1
|
Ichihara G. Neuro-reproductive toxicity and carcinogenicity of 1-bromopropane: studies for evidence-based preventive medicine. J Occup Health 2025; 67:uiaf004. [PMID: 39869365 PMCID: PMC11847597 DOI: 10.1093/joccuh/uiaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/28/2025] Open
Abstract
Bromopropane was introduced commercially as an alternative to ozone-depleting and global-warming solvents. The identification of 1-bromopropane neurotoxicity in animal experiments was followed by reports of human cases of 1-bromopropane toxicity. In humans, the most common clinical features of 1-bromopropane neurotoxicity are decreased sensation, weakness in extremities, and walking difficulties. Moreover, decreased cognition, abnormal findings on brain magnetic resonance imaging, urinary incontinence, and numbness in the perineal area have also been described in workers exposed to 1-bromopropane. Murine histological studies showed that exposure to 1-bromopropane reduced the density of brain noradrenergic axons. Furthermore, proteome studies demonstrated 1-bromopropane-induced changes in the expression of proteins in the hippocampus of rats, similar to the changes seen in mice exposed to acrylamide, suggesting a common mechanism of electrophile-induced neurotoxicity. In addition to its neurotoxicity, 1-bromopropane also induces male reproductive toxicity in rats, although the targeted areas in the reproductive system differ from those affected by 2-bromopropane. However, exposure to high levels of 1-bromopropane was reported to induce spermatogenic cell degeneration, similar to that caused by 2-bromopropane, suggesting common mechanism(s) underlying 1- and 2-bromopropane-induced male reproductive toxicity. Plural approaches, including human, animal, and mechanistic studies, are useful for identification of 1-bromopropane neurotoxicity. The International Agency for Research on Cancer summarized that 1-bromopropane as well as 2-bromopropane share several key characteristics of carcinogens. Plural approaches can establish evidence-based preventive medicine by modification of the conventional evidence-based medicine (EBM), which has been developed for therapeutic medicine and is represented by the EBM pyramid.
Collapse
Affiliation(s)
- Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| |
Collapse
|
2
|
Song M, Qiang Y, Wang S, Shan S, Zhang L, Liu C, Song F, Zhao X. High-fat diet exacerbates 1-Bromopropane-induced loss of dopaminergic neurons in the substantia nigra of mice through mitochondrial damage associated necroptotic pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116280. [PMID: 38574648 DOI: 10.1016/j.ecoenv.2024.116280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
In recent years, accumulating evidence supports that occupational exposure to solvents is associated with an increased incidence of Parkinson's disease (PD) among workers. The neurotoxic effects of 1-bromopropane (1-BP), a widely used new-type solvent, are well-established, yet data on its relationship with the etiology of PD remain limited. Simultaneously, high-fat consumption in modern society is recognized as a significant risk factor for PD. However, whether there is a synergistic effect between a high-fat diet and 1-BP exposure remains unclear. In this study, adult C57BL/6 mice were fed either a chow or a high-fat diet for 18 weeks prior to 12-week 1-BP treatment. Subsequent neurobehavioral and neuropathological examinations were conducted to assess the effects of 1-BP exposure on parkinsonian pathology. The results demonstrated that 1-BP exposure produced obvious neurobehavioral abnormalities and dopaminergic degeneration in the nigral region of mice. Importantly, a high-fat diet further exacerbated the impact of 1-BP on motor and cognitive abnormalities in mice. Mechanistic investigation revealed that mitochondrial damage and mtDNA release induced by 1-BP and high-fat diet activate NLRP3 and cGAS-STING pathway- mediated neuroinflammatory response, and ultimately lead to necroptosis of dopaminergic neurons. In summary, our study unveils a potential link between chronic 1-BP exposure and PD-like pathology with motor and no-motor defects in experimental animals, and long-term high-fat diet can further promote 1-BP neurotoxicity, which underscores the pivotal role of environmental factors in the etiology of PD.
