1
|
Güngör İH, Türk G, Dayan Cinkara S, Acisu TC, Tektemur A, Yeni D, Avdatek F, Arkali G, Koca RH, Özer Kaya Ş, Sagiroglu M, Etem Önalan E, Sönmez M, Gür S, Yüce A. Reduction of cryopreservation-induced structural, functional and molecular damages in ram sperm by hydrated C 60 fullerene. Reprod Domest Anim 2024; 59:e14513. [PMID: 38038214 DOI: 10.1111/rda.14513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
This study aimed to investigate the morphological, functional and molecular changes in frozen-thawed ram sperm using an extender containing different concentrations of hydrated carbon 60 fullerene (C60 HyFn), a nanotechnological product. Semen taken from each of the seven Akkaraman rams were pooled. Semen collection was done twice a week and it continued for 3 weeks. Each pooled semen sample was divided into six equal groups and diluted with tris + egg yolk extender including 0 (control), 200, 400, 800 nM, 1 and 5 μM concentrations of C60 HyFn at 37°C. They were then frozen in liquid nitrogen vapour at -140°C, stored in liquid nitrogen container (-196°C) and thawed at 37°C for 25 s before analysis. In comparison with control, C60 HyFn addition prior to freezing procedure provided significant increases in total and progressive motility rates, glutathione peroxidase, catalase activities and percentage of highly active mitochondria, and significant decreases in dead and abnormal sperm rates, lipid peroxidation, caspase-3 and DNA fragmentation levels in frozen-thawed ram semen. When compared to control, C60 HyFn supplementation significantly down-regulated the expression levels of miR-200a and KCNJ11, and significantly up-regulated the expression levels of miR-3958-3p (at the concentrations of 200, 400, 800 nM and 1 μM), CatSper1 (at the concentrations of 200, 400 nM and 5 μM), CatSper2 (at the concentrations of 1 and 5 μM), CatSper3 (at the concentrations of 200, 400 nM, 1 and 5 μM), CatSper4 (at all concentrations), ANO1 (at the concentrations of 800 nM, 1 and 5 μM) and TRPV5 (at the concentrations of 200, 400 and 800 nM). The addition of C60 HyFn had no effect on global DNA methylation rates. As a result, C60 HyFn supplementation to ram semen extenders may be beneficial in reducing some of the functional, structural and molecular damages in sperm induced by the freeze-thawing procedure.
Collapse
Affiliation(s)
- İbrahim Halil Güngör
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Gaffari Türk
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Serap Dayan Cinkara
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Tutku Can Acisu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Ahmet Tektemur
- Department of Medical Biology, Faculty of Medicine, Fırat University, Elazığ, Türkiye
| | - Deniz Yeni
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Türkiye
| | - Fatih Avdatek
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Türkiye
| | - Gözde Arkali
- Department of Physiology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Recep Hakkı Koca
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Bingöl University, Bingöl, Türkiye
| | - Şeyma Özer Kaya
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Meltem Sagiroglu
- Department of Physiology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Ebru Etem Önalan
- Department of Medical Biology, Faculty of Medicine, Fırat University, Elazığ, Türkiye
| | - Mustafa Sönmez
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Seyfettin Gür
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Abdurrauf Yüce
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| |
Collapse
|
2
|
Tsampoukas G, Tharakan T, Narayan Y, Khan F, Cayetano A, Papatsoris A, Buchholz N, Minhas S. Investigating the therapeutic options for diabetes-associated male infertility as illustrated in animal experimental models. Andrologia 2022; 54:e14521. [PMID: 35934995 DOI: 10.1111/and.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/15/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetes is a rising global health concern and an increasingly common cause of male infertility. Although the definitive pathophysiological mechanisms underpinning the association between diabetes and infertility is unclear, there are several animal studies showing diabetes to be a detrimental factor on reproductive health through apoptosis, oxidative stress and impairment of steroidogenesis. Furthermore, as reflected in animal models, antidiabetic strategies and relevant treatments are beneficial in the management of infertile men with diabetes as the recovery of euglycemic status affects positively the spermatogenesis. However, the available data are still evolving and specific conclusion in human populations are not possible yet. In this review, we are discussing the current literature concerning the association of diabetes and male infertility, focusing on the therapeutic approach as illustrated in animals' models.
Collapse
Affiliation(s)
- Georgios Tsampoukas
- U-merge Ltd. (Urology for emerging countries), London, UK.,Department of Urology, Great Western Hospital NHS Trust, Swindon, UK
| | - Tharu Tharakan
- Department of Urology, Imperial Healthcare NHS Trust, Charing Cross Hospital, London, UK.,Section of Investigative Medicine, Department of Medicine, Imperial College London, London, UK
| | - Yash Narayan
- Department of Surgery, Cairns Hospital, Cairns North, Queensland, Australia
| | - Faisal Khan
- Department of Urology, North Devon Hospital, Barnstaple, UK
| | - Axel Cayetano
- Department of Urology, Imperial Healthcare NHS Trust, Charing Cross Hospital, London, UK
| | - Athanasios Papatsoris
- U-merge Ltd. (Urology for emerging countries), London, UK.,Department of Urology, Sismanoglio University Hospital of Athens, Athens, Greece
| | - Noor Buchholz
- U-merge Ltd. (Urology for emerging countries), London, UK
| | - Suks Minhas
- Department of Urology, Imperial Healthcare NHS Trust, Charing Cross Hospital, London, UK
| |
Collapse
|
3
|
Saito N, Haniu H, Aoki K, Nishimura N, Uemura T. Future Prospects for Clinical Applications of Nanocarbons Focusing on Carbon Nanotubes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201214. [PMID: 35754236 PMCID: PMC9404397 DOI: 10.1002/advs.202201214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Over the past 15 years, numerous studies have been conducted on the use of nanocarbons as biomaterials towards such applications as drug delivery systems, cancer therapy, and regenerative medicine. However, the clinical use of nanocarbons remains elusive, primarily due to short- and long-term safety concerns. It is essential that the biosafety of each therapeutic modality be demonstrated in logical and well-conducted experiments. Accordingly, the fundamental techniques for assessing nanocarbon biomaterial safety have become more advanced. Optimal controls are being established, nanocarbon dispersal techniques are being refined, the array of biokinetic evaluation methods has increased, and carcinogenicity examinations under strict conditions have been developed. The medical implementation of nanocarbons as a biomaterial is in sight. With a particular focus on carbon nanotubes, these perspectives aim to summarize the contributions to date on nanocarbon applications and biosafety, introduce the recent achievements in evaluation techniques, and clarify the future prospects and systematic introduction of carbon nanomaterials for clinical use through practical yet sophisticated assessment methods.
Collapse
Affiliation(s)
- Naoto Saito
- Institute for Biomedical SciencesInterdisciplinary Cluster for Cutting Edge ResearchShinshu University3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
| | - Hisao Haniu
- Institute for Biomedical SciencesInterdisciplinary Cluster for Cutting Edge ResearchShinshu University3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
| | - Kaoru Aoki
- Department of Applied Physical TherapyShinshu University School of Health Sciences3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
| | - Naoyuki Nishimura
- Institute for Biomedical SciencesInterdisciplinary Cluster for Cutting Edge ResearchShinshu University3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
| | - Takeshi Uemura
- Institute for Biomedical SciencesInterdisciplinary Cluster for Cutting Edge ResearchShinshu University3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
- Division of Gene ResearchResearch Center for Supports to Advanced ScienceShinshu University3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
| |
Collapse
|
4
|
Lei X, Huo P, Xie Y, Wang Y, Liu G, Tu H, Shi Q, Mo Z, Zhang S. Dendrobium nobile Lindl polysaccharides improve testicular spermatogenic function in streptozotocin‐induced diabetic rats. Mol Reprod Dev 2022; 89:202-213. [DOI: 10.1002/mrd.23556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaocan Lei
- Department of Histology and Embryology, Clinical Anatomy & Reproductive Medicine Application Institute University of South China Hengyang China
| | - Peng Huo
- School of Public and Health Guilin Medical University Guilin China
| | - Yuan‐jie Xie
- Department of Histology and Embryology, Clinical Anatomy & Reproductive Medicine Application Institute University of South China Hengyang China
| | - Yaohui Wang
- School of Basic Medical Sciences Zunyi Medical University Zunyi China
| | - Guanghai Liu
- School of Basic Medical Sciences Zunyi Medical University Zunyi China
| | - Haoyan Tu
- Department of Reproductive Medical Center The Affiliated Hospital of Guilin Medical University Guilin China
| | - Qingxiang Shi
- School of Basic Medical Sciences Zunyi Medical University Zunyi China
| | - Zhong‐cheng Mo
- Department of Histology and Embryology, Clinical Anatomy & Reproductive Medicine Application Institute University of South China Hengyang China
| | - Shun Zhang
- Department of Reproductive Medical Center The Affiliated Hospital of Guilin Medical University Guilin China
| |
Collapse
|
5
|
Effect of hydrated C60 fullerene on lipid, vitamin and amino acid composition in frozen-thawed ram semen. Anim Reprod Sci 2022; 238:106939. [DOI: 10.1016/j.anireprosci.2022.106939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/10/2021] [Accepted: 01/30/2022] [Indexed: 11/24/2022]
|
6
|
Bahari Z, Ranjbar MF, Namdar F, Bayatpoor ME, Mohammadi MT. Anti-diabetic effects of fullerene C60 nanoparticle mediated by its anti-oxidant activity in the pancreas in type 1 diabetic rats. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e201077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Zahra Bahari
- Baqiyatallah University of Medical Sciences, Iran; Baqiyatallah University of Medical Sciences, Iran
| | | | | | | | - Mohammad Taghi Mohammadi
- Baqiyatallah University of Medical Sciences, Iran; Baqiyatallah University of Medical Sciences, Iran
| |
Collapse
|
7
|
Güngör İH, Dayan Cinkara S, Acısu TC, Arkalı G, Koca RH, Akarsu SA, Can C, Özer Kaya Ş, Kızıl M, Çakır A, Fırat F, Halıcı MS, Yılmaz İ, Badıllı N, Yüce A, Gür S, Sönmez M, Türk G. Effect of Hydrated Carbon 60 Fullerene on Frozen Ram Semen Quality. Biopreserv Biobank 2021; 20:340-347. [PMID: 34542322 DOI: 10.1089/bio.2021.0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The aim of this study was to evaluate the effect of hydrated carbon 60 fullerene (C60HyFn) on ram semen quality during cryopreservation. Three ejaculates from each of seven Akkaraman rams were collected using an artificial vagina during the nonbreeding season and pooled. Pooled semen samples were divided into 10 equal parts and diluted with tris + egg yolk extender not containing (control) and containing 100, 200, 400, and 800 nM and 1, 5, 10, 20, and 40 μM C60HyFn at 37°C. After addition of 5% glycerol and an equilibration process for 3 hours, the samples were frozen in 0.25-mL straws in an automatic freezing device at -140°C and stored in a liquid nitrogen container. Straws were thawed 24 hours after freezing and analyzed immediately with no incubation period. Motility, kinematic parameters, abnormality, vitality, hypo-osmotic swelling test (HOST), and oxidative stress levels were analyzed in thawed semen. Compared with the control, 200, 400, and 800 nM and 1 and 5 μM C60HyFn doses increased motility and HOST values and decreased the dead sperm rate. When compared with the control, addition of C60HyFn significantly decreased malondialdehyde levels (between 200 nM and 40 μM doses) and significantly increased glutathione peroxidase (between 800 nM and 40 μM doses) and catalase (between 1 and 40 μM doses) activities. In conclusion, results of this study show that the C60HyFn nanoparticles are nontoxic to ram semen and their supplementation in the extender is beneficial to sperm motility and membrane integrity after freeze-thawing.
