1
|
Zare N, Dana N, Mosayebi A, Vaseghi G, Javanmard SH. Evaluation of Expression Level of miR-3135b-5p in Blood Samples of Breast Cancer Patients Experiencing Chemotherapy-Induced Cardiotoxicity. Indian J Clin Biochem 2023; 38:536-540. [PMID: 37746544 PMCID: PMC10516830 DOI: 10.1007/s12291-022-01075-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Abstract
The efficacy of chemotherapeutics in the treatment of breast cancer is limited by cardiotoxicity, which could lead to irreversible heart failure. The evaluation of miRNA levels as a vital biomarker could predict cardiotoxicity induced by chemotherapy. According to our previous meta-analysis study on patients with heart failure, we found that miR-3135b had a significant increase in patients with heart failure. Therefore, the present study aimed to evaluate the expression level of miR-3135b in the blood sample of patients experiencing chemotherapy-induced cardiotoxicity. Blood samples were collected from breast cancer patients or breast cancer patients who had received chemotherapy and had not experienced any chemotherapy-induced cardiotoxicity (N = 37, control group) and breast cancer patients experiencing chemotherapy-induced cardiotoxicity after chemotherapy (N = 33). The expression level of miR-3135b was evaluated using real-time polymerase chain reaction (RT-PCR). The 2-ΔCt values of miR-3135b were compared between two groups. We observed a significant increase in the expression level of miR-3135b between patients experiencing chemotherapy-induced cardiotoxicity and the control group (P = 0.0001). Besides, the ejection fraction parameter was correlated with the expression level of miR-3135b (r = 0.5 and P = 0.0001). To sum up, miR-3135b might be useful as a promising circulating biomarker in predicting cardiotoxicity induced by chemotherapy. However, more studies are needed to validate miR-3135b as a biomarker for the diagnosis of chemotherapy-induced cardiotoxicity. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-022-01075-3.
Collapse
Affiliation(s)
- Nasrin Zare
- School of Medicine, Najafabad Branch, Islamic Azad University, Najafabad, Iran
- Clinical Research Development Centre, Najafabad branch, Islamic Azad university, Najafabad, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azam Mosayebi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Golnaz Vaseghi
- Interventional Cardiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Department of Physiology, Applied Physiology Research Center, Cardiovascular Research Institute , Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Physiology, Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Hezar jerib Avenue, Isfahan, Iran
| |
Collapse
|
2
|
Lizarraga D, Huen K, Combs M, Escudero-Fung M, Eskenazi B, Holland N. miRNAs differentially expressed by next-generation sequencing in cord blood buffy coat samples of boys and girls. Epigenomics 2016; 8:1619-1635. [PMID: 27882772 DOI: 10.2217/epi-2016-0031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIM Differences in children's development and susceptibility to diseases and exposures have been observed by sex, yet human studies of sex differences in miRNAs are limited. MATERIALS & METHODS The genome-wide miRNA expression was characterized by sequencing-based EdgeSeq assay in cord blood buffy coats from 89 newborns, and 564 miRNAs were further analyzed. RESULTS Differential expression of most miRNAs was higher in boys. Neurodevelopment, RNA metabolism and metabolic ontology terms were enriched among miRNA targets. The majority of upregulated miRNAs (86%) validated by nCounter maintained positive-fold change values; however, only 21% reached statistical significance by false discovery rate. CONCLUSION Accounting for host factors like sex may improve the sensitivity of epigenetic analyses for epidemiological studies in early childhood.
Collapse
Affiliation(s)
- Daneida Lizarraga
- School of Public Health, Center for Environmental Research on Children's Health (CERCH), University of California, Berkeley, CA 94720, USA
| | - Karen Huen
- School of Public Health, Center for Environmental Research on Children's Health (CERCH), University of California, Berkeley, CA 94720, USA
| | - Mary Combs
- School of Public Health, Center for Environmental Research on Children's Health (CERCH), University of California, Berkeley, CA 94720, USA
| | - Maria Escudero-Fung
- School of Public Health, Center for Environmental Research on Children's Health (CERCH), University of California, Berkeley, CA 94720, USA
| | - Brenda Eskenazi
- School of Public Health, Center for Environmental Research on Children's Health (CERCH), University of California, Berkeley, CA 94720, USA
| | - Nina Holland
- School of Public Health, Center for Environmental Research on Children's Health (CERCH), University of California, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Gonzalez H, Lema C, Kirken RA, Maldonado RA, Varela-Ramirez A, Aguilera RJ. Arsenic-exposed Keratinocytes Exhibit Differential microRNAs Expression Profile; Potential Implication of miR-21, miR-200a and miR-141 in Melanoma Pathway. ACTA ACUST UNITED AC 2015; 2:138-147. [PMID: 27054085 DOI: 10.2174/2212697x02666150629174704] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Long-term exposure to arsenic has been linked to cancer in different organs and tissues, including skin. Here, non-malignant human keratinocytes (HaCaT) were exposed to arsenic and its effects on microRNAs (miRNAs; miR) expression were analyzed via miRCURY LNA array analyses. A total of 30 miRNAs were found differentially expressed in arsenic-treated cells, as compared to untreated controls. Among the up-regulated miRNAs, miR-21, miR-200a and miR-141, are well known to be involved in carcinogenesis. Additional findings confirmed that those three miRNAs were indeed up-regulated in arsenic-stimulated keratinocytes as demonstrated by quantitative PCR assay. Furthermore, bioinformatics analysis of both potential cancer-related pathways and targeted genes affected by miR-21, miR-200a and/or miR-141 was performed. Results revealed that miR-21, miR-200a and miR-141 are implicated in skin carcinogenesis related with melanoma development. Conclusively, our results indicate that arsenic-treated keratinocytes exhibited alteration in the miRNAs expression profile and that miR-21, miR-200a and miR-141 could be promising early biomarkers of the epithelial phenotype of cancer cells and they could be potential novel targets for melanoma therapeutic interventions.
