1
|
Lamnoi S, Boonupara T, Sumitsawan S, Vongruang P, Prapamontol T, Udomkun P, Kaewlom P. Residues of atrazine and diuron in rice straw, soils, and air post herbicide-contaminated straw biomass burning. Sci Rep 2024; 14:13327. [PMID: 38858445 PMCID: PMC11164915 DOI: 10.1038/s41598-024-64291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024] Open
Abstract
This study investigates the environmental impact of burning herbicide-contaminated biomass, focusing on atrazine (ATZ) and diuron (DIU) sprayed on rice straw prior to burning. Samples of soil, biomass residues, total suspended particulate (TSP), particulate matter with an aerodynamic diameter ≤ 10 µm (PM10), and aerosols were collected and analyzed. Soil analysis before and after burning contaminated biomass showed significant changes, with 2,4-dichlorophenoxyacetic acid (2,4-D) initially constituting 79.2% and decreasing by 3.3 times post-burning. Atrazine-desethyl, sebuthylazine, and terbuthylazine were detected post-burning. In raw rice straw biomass, terbuthylazine dominated at 80.0%, but burning ATZ-contaminated biomass led to the detection of atrazine-desethyl and notable increases in sebuthylazine and terbuthylazine. Conversely, burning DIU-contaminated biomass resulted in a shift to 2,4-D dominance. Analysis of atmospheric components showed changes in TSP, PM10, and aerosol samples. Linuron in ambient TSP decreased by 1.6 times after burning ATZ-contaminated biomass, while atrazine increased by 2.9 times. Carcinogenic polycyclic aromatic hydrocarbons (PAHs), including benzo[a]anthracene (BaA), benzo[a]pyrene (BaP), and benzo[b]fluoranthene (BbF), increased by approximately 9.9 to 13.9 times after burning ATZ-contaminated biomass. In PM10, BaA and BaP concentrations increased by approximately 11.4 and 19.0 times, respectively, after burning ATZ-contaminated biomass. This study sheds light on the environmental risks posed by burning herbicide-contaminated biomass, emphasizing the need for sustainable agricultural practices and effective waste management. The findings underscore the importance of regulatory measures to mitigate environmental contamination and protect human health.
Collapse
Affiliation(s)
- Suteekan Lamnoi
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thirasant Boonupara
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sulak Sumitsawan
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Patipat Vongruang
- School of Public Health, Environmental Health, University of Phayao, Phayao, 56000, Thailand
| | - Tippawan Prapamontol
- Environmental and Health Research Group, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Patchimaporn Udomkun
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Puangrat Kaewlom
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
2
|
Lima TRR, Martins AC, Pereira LC, Aschner M. Toxic Effects Induced by Diuron and Its Metabolites in Caenorhabditis elegans. Neurotox Res 2022; 40:1812-1823. [PMID: 36306114 DOI: 10.1007/s12640-022-00596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/26/2022] [Accepted: 10/18/2022] [Indexed: 01/18/2023]
Abstract
The toxicity of diuron herbicide and its metabolites has been extensively investigated; however, their precise toxic mechanisms have yet to be fully appreciated. In this context, we evaluated the toxic mechanism of diuron, 3,4-dichloroaniline (DCA) and 3-(3,4-dichlorophenyl)-1-methylurea (DCPMU), using Caenorhabditis elegans (C. elegans) in the L1 larval stage. For this purpose, worms were acutely exposed to the test chemicals with a preliminary concentration range of 0.5 to 500 μM and first analyzed for lethality (%). Next, the highest concentration (500 μM) was considered for survival (%), reactive oxygen and nitrogen species (RONS), glutathione (GSH) and ATP levels, autophagy index, behavior, and dopaminergic neurodegeneration parameters. Interestingly, increased lethality (%) was found for all chemicals at the higher concentrations tested (100 and 500 μM), with significant differences at 500 μM DCA (p < 0.05). A decrease in the median survival was observed mainly for DCA. Although no changes were observed in RONS production, GSH levels were significantly increased upon diuron and DCA treatment, likely reflecting an attempt to restore the redox status. Moreover, diuron and its metabolites impaired ATP levels, suggesting an alteration in mitochondrial function. The latter may trigger autophagy as an adaptive survival mechanism, but this was not observed in C. elegans. Dopaminergic neurotoxicity was observed upon treatment with all the tested chemicals, but only diuron induced alterations in the worms' locomotor behavior. Combined, these results indicate that exposure to high concentrations of diuron and its metabolites elicit distinct adverse outcomes in C. elegans, and DCA in particular, plays an important role in the overall toxicity observed in this experimental model.
Collapse
Affiliation(s)
- Thania Rios Rossi Lima
- Medical School - TOXICAM, UNIPEX, São Paulo State University (Unesp), Block 5 Botucatu, São Paulo, 18618-970, Brazil. .,Center for Evaluation of Environmental Impact On Human Health (TOXICAM), Medical School, Unesp, Botucatu, SP, Brazil.
| | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Lílian Cristina Pereira
- Center for Evaluation of Environmental Impact On Human Health (TOXICAM), Medical School, Unesp, Botucatu, SP, Brazil.,School of Agriculture, São Paulo State University (Unesp), Botucatu, SP, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
3
|
Lima TRR, de Oliveira Lima E, Delafiori J, Ramos Catharino R, Viana de Camargo JL, Pereira LC. Molecular signatures associated with diuron exposure on rat urothelial mitochondria. Toxicol Mech Methods 2022; 32:628-635. [PMID: 35379061 DOI: 10.1080/15376516.2022.2062271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Diuron, 3- (3,4-dichlorophenyl)-1,1-dimethylurea, is a worldwide used herbicide whose biotransformation gives rise to the metabolites, 3-(3,4-dichlorophenyl)-1-methylurea (DCPMU) and 3,4-dichloroaniline (DCA). Previous studies indicate that diuron and/or its metabolites are toxic to the bladder urothelium of the Wistar rats where, under certain conditions of exposure, they may induce successively urothelial cell degeneration, necrosis, hyperplasia and eventually tumors. The hypothesis was raised that the molecular initiating event (MIE) of this Adverse Outcome Pathway (AOP) is the mitochondrial toxicity of those compounds. Therefore, this study aimed to investigate in vitro the metabolic alterations resulting from urothelial mitochondria isolated from male Wistar rats exposure to diuron, DCPMU and DCA at 10 and 100 µM. A non-targeted metabolomic analysis using mass spectrometry showed discriminative clustering among groups and alterations in the intensity abundance of membrane-associated molecules phosphatidylcholine (PC), phosphatidylinositol (PI) and phosphatidylserine (PS), in addition to methylhexanoyl-CoA and, particularly for diuron 100 µM, dehydro-L-gulonate, all of them involved in critical mitochondrial metabolism. Collectively, these data indicate the mitochondrial dysfunction as a MIE that triggers cellular damage and death observed in previous studies.
Collapse
Affiliation(s)
- Thania Rios Rossi Lima
- São Paulo State University (Unesp), Medical School, Botucatu.,Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Unesp, Medical School, Botucatu
| | | | - Jeany Delafiori
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas
| | - Rodrigo Ramos Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas
| | - João Lauro Viana de Camargo
- São Paulo State University (Unesp), Medical School, Botucatu.,Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Unesp, Medical School, Botucatu
| | - Lílian Cristina Pereira
- São Paulo State University (Unesp), Medical School, Botucatu.,São Paulo State University (Unesp), School of Agriculture, Botucatu.,Center for Evaluation of Environmental Impact on Human Health (TOXICAM), Unesp, Medical School, Botucatu
| |
Collapse
|
4
|
Viana JLM, Dos Santos SRV, Dos Santos Franco TCR, Almeida MAP. Occurrence and partitioning of antifouling booster biocides in sediments and porewaters from Brazilian Northeast. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:112988. [PMID: 31541816 DOI: 10.1016/j.envpol.2019.112988] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Fouling organisms attach and grow on submerged surfaces causing several economic losses. Thus, biocides have been introduced in antifouling paints in order to avoid this phenomenon, but their widespread use became a global problem, mainly in ports, leisure and fishing boat harbors, since these substances can be highly toxic to non-target organisms. The occurrence and environmental behavior of antifouling biocides are especially unknown in some peculiar regions, such as Amazon areas. Thus, the aim of this work was to evaluate, for the first time, levels and the partitioning behavior of the antifouling organic biocides irgarol, diuron and also stable degradation products of dichlofluanid and diuron (DMSA and DCPMU, respectively) in sediments and porewaters from a high boat traffic area located in the Northeast of Brazil, a pre-Amazon region. Our results showed high concentrations of irgarol (<1.0-89.7 μg kg-1) and diuron (<5.0-55.2 μg kg-1) in sediments. In porewater, DCPMU (<0.03-0.67 μg L-1) and DMSA (<0.008-0.263 μg L-1) were the mainly substances detected. High Kd and Koc obtained for both irgarol and diuron showed a partitioning preference in the solid phase. This work represents one of the few registers of contamination by antifouling substances in Amazonian areas, despite their environmental relevance.