Collapse
Affiliation(s)
- İbrahim Halil Güngör
- Department of Reproduction and Artificial Insemination and Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Serap Dayan Cinkara
- Department of Reproduction and Artificial Insemination and Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Tutku Can Acısu
- Department of Reproduction and Artificial Insemination and Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Gözde Arkalı
- Department of Physiology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Recep Hakkı Koca
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Bingöl University, Elazığ, Turkey
| | - Serkan Ali Akarsu
- Elbistan Vocational School, Kahramanmaraş İstiklal University, Kahramanmaraş, Turkey
| | - Coşkun Can
- Department of Reproduction and Artificial Insemination and Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Şeyma Özer Kaya
- Department of Reproduction and Artificial Insemination and Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Meltem Kızıl
- Department of Physiology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Aslıhan Çakır
- Department of Reproduction and Artificial Insemination and Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Fatma Fırat
- Department of Reproduction and Artificial Insemination and Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Muhammed Sami Halıcı
- Department of Reproduction and Artificial Insemination and Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - İrfan Yılmaz
- Department of Reproduction and Artificial Insemination and Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Nida Badıllı
- Department of Reproduction and Artificial Insemination and Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Abdurrauf Yüce
- Department of Physiology, Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Seyfettin Gür
- Department of Reproduction and Artificial Insemination and Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Mustafa Sönmez
- Department of Reproduction and Artificial Insemination and Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| | - Gaffari Türk
- Department of Reproduction and Artificial Insemination and Faculty of Veterinary Medicine, Fırat University, Elazığ, Turkey
| |
Collapse
|
8
|
Guimarães-Ervilha LO, Ladeira LCM, Carvalho RPR, Bento IPDS, Bastos DSS, Souza ACF, Santos EC, de Oliveira LL, Maldonado IRDSC, Machado-Neves M. Green Tea Infusion Ameliorates Histological Damages in Testis and Epididymis of Diabetic Rats. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-13. [PMID: 34184626 DOI: 10.1017/s1431927621012071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Green tea is a popular drink used for therapeutic purposes to mitigate the consequences of diabetes. In this study, we aimed at evaluating the potential of green tea infusion to ameliorate structural and enzymatic damages caused by hyperglycemia in the testis and epididymis of Wistar rats. For that, nondiabetic and streptozotocin-induced diabetic rats (negative control and diabetes control, respectively) received 0.6 mL of water by gavage. Another set of diabetic animals received 100 mg/kg of green tea infusion diluted in 0.6 mL of water/gavage (diabetes + green tea) daily. After 42 days of treatment, the testes and epididymides were removed and processed for histopathological analysis, micromineral determination, and enzymatic assays. The results showed that treatment with green tea infusion preserved the testicular and epididymal histoarchitecture, improving the seminiferous epithelium and the sperm production previously affected by diabetes. Treatment with green tea reduced tissue damages caused by this metabolic condition. Given the severity of hyperglycemia, there was no efficacy of the green tea infusion in maintaining the testosterone levels, antioxidant enzyme activity, and microminerals content. Thus, our findings indicate a protective effect of this infusion on histological parameters, with possible use as a complementary therapy for diabetes.
Collapse
Affiliation(s)
| | - Luiz Carlos Maia Ladeira
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais36570-900, Brazil
| | | | | | - Daniel Silva Sena Bastos
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais36570-900, Brazil
| | - Ana Cláudia Ferreira Souza
- Department of Animal Biology, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro23897-000, Brazil
| | - Eliziária Cardoso Santos
- Medicine School, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais39100-000, Brazil
| | | | | | - Mariana Machado-Neves
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais36570-900, Brazil
| |
Collapse
|
9
|
Kerry RG, Mahapatra GP, Maurya GK, Patra S, Mahari S, Das G, Patra JK, Sahoo S. Molecular prospect of type-2 diabetes: Nanotechnology based diagnostics and therapeutic intervention. Rev Endocr Metab Disord 2021; 22:421-451. [PMID: 33052523 DOI: 10.1007/s11154-020-09606-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
About ninety percent of all diabetic conditions account for T2D caused due to abnormal insulin secretion/ action or increased hepatic glucose production. Factors that contribute towards the aetiology of T2D could be well explained through biochemical, molecular, and cellular aspects. In this review, we attempt to explain the recent evolving molecular and cellular advancement associated with T2D pathophysiology. Current progress fabricated in T2D research concerning intracellular signaling cascade, inflammasome, autophagy, genetic and epigenetics changes is discretely explained in simple terms. Present available anti-diabetic therapeutic strategies commercialized and their limitations which are needed to be acknowledged are addressed in the current review. In particular, the pre-eminence of nanotechnology-based approaches to nullify the inadequacy of conventional anti-diabetic therapeutics and heterogeneous nanoparticulated systems exploited in diabetic researches are also discretely mentioned and are also listed in a tabular format in the review. Additionally, as a future prospect of nanotechnology, the review presents several strategic hypotheses to ameliorate the austerity of T2D by an engineered smart targeted nano-delivery system. In detail, an effort has been made to hypothesize novel nanotechnological based therapeutic strategies, which exploits previously described inflammasome, autophagic target points. Utilizing graphical description it is explained how a smart targeted nano-delivery system could promote β-cell growth and development by inducing the Wnt signaling pathway (inhibiting Gsk3β), inhibiting inflammasome (inhibiting NLRP3), and activating autophagic target points (protecting Atg3/Atg7 complex from oxidative stress) thereby might ameliorate the severity of T2D. Additionally, several targeting molecules associated with autophagic and epigenetic factors are also highlighted, which can be exploited in future diabetic research.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India
| | | | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi, 221005, India
| | - Sushmita Patra
- Department of Biotechnology, North Odissa University, Takatpur, Baripada, Odisha, 757003, India
| | - Subhasis Mahari
- DBT- National Institute of Animal Biotechnology, Hyderabad, 500032, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea.
| | - Sabuj Sahoo
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India.
| |
Collapse
|
10
|
Huang X, He D, Pan Z, Luo G, Deng J. Reactive-oxygen-species-scavenging nanomaterials for resolving inflammation. Mater Today Bio 2021; 11:100124. [PMID: 34458716 PMCID: PMC8379340 DOI: 10.1016/j.mtbio.2021.100124] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) mediate multiple physiological functions; however, the over-accumulation of ROS causes premature aging and/or death and is associated with various inflammatory conditions. Nevertheless, there are limited clinical treatment options that are currently available. The good news is that owing to the considerable advances in nanoscience, multiple types of nanomaterials with unique ROS-scavenging abilities that influence the temporospatial dynamic behaviors of ROS in biological systems have been developed. This has led to the emergence of next-generation nanomaterial-controlled strategies aimed at ameliorating ROS-related inflammatory conditions. Accordingly, herein we reviewed recent progress in research on nanotherapy based on ROS scavenging. The underlying mechanisms of the employed nanomaterials are emphasized. Furthermore, important issues in developing cross-disciplinary nanomedicine-based strategies for ROS-based inflammatory conditions are discussed. Our review of this increasing interdisciplinary field will benefit ongoing studies and clinical applications of nanomedicine based on ROS scavenging.