Collapse
Affiliation(s)
- Horacio Gonzalez
- Department of Biological Sciences, Border Biomedical Research Center, the University of Texas at El Paso, 500 West University Ave. El Paso, Texas, 79968, USA
| | - Carolina Lema
- Cytometry, Screening and Imaging Core Facility, Border Biomedical Research Center, Department of Biological Sciences, the University of Texas at El Paso, El Paso, Texas, 79968, USA; College of Optometry, University of Houston, 4901 Calhoun Road, Houston, Texas, 77204, USA
| | - Robert A Kirken
- Department of Biological Sciences, Border Biomedical Research Center, the University of Texas at El Paso, 500 West University Ave. El Paso, Texas, 79968, USA
| | - Rosa A Maldonado
- Department of Biological Sciences, Border Biomedical Research Center, the University of Texas at El Paso, 500 West University Ave. El Paso, Texas, 79968, USA
| | - Armando Varela-Ramirez
- Department of Biological Sciences, Border Biomedical Research Center, the University of Texas at El Paso, 500 West University Ave. El Paso, Texas, 79968, USA; Cytometry, Screening and Imaging Core Facility, Border Biomedical Research Center, Department of Biological Sciences, the University of Texas at El Paso, El Paso, Texas, 79968, USA
| | - Renato J Aguilera
- Department of Biological Sciences, Border Biomedical Research Center, the University of Texas at El Paso, 500 West University Ave. El Paso, Texas, 79968, USA; Cytometry, Screening and Imaging Core Facility, Border Biomedical Research Center, Department of Biological Sciences, the University of Texas at El Paso, El Paso, Texas, 79968, USA
| |
Collapse
|
4
|
Song MK, Lee HS, Ryu JC. Integrated analysis of microRNA and mRNA expression profiles highlights aldehyde-induced inflammatory responses in cells relevant for lung toxicity. Toxicology 2015; 334:111-21. [DOI: 10.1016/j.tox.2015.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 12/12/2022]
|
5
|
Song MK, Ryu JC. Blood miRNAs as sensitive and specific biological indicators of environmental and occupational exposure to volatile organic compound (VOC). Int J Hyg Environ Health 2015; 218:590-602. [PMID: 26141241 DOI: 10.1016/j.ijheh.2015.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 06/04/2015] [Accepted: 06/10/2015] [Indexed: 02/05/2023]
Abstract
To date, there is still shortage of highly sensitive and specific minimally invasive biomarkers for assessment of environmental toxicants exposure. Because of the significance of microRNA (miRNA) in various diseases, circulating miRNAs in blood may be unique biomarkers for minimally invasive prediction of toxicants exposure. We identified and validated characteristic miRNA expression profiles of human whole blood in workers exposed to volatile organic compounds (VOCs) and compared the usefulness of miRNA indicator of VOCs with the effectiveness of the already used urinary biomarkers of occupational exposure. Using a microarray based approach we screened and detected deregulated miRNAs in their expression in workers exposed to VOCs (toluene [TOL], xylene [XYL] and ethylbenzene [EBZ]). Total 169 workers from four dockyards were enrolled in current study, and 50 subjects of them were used for miRNA microarray analysis. We identified 467 miRNAs for TOL, 211 miRNAs for XYL, and 695 miRNAs for XYL as characteristic discernible exposure indicator, which could discerned each VOC from the control group with higher accuracy, sensitivity, and specificity than urinary biomarkers. Current observations from this study point out that the altered levels of circulating miRNAs can be a reliable novel, minimally invasive biological indicator of occupational exposure to VOCs.
Collapse
Affiliation(s)
- Mi-Kyung Song
- Cellular and Molecular Toxicology Laboratory, Korea Institute of Science & Technology, P.O. Box 13, Cheongryang, Seoul 130-650, Republic of Korea
| | - Jae-Chun Ryu
- Cellular and Molecular Toxicology Laboratory, Korea Institute of Science & Technology, P.O. Box 13, Cheongryang, Seoul 130-650, Republic of Korea; Department of Pharmacology and Toxicology, Human and Environmental Toxicology, Korea University of Science and Technology, Gajeong-Ro 217, Yuseong-gu, Daejeon 305-350, Republic of Korea.
| |
Collapse
|
6
|
Caiment F, Gaj S, Claessen S, Kleinjans J. High-throughput data integration of RNA-miRNA-circRNA reveals novel insights into mechanisms of benzo[a]pyrene-induced carcinogenicity. Nucleic Acids Res 2015; 43:2525-34. [PMID: 25690898 PMCID: PMC4357716 DOI: 10.1093/nar/gkv115] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The chain of events leading from a toxic compound exposure to carcinogenicity is still barely understood. With the emergence of high-throughput sequencing, it is now possible to discover many different biological components simultaneously. Using two different RNA libraries, we sequenced the complete transcriptome of human HepG2 liver cells exposed to benzo[a]pyrene, a potent human carcinogen, across six time points. Data were integrated in order to reveal novel complex chemical–gene interactions. Notably, we hypothesized that the inhibition of MGMT, a DNA damage response enzyme, by the over-expressed miR-181a-1_3p induced by BaP, may lead to liver cancer over time.