Collapse
Affiliation(s)
- Mingxue Song
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yalong Qiang
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shuai Wang
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shan Shan
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Liwen Zhang
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Caipei Liu
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fuyong Song
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiulan Zhao
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
3
|
Tyczyńska M, Gędek M, Brachet A, Stręk W, Flieger J, Teresiński G, Baj J. Trace Elements in Alzheimer's Disease and Dementia: The Current State of Knowledge. J Clin Med 2024; 13:2381. [PMID: 38673657 PMCID: PMC11050856 DOI: 10.3390/jcm13082381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Changes in trace element concentrations are being wildly considered when it comes to neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. This study aims to present the role that trace elements play in the central nervous system. Moreover, we reviewed the mechanisms involved in their neurotoxicity. Low zinc concentrations, as well as high levels of copper, manganese, and iron, activate the signalling pathways of the inflammatory, oxidative and nitrosative stress response. Neurodegeneration occurs due to the association between metals and proteins, which is then followed by aggregate formation, mitochondrial disorder, and, ultimately, cell death. In Alzheimer's disease, low Zn levels suppress the neurotoxicity induced by β-amyloid through the selective precipitation of aggregation intermediates. High concentrations of copper, iron and manganese cause the aggregation of intracellular α-synuclein, which results in synaptic dysfunction and axonal transport disruption. Parkinson's disease is caused by the accumulation of Fe in the midbrain dopaminergic nucleus, and the pathogenesis of multiple sclerosis derives from Zn deficiency, leading to an imbalance between T cell functions. Aluminium disturbs the homeostasis of other metals through a rise in the production of oxygen reactive forms, which then leads to cellular death. Selenium, in association with iron, plays a distinct role in the process of ferroptosis. Outlining the influence that metals have on oxidoreduction processes is crucial to recognising the pathophysiology of neurodegenerative diseases and may provide possible new methods for both their avoidance and therapy.
Collapse
Affiliation(s)
- Magdalena Tyczyńska
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (M.T.); (W.S.)
| | - Marta Gędek
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.G.); (A.B.); (G.T.)
| | - Adam Brachet
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.G.); (A.B.); (G.T.)
| | - Wojciech Stręk
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (M.T.); (W.S.)
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.G.); (A.B.); (G.T.)
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (M.T.); (W.S.)
| |
Collapse
|
4
|
Naby WSHAE, Zong C, Fergany A, Ekuban FA, Ahmed S, Reda Y, Sato H, Ichihara S, Kubota N, Yanagita S, Ichihara G. Exposure to Benzo[a]pyrene Decreases Noradrenergic and Serotonergic Axons in Hippocampus of Mouse Brain. Int J Mol Sci 2023; 24:9895. [PMID: 37373040 PMCID: PMC10297856 DOI: 10.3390/ijms24129895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Epidemiological studies showed the association between air pollution and dementia. A soluble fraction of particulate matters including polycyclic aromatic hydrocarbons (PAHs) is suspected to be involved with the adverse effects of air pollution on the central nervous system of humans. It is also reported that exposure to benzopyrene (B[a]P), which is one of the PAHs, caused deterioration of neurobehavioral performance in workers. The present study investigated the effect of B[a]P on noradrenergic and serotonergic axons in mouse brains. In total, 48 wild-type male mice (10 weeks of age) were allocated into 4 groups and exposed to B[a]P at 0, 2.88, 8.67 or 26.00 µg/mice, which is approximately equivalent to 0.12, 0.37 and 1.12 mg/kg bw, respectively, by pharyngeal aspiration once/week for 4 weeks. The density of noradrenergic and serotonergic axons was evaluated by immunohistochemistry in the hippocampal CA1 and CA3 areas. Exposure to B[a]P at 2.88 µg/mice or more decreased the density of noradrenergic or serotonergic axons in the CA1 area and the density of noradrenergic axons in the CA3 area in the hippocampus of mice. Furthermore, exposure to B[a]P dose-dependently upregulated Tnfα at 8.67 µg/mice or more, as well as upregulating Il-1β at 26 µg/mice, Il-18 at 2.88 and 26 µg/mice and Nlrp3 at 2.88 µg/mice. The results demonstrate that exposure to B[a]P induces degeneration of noradrenergic or serotonergic axons and suggest the involvement of proinflammatory or inflammation-related genes with B[a]P-induced neurodegeneration.