Collapse
Affiliation(s)
- X. Huang
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, 400038 Chongqing, China
| | - D. He
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, 400038 Chongqing, China
| | - Z. Pan
- Department of Endocrinology and Nephrology, The Seventh People's Hospital of Chongqing
| | - G. Luo
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, 400038 Chongqing, China
| | - J. Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University, 400038 Chongqing, China
| |
Collapse
|
11
|
Therapeutic effect of curcumin and C60 fullerene against hyperglycemia-mediated tissue damage in diabetic rat lungs. J Bioenerg Biomembr 2021; 53:25-38. [PMID: 33411205 DOI: 10.1007/s10863-020-09861-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/16/2020] [Indexed: 01/02/2023]
Abstract
Increasing evidence suggests that diabetes also targets lung tissues resulting in structural and physiological abnormalities. The present study evaluated the impact of pristine C60 fullerene (C60) against diabetes-induced lung damage for the first time. The objective was to evaluate the impacts of Curcumin (Cur), C60 and C60 fullerene+Curcumin (C60 + Cur) combination on oxidative stress (MDA, GSH, CAT, GST, Retinol, α-tocopherol), apoptosis (Caspase-3, Bcl-2), cholesterol and fatty acid profile (16:0,18:0,18:1,18:2, 22:4, 22:6) against changes in the lung tissue of diabetic rats. Streptozotocin (STZ) was used for inducing diabetes with Cur, C60 and C60 + Cur combination administered for eight weeks to treat diabetic and control rats. Increased oxidative stress, apoptosis and significant changes in cell structure were observed in the lung tissues of diabetic rats. The combination of Cur, C60 and C60 + Cur reduced oxidative stress in the lung tissue of diabetic rats while increasing the antioxidant defense capacity of the tissue, exhibiting tissue protective properties against apoptosis. The diabetic rats displayed favorable properties against lipotoxicity-induced tissue damage due to the increase in the fatty acid and cholesterol levels in lung tissue. It was observed that Cur, C60 and C60 + Cur combination displays protective effects against hyperglycemia induced oxidative damage to lung tissue. Oxidative stress, prevention of lipid and cholesterol accumulation, and weakening of lung apoptosis may be associated with these effects.
Collapse
|
12
|
Liu Y, Li X, Xiao S, Liu X, Chen X, Xia Q, Lei S, Li H, Zhong Z, Xiao K. The Effects of Gold Nanoparticles on Leydig Cells and Male Reproductive Function in Mice. Int J Nanomedicine 2020; 15:9499-9514. [PMID: 33281445 PMCID: PMC7709869 DOI: 10.2147/ijn.s276606] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/10/2020] [Indexed: 02/05/2023] Open
Abstract
Background Gold nanoparticles (AuNPs) have shown great promise in various biomedical applications, but their effects on male reproductive function remain to be ascertained. The aim of this study was to investigate the uptake, cytotoxicity and testosterone production inhibition of AuNPs in mouse Leydig cells, as well as their accumulation in the testes of male mice and their effects on male reproductive function. Results AuNPs (5 nm) were able to be internalized into the endosomes/lysosomes of TM3 Leydig cells, induce the formation of autophagosomes, increase the production of reactive oxygen species (ROS), and disrupt the cell cycle in S phase, resulting in concentration-dependent cytotoxicity and DNA damage. Interestingly, AuNPs significantly reduced testosterone production in TM3 cells by inhibiting the expression of 17α-hydroxylase, an important enzyme in androgen synthesis. After repeated intravenous injection, AuNPs gradually accumulated and retained in the testes of male BALB/c mice in a dose-dependent manner. One week after withdrawal, the level of plasma testosterone in the 0.5 mg/kg AuNPs group was significantly reduced compared to that in the PBS control group, accompanied by the decreased expression of 17α-hydroxylase in the testes. In addition, AuNPs treatment significantly increased the rate of epididymal sperm malformation, but without affecting fertility. Conclusion Our results suggest that AuNPs can accumulate in the testes and reduce testosterone production in Leydig cells by down-regulating the expression of 17α-hydroxylase, thus affecting the quality of epididymal sperm.
Collapse
Affiliation(s)
- Ying Liu
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiaojie Li
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Shuwen Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xinyi Liu
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xuanming Chen
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qiyue Xia
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Song Lei
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Hongxia Li
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhihui Zhong
- Laboratory of Non-Human Primate Disease Model Research, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Kai Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
13
|
Arkali G, Aksakal M, Kaya ŞÖ. Protective effects of carvacrol against diabetes-induced reproductive damage in male rats: Modulation of Nrf2/HO-1 signalling pathway and inhibition of Nf-kB-mediated testicular apoptosis and inflammation. Andrologia 2020; 53:e13899. [PMID: 33242925 DOI: 10.1111/and.13899] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/22/2022] Open
Abstract
Diabetes mellitus, which causes many complications, also adversely affects reproductive system in men. Studies reported that natural antioxidants are effective in reducing important complication risks caused by diabetes. Carvacrol is an antioxidant phenolic monoterpene compound with therapeutic effect in various diseases found in essential oils of aromatic plants such as pepper, wild bergamot and thyme. We aimed to investigate the effects of carvacrol on diabetes-induced reproductive damage in male rats by evaluating the Nrf2/HO-1 pathway and Nf-kB-mediated apoptosis/inflammation and spermatological parameters. For this purpose, 74 Wistar albino male rats were used. The diabetes model was performed using single-dose intraperitoneal injection of streptozotocin 55 mg/kg. Rats were fed with carvacrol 75 mg/kg/daily/gavage for 4 and 8 weeks. Rats were divided into four groups: control group, diabetic group, carvacrol group which fed with carvacrol and the diabetic group which fed with carvacrol. It was determined that carvacrol significantly decreased malondialdehyde levels, Bax,COX-2,Nf-kB protein expression levels, Bax/Bcl-2 ratio and significantly increased glutathione peroxidase, catalase activities, Bcl-2, Nrf2,HO-1 protein expression levels and it was determined that had a positive effect on spermatological parameters. In conclusion, the negative effects of diabetes in the male reproductive system can be prevented and/or reduced by giving carvacrol.
Collapse
Affiliation(s)
- Gözde Arkali
- Department of Physiology, Fırat University Faculty of Veterinary Medicine, Elazığ, Turkey
| | - Mesut Aksakal
- Department of Physiology, Fırat University Faculty of Veterinary Medicine, Elazığ, Turkey
| | - Şeyma Özer Kaya
- Department of Reproduction and Artificial Insemınation, Fırat University Faculty of Veterinary Medicine, Elazığ, Turkey
| |
Collapse
|
14
|
Soliman GA, Abdel-Rahman RF, Ogaly HA, Althurwi HN, Abd-Elsalam RM, Albaqami FF, Abdel-Kader MS. Momordica charantia Extract Protects against Diabetes-Related Spermatogenic Dysfunction in Male Rats: Molecular and Biochemical Study. Molecules 2020; 25:molecules25225255. [PMID: 33187275 PMCID: PMC7698202 DOI: 10.3390/molecules25225255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 01/18/2023] Open
Abstract
More than 90% of diabetic patients suffer from sexual dysfunction, including diminished sperm count, sperm motility, and sperm viability, and low testosterone levels. The effects of Momordica charantia (MC) were studied by estimating the blood levels of insulin, glucose, glycosylated hemoglobin (HbA1c), testosterone (TST), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) in diabetic rats treated with 250 and 500 mg/kg b.w. of the total extract. Testicular antioxidants, epididymal sperm characteristics, testicular histopathology, and lesion scoring were also investigated. Testicular mRNA expression of apoptosis-related markers such as antiapoptotic B-cell lymphoma-2 (Bcl-2) and proapoptotic Bcl-2-associated X protein (Bax) were evaluated by real-time PCR. Furthermore, caspase-3 protein expression was evaluated by immunohistochemistry. MC administration resulted in a significant reduction in blood glucose and HbA1c and marked elevation of serum levels of insulin, TST, and gonadotropins in diabetic rats. It induced a significant recovery of testicular antioxidant enzymes, improved histopathological changes of the testes, and decreased spermatogenic and Sertoli cell apoptosis. MC effectively inhibited testicular apoptosis, as evidenced by upregulation of Bcl-2 and downregulation of Bax and caspase-3. Moreover, reduction in apoptotic potential in MC-treated groups was confirmed by reduction in the Bax/Bcl-2 mRNA expression ratio.
Collapse
Affiliation(s)
- Gamal A. Soliman
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (G.A.S.); (H.N.A.); (F.F.A.)
- Department of Pharmacology, College of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | | | - Hanan A. Ogaly
- Department of Chemistry, College of Science, King Khalid University, Abha 61421, Saudi Arabia;
- Department of Biochemistry, College of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Hassan N. Althurwi
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (G.A.S.); (H.N.A.); (F.F.A.)
| | - Reham M. Abd-Elsalam
- Department of Pathology, College of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Faisal F. Albaqami
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (G.A.S.); (H.N.A.); (F.F.A.)
| | - Maged S. Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, College of Pharmacy, Alexandria University, Alexandria 21215, Egypt
- Correspondence: ; Tel.: +966-545539145
| |
Collapse
|
15
|
Demir E, Aslan A. Protective effect of pristine C60 fullerene nanoparticle in combination with curcumin against hyperglycemia-induced kidney damage in diabetes caused by streptozotocin. J Food Biochem 2020; 44:e13470. [PMID: 32914898 DOI: 10.1111/jfbc.13470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022]
Abstract
The present study aims to examine the protective effects of C60 fullerene (C60), Curcumin (CUR; Curcuma longa), C60 + CUR combination against oxidative stress, apoptosis, and changes in cellular level in kidney tissue of diabetic rats. Treatment practices were administered separately to groups for 8 weeks following the approval of diabetes induction. It was observed that the treatment groups had increased antioxidant potential, decreased oxidative stress levels, decreased cholesterol, alpha tocopherol, retinol levels along with improved important changes in fatty acid metabolism compared with the diabetic group. C60, CUR, and C60 + CUR were also determined to act in the direction of reducing kidney damage by activating apoptotic pathways. It can be concluded based on these findings that C60, CUR, and especially C60 + CUR combination has beneficial properties in maintaining kidney tissue and function by effectively preventing oxidative stress, apoptotic changes, and changes at the cellular level in kidney tissue under hyperglycemia conditions. PRACTICAL APPLICATIONS: C60 and CUR have various biological activities which can be indicated as antioxidant, anti-inflammatory, anticancer, neuroprotective, and hepatoprotective. It has been reported that C60 and CUR protect the cells against oxidative injury brought about by reactive oxygen species (ROS). Data acquired from the present study puts forth that C60 and C60 + CUR may be promising agents to prevent damage induced by hyperglycemic conditions in kidney tissue.