Collapse
Affiliation(s)
- Florian Caiment
- Department of Toxicogenomics, Maastricht University, Maastricht 6200, The Netherlands
| | - Stan Gaj
- Department of Toxicogenomics, Maastricht University, Maastricht 6200, The Netherlands
| | - Sandra Claessen
- Department of Toxicogenomics, Maastricht University, Maastricht 6200, The Netherlands
| | - Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, Maastricht 6200, The Netherlands
| |
Collapse
|
7
|
MicroRNA regulation of DNA repair gene expression in 4-aminobiphenyl-treated HepG2 cells. Toxicology 2014; 322:69-77. [PMID: 24857880 DOI: 10.1016/j.tox.2014.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 11/22/2022]
Abstract
We examined the role of miRNAs in DNA damage response in HepG2 cells following exposure to 4-aminobiphenyl (4-ABP). The arylamine 4-ABP is a human carcinogen. Using the Comet assay, we showed that 4-ABP (18.75-300μM) induces DNA damage in HepG2 cells after 24h. DNA damage signaling pathway-based PCR arrays were used to investigate expression changes in genes involved in DNA damage response. Results showed down-regulation of 16 DNA repair-related genes in 4-ABP-treated cells. Among them, the expression of selected six genes (UNG, LIG1, EXO1, XRCC2, PCNA, and FANCG) from different DNA repair pathways was decreased with quantitative real-time PCR (qRT-PCR). In parallel, using the miRNA array, we reported that the expression of 27 miRNAs in 4-ABP-treated cells was at least 3-fold higher than that in the control group. Of these differential 27 miRNAs, the most significant expression of miRNA-513a-5p and miRNA-630 was further validated by qRT-PCR, and was predicted to be implicated in the deregulation of FANCG and RAD18 genes, respectively, via bioinformatic analysis. Both FANCG and RAD18 proteins were found to be down-regulated in 4-ABP-treated cells. In addition, overexpression and knockdown of miRNA-513a-5p and miRNA-630 reduced and increased the expression of FANCG and RAD18 proteins, respectively. Based on the above results, we indicated that miRNA-513a-5p and miRNA-630 could play a role in the suppression of DNA repair genes, and eventually lead to DNA damage.
Collapse
|
8
|
Yang Q, Xu E, Dai J, Wu J, Zhang S, Peng B, Jiang Y. miR-21 regulates N-methyl-N-nitro-N'-nitrosoguanidine-induced gastric tumorigenesis by targeting FASLG and BTG2. Toxicol Lett 2014; 228:147-56. [PMID: 24821435 DOI: 10.1016/j.toxlet.2014.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 04/25/2014] [Accepted: 05/02/2014] [Indexed: 01/04/2023]
Abstract
MicroRNAs (miRNAs) are recently discovered regulators of gene expression and are important in the regulation of many cellular events. Evidence collected to date shows that miRNAs are altered after exposure to environmental toxicants. However, the role that miR-21 plays in the gastric tumorigenesis induced by environmental carcinogens remains largely unknown. The aim of this study was to characterize the regulatory role of miR-21 in the carcinogenic processes following exposure to the N-nitroso carcinogen N-methyl-N-nitro-N'-nitrosoguanidine (MNNG). We found a progressive dose- and time-dependent increase in miR-21 expression following treatment with MNNG. Dysregulated miR-21 affected both cell growth in GES-1 cells and the gastric tumorigenesis induced with MNNG. These data demonstrate the involvement of miR-21 in the malignant transformation and tumorigenesis activated by MNNG. We also established that the Fas ligand (FASLG) and B-cell translocation gene 2 (BTG2), regulated by miR-21, contribute to the transformation induced by MNNG in GES-1 cells. This is the first study to show that miR-21 is involved in chemical carcinogenesis in vivo and in vitro. The regulation by miR-21 of the gastric carcinogenesis induced by MNNG highlights the functional roles of miRNAs in chemical carcinogenesis, and offers a new explanation of the mechanisms underlying chemical carcinogenesis.