Collapse
Affiliation(s)
- Walaa Slouma Hamouda Abd El Naby
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
- Genetics and Genetic Engineering in Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Cai Zong
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Alzahraa Fergany
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
- Genetics and Genetic Engineering in Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21500, Egypt
| | - Frederick Adams Ekuban
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Saleh Ahmed
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Yousra Reda
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Harue Sato
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Natsuko Kubota
- Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Shinya Yanagita
- Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| |
Collapse
|
5
|
Yang S, Zhou M, Wang B, Mu G, Wang X, Yuan J, Chen W. Lipid peroxidation mediated the association of urinary 1-bromopropane metabolites with plasma glucose and the risk of diabetes: A cross-sectional study of urban adults in China. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121889. [PMID: 31859167 DOI: 10.1016/j.jhazmat.2019.121889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 05/15/2023]
Abstract
Exposure to 1-bromopropane (1-BP) has been reported to cause glutathione depletion and increase the level of oxidative damage, which play critical roles in diabetes. However, the possible associations or mechanisms of the exposure of 1-BP with the plasma glucose level and the risk of diabetes are unclear. In this study, we explored the relationships of the urinary 1-BP metabolite N-Acetyl-S-(n-propyl)-l-cysteine (BPMA) with fasting plasma glucose (FPG) levels and the risk of diabetes, and the mediating role of oxidative damage in the above relationships in 3678 urban adults from the Wuhan-Zhuhai cohort in China. We found a significant dose-response relationship between BPMA and FPG levels with a β of 0.09 (95 % CI: 0.04, 0.14). In addition, mediating effect of urinary BPMA on FPG levels was observed depending on elevated 8-isoprostane level, with a median proportion of 32.06 %. Furthermore, we observed a significant association between urinary BPMA and the risk of diabetes, with an adjusted odds ratio of 1.34 (1.18, 1.52) for all participants. These results indicated that urinary 1-BP metabolites were positively associated with FPG levels and the risk of diabetes among urban adults in this cross-sectional study. Lipid peroxidation partially mediated the association between urinary 1-BP metabolites and FPG levels.
Collapse
Affiliation(s)
- Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhoang University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhoang University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhoang University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhoang University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xing Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhoang University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jing Yuan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhoang University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhoang University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
6
|
Exposure to acrylamide decreases noradrenergic axons in rat brain. Neurotoxicology 2020; 78:127-133. [PMID: 32147327 DOI: 10.1016/j.neuro.2020.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE Acrylamide is known to induce disorders in the central nervous system in humans and experimental animals. The present study investigated effects of exposure to acrylamide on adult neurogenesis, noradrenergic axons and the level of norepinephrine in the brain of male rats. METHOD Four groups of 12 male Wistar rats each were exposed to acrylamide at 0, 0.2, 2 and 20 mg/kg body weight by gavage for 5 weeks. Six rats of each groups were injected with 5-bromo-2'-deoxy-uridine (BrdU) after five-week exposure to acrylamide to examine proliferative cells in the dentate gyrus using immunostaining. Density of noradrenergic and serotonergic axons in the prefrontal cortex, hippocampus and cortex behind the bregma was quantified. Remaining 6 rats were decapitated after the last exposure and brains were dissected out to measure monoamine level in the hippocampus and prefrontal cortex using high performance liquid chromatography. RESULT Exposure to acrylamide dose-dependently decreased the density of noradrenergic axons in the prefrontal cortex with a significant change at 20 mg/kg. Norepinephrine level decreased in the hippocampus at 20 mg/kg. Exposure to acrylamide at 20 mg/kg or less did not change the number of BrdU positive cells, but the result should be considered preliminary. CONCLUSION The results show that oral exposure to acrylamide induces decrease in noradrenergic axons and norepinephrine level in the brain of rats. Given the similar effects are observed in 1-bromopropane-exposed rats, there may be the common mechanism in the toxicity of soft electrophiles to the central nervous system.