Collapse
Affiliation(s)
- Ersin Demir
- Department of Agricultural Biotechnology, Faculty of Agriculture and Natural Sciences, Duzce University, Duzce, Turkey
| | - Abdullah Aslan
- Department of Biology-Molecular Biology and Genetics Program, Faculty of Science, Firat University, Elazig, Turkey
| |
Collapse
|
16
|
Demir E, Nedzvetsky VS, Ağca CA, Kirici M. Pristine C 60 Fullerene Nanoparticles Ameliorate Hyperglycemia-Induced Disturbances via Modulation of Apoptosis and Autophagy Flux. Neurochem Res 2020; 45:2385-2397. [PMID: 32712876 DOI: 10.1007/s11064-020-03097-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus is a prevalent metabolic disorder associated with multiple complications including neuropathy, memory loss and cognitive decline. Despite a long history of studies on diabetic complications, there are no effective therapeutic strategies for neuroprotection in diabetes. Hyperglycemia-induced imbalance in programmed cell death could initiate a decline in neural tissue cells viability. Various nanomaterials can induce either cell death or cell survival dependent on the type and surface features. Pristine C60 fullerene is a nontoxic nanomaterial, which exhibits antioxidant and cytoprotective properties. However, the precise molecular mechanism with which the C60 nanoparticle exerts cytoprotective effect in diabetic subjects has not yet been fully addressed. Thus, this study aimed to determine whether C60 fullerene prevents oxidative stress impairment and to explore the effects of C60 fullerene on apoptosis and autophagy in diabetes mellitus to clarify its potential mechanisms. These effects have been examined for olive oil extracted C60 fullerene on the hippocampus of STZ diabetic rats. Up-regulation of Caspase-3, Beclin-1 and oxidative stress indexes and down-regulation of Bcl-2 were observed in the brain of STZ-diabetic rats. The exposure to C60 fullerene for a period of 12 weeks ameliorate redox imbalance, hyperglycemia-induced disturbances in apoptosis and autophagy flux via modulation of Caspase-3, Bcl-2, Beclin-1 and LC3I/II contents. Furthermore, C60 fullerene ameliorated the LC3I/II ratio and prevented extremely increased autophagy flux. Contrarily, pristine C60 fullerene had no modulatory effect on all studied apoptotic and autophagy markers in non-diabetic groups. Therefore, oil extracted C60 fullerene exhibits cytoprotective effect in hyperglycemia-stressed hippocampal cells. The presented results confirm that pristine C60 fullerene nanoparticles can protect hippocampal cells against hyperglycemic stress via anti-oxidant, anti-apoptotic effects and amelioration of autophagy flux. Moreover, C60 fullerene regulates a balance of autophagy via BCL-2/Beclin-1 reciprocal expression that could prevent functional disturbances in hippocampus.
Collapse
Affiliation(s)
- Ersin Demir
- Department of Agricultural Biotechnology, Faculty of Agriculture and Natural Sciences, Duzce University, 81620, Duzce, Turkey.
| | - Viktor S Nedzvetsky
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bingol University, 12000, Bingöl, Turkey
- Oles Honchar Dnipro National University, Dnipro, 49050, Ukraine
| | - Can Ali Ağca
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bingol University, 12000, Bingöl, Turkey
| | - Mahinur Kirici
- Department of Property Protection and Security, Bingol Social Sciences Vocational School, Bingol University, 12000, Bingöl, Turkey
| |
Collapse
|
17
|
Sumi N, Chitra KC. Possible role of C 60 fullerene in the induction of reproductive toxicity in the freshwater fish, Anabas testudineus (Bloch, 1792). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19603-19615. [PMID: 32219653 DOI: 10.1007/s11356-020-08509-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
In recent years, the impact of ultrafine nanomaterials on the aquatic organisms and their ecosystems contributed much concern due to their abundance in environment. Several toxicity studies have reported that nanoparticles induced reproductive stress and resulted in reproductive impairment of fishes. The present study was aimed to investigate the stress-induced toxicity of C60 fullerene nanomaterial on various reproductive parameters of the freshwater fish, Anabas testudineus. Fish were exposed to two sublethal concentrations of fullerene C60, one-tenth (5 mg/L) and one-fifth (10 mg/L) of LC50-96 h, for 4, 7, 15, 30, and 60-day durations. At the end of exposure period, the activities of steroidogenic enzymes, 3β-, and 17β-hydroxysteroid dehydrogenase decreased in the testis and ovary thereby indicated that the nanomaterial affected gonadal steroidogenesis. The level of serum testosterone decreased significantly (p < 0.05) in male whereas the level of estradiol showed significant (p < 0.05) reduction in female fish with significant (p < 0.05) increase in the level of serum cortisol in both sexes in concentration- and time-dependent manner. The analysis of the levels of alkali-labile phosphates, plasma calcium, and total protein showed significant (p < 0.05) reduction in female fish without significant changes in male fish, and this could be due to the antiestrogenic action of fullerene C60 nanomaterial. The activity of aromatase enzyme decreased significantly (p < 0.05) in the ovary and brain of female fish, and the decline in the enzyme activity was prominent only in the brain tissue of male fish. The present results suggested that the stress-induced by fullerene C60 exposure provoked reproductive toxicity in the fish, Anabas testudineus.
Collapse
Affiliation(s)
- Nechat Sumi
- Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Malappuram District, Kerala, 673635, India
| | - Kumari Chidambaran Chitra
- Endocrinology and Toxicology Laboratory, Department of Zoology, University of Calicut, Malappuram District, Kerala, 673635, India.
| |
Collapse
|
18
|
Li X, Wang L, Liu H, Fu J, Zhen L, Li Y, Zhang Y, Zhang Y. C 60 Fullerenes Suppress Reactive Oxygen Species Toxicity Damage in Boar Sperm. NANO-MICRO LETTERS 2019; 11:104. [PMID: 34138040 PMCID: PMC7770955 DOI: 10.1007/s40820-019-0334-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/29/2019] [Indexed: 05/22/2023]
Abstract
We report the carboxylated C60 improved the survival and quality of boar sperm during liquid storage at 4 °C and thus propose the use of carboxylated C60 as a novel antioxidant semen extender supplement. Our results demonstrated that the sperm treated with 2 μg mL-1 carboxylated C60 had higher motility than the control group (58.6% and 35.4%, respectively; P ˂ 0.05). Moreover, after incubation with carboxylated C60 for 10 days, acrosome integrity and mitochondrial activity of sperm increased by 18.1% and 34%, respectively, compared with that in the control group. Similarly, the antioxidation abilities and adenosine triphosphate levels in boar sperm treated with carboxylated C60 significantly increased (P ˂ 0.05) compared with those in the control group. The presence of carboxylated C60 in semen extender increases sperm motility probably by suppressing reactive oxygen species (ROS) toxicity damage. Interestingly, carboxylated C60 could protect boar sperm from oxidative stress and energy deficiency by inhibiting the ROS-induced protein dephosphorylation via the cAMP-PKA signaling pathway. In addition, the safety of carboxylated C60 as an alternative antioxidant was also comprehensively evaluated by assessing the mean litter size and number of live offspring in the carboxylated C60 treatment group. Our findings confirm carboxylated C60 as a novel antioxidant agent and suggest its use as a semen extender supplement for assisted reproductive technology in domestic animals.
Collapse
Affiliation(s)
- Xinhong Li
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Lirui Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Huan Liu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jieli Fu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Linqing Zhen
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yuhua Li
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yaozhong Zhang
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, USA
| | - Yafei Zhang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
19
|
Nedzvetsky VS, Sukharenko EV, Baydas G, Andrievsky GV. Water-soluble C60 fullerene ameliorates astroglial reactivity and TNFa production in retina of diabetic rats. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The complications of both first and second types of diabetes mellitus patients are important cause of decline in quality of life and mortality worldwide. Diabetic retinopathy (DR) is a widespread complication that affects almost 60% of patients with prolonged (at least 10–15 years) diabetes. The critical role of glial cells has been shown in retinopathy initiation in the last decades. Furthermore, glial reactivity and inflammation could be key players in early pathogenesis of DR. Despite the large amount of research data, the approaches of effective DR therapy remain unclear. The progress of DR is accompanied by pro-inflammatory and pro-oxidative changes in retinal cells including astrocytes and Muller cells. Glial reactivity is a key pathogenetic factor of various disorders in neural tissue. Fullerene C60 nanoparticles were confirmed for both antioxidant and anti-inflammatory capability. In the presented study glioprotective efficacy of water-soluble hydrated fullerene C60 (C60HyFn) was tested in a STZ-diabetes model during 12 weeks. Exposure of the STZ-diabetic rat group to C60HyFn ameliorated the astrocyte reactivity which was determined via S100β and PARP1 overexpression. Moreover, C60HyFn induced the decrease of TNFα production in the retina of STZ-diabetic rats. By contrast, the treatment with C60HyFn of the normal control rat group didn’t change the content of all abovementioned markers of astrogliosis and inflammation. Thus, diabetes-induced abnormalities in the retina were suppressed via the anti-oxidant, anti-inflammatory and glioprotective effects of C60HyFn at low doses. The presented results demonstrate that C60HyFn can ensure viability of retinal cells viability through glioprotective effect and could be a new therapeutic nano-strategy of DR treatment.
