1
|
Rojas Bernal LA, Santamaría García H, Castaño Pérez GA. Electrophysiological biomarkers in dual pathology. REVISTA COLOMBIANA DE PSIQUIATRIA (ENGLISH ED.) 2024; 53:93-102. [PMID: 38677941 DOI: 10.1016/j.rcpeng.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/12/2022] [Indexed: 04/29/2024]
Abstract
INTRODUCTION The co-occurrence of substance use disorder with at least one other mental disorder is called dual pathology, which in turn is characterised by heterogeneous symptoms that are difficult to diagnose and have a poor response to treatment. For this reason, the identification and validation of biomarkers is necessary. Within this group, possible electroencephalographic biomarkers have been reported to be useful in diagnosis, treatment and follow-up, both in neuropsychiatric conditions and in substance use disorders. This article aims to review the existing literature on electroencephalographic biomarkers in dual pathology. METHODS A narrative review of the literature. A bibliographic search was performed on the PubMed, Science Direct, OVID, BIREME and Scielo databases, with the keywords: electrophysiological biomarker and substance use disorder, electrophysiological biomarker and mental disorders, biomarker and dual pathology, biomarker and substance use disorder, electroencephalography, and substance use disorder or comorbid mental disorder. RESULTS Given the greater amount of literature found in relation to electroencephalography as a biomarker of mental illness and substance use disorders, and the few articles found on dual pathology, the evidence is organised as a biomarker in psychiatry for the diagnosis and prediction of risk and as a biomarker for dual pathology. CONCLUSIONS Although the evidence is not conclusive, it suggests the existence of a subset of sites and mechanisms where the effects of psychoactive substances and the neurobiology of some mental disorders could overlap or interact.
Collapse
Affiliation(s)
| | - Hernando Santamaría García
- Centro de Memoria y Cognición Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia; Departamento de Psiquiatría y Fisiología, Universidad Pontificia Javeriana, Bogotá, Colombia
| | | |
Collapse
|
2
|
Moura PC, Raposo M, Vassilenko V. Breath volatile organic compounds (VOCs) as biomarkers for the diagnosis of pathological conditions: A review. Biomed J 2023; 46:100623. [PMID: 37336362 PMCID: PMC10339195 DOI: 10.1016/j.bj.2023.100623] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023] Open
Abstract
Normal and abnormal/pathological status of physiological processes in the human organism can be characterized through Volatile Organic Compounds (VOCs) emitted in breath. Recently, a wide range of volatile analytes has risen as biomarkers. These compounds have been addressed in the scientific and medical communities as an extremely valuable metabolic window. Once collected and analysed, VOCs can represent a tool for a rapid, accurate, non-invasive, and painless diagnosis of several diseases and health conditions. These biomarkers are released by exhaled breath, urine, faeces, skin, and several other ways, at trace concentration levels, usually in the ppbv (μg/L) range. For this reason, the analytical techniques applied for detecting and clinically exploiting the VOCs are extremely important. The present work reviews the most promising results in the field of breath biomarkers and the most common methods of detection of VOCs. A total of 16 pathologies and the respective database of compounds are addressed. An updated version of the VOCs biomarkers database can be consulted at: https://neomeditec.com/VOCdatabase/.
Collapse
Affiliation(s)
- Pedro Catalão Moura
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, Caparica, Portugal
| | - Maria Raposo
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, Caparica, Portugal.
| | - Valentina Vassilenko
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, Caparica, Portugal.