Collapse
|
7
|
Plummer NW, Scappini EL, Smith KG, Tucker CJ, Jensen P. Two Subpopulations of Noradrenergic Neurons in the Locus Coeruleus Complex Distinguished by Expression of the Dorsal Neural Tube Marker Pax7. Front Neuroanat 2017; 11:60. [PMID: 28775681 PMCID: PMC5518464 DOI: 10.3389/fnana.2017.00060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/07/2017] [Indexed: 01/05/2023] Open
Abstract
Central noradrenergic neurons, collectively defined by synthesis of the neurotransmitter norepinephrine, are a diverse collection of cells in the hindbrain, differing in their anatomy, physiological and behavioral functions, and susceptibility to disease and environmental insult. To investigate the developmental basis of this heterogeneity, we have used an intersectional genetic fate mapping strategy in mice to study the dorsoventral origins of the En1-derived locus coeruleus (LC) complex which encompasses virtually all of the anatomically defined LC proper, as well as a portion of the A7 and subcoeruleus (SubC) noradrenergic nuclei. We show that the noradrenergic neurons of the LC complex originate in two different territories of the En1 expression domain in the embryonic hindbrain. Consistent with prior studies, we confirm that the majority of the LC proper arises from the alar plate, the dorsal domain of the neural tube, as defined by expression of Pax7Cre. In addition, our analysis shows that a large proportion of the En1-derived A7 and SubC nuclei also originate in the Pax7Cre-defined alar plate. Surprisingly, however, we identify a smaller subpopulation of the LC complex that arises from outside the Pax7Cre expression domain. We characterize the distribution of these neurons within the LC complex, their cell morphology, and their axonal projection pattern. Compared to the broader LC complex, the newly identified Pax7Cre-negative noradrenergic subpopulation has very sparse projections to thalamic nuclei, suggestive of distinct functions. This developmental genetic analysis opens new avenues of investigation into the functional diversity of the LC complex.
Collapse
Affiliation(s)
- Nicholas W Plummer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human ServicesDurham, NC, United States
| | - Erica L Scappini
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human ServicesDurham, NC, United States
| | - Kathleen G Smith
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human ServicesDurham, NC, United States
| | - Charles J Tucker
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human ServicesDurham, NC, United States
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human ServicesDurham, NC, United States
| |
Collapse
|
8
|
Zong C, Garner CE, Huang C, Zhang X, Zhang L, Chang J, Toyokuni S, Ito H, Kato M, Sakurai T, Ichihara S, Ichihara G. Preliminary characterization of a murine model for 1-bromopropane neurotoxicity: Role of cytochrome P450. Toxicol Lett 2016; 258:249-258. [DOI: 10.1016/j.toxlet.2016.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/13/2016] [Accepted: 07/10/2016] [Indexed: 11/27/2022]
|
9
|
Huang Z, Ichihara S, Oikawa S, Chang J, Zhang L, Hu S, Huang H, Ichihara G. Hippocampal phosphoproteomics of F344 rats exposed to 1-bromopropane. Toxicol Appl Pharmacol 2015; 282:151-60. [PMID: 25448045 DOI: 10.1016/j.taap.2014.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 11/18/2022]
Abstract
1-Bromopropane (1-BP) is neurotoxic in both experimental animals and human. To identify phosphorylated modification on the unrecognized post-translational modifications of proteins and investigate their role in 1-BP-induced neurotoxicity, changes in hippocampal phosphoprotein expression levels were analyzed quantitatively in male F344 rats exposed to 1-BP inhalation at 0, 400, or 1000 ppm for 8 h/day for 1 or 4 weeks. Hippocampal protein extracts were analyzed qualitatively and quantitatively by Pro-Q Diamond gel staining and SYPRO Ruby staining coupled with two-dimensional difference in gel electrophoresis (2D-DIGE), respectively, as well as by matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) to identify phosphoproteins. Changes in selected proteins were further confirmed by Manganese II (Mn(2+))-Phos-tag SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Bax and cytochrome c protein levels were determined by western blotting. Pro-Q Diamond gel staining combined with 2D-DIGE identified 26 phosphoprotein spots (p<0.05), and MALDI-TOF/MS identified 18 up-regulated proteins and 8 down-regulated proteins. These proteins are involved in the biological process of response to stimuli, metabolic processes, and apoptosis signaling. Changes in the expression of phosphorylated 14-3-3 θ were further confirmed by Mn(2+)-Phos-tag SDS-PAGE. Western blotting showed overexpression of Bax protein in the mitochondria with down-regulation in the cytoplasm, whereas cytochrome c expression was high in the cytoplasm but low in the mitochondria after 1-BP exposure. Our results suggest that the pathogenesis of 1-BP-induced hippocampal damage involves inhibition of antiapoptosis process. Phosphoproteins identified in this study can potentially serve as biomarkers for 1-BP-induced neurotoxicity.