Collapse
Affiliation(s)
- Qiaoyuan Yang
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510182, PR China
| | - Enwu Xu
- Department of Thoracic Surgery, General Hospital of Guangzhou Military Command of Chinese People's Liberation Army, Guangzhou 510010, PR China
| | - Jiabin Dai
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510182, PR China
| | - Jianjun Wu
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510182, PR China
| | - Shaozhu Zhang
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510182, PR China
| | - Baoying Peng
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510182, PR China
| | - Yiguo Jiang
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510182, PR China.
| |
Collapse
|
9
|
Valencia-Quintana R, Sánchez-Alarcón J, Tenorio-Arvide MG, Deng Y, Montiel-González JMR, Gómez-Arroyo S, Villalobos-Pietrini R, Cortés-Eslava J, Flores-Márquez AR, Arenas-Huertero F. The microRNAs as potential biomarkers for predicting the onset of aflatoxin exposure in human beings: a review. Front Microbiol 2014; 5:102. [PMID: 24672518 PMCID: PMC3957091 DOI: 10.3389/fmicb.2014.00102] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/26/2014] [Indexed: 12/21/2022] Open
Abstract
The identification of aflatoxins as human carcinogens has stimulated extensive research efforts, which continue to the present, to assess potential health hazards resulting from contamination of the human food supply and to minimize exposure. The use of biomarkers that are mechanistically supported by toxicological studies will be important tools for identifying stages in the progression of development of the health effects of environmental agents. miRNAs are small non-coding mRNAs that regulate post-transcriptional gene expression. Also, they are molecular markers of cellular responses to various chemical agents. Growing evidence has demonstrated that environmental chemicals can induce changes in miRNA expression. miRNAs are good biomarkers because they are well defined, chemically uniform, restricted to a manageable number of species, and stable in cells and in the circulation. miRNAs have been used as serological markers of HCC and other tumors. The expression patterns of different miRNAs can distinguish among HCC-hepatitis viruses related, HCC cirrhosis-derivate, and HCC unrelated to either of them. The main objective of this review is to find unreported miRNAs in HCC related to other causes, so that they can be used as specific molecular biomarkers in populations exposed to aflatoxins and as early markers of exposure, damage/presence of HCC. Until today specific miRNAs as markers for aflatoxins-exposure and their reliability are currently lacking. Based on their elucidated mechanisms of action, potential miRNAs that could serve as possible markers of HCC by exposure to aflatoxins are miR-27a, miR-27b, miR-122, miR-148, miR-155, miR-192, miR-214, miR-221, miR-429, and miR-500. Future validation for all of these miRNAs will be needed to assess their prognostic significance and confirm their relationship with the induction of HCC due to aflatoxin exposure.
Collapse
Affiliation(s)
- Rafael Valencia-Quintana
- Evaluación de Riesgos Ambientales, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala Tlaxcala, México
| | - Juana Sánchez-Alarcón
- Evaluación de Riesgos Ambientales, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala Tlaxcala, México
| | - María G Tenorio-Arvide
- Departamento de Investigación en Ciencias Agrícolas, Benemérita Universidad Autónoma de Puebla Puebla, México
| | - Youjun Deng
- Department of Soil and Crop Sciences, Texas AgriLife, Texas A&M University College Station, TX, USA
| | - José M R Montiel-González
- Evaluación de Riesgos Ambientales, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala Tlaxcala, México
| | - Sandra Gómez-Arroyo
- Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México Distrito Federal, México
| | - Rafael Villalobos-Pietrini
- Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México Distrito Federal, México
| | - Josefina Cortés-Eslava
- Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México Distrito Federal, México
| | - Ana R Flores-Márquez
- Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México Distrito Federal, México
| | - Francisco Arenas-Huertero
- Laboratorio de Patología Experimental, Hospital Infantil de México Federico Gómez Distrito Federal, México
| |
Collapse
|
10
|
Koufaris C, Wright J, Osborne M, Currie RA, Gooderham NJ. Time and dose-dependent effects of phenobarbital on the rat liver miRNAome. Toxicology 2013; 314:247-53. [PMID: 24157574 DOI: 10.1016/j.tox.2013.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/07/2013] [Accepted: 10/12/2013] [Indexed: 12/13/2022]
Abstract
In a previous study we had shown that treatment of male Fischer rats with exogenous chemicals for three months resulted in prominent, mode-of-action dependent effects on liver microRNA (miRNA) (Koufaris et al., 2012). Here we investigated how the effects of chemicals on liver miRNA in male Fischer rats relate to the length and dose of exposure to phenobarbital (PB), a drug with multiple established hepatic effects. Importantly, although acute PB treatment (1-7 days) had significant effects on liver mRNA and the expected effects on the liver phenotype (transient hyperplasia, hepatomegaly, cytochrome P450 induction), limited effects on liver miRNA were observed. However, at 14 days of PB treatment clear dose-dependent effects on miRNA were observed. The main effect of PB treatment from days 1 to 90 on liver miRNA was found to be the persistent, progressive, and highly correlated induction of the miR-200a/200b/429 and miR-96/182 clusters, occurring after the termination of the xenobiotic-induced transient hyperplasia. Moreover, in agreement with their reported functions in the literature we found associations between perturbations of miR-29b and miR-200a/200b by PB with global DNA methylation and zeb1/zeb2 proteins respectively. Our data suggest that miRNA are unlikely to play an important role in the acute responses of the adult rodent liver to PB treatment. However, the miRNA responses to longer PB exposures suggest a potential role for maintaining liver homeostasis in response to sub-chronic and chronic xenobiotic-induced perturbations. Similar studies for more chemicals are needed to clarify whether the temporal and dose pattern of miRNA-toxicant interaction identified here for PB are widely applicable to other xenobiotics.