Collapse
|
20
|
Khordadmehr M, Ghaderi S, Mesgari Abbasi M, Nofouzi K, McIntyre G. The Improvement Effects of Gordonia bronchialis on Male Fertility of Rats with Diabetes Mellitus Induced by Streptozotocin. PHARMACEUTICAL SCIENCES 2019. [DOI: 10.15171/ps.2019.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: This study evaluated the possible protective effects of Gordonia bronchialis (Gb) on oxidative stress and some subsequent alterations on testis from rats undergoing an experimentally induced type 1 diabetes. Methods: A total of 40 male rats were randomly divided into four groups of ten. Diabetes was induced by injection of 55 mg/kg streptozotocin in 30 rats. Oral administration of Gb at dose of 105 (low dose) and 107 (high dose) CFU/rat was performed in two groups continuously for 14 days. The third and fourth groups received normal saline as the diabetic and healthy control groups, respectively. The blood and testicular tissue samples were taken on the 14th and 21st days post treatment for biochemical and histopathological evaluations. Results: Significant differences were found in blood glucose level, insulin, IL-6 and TNF-α values together with catalase and superoxide dismutase activities and malondialdehyde level in the diabetic group in comparison with healthy and Gb recipient groups. Moreover, the histopathological lesions observed in the diabetic rats mainly included basement membrane thickening, decreased number of Sertoli cells, and severe reduction of spermatogenesis markedly attenuated in Gb-treated rats. Conclusion: Taken together, it seems that oral administration of Gb could ameliorate testicular damage associated with some related parameters in the diabetic animal model.
Collapse
Affiliation(s)
- Monireh Khordadmehr
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Iran
| | - Solin Ghaderi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Iran
| | | | - Katayoon Nofouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Iran
| | - Graham McIntyre
- Center for Infectious Diseases and International Health, Windeyer Institute for Medical Sciences, University College London, UK
| |
Collapse
|
21
|
Wankeu-Nya M, Watcho P, Deeh Defo PB, Ngadjui E, Nguelefack TB, Kamtchouing P, Kamanyi A. Aqueous and ethanol extracts of Dracaena arborea (Wild) Link (Dracaenaceae) alleviate reproductive complications of diabetes mellitus in rats. Andrologia 2019; 51:e13381. [PMID: 31373720 DOI: 10.1111/and.13381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/13/2019] [Accepted: 07/04/2019] [Indexed: 12/20/2022] Open
Abstract
Reproductive dysfunction is one of the most prevalent diabetes complications. Draceana arborea is known to enhance sexual function in diabetic rats, but the underlying mechanisms have not been thoroughly elucidated. This study examined the effects of D. arborea on some reproductive complications of diabetes in rats. Aqueous and ethanol (500 and 100 mg/kg respectively) extracts of D. arborea, Sildenafil citrate (1.44 mg/kg), trimethylamine-N-oxide (TMAO, 20 mg/kg) and distilled water (10 ml/kg) were orally administered for 28 days to streptozotocin-induced diabetic rats. Glycaemia, body and reproductive organ masses, fertility parameters, total proteins, antioxidant enzymes activities, serum and testicular testosterone and the histology of the testes and epididymis were determined. Results revealed significant decreases in body and absolute and relative masses of testes, epididymis, seminal vesicles, prostate and vas deferens, fertility parameters, epididymal and testicular total proteins, serum and testicular testosterone levels as well as antioxidant enzymes activities. Interestingly, while having minor anti-hyperglycaemic effects, these abnormalities associated with testicular and epididymal alterations were alleviated by D. arborea especially the aqueous extract (500 mg/kg). These outcomes provided evidence of the androgenic properties of D. arborea in diabetic rats, which could be useful for a better management of sexual dysfunctions in diabetic patients.
Collapse
Affiliation(s)
- Modeste Wankeu-Nya
- Animal Organisms Biology and Physiology Laboratory, University of Douala, Douala, Cameroon.,Animal Physiology and Phytopharmacology Laboratory, University of Dschang, Dschang, Cameroon
| | - Pierre Watcho
- Animal Physiology and Phytopharmacology Laboratory, University of Dschang, Dschang, Cameroon
| | - Patrick B Deeh Defo
- Animal Physiology and Phytopharmacology Laboratory, University of Dschang, Dschang, Cameroon
| | - Esther Ngadjui
- Animal Physiology and Phytopharmacology Laboratory, University of Dschang, Dschang, Cameroon
| | - Telesphore B Nguelefack
- Animal Physiology and Phytopharmacology Laboratory, University of Dschang, Dschang, Cameroon
| | - Pierre Kamtchouing
- Department of Animal Biology and Physiology, University of Yaoundé I, Yaounde, Cameroon
| | - Albert Kamanyi
- Animal Physiology and Phytopharmacology Laboratory, University of Dschang, Dschang, Cameroon
| |
Collapse
|
22
|
Souza ACF, Bastos DSS, Sertorio MN, Santos FC, Ervilha LOG, de Oliveira LL, Machado-Neves M. Combined effects of arsenic exposure and diabetes on male reproductive functions. Andrology 2019; 7:730-740. [DOI: 10.1111/andr.12613] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 01/28/2019] [Accepted: 02/24/2019] [Indexed: 12/21/2022]
Affiliation(s)
- A. C. F. Souza
- Department of General Biology; Federal University of Viçosa; Viçosa Minas Gerais Brazil
- Department of Animal Science; Federal University of Viçosa; Viçosa Minas Gerais Brazil
| | - D. S. S. Bastos
- Department of General Biology; Federal University of Viçosa; Viçosa Minas Gerais Brazil
| | - M. N. Sertorio
- Department of General Biology; Federal University of Viçosa; Viçosa Minas Gerais Brazil
| | - F. C. Santos
- Department of General Biology; Federal University of Viçosa; Viçosa Minas Gerais Brazil
| | - L. O. G. Ervilha
- Department of General Biology; Federal University of Viçosa; Viçosa Minas Gerais Brazil
| | - L. L. de Oliveira
- Department of General Biology; Federal University of Viçosa; Viçosa Minas Gerais Brazil
| | - M. Machado-Neves
- Department of General Biology; Federal University of Viçosa; Viçosa Minas Gerais Brazil
| |
Collapse
|
23
|
Shittu ST, Shittu SA, Olatunji AA, Oyeyemi WA. Ocimum gratissimum leaf extract may precipitate infertility in male diabetic Wistar rats. JBRA Assist Reprod 2019; 23:34-44. [PMID: 30376279 PMCID: PMC6364277 DOI: 10.5935/1518-0557.20180072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Objective: This study was designed to investigate the Ocimum
gratissimum (OG) effects on sperm quality and testicular
cytoarchitecture in alloxan-induced diabetic rats. Method: Twenty male Wistar rats (150-200 g) were assigned into 4 groups (n=5) as A
(control), B (OG), C (Dia) and D (Dia+OG). Groups A and B were normal
animals receiving distilled water or OG (400 mg/kg), respectively while
diabetes was induced by alloxan monohydrate (100 mg/kg) in groups C and D,
followed by the administration of distilled water or OG, respectively for 28
days. Blood samples were obtained for fasting blood glucose (FBG) and
fructosamine determination while, epididymis and testes were obtained for
sperm quality assessment using computer-assisted sperm analyzer and
testicular histomorphometry, respectively. Seminiferous tubule diameter and
interstitial space distance were quantified in hematoxylin and eosin stained
slides. Statistical analysis was done using ANOVA and student t-test at
α0.05. Results: Fructosamine and FBG were reduced in Dia+OG (80.11±3.80µmol/L
and 132.0±8.41mg/dl, respectively) compared with Dia
(139.66±4.29µmol/L and 285.6±26.69mg/dl, respectively).
Sperm count was unchanged in Dia, but decreased in OG and Dia+OG; abnormal
sperm cells increased in OG, Dia and Dia+OG. Mild vacuolation in the
seminiferous tubule, disorganized germinal cells layer, arrested sperm
maturation with empty spermatozoa in lumen, decreased seminiferous tubule
diameter and increased interstitial space were found in the testes of OG,
Dia and Dia+OG compared with control. Conclusion: Diabetes induces sperm impairments and distortions in testicular
cytoarchitecture, which were aggravated by OG leaf extract in male Wistar
rats.
Collapse
Affiliation(s)
- Shehu-Tijani Shittu
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Seyyid Alli Shittu
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | | |
Collapse
|
24
|
Ngo YL, Lau CH, Chua LS. Review on rosmarinic acid extraction, fractionation and its anti-diabetic potential. Food Chem Toxicol 2018; 121:687-700. [PMID: 30273632 DOI: 10.1016/j.fct.2018.09.064] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/05/2018] [Accepted: 09/26/2018] [Indexed: 01/02/2023]
Abstract
Rosmarinic acid is a bioactive phytochemical that can be found in many herbs as ethnomedicines. It possesses remarkable pharmacological activities, and thus leading to its exploration as a therapeutic drug in diabetes treatment recently. This article reviews the extraction and fractionation techniques for plant-based natural rosmarinic acid and its anti-diabetic potential based on literature data published in journals, books, and patents from 1958 to 2017. Factors affecting the performance of rosmarinic acid extraction and fractionation such as operating temperature, time, solvent to sample ratio and eluent system are compiled and discussed in detail. The inhibitory action of rosmarinic acid against sugar digestive enzymes, and protective action towards pancreatic β-cell dysfunction and glucolipotoxicity mediated oxidative stress are also critically reviewed. The optimal parameters are largely dependent on the applied extraction and fractionation techniques, as well as the nature of plant samples. Previous studies have proven the potent role of rosmarinic acid to control plasma glucose level and increase insulin sensitivity in hyperglycemia. Although rosmarinic acid is readily absorbed by human body, its mechanism after consumption is remained unclear. Intensive studies should be well planned to determine the dosage and toxicity level of rosmarinic acid for efficacy and safe consumption.