| |
Collapse
|
3
|
Puentes-Osorio Y, Amariles P, Calleja MÁ, Merino V, Díaz-Coronado JC, Taborda D. Potential clinical biomarkers in rheumatoid arthritis with an omic approach. AUTOIMMUNITY HIGHLIGHTS 2021; 12:9. [PMID: 34059137 PMCID: PMC8165788 DOI: 10.1186/s13317-021-00152-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022]
Abstract
Objective To aid in the selection of the most suitable therapeutic option in patients with diagnosis of rheumatoid arthritis according to the phase of disease, through the review of articles that identify omics biological markers. Methods A systematic review in PubMed/Medline databases was performed. We searched articles from August 2014 to September 2019, in English and Spanish, filtered by title and full text; and using the terms "Biomarkers" AND “Rheumatoid arthritis". Results This article supplies an exhaustive review from research of objective measurement, omics biomarkers and how disease activity appraise decrease unpredictability in treatment determinations, and finally, economic, and clinical outcomes of treatment options by biomarkers’ potential influence. A total of 122 articles were included. Only 92 met the established criteria for review purposes and 17 relevant references about the topic were included as well. Therefore, it was possible to identify 196 potential clinical biomarkers: 22 non-omics, 20 epigenomics, 33 genomics, 21 transcriptomics, 78 proteomics, 4 glycomics, 1 lipidomics and 17 metabolomics. Conclusion A biomarker is a measurable indicator of some, biochemical, physiological, or morphological condition; evaluable at a molecular, biochemical, or cellular level. Biomarkers work as indicators of physiological or pathological processes, or as a result of a therapeutic management. In the last five years, new biomarkers have been identified, especially the omics, which are those that proceed from the investigation of genes (genomics), metabolites (metabolomics), and proteins (proteomics). These biomarkers contribute to the physician choosing the best therapeutic option in patients with rheumatoid arthritis.
Collapse
|
4
|
Balderrama-Carmona AP, Valenzuela-Rincón M, Zamora-Álvarez LA, Adan-Bante NP, Leyva-Soto LA, Silva-Beltrán NP, Morán-Palacio EF. Herbicide biomonitoring in agricultural workers in Valle del Mayo, Sonora Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28480-28489. [PMID: 31832947 DOI: 10.1007/s11356-019-07087-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Valle del Mayo is an important agricultural area at the northwest of Mexico where up to 20,000 L of a mix composed of glyphosate and tordon is used in drains and canals. This study was carried out in order to evaluate the cellular damage caused by glyphosate, aminomethylphosphonic acid (AMPA), and picloram in agricultural workers. Biomonitoring was performed through the quantification of herbicides in urine using HPLC (high-performance liquid chromatography) to then evaluate the cellular damage in exposed people by means of an evaluation of micronuclei and cellular proliferation in lymphocyte cultures. The urine samples (n = 30) have shown a concentration of up to 10.25 μg/L of picloram and 2.23 μg/L of AMPA; no positive samples for glyphosate were reported. The calculation of the external dose reveals that agricultural workers ingest up to 146 mg/kg/day; however, this concentration does not surpass the limits that are allowed internationally. As for the results for the micronuclei test, 53% of the workers showed cellular damage, and the nuclear division index test reported that there was a significant difference (P < 0.05) between the exposed and the control population, which indicated that the exposure time to pesticides in the people of Valle del Mayo can induce alterations which can cause chronic damage.
Collapse
Affiliation(s)
- Ana Paola Balderrama-Carmona
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Sur, Blvd. Lázaro Cárdenas 100, Colonia Francisco Villa, 85880, Navojoa, Sonora, Mexico.
| | - Melissa Valenzuela-Rincón
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Sur, Blvd. Lázaro Cárdenas 100, Colonia Francisco Villa, 85880, Navojoa, Sonora, Mexico
| | - Luis Alberto Zamora-Álvarez
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Sur, Blvd. Lázaro Cárdenas 100, Colonia Francisco Villa, 85880, Navojoa, Sonora, Mexico
| | - Norma Patricia Adan-Bante
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Sur, Blvd. Lázaro Cárdenas 100, Colonia Francisco Villa, 85880, Navojoa, Sonora, Mexico
| | - Luis Alonso Leyva-Soto
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, Colonia Centro, 85000, Obregon, Sonora, Mexico
| | - Norma Patricia Silva-Beltrán
- Departamento de Ciencias de la Salud, Universidad de Sonora, Unidad Cajeme, Blvd. Bordo Nuevo S/N, Ejido Providencia, 85199, Obregon, Sonora, Mexico
| | - Edgar Felipe Morán-Palacio
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Sur, Blvd. Lázaro Cárdenas 100, Colonia Francisco Villa, 85880, Navojoa, Sonora, Mexico
| |
Collapse
|
5
|
Study of 5 Volatile Organic Compounds in Exhaled Breath in Chronic Obstructive Pulmonary Disease. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.arbr.2017.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Abstract
This article summarizes the relevant definitions related to biomarkers; reviews the general processes related to biomarker discovery and ultimate acceptance and use; and finally summarizes and reviews, to the extent possible, examples of the types of biomarkers used in animal species within veterinary clinical practice and human and veterinary drug development. We highlight opportunities for collaboration and coordination of research within the veterinary community and leveraging of resources from human medicine to support biomarker discovery and validation efforts for veterinary medicine.
Collapse
Affiliation(s)
- Michael J Myers
- Center for Veterinary Medicine, Food and Drug Administration, Rockville, Maryland 20855;
| | - Emily R Smith
- Center for Veterinary Medicine, Food and Drug Administration, Rockville, Maryland 20855;
| | - Phillip G Turfle
- Center for Veterinary Medicine, Food and Drug Administration, Rockville, Maryland 20855;
| |
Collapse
|
7
|
Jareño-Esteban JJ, Muñoz-Lucas MÁ, Gómez-Martín Ó, Utrilla-Trigo S, Gutiérrez-Ortega C, Aguilar-Ros A, Collado-Yurrita L, Callol-Sánchez LM. Study of 5 Volatile Organic Compounds in Exhaled Breath in Chronic Obstructive Pulmonary Disease. Arch Bronconeumol 2016; 53:251-256. [PMID: 27780574 DOI: 10.1016/j.arbres.2016.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 08/09/2016] [Accepted: 09/07/2016] [Indexed: 10/20/2022]
Abstract
INTRODUCTION A major risk factor for chronic obstructive pulmonary disease (COPD) is tobacco smoke, which generates oxidative stress in airways, resulting in the production of volatile organic compounds (VOC). The purpose of this study was to identify VOCs in exhaled breath and to determine their possible use as disease biomarkers. METHOD Exhaled breath from 100 healthy volunteers, divided into 3groups (never smokers, former smokers and active smokers) and exhaled breath from 57 COPD patients were analyzed. Samples were collected using BioVOC® devices and transferred to universal desorption tubes. Compounds were analyzed by thermal desorption, gas chromatography and mass spectrometry. VOCs analyzed were linear aldehydesand carboxylic acids. RESULTS The COPD group and healthy controls (never smokers and former smokers) showed statistically significant differences in hexanal concentrations, and never smokers and the COPD group showed statistically significant differences in nonanal concentrations. CONCLUSIONS Hexanal discriminates between COPD patients and healthy non-smoking controls. Nonanal discriminates between smokers and former smokers (with and without COPD) and never smokers.
Collapse
Affiliation(s)
- José Javier Jareño-Esteban
- Servicio de Neumología, Hospital Central de la Defensa, Universidad de Alcalá de Henares; IMIDEF, Alcalá de Henares, Madrid, España
| | - M Ángeles Muñoz-Lucas
- Instituto Mixto de Investigación Biosanitaria de la Defensa (IMIDEF), Hospital Central de la Defensa, Madrid, España.
| | - Óscar Gómez-Martín
- Instituto Mixto de Investigación Biosanitaria de la Defensa (IMIDEF), Madrid, España
| | | | | | - Antonio Aguilar-Ros
- Dpto. CC Farmacéuticas, Facultad de Farmacia, Universidad San Pablo CEU, Madrid, España
| | | | - Luis Miguel Callol-Sánchez
- Dpto. de Medicina, Facultad de Medicina, Universidad de Alcalá, Instituto Mixto de Investigación Biosanitaria de la Defensa (IMIDEF), Alcalá de Henares, Madrid, España
| |
Collapse
|