Collapse
Affiliation(s)
- Costas Koufaris
- Surgery and Cancer, Imperial College London, SW72AZ, UK; Department of Cytogenetics and Genomics, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | | | | | |
Collapse
|
11
|
Vacchi-Suzzi C, Bauer Y, Berridge BR, Bongiovanni S, Gerrish K, Hamadeh HK, Letzkus M, Lyon J, Moggs J, Paules RS, Pognan F, Staedtler F, Vidgeon-Hart MP, Grenet O, Couttet P. Perturbation of microRNAs in rat heart during chronic doxorubicin treatment. PLoS One 2012; 7:e40395. [PMID: 22859947 PMCID: PMC3409211 DOI: 10.1371/journal.pone.0040395] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 06/06/2012] [Indexed: 11/19/2022] Open
Abstract
Anti-cancer therapy based on anthracyclines (DNA intercalating Topoisomerase II inhibitors) is limited by adverse effects of these compounds on the cardiovascular system, ultimately causing heart failure. Despite extensive investigations into the effects of doxorubicin on the cardiovascular system, the molecular mechanisms of toxicity remain largely unknown. MicroRNAs are endogenously transcribed non-coding 22 nucleotide long RNAs that regulate gene expression by decreasing mRNA stability and translation and play key roles in cardiac physiology and pathologies. Increasing doses of doxorubicin, but not etoposide (a Topoisomerase II inhibitor devoid of cardiovascular toxicity), specifically induced the up-regulation of miR-208b, miR-216b, miR-215, miR-34c and miR-367 in rat hearts. Furthermore, the lowest dosing regime (1 mg/kg/week for 2 weeks) led to a detectable increase of miR-216b in the absence of histopathological findings or alteration of classical cardiac stress biomarkers. In silico microRNA target predictions suggested that a number of doxorubicin-responsive microRNAs may regulate mRNAs involved in cardiac tissue remodeling. In particular miR-34c was able to mediate the DOX-induced changes of Sipa1 mRNA (a mitogen-induced Rap/Ran GTPase activating protein) at the post-transcriptional level and in a seed sequence dependent manner. Our results show that integrated heart tissue microRNA and mRNA profiling can provide valuable early genomic biomarkers of drug-induced cardiac injury as well as novel mechanistic insight into the underlying molecular pathways.
Collapse
Affiliation(s)
- Caterina Vacchi-Suzzi
- Discovery and Investigative Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Yasmina Bauer
- Translational Science Biology, Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Brian R. Berridge
- Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - Sandrine Bongiovanni
- Biomarker Development, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Kevin Gerrish
- National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Hisham K. Hamadeh
- Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, California, United States of America
| | - Martin Letzkus
- Biomarker Development, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Jonathan Lyon
- Investigative Preclinical Toxicology, GlaxoSmithKline, Ware, United Kingdom
| | - Jonathan Moggs
- Discovery and Investigative Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Richard S. Paules
- National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - François Pognan
- Discovery and Investigative Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Frank Staedtler
- Biomarker Development, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Olivier Grenet
- Discovery and Investigative Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Philippe Couttet
- Discovery and Investigative Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
12
|
Martínez-Guitarte JL, Planelló R, Morcillo G. Overexpression of long non-coding RNAs following exposure to xenobiotics in the aquatic midge Chironomus riparius. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 110-111:84-90. [PMID: 22277249 DOI: 10.1016/j.aquatox.2011.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/14/2011] [Accepted: 12/16/2011] [Indexed: 05/31/2023]
Abstract
Non-coding RNAs (ncRNAs) represent an important transcriptional output of eukaryotic genomes. In addition to their functional relevance as housekeeping and regulatory elements, recent studies have suggested their involvement in rather unexpected cellular functions. The aim of this work was to analyse the transcriptional behaviour of non-coding RNAs in the toxic response to pollutants in Chironomus riparius, a reference organism in aquatic toxicology. Three well-characterized long non-coding sequences were studied: telomeric repeats, Cla repetitive elements and the SINE CTRT1. Transcription levels were evaluated by RT-PCR after 24-h exposures to three current aquatic contaminants: bisphenol A (BPA), benzyl butyl phthalate (BBP) and the heavy metal cadmium (Cd). Upregulation of telomeric transcripts was found after BPA treatments. Moreover, BPA significantly activated Cla transcription, which also appeared to be increased by cadmium, whereas BBP did not affect the transcription levels of these sequences. Transcription of SINE CTRT1 was not altered by any of the chemicals tested. These data are discussed in the light of previous studies that have shown a response by long ncRNAS (lncRNAs) to cellular stressors, indicating a relationship with environmental stimuli. Our results demonstrated for the first time the ability of bisphenol A to activate non-coding sequences mainly located at telomeres and centromeres. Overall, this study provides evidence that xenobiotics can induce specific responses in ncRNAs derived from repetitive sequences that could be relevant in the toxic response, and also suggests that ncRNAs could represent a novel class of potential biomarkers in toxicological assessment.