Collapse
Affiliation(s)
- Yi Lei Ngo
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Malaysia; Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Malaysia
| | - Cher Haan Lau
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Malaysia; Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Malaysia
| | - Lee Suan Chua
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Malaysia; Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Malaysia.
| |
Collapse
|
25
|
Exposure to pesticides and the prevalence of diabetes in a rural population in Korea. Neurotoxicology 2018; 70:12-18. [PMID: 30367900 DOI: 10.1016/j.neuro.2018.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Among the adverse health effects of exposure to pesticides, an association with diabetes has been reported. However, there is a lack of epidemiologic studies on the health effects of exposure to pesticides, particularly investigating the association between occupational pesticide exposure and diabetes prevalence. PURPOSE The present study examined the association between pesticide exposure and prevalence of diabetes in a rural population in Korea. METHODS This cross-sectional study used data from the Korea Farmers Cohort study, and included 2559 participants in the baseline survey between November 2005 and January 2008. We performed a clinical examination including blood sampling and assessed data on diabetes diagnosis, demographics, and pesticide exposure. Logistic regression was performed to evaluate the association between pesticide exposure and diabetes prevalence, adjusting for age, sex, monthly income, and marital status. In addition, a stratified analysis by body mass index (BMI) was conducted, with two categories: normal weight (<25 kg/m2) and overweight or obese (≥25 kg/m2). RESULTS At baseline, the prevalence of diabetes was 9.30%. Pesticide exposure was associated with the risk of diabetes after adjustment for covariates. In the analysis stratified by BMI, all the variables related to pesticide exposure were associated with prevalence of diabetes in the overweight or obese group, whereas no significant association was found in the normal weight group. CONCLUSION Exposure to pesticides was associated with diabetes, and this association was stronger in overweight or obese individuals than in normal weight individuals. Further longitudinal studies that consider information on BMI are necessary.
Collapse
|
26
|
Bahojb Soldozi H, Jalili F, Sohrabi M, Keshtmand Z, Jalili C. The effects of crocin on the serum levels of sex hormone and NO in streptozotocin – induced diabetic rats. مجله علمی دانشگاه علوم پزشکی کردستان 2018. [DOI: 10.29252/sjku.23.2.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Affiliation(s)
- O Ersoy
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - G Kizilay
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
28
|
Pietroiusti A, Stockmann-Juvala H, Lucaroni F, Savolainen K. Nanomaterial exposure, toxicity, and impact on human health. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1513. [PMID: 29473695 DOI: 10.1002/wnan.1513] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/03/2018] [Accepted: 01/16/2018] [Indexed: 12/17/2022]
Abstract
The use of engineered nanomaterials (ENM) has grown after the turn of the 21st century. Also, the production of ENM has globally grown, and exposure of workers especially via the lungs to ENM has increased. This review tackles with effects of ENM on workers' health because occupational environment is the main source of exposure to ENM. Assessment of exposure to ENM is demanding, and today there are no occupational exposure level (OEL) for ENM. This is partly due to challenges of such measurements, and in part to the unknown causality between ENM metrics and effects. There are also marked gaps in systematic knowledge on ENM hazards. Human health surveys of exposed workers, or human field studies have not identified specific effects of ENM linking them with a specific exposure. There is, however, a consensus that material characteristics such as size, and chemistry influence effects of ENM. Available data suggest that multiwalled carbon nanotubes (MWCNT) affect the immunological system and cause inflammation of the lungs, or signs of asthma whereas carbon nanofibers (CNF) may cause interstitial fibrosis. Metallic and metal oxide nanoparticles together with MWCNT induce genotoxicity, and a given type of MWCNT has been identified as a possible human carcinogen. Currently, lack of understanding of mechanisms of effects of ENM renders assessment of hazards and risks of ENM material-by-material a necessity. The so called "omics" approaches utilizing ENM-induced alterations in gene and protein expression may be useful in the development of a new paradigm for ENM hazard and risk assessment. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Antonio Pietroiusti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Francesca Lucaroni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Kai Savolainen
- Work Environment, Finnish Institute of Occupational Health, Helsinki, Finland
| |
Collapse
|
29
|
Türk G, Rişvanlı A, Çeribaşı AO, Sönmez M, Yüce A, Güvenç M, Arslan Özkan H, Canlı N, Yaman M. Effect of gestational diabetes mellitus on testis and pancreatic tissues of male offspring. Andrologia 2018; 50:e12976. [PMID: 29411891 DOI: 10.1111/and.12976] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2018] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study was to determine the effect of gestational diabetes mellitus (GDM) on some reproductive characteristics, testicular and pancreatic oxidative status and pancreatic endocrine receptor densities of male offspring at post-pubertal stage. A total of 36 1-day-old Wistar Albino male offspring including 12 pups of nontreated mothers (control group), 14 pups of 40 mg/kg STZ-injected mothers (STZ-40 group) and 10 pups of 60 mg/kg STZ-injected mothers (STZ-60 group) were used. The offspring were euthanised on post-natal day 60, their blood, reproductive organs and pancreatic tissues were obtained and examined. When compared with the control group, there was a significant decrease in body and absolute reproductive organ weights, serum testosterone level, testicular and pancreatic catalase activities, pancreatic glutathione level, epididymal sperm concentration of both STZ-40 and STZ-60 groups as well as in testicular glutathione level of only STZ-60 group. Significant increases were determined in testicular and pancreatic malondialdehyde level and glutathione peroxidase activity in both groups and in fasting serum glucose of only STZ-60 group in comparison with the control group. Although some histopathological damages were observed in testes of both STZ-40 and STZ-60 groups, there were no detectable differences between the groups in density of insulin, glucagon and somatostatin receptors in pancreas. In conclusion, GDM has negative effects on reproductive efficiency and testicular-pancreatic tissue oxidant/antioxidant balance of male offspring at post-pubertal stage.
Collapse
Affiliation(s)
- G Türk
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazig, Turkey
| | - A Rişvanlı
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Fırat University, Elazig, Turkey
| | - A O Çeribaşı
- Department of Pathology, Faculty of Veterinary Medicine, Fırat University, Elazig, Turkey
| | - M Sönmez
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Fırat University, Elazig, Turkey
| | - A Yüce
- Department of Physiology, Faculty of Veterinary Medicine, Fırat University, Elazig, Turkey
| | - M Güvenç
- Department of Physiology, Faculty of Veterinary Medicine, Mustafa Kemal University, Hatay, Turkey
| | - H Arslan Özkan
- Department of Nursing, Faculty of Health Sciences, Yeditepe University, İstanbul, Turkey
| | - N Canlı
- Florance Nightingale Hospital, School of Nursing, İstanbul Bilim University, İstanbul, Turkey
| | - M Yaman
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Fırat University, Elazig, Turkey
| |
Collapse
|
30
|
Effects of ascorbic acid on spermatogenesis and sperm parameters in diabetic rats. Cell Tissue Res 2017; 370:305-317. [DOI: 10.1007/s00441-017-2660-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 06/13/2017] [Indexed: 01/23/2023]
|
31
|
Inhibition of Reactive Gliosis in the Retina of Rats with Streptozotocin-Induced Diabetes under the Action of Hydrated C60 Fullerene. NEUROPHYSIOLOGY+ 2016. [DOI: 10.1007/s11062-016-9579-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Ghanbari E, Nejati V, Khazaei M. Antioxidant and protective effects of Royal jelly on histopathological changes in testis of diabetic rats. Int J Reprod Biomed 2016. [DOI: 10.29252/ijrm.14.8.519] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
33
|
Wang Y, Hao Z, Zhang L, Liang C. Nanomaterials: Friend or foe to male fertility? World J Urol 2016; 35:173-175. [DOI: 10.1007/s00345-016-1857-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/17/2016] [Indexed: 11/30/2022] Open
|
34
|
da Costa CFP, Gobbo MG, Taboga SR, Pinto-Fochi ME, Góes RM. Melatonin intake since weaning ameliorates steroidogenic function and sperm motility of streptozotocin-induced diabetic rats. Andrology 2016; 4:526-41. [PMID: 27037637 DOI: 10.1111/andr.12158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/14/2022]
Abstract
Melatonin may be used as an antioxidant in therapy against systemic sequelae caused by oxidative stress in diabetes. However, as melatonin has a major role in regulating reproductive activity, its consequence on reproductive parameters under diabetes needs to be better clarified. We have studied whether prior and concomitant treatment of juvenile Wistar rats with low doses of melatonin interferes in reproductive damage induced by experimental diabetes after 1 and 8 weeks. The consequences of melatonin administration since weaning on reproductive parameters of healthy rats at adulthood were also evaluated. Melatonin was provided in drinking water (10 μg/kg b.w./day) after weaning (5-week-old). Diabetes was induced by streptozotocin injection (4.5 mg/100 g b.w.) at 13-week-old rats, and rats were euthanized 1 and 8 weeks after disease onset. Diabetes decreased circulating testosterone levels (~35% to 1 week; ~62% to 2 months; p < 0.01) but did not affect testes sperm counts. Two months of diabetes reduced the sperm reserve and led to atrophy of epididymal cauda. Both 1-week and 2-month diabetes impaired sperm motility, decreased the number of spermatozoa with progressive movement, and increased the number of immotile sperm. Melatonin intake reduced serum testosterone levels ~29% in healthy 14-week-old and ~23% in 21-week-old rats and reduced daily testicular sperm production ~26% in the latter disease stage, but did not interfere in sperm reserves and transit time for both experimental periods. Exogenous melatonin prevented the serum testosterone decrease and damage to sperm motility in diabetic rats and attenuated reduction in sperm counts and transit time induced by 1-week diabetes but did not avoid this decrease at 2-month diabetes. Low doses of melatonin administered prior to and during experimental diabetes attenuated damage to testicular steroidogenic activity and preserved sperm motility, but not sperm reserves in the rat. Our data indicated a differential action of melatonin in normoglycemic and hyperglycemic conditions, particularly in sperm motility and testosterone production by Leydig cells.