Collapse
Affiliation(s)
- Zhenlie Huang
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300, PR China; Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Sahoko Ichihara
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Jie Chang
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Japan
| | - Lingyi Zhang
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Shijie Hu
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300, PR China
| | - Hanlin Huang
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510-300, PR China.
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan.
| |
Collapse
|
10
|
Developmental origins of central norepinephrine neuron diversity. Nat Neurosci 2013; 16:1016-23. [PMID: 23852112 PMCID: PMC4319358 DOI: 10.1038/nn.3458] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/07/2013] [Indexed: 11/08/2022]
Abstract
Central norepinephrine-producing neurons comprise a diverse population of cells differing in anatomical location, connectivity, function and response to disease and environmental insult. The mechanisms that generate this diversity are unknown. Here we elucidate the lineal relationship between molecularly distinct progenitor populations in the developing mouse hindbrain and mature norepinephrine neuron subtype identity. We have identified four genetically separable subpopulations of mature norepinephrine neurons differing in their anatomical location, axon morphology and efferent projection pattern. One of the subpopulations showed an unexpected projection to the prefrontal cortex, challenging the long-held belief that the locus coeruleus is the sole source of norepinephrine projections to the cortex. These findings reveal the embryonic origins of central norepinephrine neurons and provide multiple molecular points of entry for future study of individual norepinephrine circuits in complex behavioral and physiological processes including arousal, attention, mood, memory, appetite and homeostasis.
Collapse
|
11
|
Zhong Z, Zeng T, Xie K, Zhang C, Chen J, Bi Y, Zhao X. Elevation of 4-hydroxynonenal and malondialdehyde modified protein levels in cerebral cortex with cognitive dysfunction in rats exposed to 1-bromopropane. Toxicology 2013; 306:16-23. [PMID: 23395825 DOI: 10.1016/j.tox.2013.01.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Revised: 01/26/2013] [Accepted: 01/29/2013] [Indexed: 11/16/2022]
Abstract
1-Bromopropane (1-BP), an alternative to ozone-depleting solvents (ODS), exhibits central nervous system (CNS) toxicity in animals and humans. This study was designed to relate CNS damage by Morris water maze (MWM) test and oxidative stress to 1-BP exposure in the rat. Male Wistar rats were randomly divided into 4 groups (n=10), and treated with 0, 200, 400 and 800 mg/kgbw 1-BP for consecutive 12 days, respectively. From day 8 to day 12 of the experiment, MWM test was employed to assess the cognitive function of rats. The cerebral cortex of rats was obtained immediately following the 24h after MWM test conclusion. Glutathione (GSH), oxidized glutathione (GSSG) and total thiol (total-SH) content, GSH reductase (GR) and GSH peroxidase (GSH-Px) activities, malondialdehyde (MDA) level, as well as 4-hydroxynonenal (4-HNE) and MDA modified proteins in homogenates of cerebral cortex were measured. The obtained results showed that 1-BP led to cognitive dysfunction of rats, which was evidenced by delayed escape latency time and swimming distances in MWM performance. GSH and total-SH content, GSH/GSSG ratio, GR activity significantly decreased in cerebral cortex of rats, coupling with the increase of MDA level. 4-HNE and MDA modified protein levels obviously elevated after 1-BP exposure. GSH-Px activities in cerebral cortex of rats also increased. These data suggested that 1-BP resulted in enhanced lipid peroxidation of brain, which might play an important role in CNS damage induced by 1-BP.