Collapse
Affiliation(s)
- José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain.
| | | | | |
Collapse
|
13
|
Lizarraga D, Gaj S, Brauers KJ, Timmermans L, Kleinjans JC, van Delft JHM. Benzo[a]pyrene-induced changes in microRNA-mRNA networks. Chem Res Toxicol 2012; 25:838-49. [PMID: 22316170 DOI: 10.1021/tx2003799] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Toxicological studies assessing the safety of compounds for humans frequently use in vitro systems to characterize toxic responses in combination with transcriptomic analyses. Thus far, changes have mostly been investigated at the mRNA level. Recently, microRNAs have attracted attention because they are powerful negative regulators of mRNA levels and, thus, may be responsible for the modulation of important mRNA networks implicated in toxicity. This study aimed to identify possible microRNA-mRNA networks as novel interactions on the gene expression level after a genotoxic insult. We used benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon, as a model genotoxic/carcinogenic compound. We analyzed time-dependent effects on mRNA and microRNA profiles in HepG2 cells, a widely used human liver cell line that expresses active p53 and is competent for the biotransformation of BaP. Changes in microRNA expression in response to BaP, in combination with multiple alterations of mRNA levels, were observed. Many of these altered mRNAs are targets of altered microRNAs. Using pathway analysis, we evaluated the relevance of such microRNA deregulations to genotoxicity. This revealed eight microRNAs that appear to participate in specific BaP-responsive pathways relevant to genotoxicity, such as apoptotic signaling, cell cycle arrest, DNA damage response, and DNA damage repair. Our results particularly highlight the potential of microRNA-29b, microRNA-26a-1*, and microRNA-122* as novel players in the BaP response. Therefore, this study demonstrates the added value of an integrated microRNA-mRNA approach for identifying molecular mechanisms induced by BaP in an in vitro human model.
Collapse
Affiliation(s)
- Daneida Lizarraga
- Netherlands Toxicogenomics Centre, Maastricht University , P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Microarrays have been used extensively for messenger RNA expression monitoring. Recently, microarrays have been designed to interrogate expression levels of noncoding RNAs. Here, we describe methods for RNA labeling and the use of a miRNA array to identify and measure microRNA present in RNA samples.
Collapse
|
15
|
Yang X, Greenhaw J, Shi Q, Su Z, Qian F, Davis K, Mendrick DL, Salminen WF. Identification of urinary microRNA profiles in rats that may diagnose hepatotoxicity. Toxicol Sci 2011; 125:335-44. [PMID: 22112502 DOI: 10.1093/toxsci/kfr321] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Circulating microRNAs (miRNAs) have emerged as novel noninvasive biomarkers for several diseases and other types of tissue injury. This study tested the hypothesis that changes in the levels of urinary miRNAs correlate with liver injury induced by hepatotoxicants. Sprague-Dawley rats were administered acetaminophen (APAP) or carbon tetrachloride (CCl(4)) and one nonhepatotoxicant (penicillin/PCN). Urine samples were collected over a 24 h period after a single oral dose of APAP (1250 mg/kg), CCl(4) (2000 mg/kg), or PCN (2400 mg/kg). APAP and CCl(4) induced liver injury based upon increased serum alanine and aspartate aminotransferase levels and histopathological findings, including liver necrosis. APAP and CCl(4) both significantly increased the urinary levels of 44 and 28 miRNAs, respectively. In addition, 10 of the increased miRNAs were in common between APAP and CCl(4). In contrast, PCN caused a slight decrease of a different nonoverlapping set of urinary miRNAs. Cluster analysis revealed a distinct urinary miRNA pattern from the hepatotoxicant-treated groups when compared with vehicle controls and PCN. Analysis of hepatic miRNA levels suggested that the liver was the source of the increased urinary miRNAs after APAP exposure; however, the results from CCl(4) were equivocal. Computational analysis was used to predict target genes of the 10 shared hepatotoxicant-induced miRNAs. Liver gene expression profiling using whole genome microarrays identified eight putative miRNA target genes that were significantly altered in the liver of APAP- and CCl(4)-treated animals. In conclusion, the patterns of urinary miRNA may hold promise as biomarkers of hepatotoxicant-induced liver injury.
Collapse
Affiliation(s)
- Xi Yang
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas 72079, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Gatti DM, Lu L, Williams RW, Sun W, Wright FA, Threadgill DW, Rusyn I. MicroRNA expression in the livers of inbred mice. Mutat Res 2011; 714:126-33. [PMID: 21616085 PMCID: PMC3166582 DOI: 10.1016/j.mrfmmm.2011.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 05/05/2011] [Accepted: 05/08/2011] [Indexed: 01/07/2023]
Abstract
MicroRNAs are short, non-coding RNA sequences that regulate genes at the post-transcriptional level and have been shown to be important in development, tissue differentiation, and disease. Limited attention has been given to the natural variation in miRNA expression across genetically diverse populations even though it is well established that genetic polymorphisms can have a profound effect on mRNA levels. Expression level of 577 miRNAs in the livers of 70 strains of inbred mice was assessed, and we found that miRNA expression is highly stable across different strains. Globally, the expression of miRNA target transcripts does not correlate with miRNA expression, primarily due to the low variance of miRNA but high variance of mRNA expression across strains. Our results show that there is little genetic effect on the baseline miRNA levels in murine liver. The stability of mouse liver miRNA expression in a genetically diverse population suggests that treatment-induced disruptions in liver miRNA expression, a phenomenon established for a large number of toxicants, may indicate an important mechanism for the disturbance of normal liver function, and may prove to be a useful genetic background-independent biomarker of toxicant effect.