Collapse
Affiliation(s)
- C F P da Costa
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas - UNICAMP, São José do Rio Preto, SP, Brazil.,Department of Biology, Institute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista (IBILCE/UNESP), São José do Rio Preto, SP, Brazil
| | - M G Gobbo
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas - UNICAMP, São José do Rio Preto, SP, Brazil.,Department of Biology, Institute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista (IBILCE/UNESP), São José do Rio Preto, SP, Brazil
| | - S R Taboga
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas - UNICAMP, São José do Rio Preto, SP, Brazil.,Department of Biology, Institute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista (IBILCE/UNESP), São José do Rio Preto, SP, Brazil
| | - M E Pinto-Fochi
- Department of Biology, Institute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista (IBILCE/UNESP), São José do Rio Preto, SP, Brazil
| | - R M Góes
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas - UNICAMP, São José do Rio Preto, SP, Brazil.,Department of Biology, Institute of Biosciences, Letters and Exact Sciences, Univ Estadual Paulista (IBILCE/UNESP), São José do Rio Preto, SP, Brazil
| |
Collapse
|
35
|
Hend MT, Heba MAA, Yasmen SM, Nahla SELS. Efficacy of Tribulus terrestris extract and metformin on fertility indices and oxidative stress of testicular tissue in streptozotocin-induced diabetic male rats. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajpp2015.4450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
36
|
Akinola O, Dosumu O, Sanusi S, Ajayi T, Olajide T. PPAR-γ agonist pioglitazone improves semen quality and testicular histomorphometrics with partial reversal of hyperglycaemia in alloxan-induced diabetic rats. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2015. [DOI: 10.1016/j.mefs.2015.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
37
|
Vasyukova I, Gusev A, Tkachev A. Reproductive toxicity of carbon nanomaterials: a review. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/1757-899x/98/1/012001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Ameliorative Effect of Zinc Oxide Nanoparticles on Antioxidants and Sperm Characteristics in Streptozotocin-Induced Diabetic Rat Testes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:153573. [PMID: 26581756 PMCID: PMC4637006 DOI: 10.1155/2015/153573] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/09/2015] [Accepted: 10/11/2015] [Indexed: 01/23/2023]
Abstract
The present study investigated the impact of zinc oxide nanoparticles (ZnONPs) on the oxidative status and sperm characteristics in diabetic rat testicular tissue. Forty male albino rats were used in this study; 10 of them served as a control and 30 rats were injected with a single dose (100 mg/kg) of streptozotocin intraperitoneally. They were subdivided into diabetic, diabetic + ZnONPs (10 mg/kg B.W.), and diabetic and cotreated with ZnONPs + insulin groups. The sperm count and motility were assessed. The activity and mRNA expression of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GRD), and Glutathion-S-Transferase (GST) were determined in the testicular tissue. Malondialdehyde (MDA) and reduced glutathione (GSH) levels were estimated in the testicular tissue. Sperm count and motility increased in ZnONPs treated diabetic rats. A significant increase in the activity and mRNA expression of SOD, CAT, GPx, GRD, and GST was shown in ZnONPs treated diabetic rats. MDA significantly decreased, while GSH increased in testicular tissue of ZnONPs treated diabetic rats. It was concluded that ZnONPs either alone or in combination with insulin have the ability to increase the sperm count and motility and protect the testicular tissue against the oxidative stress induced by diabetes in rats.
Collapse
|
39
|
Effects of pentoxifylline administration on histomorphological parameters of streptozotocin-induced diabetic rat testes. Lab Anim Res 2015; 31:111-6. [PMID: 26472963 PMCID: PMC4602077 DOI: 10.5625/lar.2015.31.3.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/31/2015] [Accepted: 08/25/2015] [Indexed: 01/27/2023] Open
Abstract
The effect of pentoxifylline (PTX) administration on histomorphological parameters of streptozotocin (STZ)-induced type 1 diabetes mellitus (DM) in male rat testes were evaluated. We randomly divided 40 male rats into the following four groups: group 1: control or normal glycemic (NG) rats; group 2 or NG rats that received only normal saline (NS), (NG+NS); group 3 or diabetic rats which were not treated by PTX (DM+vehicle solution (NS)); and group 4 which comprised diabetic rats treated with 50 mg/kg of PTX (DM+PTX). Type 1 DM was induced by intraperitoneal injection of STZ (55 mg/kg). Rats were held for 30 days after which the experimental group received PTX twice daily (25 mg/kg) or NS. After 14 days of treatment by PTX or NS, the left testes from all rats were extracted and prpared for histological study. Apoptotic cells, blood vessel density, and spermatogenesis were evaluated. Data were analyzed by ANOVA test. PTX-treated-diabetic rats showed a significant decrease in number of apoptotic cells and decrease in blood vessel density compared to the DM+NS rats. A significant increase in spermatogenesis was observed in the PTX-treated diabetic group, compared to the DM+NS groups. It was concluded that PTX administration to STZ-induced type 1 DM rats affected apoptotic cell number positively. Moreover, blood vessel density significantly decreased and improvements were observed in spermatogenesis.
Collapse
|
40
|
Kahya MC, Naziroğlu M, Çiğ B. Melatonin and selenium reduce plasma cytokine and brain oxidative stress levels in diabetic rats. Brain Inj 2015; 29:1490-6. [DOI: 10.3109/02699052.2015.1053526] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Effect of Melatonin Intake on Oxidative Stress Biomarkers in Male Reproductive Organs of Rats under Experimental Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:614579. [PMID: 26064423 PMCID: PMC4438187 DOI: 10.1155/2015/614579] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/11/2015] [Accepted: 04/17/2015] [Indexed: 01/01/2023]
Abstract
This study investigated the antioxidant system response of male reproductive organs during early and late phases of diabetes and the influence of melatonin treatment. Melatonin was administered to five-week-old Wistar rats throughout the experiment, in drinking water (10 μg/kg b.w). Diabetes was induced at 13 weeks of age by streptozotocin (4.5 mg/100 g b.w., i.p.) and animals were euthanized with 14 or 21 weeks old. Activities of catalase (CAT), glutathione-S-transferase (GST), glutathione peroxidase (GPx), and lipid peroxidation were evaluated in prostate, testis, and epididymis. The enzymes activities and lipid peroxidation were not affected in testis and epididymis after one or eight weeks of diabetes. Prostate exhibited a 3-fold increase in GPx activity at short-term diabetes and at long-term diabetes there were 2- and 3-fold increase in CAT and GST, respectively (p ≤ 0.01). Melatonin treatment to healthy rats caused a 47% increase in epididymal GPx activity in 14-week-old rats. In prostate, melatonin administration normalized GST activity at both ages and mitigated GPx at short-term and CAT at long-term diabetes. The testis and epididymis were less affected by diabetes than prostate. Furthermore, melatonin normalized the enzymatic disorders in prostate demonstrating its effective antioxidant role, even at low dosages.
Collapse
|
42
|
KANDOLIYA U, VAKHARIA D. Ascorbic acid and ascorbate peroxidase based defence system induced by Pseudomonas fluorescens against wilt pathogen in chickpea. ACTA ACUST UNITED AC 2015. [DOI: 10.15740/has/ijpp/8.1/86-92] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Drug delivery to the testis: current status and potential pathways for the development of novel therapeutics. Drug Deliv Transl Res 2015; 1:351-60. [PMID: 25788421 DOI: 10.1007/s13346-011-0039-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Nanotechnology has been increasingly utilized for the targeting and delivery of novel therapeutic agents to different tissues and cell types. The current therapeutic options for testicular disorders fall short in many instances due to difficulty traversing the blood-testis barrier, systemic toxicities, and complicated dosing regiments. For testicular tissue, potential targeting can be obtained either via anatomic methods or specific ligands such as luteinizing hormone or follicle-stimulating hormone analogs. Potential novel therapeutic agents include DNA, RNA, cytokines, peptide receptor antagonists, peptide receptor agonists, hormones, and enzymes. Nanotherapeutic treatment of testicular cancer, infertility, testicular torsion, orchalgia, hypogonadism, testicular infections, and cryptorchidism within the framework of potential target cells are an emerging area of research. While there are many potential applications of nanotechnology in drug delivery to the testis, this remains a relatively unexplored field. This review highlights the current status as well as potential future of nanotechnology in the development of novel therapeutics for testicular disorders.
Collapse
|
44
|
Madhubabu G, Yenugu S. Allethrin induced toxicity in the male reproductive tract of rats contributes to disruption in the transcription of genes involved in germ cell production. ENVIRONMENTAL TOXICOLOGY 2014; 29:1330-1345. [PMID: 23595975 DOI: 10.1002/tox.21864] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/12/2013] [Accepted: 03/16/2013] [Indexed: 06/02/2023]
Abstract
Pyrethroids are known to be neurotoxic. However, their toxic effects including that of allethrin on the male reproductive tract are not elucidated. Adult male rats were treated orally with 25, 50, 100, and 150 mg/kg body weight allethrin every day for 60 days. Lipid peroxidation was increased (p < 0.001) in the caput, cauda, and testes. Nitric oxide production was increased (p < 0.001) in the caput, but unaltered in the cauda and testes. The activities of catalase, glutathione peroxidase, glutathione-S-transferase, and superoxide dismutase were decreased in the caput and cauda where as a decrease was observed in the testis obtained from allethrin treated rats. In the epididymides and testes, damage to tubular architecture, congestion, degeneration of epithelial cell lining, intestinal edema, and presence of dead or degenerating spermatids were observed in a dose dependent manner. The expression profile of genes involved in spermatogenesis (Tgf-beta1), sperm maturation (Spag11e), and sperm function (Defb22) were reduced (p < 0.001) in allethrin rats. The expression of p53 gene was decreased and increased phosphorylation of MAPK (p42/p44) expression was observed the male reproductive tract tissues of allethrin treated rats. Although earlier studies have reported the effects of allethrin inhalation because of the use of mosquito coils and vaporizers, our results for the first time prove that oral exposure to allethrin could affect fertility and may contribute to deregulation of cell cycle in the male reproductive tract.