Collapse
Affiliation(s)
- Zhixia Zhong
- Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong Province 250012, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Zhang L, Nagai T, Yamada K, Ibi D, Ichihara S, Subramanian K, Huang Z, Mohideen SS, Naito H, Ichihara G. Effects of sub-acute and sub-chronic inhalation of 1-bromopropane on neurogenesis in adult rats. Toxicology 2012; 304:76-82. [PMID: 23266320 DOI: 10.1016/j.tox.2012.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/11/2012] [Accepted: 12/14/2012] [Indexed: 01/14/2023]
Abstract
PURPOSE 1-Bromopropane (1-BP) intoxication is associated with depression and cognitive and memory deficits. The present study tested the hypothesis that 1-BP suppresses neurogenesis in the dentate gyrus, which is involved in higher cerebral function, in adult rats. METHODS Four groups of 12 male Wistar rats were exposed to 0, 400, 800, 1000 ppm 1-BP, 8 h/day for 7 days. Another four groups of six rats each were exposed to 0, 400, 800 and 1000 ppm 1-BP for 2 weeks followed by 0, 200, 400 and 800 ppm for another 2 weeks, respectively. Another four groups of six rats each were exposed to 0, 200, 400 and 800 ppm 1-BP for 4 weeks. Rats were injected with 5-bromo-2'-deoxy-uridine (BrdU) after 4-week exposure at 1000/800 ppm to examine neurogenesis in the dentate gyrus by immunostaining. We measured factors known to affect neurogenesis, including monoamine levels, and mRNA expression levels of brain-derived neurotrophic factor (BDNF) and glucocorticoid receptor (GR), in different brain regions. RESULTS BrdU-positive cells were significantly lower in the 800/1000 ppm-4-week group than the control. 1-Week exposure to 1-BP at 800 and 1000 ppm significantly reduced noradrenalin level in the striatum. Four-week exposure at 800 ppm significantly decreased noradrenalin levels in the hippocampus, prefrontal cortex and striatum. 1-BP also reduced hippocampal BDNF and GR mRNA levels. CONCLUSION Long-term exposure to 1-BP decreased neurogenesis in the dentate gyrus. Downregulation of BDNF and GR mRNA expression and low hippocampal norepinephrine levels might contribute, at least in part, to the reduced neurogenesis.
Collapse
Affiliation(s)
- Lingyi Zhang
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Exposure to 1-bromopropane induces microglial changes and oxidative stress in the rat cerebellum. Toxicology 2012; 302:18-24. [DOI: 10.1016/j.tox.2012.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/12/2012] [Accepted: 07/13/2012] [Indexed: 11/22/2022]
|
14
|
Mohideen SS, Ichihara S, Subramanian K, Huang Z, Naito H, Kitoh J, Ichihara G. Effects of exposure to 1-bromopropane on astrocytes and oligodendrocytes in rat brain. J Occup Health 2012. [PMID: 23183024 DOI: 10.1539/joh.12-0118-oa] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Human cases of 1-bromopropane (1-BP) toxicity showed ataxic gait and cognitive dysfunction, whereas rat studies showed pyknotic shrinkage in cerebellar Purkinje cells and electrophysiological changes in the hippocampus. The present study investigated the effects of 1-BP on astrocytes and oligodendrocytes in the rat cerebellum and hippocampus to find sensitive markers of central nervous system toxicity. METHODS Forty-eight F344 rats were divided into four equal groups and exposed to 1-BP at 0, 400, 800 and 1,000 ppm for 8 h/day; 7 days/week, for 4 weeks. Nine and three rats per group were used for biochemical and histopathological studies, respectively. RESULTS Kluver-Barrera staining showed pyknotic shrinkage in the cytoplasm of Purkinje cells and nuclei of granular cells in the cerebellum at 1,000 ppm. Immunohistochemical analysis showed increased length of glial fibrillary acidic protein (GFAP)-positive processes of astrocytes in the cerebellum, hippocampus and dentate gyrus at 800 and 1,000 ppm. The myelin basic protein (MBP) level was lower at 1,000 ppm. The numbers of astrocytes and granular cells per tissue volume increased at 400 ppm or higher. CONCLUSION The present study showed that elongation of processes of astrocytes accompanies degeneration of granular cells and Purkinje cells in the cerebellum of the rats exposed to 1-BP. The decrease in MBP and number of oligodendrocytes suggest adverse effects on myelination. The increase in astrocyte population per tissue volume in the cerebellum might be a sensitive marker of 1-BP neurotoxicity, but the underlying mechanism for this change remains elusive.
Collapse
Affiliation(s)
- Sahabudeen Sheik Mohideen
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya University, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Huang Z, Ichihara S, Oikawa S, Chang J, Zhang L, Subramanian K, Mohideen SS, Ichihara G. Proteomic identification of carbonylated proteins in F344 rat hippocampus after 1-bromopropane exposure. Toxicol Appl Pharmacol 2012; 263:44-52. [DOI: 10.1016/j.taap.2012.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 04/18/2012] [Accepted: 05/26/2012] [Indexed: 01/05/2023]
|
16
|
Meyer-Baron M, Kim EA, Nuwayhid I, Ichihara G, Kang SK. Occupational exposure to neurotoxic substances in Asian countries - challenges and approaches. Neurotoxicology 2011; 33:853-61. [PMID: 22202747 DOI: 10.1016/j.neuro.2011.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 12/07/2011] [Accepted: 12/12/2011] [Indexed: 10/14/2022]
Abstract
The fact that a conference on neurotoxicity was held in China triggered the idea to provide an insight into occupational diseases, their development and the approaches to investigate them in Asian countries. A historical review, a meta-analysis, and studies on humans and animals provide impressions on past and current problems. The Korean example showed that each newly introduced industry is accompanied by its own problems as regards occupational diseases. Mercury and carbon disulfide were of importance in the beginning, whereas solvents and manganese became important later. Outbreaks of diseases were important reasons to guide both the public and the governmental attention to prevention and allowed within a relatively short time considerable progress. As the example on the replacement of 2-bromopropane by 1-bromopropane showed, also the introduction of chemicals that are more beneficial for the environment may result in additional occupational risks. A lower mutagenicity of 1-bromopopane was shown to be associated with a greater neurotoxicity in Japanese studies. Although occupational health and diseases are commonly related to adults, child workers exposed to solvents were examined in a Lebanese study. The study started outlining the health hazards in young workers because they might be at a much greater risk due to the not yet completed maturation of their nervous system. That some occupational diseases are not yet a focus of prevention was shown by the study on pesticides. If at all, the serious health consequences resulting from excessive exposure were investigated. Research enabling precautionary actions was not available from the international literature. Despite globalization the knowledge on occupational diseases is not yet "globalized" and each country obviously undergoes its own development triggered by local experiences. Economic development that requires a healthy workforce, but also public interest that challenges governmental regulations further efforts on the prevention of occupational diseases. The paper reflects a summary of the talks presented at the symposium "Occupational Neurotoxicities in Asian Countries" as part of the 11th International Symposium on Neurobehavioral Methods and Effects in Occupational and Environmental Health.
Collapse
Affiliation(s)
- Monika Meyer-Baron
- Leibniz Research Centre for Working Environment and Human Factors, Germany.
| | | | | | | | | |
Collapse
|
17
|
Huang Z, Ichihara S, Oikawa S, Chang J, Zhang L, Takahashi M, Subramanian K, Mohideen SS, Wang Y, Ichihara G. Proteomic analysis of hippocampal proteins of F344 rats exposed to 1-bromopropane. Toxicol Appl Pharmacol 2011; 257:93-101. [PMID: 21925529 DOI: 10.1016/j.taap.2011.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 08/23/2011] [Accepted: 08/26/2011] [Indexed: 12/28/2022]
Abstract
1-Bromopropane (1-BP) is a compound used as an alternative to ozone-depleting solvents and is neurotoxic both in experimental animals and human. However, the molecular mechanisms of the neurotoxic effects of 1-BP are not well known. To identify the molecular mechanisms of 1-BP-induced neurotoxicity, we analyzed quantitatively changes in protein expression in the hippocampus of rats exposed to 1-BP. Male F344 rats were exposed to 1-BP at 0, 400, or 1000 ppm for 8h/day for 1 or 4 weeks by inhalation. Two-dimensional difference in gel electrophoresis (2D-DIGE) combined with matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) were conducted to detect and identify protein modification. Changes in selected proteins were further confirmed by western blot. 2D-DIGE identified 26 proteins with consistently altered model (increase or decrease after both 1- and 4-week 1-BP exposures) and significant changes in their levels (p<0.05; fold change ≥ ± 1.2) at least at one exposure level or more compared with the corresponding controls. Of these proteins, 19 were identified by MALDI-TOF-TOF/MS. Linear regression analysis of 1-BP exposure level identified 8 differentially expressed proteins altered in a dose-dependent manner both in 1- and 4-week exposure experiments. The identified proteins could be categorized into diverse functional classes such as nucleocytoplasmic transport, immunity and defense, energy metabolism, ubiquitination-proteasome pathway, neurotransmitter and purine metabolism. Overall, the results suggest that 1-BP-induced hippocampal damage involves oxidative stress, loss of ATP production, neurotransmitter dysfunction and inhibition of ubiquitination-proteasome system.
Collapse
Affiliation(s)
- Zhenlie Huang
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|