Collapse
Affiliation(s)
- Daniel M. Gatti
- Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, NC 27599 USA
- Carolina Center for Computational Toxicology, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Lu Lu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Key Laboratory of Nerve Regeneration, Nantong University, Nantong 226001, PR China
| | - Robert W. Williams
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wei Sun
- Carolina Center for Computational Toxicology, University of North Carolina, Chapel Hill, NC 27599 USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27599 USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - Fred A. Wright
- Carolina Center for Computational Toxicology, University of North Carolina, Chapel Hill, NC 27599 USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27599 USA
| | - David W. Threadgill
- Department of Genetics, North Carolina State University, Raleigh, NC, 27695 USA
| | - Ivan Rusyn
- Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, NC 27599 USA
- Carolina Center for Computational Toxicology, University of North Carolina, Chapel Hill, NC 27599 USA
| |
Collapse
|
17
|
Halappanavar S, Jackson P, Williams A, Jensen KA, Hougaard KS, Vogel U, Yauk CL, Wallin H. Pulmonary response to surface-coated nanotitanium dioxide particles includes induction of acute phase response genes, inflammatory cascades, and changes in microRNAs: a toxicogenomic study. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:425-39. [PMID: 21259345 PMCID: PMC3210826 DOI: 10.1002/em.20639] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 10/12/2010] [Indexed: 05/17/2023]
Abstract
Titanium dioxide nanoparticles (nanoTiO(2) ) are used in various applications including in paints. NanoTiO(2) inhalation may induce pulmonary toxicity and systemic effects. However, the underlying molecular mechanisms are poorly understood. In this study, the effects of inhaled surface-coated nanoTiO(2) on pulmonary global messenger RNA (mRNA) and microRNA (miRNA) expression in mouse were characterized to provide insight into the molecular response. Female C57BL/6BomTac mice were exposed for 1 hr daily to 42.4 ± 2.9 (SEM) mg surface-coated nanoTiO(2) /m(3) for 11 consecutive days by inhalation and were sacrificed 5 days following the last exposure. Physicochemical properties of the particles were determined. Pulmonary response to nanoTiO(2) was characterized using DNA microarrays and pathway-specific PCR arrays and related to data on pulmonary inflammation from bronchial lavages. NanoTiO(2) exposure resulted in increased levels of mRNA for acute phase markers serum amyloid A-1 (Saa1) and serum amyloid A-3 (Saa3), several C-X-C and C-C motif chemokines, and cytokine tumor necrosis factor genes. Protein analysis of Saa1 and 3 showed selective upregulation of Saa3 in lung tissues. Sixteen miRNAs were induced by more than 1.2-fold (adjusted P-value < 0.05) following exposure. Real time polymerase chain reaction confirmed the upregulation of miR-1, miR-449a and revealed dramatic induction of miR-135b (60-fold). Thus, inhalation of surface-coated nanoTiO(2) results in changes in the expression of genes associated with acute phase, inflammation and immune response 5 days post exposure with concomitant changes in several miRNAs. The role of these miRNAs in pulmonary response to inhaled particles is unknown and warrants further research.
Collapse
Affiliation(s)
- Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Yokoi T, Nakajima M. Toxicological implications of modulation of gene expression by microRNAs. Toxicol Sci 2011; 123:1-14. [PMID: 21715665 DOI: 10.1093/toxsci/kfr168] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs (miRNAs) are a large family of non-coding RNAs that are evolutionarily conserved, endogenous, and 21-23 nucleotides in length. miRNAs regulate gene expression by targeting messenger RNAs (mRNAs) by binding to complementary regions of transcripts to repress their translation or mRNA degradation. miRNAs are encoded by the genome, and more than 1000 human miRNAs have been identified so far. miRNAs are predicted to target ∼60% of human mRNAs and are expressed in all animal cells and have fundamental roles in cellular responses to xenobiotic stresses, which affect a large range of physiological processes such as development, immune responses, metabolism, tumor formation as well as toxicological outcomes. Recently, many reports concerning miRNAs related to cancer have been published; however, the miRNA research in the metabolism of xenobiotics and endobiotics and in toxicology has only recently been established. This review describes the current knowledge on the miRNA-dependent regulation of drug-metabolizing enzymes and nuclear receptors and its potential toxicological implications. In this review, miRNAs with reference to target prediction, potential modulation of toxicology-related changes of miRNA expression, role of miRNA in immune-mediated drug-induced liver injury, miRNA in plasma as potential toxicological biomarkers, and relevance of miRNA-related genetic polymorphisms are discussed.