Collapse
Affiliation(s)
- Golla Madhubabu
- Department of Animal Sciences, University of Hyderabad, Hyderabad, 500046, Andhra Pradesh, India
| | | |
Collapse
|
45
|
Giribabu N, Kumar KE, Rekha SS, Muniandy S, Salleh N. Chlorophytum borivilianum (Safed Musli) root extract prevents impairment in characteristics and elevation of oxidative stress in sperm of streptozotocin-induced adult male diabetic Wistar rats. Altern Ther Health Med 2014; 14:291. [PMID: 25104050 PMCID: PMC4141081 DOI: 10.1186/1472-6882-14-291] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/23/2014] [Indexed: 12/25/2022]
Abstract
Background We hypothesized that C. borivilianum root, known to improve male reproductive performance, prevents impairment in characteristics, morphology and elevation of oxidative stress in sperm of diabetics. We therefore investigated the effect of aqueous root extract of C. borivilianum on these parameters in diabetic rat model. Methods C. borivilianum root aqueous extract (250 and 500 mg/kg/day) or glibenclamide (600 μg/kg/day) were administered to streptozotocin (STZ)-induced diabetic male rats for 28 consecutive days. At the end of treatment, animals were sacrificed and sperm were collected. Sperm count and percentages of forward motility, viability, hypoosmotic swelling (HOS) tail-coiled and abnormal sperm were evaluated. Sperm lipid peroxidation product (LPO), hydrogen peroxide (H2O2) and nitric oxide (NO) levels, total antioxidant capacity (TAC), activity levels of endogenous antioxidant enzymes (superoxide dismutase-SOD, catalase-CAT and glutathione peroxidase-GPx), epididymal sperm density, serum fasting blood glucose (FBG) and HbA1c levels were measured. The expression of sperm caspase-3 was assessed. Meanwhile, in-vitro free radical scavenging activity of C. borivilianum root extract was determined and the root extract was analyzed for the presence of bioactive compounds by FTIR spectroscopy. Results C. borivilianum root aqueous extract prevents the decrease in sperm count, percentages of forward motility, viability, HOS and the increase in abnormal sperm percentage and caspase-3 level in diabetic rats. Sperm LPO, H2O2 and NO levels, FBG and HbA1c were lower while TAC, SOD, CAT, GPx and epididymal sperm density were higher in diabetic rats receiving C. borivilianum root extract treatment. C. borivilianum root exhibited strong in-vitro free radical scavenging activity which may be due to the phenolic compound. Conclusions C. borivilianum root extract prevents impairment in sperm characteristics and morphology via preventing elevation of oxidative stress, apoptosis and free radicals levels of the sperm in diabetes. These effects may be achieved through maintaining sperm antioxidant level which could be related to free radical scavenging activity of the root extract by phenolic compounds. These effects could also be due to ability of the extract to maintain near normal serum FBG and HBA1c levels in diabetes.
Collapse
|
46
|
Effects of Dracaena arborea (Dracaenaceae) on sexual dysfunction in 4 weeks hyperglycemic male rats. ASIAN PAC J TROP MED 2014; 7:609-619. [DOI: 10.1016/s1995-7645(14)60103-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/15/2014] [Accepted: 07/15/2014] [Indexed: 11/17/2022] Open
|
47
|
Diabetes-induced DNA damage and apoptosis are associated with poly (ADP ribose) polymerase 1 inhibition in the rat testis. Eur J Pharmacol 2014; 737:29-40. [DOI: 10.1016/j.ejphar.2014.05.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 01/23/2023]
|
48
|
Hfaiedh M, Brahmi D, Zourgui L. Protective role of cactus cladodes extract on sodium dichromate-induced testicular injury and oxidative stress in rats. Biol Trace Elem Res 2014; 159:304-11. [PMID: 24752970 DOI: 10.1007/s12011-014-9969-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/03/2014] [Indexed: 11/26/2022]
Abstract
Cactus (Opuntia ficus-indica) is a xerophyte plant that belongs to the Cactaceae family. The present study was designed to investigate the possible protective effects of cactus cladodes extract (CCE) on sodium dichromate-induced testis damage in adult male Wistar rats. For this purpose, CCE at a dose of 100 mg/kg was orally administrated, followed by 10 mg/kg sodium dichromate (intraperitoneal injection). After 40 days of treatment, the rats were sacrificed, and the testes were excised for histological, lipid peroxidation (LPO), and antioxidant enzyme analyses. Sodium dichromate treatment significantly (P<0.01) decreased the body, testis, and accessory sex organ weights, sperm count and motility, and serum testosterone level. In addition, histological analysis revealed pronounced morphological alterations with tubular necrosis and reduction in the number of gametes in the lumen of the seminiferous tubules of sodium dichromate-intoxicated rats. Furthermore, exposure to sodium dichromate significantly (P<0.01) increased LPO level and decreased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities in testis. Interestingly, pretreatment with CCE significantly (P<0.01) restored the serum testosterone level, sperm count, and motility to the levels of the control group. Moreover, CCE administration was capable of reducing the elevated level of LPO and significantly (P<0.01) increased SOD, CAT, and GPx activities in testis. Cactus cladodes supplementation minimized oxidative damage and reversed the impairment of spermatogenesis and testosterone production induced by sodium dichromate in the rat testis.
Collapse
Affiliation(s)
- Mbarka Hfaiedh
- Research Unit of Macromolecular Biochemistry & Genetics, Faculty of Sciences of Gafsa, University of Gafsa, 2112, Gafsa, Tunisia,
| | | | | |
Collapse
|
49
|
Etem EO, Bal R, Akağaç AE, Kuloglu T, Tuzcu M, Andrievsky GV, Buran I, Nedzvetsky VS, Baydas G. The effects of hydrated C(60) fullerene on gene expression profile of TRPM2 and TRPM7 in hyperhomocysteinemic mice. J Recept Signal Transduct Res 2014; 34:317-24. [PMID: 24646197 DOI: 10.3109/10799893.2014.896381] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Hyperhomocysteinemia (HHcy) is associated with neurodegenerative diseases. Transient receptor potential melastatin (TRPM2) and TRPM7 channels may be activated by oxidative stress. Hydrated C(60) fullerene (C(60)HyFn) have recently gained considerable attention as promising candidates for neurodegenerative states. We aimed to examine the effects on TRPM2 and TRPM7 gene expression of C(60)HyFn due to marked antioxidant activity in HHcy mice. METHODS C57BL/6 J. mice were divided into four groups: (1) Control group, (2) HHcy, (3) HHcy + C(60)HyFn-treated group and (4) C(60)HyFn-treated group. TRPM2 and TRPM7 gene expression in brains of mice were detected by real-time PCR, Western blotting and immunohistochemistry. Apoptosis in brain were assessed by TUNEL staining. RESULTS mRNA expression levels of TRPM2 were significantly increased in HHcy group compared to the control group. C(60)HyFn administration significantly decreased serum levels of homocysteine and TRPM2 mRNA levels in HHcy + C(60)HyFn group. Whereas, HHcy-treatment and C(60)HyFn administration did not change the expression of TRPM7. CONCLUSION Administration of C(60)HyFn in HHcy mice significantly reduces serum homocysteine level, neuronal apoptosis and expression level of TRPM2 gene. Increased expression level of TRPM2 induced by oxidative stress might be involved in the ethiopathogenesis of HHcy related neurologic diseases.
Collapse
Affiliation(s)
- Ebru Onalan Etem
- Department of Medical Biology, Faculty of Medicine, Firat University , Elazig , Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Duan W, Liu C, Wu H, Chen C, Zhang T, Gao P, Luo X, Yu Z, Zhou Z. Effects of exposure to extremely low frequency magnetic fields on spermatogenesis in adult rats. Bioelectromagnetics 2013; 35:58-69. [PMID: 24122970 DOI: 10.1002/bem.21816] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 08/18/2013] [Indexed: 12/17/2022]
Abstract
The constant exposure of modern society to extremely low frequency magnetic fields (ELF-MF) has raised considerable concerns about the potential risks to male reproduction. However, the epidemiological and experimental data remain contradictory and inconclusive. In the present study, we investigated the effects of 50 Hz ELF-MF of 500 µT applied 4 h/day, 7 days/week for 4 and 8 weeks on male reproduction, focusing on changes in spermatogenesis. Several biological endpoints related to testicular function and spermatogenesis were measured, including the following: body mass, masses of testes and epididymis, sperm count and abnormal sperm ratio in the caudal epididymis, serum testosterone level, testicular histology, frequency of 14 stages of the cycle of the seminiferous epithelium and of four stages of meiosis I, germ cell apoptosis and testicular oxidative status. No significant differences were found in the biological endpoints between the sham control and the exposed rats in either the 4- or 8-week exposure period. These negative results may result from the lack of change in serum testosterone. In conclusion, our study indicates that exposure to low intensity ELF-MF may have no adverse effects on spermatogenesis.
Collapse
Affiliation(s)
- Weixia Duan
- Department of Occupational Health, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|