• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4813991)   Today's Articles (3036)
For: Katsuyama M, Iwata K, Ibi M, Matsuno K, Matsumoto M, Yabe-Nishimura C. Clioquinol induces DNA double-strand breaks, activation of ATM, and subsequent activation of p53 signaling. Toxicology 2012;299:55-9. [DOI: 10.1016/j.tox.2012.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 05/11/2012] [Accepted: 05/14/2012] [Indexed: 11/30/2022]
Number Cited by Other Article(s)
1
Katsuyama M, Arakawa N, Yaoi T, Kimura E, Matsumoto M, Iwata K, Umemura A, Yabe-Nishimura C. Clioquinol induces mitochondrial toxicity in SH-SY5Y neuroblastoma cells by affecting the respiratory chain complex IV and OPA1 dynamin-like GTPase. FEBS Lett 2025;599:1135-1145. [PMID: 40125820 DOI: 10.1002/1873-3468.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025]
2
Matsumoto H, Sasai H, Kawamoto N, Katsuyama M, Minamiyama M, Kuru S, Fukao T, Ohnishi H, the SMON Research Group Members. Loss-of-function polymorphisms in NQO1 are not associated with the development of subacute myelo-optico-neuropathy. Mol Genet Genomic Med 2024;12:e2470. [PMID: 38860482 PMCID: PMC11165339 DOI: 10.1002/mgg3.2470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/17/2024] [Accepted: 05/14/2024] [Indexed: 06/12/2024]  Open
3
Katsuyama M. [Toward the complete understanding of the pathogenic mechanism of clioquinol-induced subacute myelo-optic neuropathy (SMON)]. Nihon Yakurigaku Zasshi 2024;159:78-82. [PMID: 38432923 DOI: 10.1254/fpj.23085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
4
Zhai L, Pei H, Shen H, Yang Y, Han C, Guan Q. Paeoniflorin suppresses neuronal ferroptosis to improve the cognitive behaviors in Alzheimer's disease mice. Phytother Res 2023;37:4791-4800. [PMID: 37448137 DOI: 10.1002/ptr.7946] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
5
Chhetri J, Dilek J, Davies N, Jacobson G, Dallmann R, Gueven N. NQO1 protects against clioquinol toxicity. Front Pharmacol 2022;13:1000278. [PMID: 36267290 PMCID: PMC9576850 DOI: 10.3389/fphar.2022.1000278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022]  Open
6
Keane S, de Weerd HA, Ejeskär K. DLG2 impairs dsDNA break repair and maintains genome integrity in neuroblastoma. DNA Repair (Amst) 2022;112:103302. [DOI: 10.1016/j.dnarep.2022.103302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/03/2022]
7
Matsumoto H, Sasai H, Kawamoto N, Katsuyama M, Minamiyama M, Kuru S, Fukao T, Ohnishi H. Founder genetic variants of ABCC4 and ABCC11 in the Japanese population are not associated with the development of subacute myelo-optico-neuropathy (SMON). Mol Genet Genomic Med 2021;10:e1845. [PMID: 34951141 PMCID: PMC8801137 DOI: 10.1002/mgg3.1845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/06/2021] [Accepted: 11/18/2021] [Indexed: 11/06/2022]  Open
8
Silva VL, Saxena J, Nicolini F, Hoare JI, Metcalf S, Martin SA, Lockley M. Chloroxine overrides DNA damage tolerance to restore platinum sensitivity in high-grade serous ovarian cancer. Cell Death Dis 2021;12:395. [PMID: 33854036 PMCID: PMC8047034 DOI: 10.1038/s41419-021-03665-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
9
Kuru S. [Fifity years after the identification of the cause of SMON]. Rinsho Shinkeigaku 2021;61:109-114. [PMID: 33504748 DOI: 10.5692/clinicalneurol.cn-001500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
10
Khan R, Khan H, Abdullah Y, Dou QP. Feasibility of Repurposing Clioquinol for Cancer Therapy. Recent Pat Anticancer Drug Discov 2021;15:14-31. [PMID: 32106803 DOI: 10.2174/1574892815666200227090259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
11