Collapse
Affiliation(s)
- Tsuyoshi Yokoi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | | |
Collapse
|
19
|
Yauk CL, Jackson K, Malowany M, Williams A. Lack of change in microRNA expression in adult mouse liver following treatment with benzo(a)pyrene despite robust mRNA transcriptional response. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 722:131-9. [DOI: 10.1016/j.mrgentox.2010.02.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 02/20/2010] [Indexed: 12/12/2022]
|
20
|
Gong P, Xie F, Zhang B, Perkins EJ. In silico identification of conserved microRNAs and their target transcripts from expressed sequence tags of three earthworm species. Comput Biol Chem 2010; 34:313-9. [PMID: 21030313 DOI: 10.1016/j.compbiolchem.2010.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 09/28/2010] [Accepted: 09/28/2010] [Indexed: 10/19/2022]
Abstract
MicroRNAs are a recently identified class of small regulatory RNAs that target more than 30% protein-coding genes. Elevating evidence shows that miRNAs play a critical role in many biological processes, including developmental timing, tissue differentiation, and response to chemical exposure. In this study, we applied a computational approach to analyze expressed sequence tags, and identified 32 miRNAs belonging to 22 miRNA families, in three earthworm species Eisenia fetida, Eisenia andrei, and Lumbricus rubellus. These newly identified earthworm miRNAs possess a difference of 2-4 nucleotides from their homologous counterparts in Caenorhabditis elegans. They also share similar features with other known animal miRNAs, for instance, the nucleotide U being dominant in both mature and pre-miRNA sequences, particularly in the first position of mature miRNA sequences at the 5' end. The newly identified earthworm miRNAs putatively regulate mRNA genes that are involved in many important biological processes and pathways related to development, growth, locomotion, and reproduction as well as response to stresses, particularly oxidative stress. Future efforts will focus on experimental validation of their presence and target mRNA genes to further elucidate their biological functions in earthworms.
Collapse
Affiliation(s)
- Ping Gong
- SpecPro Inc., Environmental Services, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA.
| | | | | | | |
Collapse
|
21
|
Choudhuri S. Small noncoding RNAs: biogenesis, function, and emerging significance in toxicology. J Biochem Mol Toxicol 2010; 24:195-216. [PMID: 20143452 DOI: 10.1002/jbt.20325] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, the discovery of small ncRNAs (noncoding RNAs) has unveiled a slew of powerful riboregulators of gene expression. So far, many different types of small ncRNAs have been described. Of these, miRNAs (microRNAs), siRNAs (small interfering RNAs), and piRNAs (Piwi-interacting RNAs) have been studied in more detail. A significant fraction of genes in most organisms and tissues is targets of these small ncRNAs. Because these tiny RNAs are turning out to be important regulators of gene and genome expression, their aberrant expression profiles are expected to be associated with cellular dysfunction and disease. In fact, an ever-increasing number of studies have implicated miRNAs and siRNAs in human health and disease ranging from metabolic disorders to diseases of various organ systems as well as various forms of cancer. Nevertheless, despite the flurry of research on these small ncRNAs, many aspects of their biology still remain to be understood. The following discussion focuses on some aspects of the biogenesis and function of small ncRNAs with major emphasis on miRNAs since these are the most widespread endogenous small ncRNAs that have been called "micromanagers" of gene expression. Their emerging significance in toxicology is also discussed.
Collapse
Affiliation(s)
- Supratim Choudhuri
- Center for Food Safety and Applied Nutrition, Division of Biotechnology and GRAS Notice Review, U.S. Food and Drug Administration, College Park, MD 20740, USA.
| |
Collapse
|
22
|
Differential transcription of miRNA species in hepatoxicity caused by novel ‘failed in development’ drugs. Toxicology 2009. [DOI: 10.1016/j.tox.2009.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Marlowe J, Teo SS, Chibout SD, Pognan F, Moggs J. Mapping the epigenome--impact for toxicology. EXS 2009; 99:259-88. [PMID: 19157065 DOI: 10.1007/978-3-7643-8336-7_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advances in technological approaches for mapping and characterizing the epigenome are generating a wealth of new opportunities for exploring the relationship between epigenetic modifications, human disease and the therapeutic potential of pharmaceutical drugs. While the best examples for xenobiotic-induced epigenetic perturbations come from the field of non-genotoxic carcinogenesis, there is growing evidence for the relevance of epigenetic mechanisms associated with a wide range of disease areas and drug targets. The application of epigenomic profiling technologies to drug safety sciences has great potential for providing novel insights into the molecular basis of long-lasting cellular perturbations including increased susceptibility to disease and/or toxicity, memory of prior immune stimulation and/or drug exposure, and transgenerational effects.
Collapse
Affiliation(s)
- Jennifer Marlowe
- Novartis Pharma AG, Investigative Toxicology, Preclinical Safety, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
24
|
Rouhi A, Mager DL, Humphries RK, Kuchenbauer F. MiRNAs, epigenetics, and cancer. Mamm Genome 2008; 19:517-25. [PMID: 18688563 DOI: 10.1007/s00335-008-9133-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 07/09/2008] [Indexed: 12/26/2022]
Abstract
By virtue of having multiple targets, a microRNA (miRNA) can have variable effects on oncogenesis by acting as tumor suppressor or oncogene in a context-dependent manner. Genome-wide epigenetic changes that occur in various cancers affect the transcription of many genes. Since the transcriptional regulation of miRNAs remains an unexplored field, it is still unknown how epigenetic changes will affect the regulation of miRNAs. Many miRNAs are intron-bound within the body of a protein-coding gene. Any change to the transcription of the "host" gene affects the transcription and genesis of the resident miRNA. It is therefore reasonable to deduce that epigenetic changes brought on by transformation can potentially affect miRNA expression in both direct and indirect ways. We have reviewed the literature pertaining to the epigenetic regulation of miRNA genes in the context of various cancers and have speculated on the potential role of epigenetic modifications on the transcriptional regulation and expression of these genes.
Collapse
Affiliation(s)
- Arefeh Rouhi
- Terry Fox Laboratory, BC Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
| | | | | | | |
Collapse
|