Collapse
Affiliation(s)
- José Lucas Martins Viana
- Laboratório de Química Analítica e Ecotoxicologia (LAEC), Universidade Federal do Maranhão, Av. Dos Portugueses, 1966, São Luís, Maranhão, Brazil
| | - Sara Raiane Viana Dos Santos
- Laboratório de Química Analítica e Ecotoxicologia (LAEC), Universidade Federal do Maranhão, Av. Dos Portugueses, 1966, São Luís, Maranhão, Brazil
| | | | | |
Collapse
|
5
|
Peraza-Vega RI, Castañeda-Sortibrán AN, Valverde M, Rojas E, Rodríguez-Arnaiz R. Assessing genotoxicity of diuron on Drosophila melanogaster by the wing-spot test and the wing imaginal disk comet assay. Toxicol Ind Health 2016; 33:443-453. [PMID: 27777339 DOI: 10.1177/0748233716670536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The aim of this study was to evaluate the genotoxicity of the herbicide diuron in the wing-spot test and a novel wing imaginal disk comet assay in Drosophila melanogaster. The wing-spot test was performed with standard (ST) and high-bioactivation (HB) crosses after providing chronic 48 h treatment to third instar larvae. A positive dose-response effect was observed in both crosses, but statistically reduced spot frequencies were registered for the HB cross compared with the ST. This latter finding suggests that metabolism differences play an important role in the genotoxic effect of diuron. To verify diuron's ability to produce DNA damage, a wing imaginal disk comet assay was performed after providing 24 h diuron treatment to ST and HB third instar larvae. DNA damage induced by the herbicide had a significantly positive dose-response effect even at very low concentrations in both strains. However, as noted for the wing-spot test, a significant difference between strains was not observed that could be related to the duration of exposure between both assays. A positive correlation between the comet assay and the wing-spot test was found with regard to diuron genotoxicity.
Collapse
Affiliation(s)
- Ricardo I Peraza-Vega
- 1 Faculty of Sciences, National Autonomous University of Mexico, Distrito Federal, Mexico
| | | | - Mahara Valverde
- 2 Institute of Biomedical Investigations, National Autonomous University of Mexico, Distrito Federal, Mexico
| | - Emilio Rojas
- 2 Institute of Biomedical Investigations, National Autonomous University of Mexico, Distrito Federal, Mexico
| | | |
Collapse
|
6
|
Toxicity of diuron in human cancer cells. Toxicol In Vitro 2015; 29:1577-86. [DOI: 10.1016/j.tiv.2015.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 12/26/2022]
|
7
|
Evaluation of early changes induced by diuron in the rat urinary bladder using different processing methods for scanning electron microscopy. Toxicology 2015; 333:100-106. [DOI: 10.1016/j.tox.2015.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/01/2015] [Accepted: 04/14/2015] [Indexed: 12/18/2022]
|
8
|
Ihlaseh-Catalano SM, Bailey KA, Cardoso APF, Ren H, Fry RC, Camargo JLV, Wolf DC. Dose and temporal effects on gene expression profiles of urothelial cells from rats exposed to diuron. Toxicology 2014; 325:21-30. [DOI: 10.1016/j.tox.2014.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/14/2014] [Accepted: 08/19/2014] [Indexed: 01/08/2023]
|
9
|
Da Rocha MS, Arnold LL, De Oliveira MLCS, Catalano SMI, Cardoso APF, Pontes MGN, Ferrucio B, Dodmane PR, Cohen SM, De Camargo JLV. Diuron-induced rat urinary bladder carcinogenesis: Mode of action and human relevance evaluations using the International Programme on Chemical Safety framework. Crit Rev Toxicol 2014; 44:393-406. [DOI: 10.3109/10408444.2013.877870] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|