Lv X, Zhang W, Xia S, Huang Z, Shi P. Clioquinol inhibits cell growth in a SERCA2-dependent manner. J Biochem Mol Toxicol 2021;35:e22727. [PMID: 33511738 DOI: 10.1002/jbt.22727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 11/06/2022]
12
Summers KL, Dolgova NV, Gagnon KB, Sopasis GJ, James AK, Lai B, Sylvain NJ, Harris HH, Nichol HK, George GN, Pickering IJ. PBT2 acts through a different mechanism of action than other 8-hydroxyquinolines: an X-ray fluorescence imaging study. Metallomics 2020;12:1979-1994. [PMID: 33169753 DOI: 10.1039/d0mt00222d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
13
Clioquinol kills astrocyte-derived KT-5 cells by the impairment of the autophagy-lysosome pathway. Arch Toxicol 2020;95:631-640. [PMID: 33156368 DOI: 10.1007/s00204-020-02943-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
14
Oliveri V. Biomedical applications of copper ionophores. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213474] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
15
Clioquinol inhibits dopamine-β-hydroxylase secretion and noradrenaline synthesis by affecting the redox status of ATOX1 and copper transport in human neuroblastoma SH-SY5Y cells. Arch Toxicol 2020;95:135-148. [PMID: 33034664 DOI: 10.1007/s00204-020-02894-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
16
Clioquinol increases the expression of interleukin-8 by down-regulating GATA-2 and GATA-3. Neurotoxicology 2018;67:296-304. [DOI: 10.1016/j.neuro.2018.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 01/21/2023]
17
Wachnowsky C, Fidai I, Cowan JA. Iron-sulfur cluster biosynthesis and trafficking - impact on human disease conditions. Metallomics 2018;10:9-29. [PMID: 29019354 PMCID: PMC5783746 DOI: 10.1039/c7mt00180k] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
18
Chwastek J, Jantas D, Lasoń W. The ATM kinase inhibitor KU-55933 provides neuroprotection against hydrogen peroxide-induced cell damage via a γH2AX/p-p53/caspase-3-independent mechanism: Inhibition of calpain and cathepsin D. Int J Biochem Cell Biol 2017;87:38-53. [PMID: 28341201 DOI: 10.1016/j.biocel.2017.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/20/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
19
8-Hydroxyquinolines in medicinal chemistry: A structural perspective. Eur J Med Chem 2016;120:252-74. [DOI: 10.1016/j.ejmech.2016.05.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 01/12/2023]
20
Parkinson's Disease: The Mitochondria-Iron Link. PARKINSONS DISEASE 2016;2016:7049108. [PMID: 27293957 PMCID: PMC4886095 DOI: 10.1155/2016/7049108] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/14/2022]
21
Fukui T, Asakura K, Hikichi C, Ishikawa T, Murai R, Hirota S, Murate KI, Kizawa M, Ueda A, Ito S, Mutoh T. Histone deacetylase inhibitor attenuates neurotoxicity of clioquinol in PC12 cells. Toxicology 2015;331:112-8. [PMID: 25758465 DOI: 10.1016/j.tox.2015.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 12/25/2022]
22
Kawamura K, Kuroda Y, Sogo M, Fujimoto M, Inui T, Mitsui T. Superoxide dismutase as a target of clioquinol-induced neurotoxicity. Biochem Biophys Res Commun 2014;452:181-5. [DOI: 10.1016/j.bbrc.2014.04.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 04/14/2014] [Indexed: 10/25/2022]
23
Katsuyama M, Ibi M, Matsumoto M, Iwata K, Ohshima Y, Yabe-Nishimura C. Clioquinol Increases the Expression of VGF, a Neuropeptide Precursor, Through Induction of c-Fos Expression. J Pharmacol Sci 2014;124:427-32. [DOI: 10.1254/jphs.13271fp] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]  Open
24
Oliveri V, Viale M, Caron G, Aiello C, Gangemi R, Vecchio G. Glycosylated copper(ii) ionophores as prodrugs for β-glucosidase activation in targeted cancer therapy. Dalton Trans 2013;42:2023-34. [DOI: 10.1039/c2dt32429f] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA