that decreased ATP levels may play in decreases in the lytic function of NK cells induced by these OTs. A 24 h exposure to as high as 10 muM TMT caused no decrease in ATP levels even though this level of TMT caused a greater than 75% loss of lytic function. TPT at 200 nM caused a decrease in ATP levels of about 20% while decreasing lytic function by greater than 85%. There was no association between ATP levels and lytic function for any of the compounds when NK cells were exposed for 1h or 24 h. However, after a 48 h exposure to both DMPT and TPT decreased lytic function was associated with decreased ATP levels. There was an association between decreased lytic function and decreased ATP levels after a 6 day exposure to each of the four compounds. These studies indicate that the loss of lytic function seen after 1 h and 24 h exposures to this series of organotins cannot be accounted for by decreases in ATP. However, after longer exposures loss of lytic function may be in part be attributable to inadequate ATP levels.
Collapse
Affiliation(s)
- Laurin N Holloway
- Department of Chemistry, Tennessee State University, Nashville, TN 37209
| | | | | |
Collapse
|
24
|
Odman-Ghazi SO, Person RJ, Whalen MM. Effects of tributyltin on protein tyrosine kinases and phospholipase C gamma in human natural killer cells. Toxicol Mech Methods 2008; 18:25-33. [PMID: 20020888 DOI: 10.1080/15376510701703920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
ABSTRACT Tributyltin (TBT) has been used in wood preservation, marine antifouling paints, disinfection of circulating industrial cooling waters, and slime control in paper mills. Detectable levels have been found in human blood. Exposure to TBT decreases the tumor cell lysing (lytic) function of human natural killer (NK) lymphocytes. In this study we assessed the effects of concentrations of TBT that have been shown to decrease NK lytic function on protein tyrosine kinases (PTKs) (Syk, Zap-70, Src, and Pyk) and phospholipase C gamma (PLC-gamma) in NK cells. Exposure to 500 nM TBT caused no change in phosphorylation of any of the PTKs. A 60-min exposure of NK cells to 500 nM TBT did not significantly affect the phosphorylation state of PLC-gamma at any of the lengths of exposure. However, total levels of PLC-gamma were increased by almost 50% after this exposure. Exposure of NK cells to 300 nM TBT for 5 to 60 min caused no significant changes in the phosphorylation state PTKs or PLC-gamma. Exposure of NK cells to 200 nM TBT for 24 h caused no significant changes in the PTK phosphorylation state or total levels. Cells that were exposed to 300 nM TBT for 1 h followed by 24 h or 48 h in TBT-free media showed a significant increase in the phosphorylated forms of Syk and Zap-70 after 24 h in TBT-free media but not after 48 h. These data indicate that in vitro exposure to TBT caused no changes in PTK or PLC-gamma phosphorylation under most conditions.
Collapse
|
25
|
Dudimah FD, Odman-Ghazi SO, Hatcher F, Whalen MM. Effect of tributyltin (TBT) on ATP levels in human natural killer (NK) cells: relationship to TBT-induced decreases in NK function. J Appl Toxicol 2007; 27:86-94. [PMID: 17149696 DOI: 10.1002/jat.1202] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to investigate the role that tributyltin (TBT)-induced decreases in ATP levels may play in TBT-induced decreases in the tumor lysing (lytic) function of natural killer (NK) cells. NK cells are a subset of lymphocytes that act as an initial immune defense against tumor cells and virally infected cells. TBT is an environmental contaminant that has been detected in human blood, which has been shown to interfere with ATP synthesis. Previous studies have shown that TBT is able to decrease very significantly the lytic function of NK cells. In this study NK cells were exposed to various concentrations of TBT and to two other compounds that interfere with ATP synthesis (rotenone a complex I inhibitor and oligomycin an ATP synthase inhibitor) for various lengths of time before determining the levels of ATP and lytic function. Exposures of NK cells to 10, 25, 50 and 100 nm TBT did not significantly reduce ATP levels after 24 h. However, these same exposures caused significant decreases in cytotoxic function. Studies of brief 1 h exposures to a range of TBT, rotenone and oligomycin concentrations followed by 24 h, 48 h and 6 day periods in compound-free media prior to assaying for ATP levels or cytotoxic function showed that each of the compounds caused persistent decreases in ATP levels and lytic function of NK cells. Exposures to 0.05-5 microm rotenone or oligomycin for 1 h reduced ATP levels by 20-25% but did not have any measurable effect on the ability of NK cells to lyse tumor cells. ATP levels were also decreased by about 20-25% after 24 h or 48 h exposures to rotenone or oligomycin (0.5 microm ), and the lytic function was decreased by about 50%. The results suggest that TBT-induced decreases in ATP levels were not responsible for the loss of cytotoxic function seen at 1 h and 24 h. However, TBT-induced decreases of NK-ATP levels may be at least in part responsible for losses of NK-cytotoxic function seen after 48 h and 6 day exposures.
Collapse
Affiliation(s)
- Fred D Dudimah
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | | | | | | |
Collapse
|
26
|
Gomez FD, Apodaca P, Holloway LN, Pannell KH, Whalen MM. Effect of a series of triorganotins on the immune function of human natural killer cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2007; 23:18-24. [PMID: 21783732 DOI: 10.1016/j.etap.2006.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 05/26/2006] [Accepted: 06/06/2006] [Indexed: 05/21/2023]
Abstract
Natural killer (NK) cells are our initial immune defense against viral infections and cancer development. They are able to destroy tumor and virally infected cells. Thus, agents that are able to interfere with their function increase the risk of cancer and/or infection. Organotins (OTs) have been shown to interfere with the tumor-destroying function of human NK cells. The purpose of the current study was to explore the relationship of a series of triorganotins, that differ in structure by only a single organic group, for their capacity to block NK tumor-cell destroying (lytic) function. Here we examine the series: trimethyltin (TMT), dimethylphenyltin (DMPT), methyldiphenyltin (MDPT), and triphenyltin (TPT). NK cells were exposed to TMT, DMPT, MDPT or TPT for 1, 24, 48h, or 6d. A 1h exposure to TMT, at concentrations as high as 20μM, had no effect on lytic function. However, concentrations as low as 2.5μM were able to decrease NK tumor-destroying function after 6d. A 1h exposure to DMPT had no effect on lytic function, however, after 6d there was an 80-90% decrease in lytic function at 1μM. Exposure to MDPT (as low as 2.5μM) decreased NK function at 1h, after 6d there was as much as a 90% decrease at concentrations as low as 100nM MDPT. TPT decreased lytic function in a manner similar to MDPT, however, it was more effective at 1h than MDPT. The effect of the triorganotins on the ability of NK cells to bind to targets was studied, to determine if this contributed to the loss of lytic function. The relative immunotoxic potential of this series of compounds is TPT≈MDPT>DMPT>TMT.
Collapse
Affiliation(s)
- Fabiola D Gomez
- Department of Chemistry, University of Texas at El Paso, El Paso, TX 79968, United States
| | | | | | | | | |
Collapse
|
27
|
Papaspyrou SD, Thomaidis NS, Lampi EN, Lioupis A. Determination of migration of n-butyltins and n-octyltins to food simulants by gas chromatography–mass spectrometry. Appl Organomet Chem 2007. [DOI: 10.1002/aoc.1235] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Aluoch AO, Odman-Ghazi SO, Whalen MM. Pattern of MAP kinases p44/42 and JNK activation by non-lethal doses of tributyltin in human natural killer cells. Arch Toxicol 2006; 81:271-7. [PMID: 17019560 DOI: 10.1007/s00204-006-0155-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 08/31/2006] [Indexed: 10/24/2022]
Abstract
Tributyltin (TBT) has been shown to disrupt the ability of natural killer (NK) cells to destroy tumor targets in vitro even at exposures of 25 nM for 24 h, but cell viability was not significantly impacted. Thus, evaluation of intracellular molecular events that regulate cell viability in TBT exposed NK cells are of interest. It has been suggested that activation of the mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), may promote apoptosis while activation of the MAPK p44/42 may be crucial in mediating anti-apoptotic stimuli. However, it is well established that increases in pro-apoptotic BCL-2 family members, such as Bax, results in cell death. We have set out to study the effects of a range of TBT concentrations on the MAPKs, JNK and p44/42. Additionally, we examined the effects of TBT on the levels of pro-apoptotic proteins Bax and p53 as well as anti-apoptotic protein Bcl-2. The results show that 300-25 nM TBT activated JNK within 10 min. MAPK p44/42 was also activated by 300-50 nM TBT within 10 min. These data show that while 300-200 nM TBT activates p44/42 significantly more than JNK, the pattern of 100-25 nM TBT activation of these MAPKs may be similar. TBT exposure alters neither pro-apoptotic proteins Bax and p53 nor anti-apoptotic protein Bcl-2 levels at any exposure studied. The results suggest that exposure to TBT activated the anti-apoptotic regulatory p44/42 pathway to a greater extent than the pro-apoptotic JNK pathway, which may explain to some extent how NK cell viability is maintained.
Collapse
Affiliation(s)
- Aloice O Aluoch
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | | | | |
Collapse
|
29
|
Inadera H. The immune system as a target for environmental chemicals: Xenoestrogens and other compounds. Toxicol Lett 2006; 164:191-206. [PMID: 16697129 DOI: 10.1016/j.toxlet.2006.03.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 03/04/2006] [Accepted: 03/20/2006] [Indexed: 01/19/2023]
Abstract
The immune system in higher organisms is under integrated control and has the capacity to rapidly respond to the environment. Recently, there has been a significant increase in the prevalence of allergic diseases. Environmental factors likely play a major role in the explosion of allergy. Although the "hygiene hypothesis" may explain the increase in allergic diseases which are prone to T helper 2 (Th2) immune responses, recent findings highlight the possible involvement of environmental xenobiotic chemicals which can modulate normal immune function. Interestingly, several reports suggest that the prevalence of systemic lupus erythematosus, a Th2-type autoimmune disease, is also increasing, although the development of high-sensitivity immunological tests may be a possible cause. The increased prevalence of autoimmune disease in women, the sexual dimorphism of the immune response, and the immunomodulatory effects of sex steroids, have focused attention on the role of chemicals which influence sex steroids in the development of immune diseases. Moreover, recent reports indicate that some environmental chemicals can work on nuclear hormone receptors, other than sex hormone receptors, and modulate immune reactions. This review focuses on the impact of environmental chemicals on immune system function and pathogenesis of immune diseases, including allergy and autoimmune diseases.
Collapse
Affiliation(s)
- Hidekuni Inadera
- Department of Public Health, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
30
|
Aluoch AO, Odman-Ghazi SO, Whalen MM. Alteration of an essential NK cell signaling pathway by low doses of tributyltin in human natural killer cells. Toxicology 2006; 224:229-37. [PMID: 16781040 DOI: 10.1016/j.tox.2006.05.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 04/26/2006] [Accepted: 05/05/2006] [Indexed: 10/24/2022]
Abstract
Tributyltin (TBT), a toxic and widespread environmental contaminant, has been shown to inhibit natural killer (NK) cell cytotoxic function significantly. Inhibition of NK cell cytotoxic function has the potential to increase viral infections and tumor growth. Upon NK cell binding to lysis-sensitive tumor cells, an intracellular pathway is activated, which generally begins with activation of non-receptor protein tyrosine kinases (PTKs) and ends with mitogen-activated protein kinase (MAPK)-mediated release of lytic granules toward the contacted target cell. In the current studies, we used a cytotoxicity assay to examine how low doses (200nM or lower) of TBT affect cytotoxic function. Additionally, we investigated how low doses of TBT modulate the signaling pathway that dictates lytic granule exocytosis. A 1h exposure to 200, 100, 50 and 25nM TBT significantly decreased cytotoxic function 6d later. We also saw significant activation of p38 and p44/42 by as low as 50nM TBT within ten minutes of exposure. The observed activation of MAPKs, p38 and p44/42, implicated their upstream activators MAPK kinases (MAP2Ks). On examining MAP2Ks, MKK3/6 and MEK1/2, activation was seen within ten minutes. However, when the most upstream signaling molecules in this pathway, non-receptor protein tyrosine kinases (PTKs) such as Syk, ZAP-70, Pyk2 and Src were examined, no significant activation was seen. These data imply that upstream activators of MAP2Ks, MAP2K kinases (MAP3Ks), are activated by TBT exposures and/or that MAP2K phosphatases are being inhibited by TBT. Taken together, these data suggest that TBT-induced activation of MAPKs, p38 and p44/42, is caused by their upstream activators MAP2Ks, MKK3/6 and MEK1/2, respectively.
Collapse
Affiliation(s)
- Aloice O Aluoch
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | | | | |
Collapse
|
31
|
Synthesis, structures and preliminary biological screening of bis(diphenyl)chlorotin complexes and adducts: Ph2ClSn–CH2–R–CH2–SnClPh2, R=p-C6H4, CH2CH2. J Organomet Chem 2006. [DOI: 10.1016/j.jorganchem.2005.12.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Aluoch AO, Whalen MM. Effects of interleukins 2 and 12 on TBT-induced alterations of MAP kinases p38 and p44/42 in human natural killer cells. J Appl Toxicol 2005; 26:132-8. [PMID: 16252257 DOI: 10.1002/jat.1116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
NK cells are lymphocytes in the non-adaptive immune system that protect the body against intracellular pathogens and eliminate tumor cells. Tributyltin (TBT) is a toxic chemical that has been detected in human foods as well as in human blood. The role of TBT in immunosuppression has been described, including inhibition of the human NK-cell cytotoxic function. Previous studies indicated that exposure of NK cells to TBT for 1 h induced progressive and irreversible inhibition of cytotoxic function. However, it was found that if NK cells were incubated in TBT-free media with either IL-2 or IL-12, loss of cytotoxic function was prevented/reversed within 24 h. Molecular studies established that loss of cytotoxic function is accompanied by alteration of MAP kinases (MAPKs) p38 and p44/42 phosphorylation. This study examined whether interleukin-mediated recovery of cytotoxicity involved reversal of tributyltin-altered p38 and p44/42 phosphorylation. The results indicated that there was no substantial IL-2 prevention/reversal of the TBT-induced alteration of phosphorylation of either p38 or p44/42 after either a 24 or 48 h recovery period. Additionally, IL-12 caused no substantial prevention/reversal of the TBT-induced alteration of phosphorylation of the MAPKs seen after either 24 or 48 h. These data suggest that IL-2 and/or IL-12-mediated recovery of NK cytotoxic function is not a result of prevention/reversal of TBT-induced phosphorylation of p38 and p44/42 MAPKs at the 24 or 48 h time points.
Collapse
Affiliation(s)
- Aloice O Aluoch
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | | |
Collapse
|
33
|
Thomas LD, Shah H, Bankhurst AD, Whalen MM. Effects of interleukins 2 and 12 on the levels of granzyme B and perforin and their mRNAs in tributyltin-exposed human natural killer cells. Arch Toxicol 2005; 79:711-20. [PMID: 16032371 DOI: 10.1007/s00204-005-0002-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Accepted: 06/01/2005] [Indexed: 10/25/2022]
Abstract
Natural killer (NK) cells are a subset of lymphocytes that are capable of killing tumor cells, virally infected cells and antibody coated cells. Tributyltin (TBT) is a toxic chemical used for various industrial purposes such as: slime control in paper mills, disinfection of circulating industrial cooling waters, anti-fouling agents, and the preservation of wood. TBT can be found in edible items such as fish. A previous study showed that a 1 h exposure of NK cells to TBT caused persistent inhibition of NK-cell ability to destroy tumor cells in the 24 and 48 h periods following exposure and that this loss of function could be significantly prevented and/or reversed if the NK-stimulatory interleukins (IL) 2 or 12 were present during the 24 and 48 h periods. We had also shown that TBT exposure was able to significantly decrease the protein and mRNA levels of the cytotoxic proteins, granzyme B and perforin, and the phosphorylation of cAMP-response-element-binding protein (CREB) under these conditions. In this study we address the effects of IL-2 and IL-12 on the TBT-induced decreases in NK-cell levels of the cytotoxic proteins, their mRNAs, and CREB phosphorylation. IL-2 appeared to prevent/reverse TBT-induced declines in perforin protein levels and the mRNA for perforin seen in the 24 h period following a 1 h exposure to 300 nM TBT. However, the TBT-induced decreases in the levels of perforin and perforin mRNA seen in the 48 h period following a 1 h exposure to TBT were not statistically significantly prevented/reversed by IL-2. Additionally, the TBT-induced decreases in granzyme B, granzyme B mRNA, and CREB phosphorylation were not statistically significantly reversed by either IL-2 or IL-12 after 24 or 48 h.
Collapse
Affiliation(s)
- LeeShawn D Thomas
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209-1561, USA
| | | | | | | |
Collapse
|